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Figure 2.25 Tracing the depolymerization of 2μl [oligomer-1][CF3COO] with the addition of 
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Chapter1. Benzimidazole-based self-immolative oligomeric/polymeric skeletons and their 

potential application for constructing molecular tubes 

1.1 Mechanically interlocked supramolecules and molecular tubes 

 Introduction to supramolecular chemistry 

For decades, supramolecular chemistry has drawn significant attention as a 

multidisciplinary field which required participation from many branches of chemistry. In the 

beginning, people employed computational modeling as the pathfinder for understanding 

complex behavior and designing novel complex systems.1 To synthesize the precursors of 

supramolecules, the methodologies and strategies of both organic and inorganic chemistry 

were employed. Physical chemistry techniques have been used to understand the properties 

of the complexed systems. Biological chemists have probed the similarity between 

supramolecular chemistry and biology systems which encouraged more and more people to 

mimic biology interactions with supramolecular complexes. Thus, supramolecular chemistry 

exists at the intersection these disciplines. 

 Supramolecular chemistry can be broadly divided into two categories, host-guest 

chemistry and self-assembly. In terms of host-guest chemistry, a host molecule with a 

suitably-sized binding pocket is built covalently, which can then be occupied by the 

appropriate guest molecule. Self-assembly is another different system which the size and 

shape are insufficient for distinguishing between host and guest. To build these larger 

assemblies, small molecule building blocks (either single or multiple compounds) can 

assemble together through non-covalent interactions.  

As described by Nobel Laureate Jean-Marie Lehn, supramolecular chemistry is 

“chemistry beyond the molecule”,1 and the construction of supramolecular systems highly 
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relies upon non-covalent bonding interactions between each subunits or components.2 The 

combination of supramolecular synthesis with traditional covalent synthetic strategies has 

allowed researchers develop the mechanically interlocked molecules. 

 Mechanically interlocked molecules (MIMs) 

Mechanically interlocked molecules, or MIMs for short, normally refer to the 

assemblies which hold different molecules together only mechanically, with no chemical 

bond involved.3 Catenanes and rotaxanes are the most discussed MIM examples (Figure 

1.1). 

 

Figure 1.1 Structural diagram of catenanes and rotaxane. 

The names for these two classic host-guest assemblies were established by Gottferied 

Schill in 1971.4 Since then, the family of MIMs grown up by numerous supramolecular 

chemists. Well-designed supramolecular complexes have been employed in some new 

applications like molecular switches, drug delivery tools, and many others.5 

1.1.2.1 Mechanical bond 

Linus Pauling’s 1939 monograph on “The Nature of the Chemical Bond” divided 

chemical bonds into three categories: electrostatic bonds, covalent bonds, and metallic 

bonds. 6 A few decades later, Schill added an entirely new class, the mechanical bond.7 This 

envisions the entanglements in space between two or more molecular entities which hold 
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them all together and prevent them from falling apart.8 The definition of the mechanical 

bonds is a “grey area”, especially when compared with other bonds. On the one hand, these 

bonds are stable within the complex; on the other hand, their strength are only as strong as 

the weakest individual participating chemical bond. The cleavage of a covalent bond 

inevitably leads to breaking the mechanical bond and dissociation of whole complex system. 

The strength of the bond is not dependent on the bond itself, which is unique. 

 Molecules containing one or more mechanical bonds are referred to as 

mechanomolecules. The two best-known classes of mechanomolecules are catenanes and 

rotaxanes (Figure 1.1). As discussed above, the catenanes and rotaxanes are also classed as 

MIMs; however, not all MIMs necessarily possess mechanical bonds since some of them do 

not contain distinguishable components.  

1.1.2.2 Rotaxanes, pseudorotaxanes, and polypseudorotaxanes 

A rotaxane, which is a combination of rota (wheel) and axis (axle) in Latin, 

represents an assembly containing at least one macrocyclic component (wheel) with at least 

one linear component (axle). (Figure 1.2) 4 

                      

Figure 1.2 Structural diagram of a [2]rotaxane which containing axle (deep blue rod), wheel (red cycle), recognition site 

(orange block) and two bulky end groups (blue balls). 

In terms of host-guest chemistry, the bead-like wheel normally acts as host and 

thread-like axle (with the end groups, giving a dumbbell-like species) is the guest. A 
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Figure 1.4 Schematic diagram showing: a) threading method, b) capping method, c) snapping method and d) clipping method, 

which consists axle (deep blue rod), wheel (red ring),recognition site (orange block) and two bulky end groups (blue balls)  

1.1.2.3 Multiple interactions between benzimidazolium axles and Dibenzo-24-Crown-8 

Supramolecular complexes are organized entities that brought two or more chemical 

species together by designed highly directional intermolecular interactions.16 The 

interactions between the host and the guest are structure-specific with high selectivity. Since 

the synthesis of macrocyclic components is typically more challenging than the synthesis of 

linear species (because of entropic effects), supramolecular chemists often prefer to choose 

commercially available macrocycles for their studies. Of the commercially available 

macrocycles, DB24C8 (Figure 1.5) is easy to handle and possesses multiple oxygen atoms to 

act as hydrogen bond acceptors, two electron-rich π-systems for π-π interactions and a 

suitable cavity size for different interpenetrating guests.12   
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Figure 1.5 Structural diagram of dibenzo-24-crown-8 

The Loeb research group had published a series of papers which have employed 

benzimidazolium/bis-benzimidazolium based axles as threads and DB24C8 as the wheel. 

They had developed a group of molecular shuttles with different geometries and axle length. 

(Figure 1.6) 12, 17 By attaching different substituents to the axles, they have selectively built 

T-shaped semi-rotaxanes and H-shaped rotaxanes via threading and snapping approaches. 

According to the preliminary computational modeling12, the T-shape (which the side chains 

are perpendicular to the axle) is the optimal geometry compared to other analogues such as 

Y-shaped and non-substituted axles. The rigid angles between the side chains and axle limits 

the motion of the wheel over the rod to a large degree. Mechanistically, the protonated 

imidazole rings can form strong non-covalent interactions such as N−H···O hydrogen bond, 

Figure 1.6 Benzimidazole-based T-shaped pseudorotaxane and H-shape rotaxane.  
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C−H···O hydrogen bond and π-π interactions with electron-rich catechol rings within 

DB24C8. To obtain more stable assemblies, Loeb converted T-shape semi-rotaxanes to 

corresponded H-shape bis-benzimidazolium based rotaxanes by the snapping approach. 18 

Since bis-benzimidazolium axles are symmetrical threads, there are multiple recognition sites 

and each site has similar binding affinity over DB24C8. In this case, the macrocycle will 

shuttle rapidly between each site under ambient conditions. This shuttling motion can be 

monitored and evaluated by variable temperature NMR measurements (VT-NMR) since the 

rate of shuttle can be slowed down to NMR time scale at low temperature. The shuttling 

motion and the influence of axle length over shuttling rates had been well demonstrated 

under similar architectures.19 

By functionalizing the benzimidazolium axle with different substituents (labeled as 

R1 and R2 in Figure 1.7), the strength of non-covalent interactions between host and guest 

can be either strengthened or weakened according to the electronic nature of substituents. 

Electron-poor groups such as nitro group can enhance the acidity of the hydrogen bond 

Figure 1.7 Effect of axle substituents on association constants (Kassoc).  
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donors and increase the positive charge of the benzimidazolium rings, which resulted in a 

higher binding constant (Kassoc).
14 Electron-rich substituents, such as methyl, provide the 

opposite effect to the host-guest interaction and the more electron-rich the substituents are, 

the weaker the interaction will be. As highlighted in Figure 1.7, nitro substituted axles ([5e]+ 

and [5i]+) show significantly higher Kassoc over different crown ethers than methyl substitute 

axle ([5c]+ and [5j]+). (Figure 1.7) 

 Stimuli-responsive molecular mobility of pseudorotaxanes 

Compared to highly interlocked rotaxanes, pseudorotaxanes show a high degree of 

freedom without the protecting stoppers as energy gap between penetrated species and free 

components is lower than rotaxane assemblies.  Taking advantage of the dynamic and 

reversible formation of non-covalent interactions, the host can move around the guest and 

thus can be a good template for synthesizing stimuli-responsive molecules.20 The formation 

of the non-covalent bonds will be largely affected by the conditions such as temperature, 

solvent polarity, pH, and so on. A better understanding of mobility provides researchers with 

more and more opportunities for different stimuli-sensitive supramolecular complexes.  

Without the protection of the bulky stopper groups, in pseudorotaxanes the 

macrocycle will easily fall off from the rod in solution. The motion through which wheels 

come on and off from the thread in solution is called association and dissociation mobility. 

This mobility can only be measured for non-interlocked assemblies like pseudorotaxanes. 

When the axle has more than one recognition site for binding the macrocycles, shuttling 

along the axle chain provides another mode of pseudorotaxane mobility. The measurements 

of these mobilities are the most important parameters for evaluating the behavior of 

pseudorotaxanes. 
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1.1.3.1 Solvent effects  

Most pseudorotaxane chemistry is highly sensitive to the identity and properties of 

the solvent, because the relative solvation of the monomers and the complex determine the 

thermodynamics of the threading process. The structure and conformational nature of a given 

molecules restricts the solubility, narrowing the solvent choice down. Furthermore, the 

solvent polarity affects the binding constant between each components to a large degree.21 

Some highly polar solvents present as big competitors for the hydrogen bonding which will 

shift the association and dissociation equilibrium to free species to a large degree. The 

Gutmann donor number (DN) is a Lewis basicity measure which been widely used for 

evaluating the electron-donating properties of solvents.22 Solvents with high DN will cause 

negative effect on the host-guest binding constant and vice versa when binding is driven by 

hydrogen bond or dipole-dipole interactions. Water (DN = 18.0 kcal/mol) has a relatively 

high DN so when it is present in the solvent system, the Kassoc will decrease drastically. On 

the contrary, hexane (DN = 0.0 kcal/mol), which is far more nonpolar than water, will 

enhance the binding constant to a large degree. Based on the trend above, low DN and 

nonpolar solvents are the first choice for the hydrogen bond-driven supramolecular 

complexes. For example, a series of threading studies between 2,2′-bis(benzimidazolium) 

(BBIM) system and DB24C8 were carried out within different solvent mixtures. In CD3CN, 

the optimized % threading of compound 1b is 56.5% and the binding constant (Ka) is 

1.4×102. Upon the addition of 10% DMSO, the formation of the pseudorotaxane assembly 

was greatly restricted (no threading was observed), Figure 1.8.23 However, the solubility of 
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host and guest narrow the choice of solvent down to a large extent, the dilemma between 

solubility and polarity always presents as a big challenge for supramolecular chemists.  

1.1.3.2 Temperature effects  

Temperature affects the formation of pseudorotaxanes not only by altering the 

binding constants but also by changing the association/dissociation rate of complex in the 

solution. (Figure 1.9)   

           

Figure 1.9 Schematic Diagram Showing Association/ Dissociation. 

As mentioned above, the threading approach is a popular method for generating 

rotaxanes and especially pseudorotaxanes. Without the protection of bulk stoppering groups, 

heat can be the energy source for the dissociation/association motion of pseudorotaxanes. 

Rotaxanes have different stories since the interlocked molecules are more kinetically stable 

than free species. The association and dissociation process of pseudorotaxanes can be closely 

monitored by VT-NMR. As shown in Figure 1.10, while the temperature increased from 

Figure 1.8 The threading study of [BBIM]DB24C8 in different solvent systems. 
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 Synthesis of benzo[c][1,2,5]thiadiazol-5-amine (9) 

 

Scheme 3.25 Synthesis of compound 9 

The 1000ml two-necked round bottom flask which equipped with a magnetic stirring-

bar was charged with ethanol (304.7ml), iron powder (54.7g, 5eq, 979mmol) was added in 

portion and followed with concentrated HCl (2.83ml, 0.5eq, 97.9mmol). The suspension was 

stirred at 65°C for 2 hours and then cooled to 55°C over a period of 10 minutes with reflux. 

25% ammonium chloride (154.48ml) was added and followed with 8 (35.44g, 1eq, 

195.8mmol) in small portion over 30 minutes at 75°C. The reaction was stirred for another 3 

hours until the reaction was determined to be complete by TLC. The reaction was cooled to 

40°C and ethanol (389.8ml) plus CeliteTM (77.9g) was added and stirred for another 10 

minutes. The reaction mixture was filtered and the filter cake was washed with ethanol and 

ethyl acetate. The filtrate was concentrated under reduced pressure. To the resulted solid, 

saturated sodium bicarbonate (194.92ml) was added and followed with ethyl acetate 

(200ml). The mixture was stirred at room temperature for 20 minutes and the organic layer 

was separated. The organic layer was washed again with brine, dried over MgSO4 and 

concentrated under reduced pressure to afford a dark brown solid as crude. The crude 

product was purified via column chromatography eluting hexanes/ethyl acetate (7:3 v/v) to 

yield a brown solid; TLC: Rf=0.577, (1:1, ethyl acetate-hexanes); Yield: 26.607g, 90% 

(reaction was repeated for several times and actual yield range is 78%-90%). Values are in 

accordance with literature121. 
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 Synthesis of 4,7-dibromobenzo[c][1,2,5]thiadiazol-5-amine (10) 

 

Scheme 3.26 Synthesis of compound 10 

9 (2g, 1eq, 0.013mol) was added to a flame dried 50ml three-neck round bottom flask 

which equipped with a magnetic stirring-bar and condenser. 48% HBr (3.5ml) was added 

slowly to the starting material and heated to 100°C with reflux for 30 minutes. Cover the 

whole reactor with foil and then slowly added Br2 (4ml). Meanwhile quenched the extra Br2 

was quenched with saturated sodium thiosulfate. The reaction was stirred at 95-100°C for 

another 3-4 hours until the reaction was determined to be complete by TLC. At dark 

circumstance, the reaction was stopped by adding saturated Sodium thiosulfate solution 

(30ml). The reaction mixture was extracted with diethyl ether and the collected organic 

phase was washed with brine, dried over MgSO4 and concentrated under reduced pressure to 

afford a bright yellow solid as crude. The crude product was purified via column 

chromatography eluting hexanes/ethyl acetate (8:2 v/v) to yield a brown solid; TLC: 

Rf=0.46, (3:7, ethyl acetate-hexanes); Yield: 1.687g, 42% (reaction was repeated for several 

times and actual yield range is 33%-42%). 1H NMR (300 MHz, CDCl3) δ=5.10 (1H, s), 8.18 

(1H, s). 13C NMR (300 MHz, CDCl3) 92.12 (1C, s), 118.69 (1C, s), 123.78 (1C, s), 142.72 

(1C, s), 148.75 (1C, s), 153.68 (1C, s). HR-MS (ASAP): calc for [M+H] +, [C6H3Br2N3]
 +, 

m/z= 309.8472, found m/z=309.8477.   
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 Synthesis of 4,7-bis(4-methoxyphenyl)benzo[c][1,2,5]thiadiazol-5-amine (11) 

 

Scheme 3.27 Synthesis of compound 11 

10 (1g, 1eq, 3.23mmol) ,4-methoxybenzenboronic acid (1.08g, 2.2eq, 7.1mmol) and 

Tetrakis(triphenylphosphine)palladium(0) (0.4g, 0.1eq, 0.323mmol) was mixed in a 50ml 

flame dried ACE Pressure Tube which equipped with a magnetic stirring-bar and fully 

covered with foil. The mixed solid was dissolved with anhydrous THF (9.6ml). While the 

reaction mixture was stirring, dissolved sodium carbonate (1.03g, 3eq, 9.69mmol) with H2O 

(4.8ml) in a 10ml one-necked round bottom flask and degassed the solution for 20 minutes. 

The fresh and degassed solution was added and the reaction mixture was stirred at 80°C for 

26 hours until the reaction was determined to be complete by TLC. The reaction mixture was 

passed through a pad of CeliteTM (1.5g) and washed the filter cake several times with diethyl 

ether and ethyl acetate for several times until the filtrate get clear. The collected organic 

layer was washed with brine, further dried over MgSO4 and concentrated under reduced 

pressure to afford a brown solid as crude. The crude product was purified via column 

chromatography eluting which start with hexanes/ethyl acetate (9.5:0.5 v/v) to collect the 

first three biproducts and followed with hexanes/ethyl acetate (8:2 v/v) to yield a bright 

yellow solid; TLC: Rf=0.52, (2:8, ethyl acetate-hexanes); Yield: 0.8g, 68% (The reaction is 
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sensitive to scale and 1g scale is the maximum for best yield, reaction was repeated for 

several times and actual yield range is 40%-68%. HR-MS (ASAP): calc for [M+H]+, 

[C20H19N3O2S]+, m/z= 364.1120, found m/z=364.1117.   
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