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Abstract

Diagnosing the correct types of the disease is essential to the effective treatment.

The diagnosis may not always be straightforward from the biological tests especially

during the early stages of the disease. Human body responds to the disease by

producing certain proteins. If we know which genes are active, that is, which proteins

are being produced, we can more accurately classify disease subtypes. This study is

based on the genetic information extracted from the patient’s biological sample and is

used to classify cancer subtypes. Among different types of genetic data, we consider

RNA-seq data in this thesis. Studies based on genetic information often suffer from

very limited samples and few shot learning has recently been studied for disease

classification. Given the success of neural networks in assisting data analysis mostly

with large amounts of data, we perform few shot learning by retraining the neural

networks with genetic algorithmic processes. We follow the proposal from the Human

Genome Organization (HUGO) to group genes based on their chemical composition

and apply genetic algorithms to the HUGO gene groups to help retrain the neural

networks. We apply our proposed approach to several different cancer datasets and

compare our method across state-of-the-art methods. We have implemented our

proposed approach and compared its performance with a wide variety of existing

methods in machine learning and neural networks on three cancer datasets. According

to our experiment, while performing similar to other methods when a relatively larger

amount of data is available, our proposed approach outperforms Affinitynet by an

average of 4 percent for few-shot learning with small datasets.
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Chapter 1

Introduction

Disease subtype classification is a problem that focuses on classifying diseases into

their respective subtypes. Several methods have been proposed for disease subtype

classification. Recent methods involve identifying the disease subtype based on the

genetic information collected from the patient’s blood. Since these diseases might not

be common and data collection studies usually involve few patients, it is a very prac-

tical scenario to receive limited amount of patient data. However most of the methods

do not address this data deficiency problem in genetic data analysis. Although ex-

isting methods such as convolutional neural networks can perform much better when

enough data is provided, such amounts of data is not available for disease prediction.

Even the methods that do, does not use domain knowledge to improve performance.

Hence we tackle disease subtype classification by using domain knowledge in genetic

algorithm-based convolutional neural networks.
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1.1 Background

1.1.1 Precision Medicine

The Precision Medicine Initiative[9] is a long-term research endeavor, involving the

National Institutes of Health (NIH) of the United States of America and multiple other

research centers, which aims at understanding how a person’s genetics, environment,

and lifestyle can help determine the best approach to prevent or treat disease.

According to the Precision Medicine Initiative, precision medicine is ”an emerg-

ing approach for disease treatment and prevention that takes into account individual

variability in genes, environment, and lifestyle for each person.” This approach will

allow doctors and researchers to predict more accurately which treatment[3] and pre-

vention strategies for a particular disease will work in which groups of people. It

is in contrast to a one-size-fits-all approach, in which disease treatment and preven-

tion strategies are developed for the average person, with less consideration for the

differences between individuals.

The Precision Medicine Initiative has both short-term and long-term goals. The

short-term goals involve expanding precision medicine in the area of cancer research.

Researchers at the National Cancer Institute (NCI)[1] of the United States of America

hope to use an increased knowledge of the genetics and biology of cancer to find new,

more effective treatments for various forms of this disease. The long-term goals of

the Precision Medicine Initiative focus on bringing precision medicine to all areas of

health[14] and healthcare on a large scale. To this end, the NIH has launched a study,

known as the All of Us Research Program, which involves a group (cohort) of at least 1

million volunteers from around the United States. Participants are providing genetic

data, biological samples, and other information about their health. To encourage open

data sharing, participants can access their health information, as well as research that

uses their data, during the study. Researchers can use these data to study a large
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range of diseases, with the goals of better predicting disease risk, understanding how

diseases occur, and finding improved diagnosis and treatment strategies.

Although the term ”precision medicine” is relatively new, the concept has been

a part of healthcare for many years. For example, a person who needs a blood

transfusion is not given blood from a randomly selected donor; instead, the donor’s

blood type is matched to the recipient to reduce the risk of complications. Although

examples can be found in several areas of medicine, the role of precision medicine in

day-to-day healthcare is relatively limited. Researchers hope that this approach will

expand to many areas of health and healthcare in coming years.

1.1.2 Disease Prediction

Disease prediction is the first outcome of the precision medicine initiative where the

disease is predicted before the physical symptoms manifest. This is done by analysing

the genetic changes in the body in response to the disease. The genetic expression in

the body is tracked and any fluctuation is directly correlated to the disease. This is

done to assist in the diagnosis of the disease. This process also acts as the first step

of the precision medicine initiative to create custom gene-based cures for diseases.

As this is primarily used for cancer, each cancer type has several subtypes based

on the location of the metastasis. Identifying the subtype of cancer accurately is

essential for proper treatment. Hence classification among the different subtypes is

essential and it can be done by analysing the genetic information in the blood. For

Example, let us consider Kidney cancer. Based on the type of cell being affected, it

is classified into three subtypes.

• Chromophobe Carcinoma - it affects the chromophobe cells in the kidney.

• Papillary Carcinoma - it affects the papillary cells in the kidney.

• Clear Cell Carcinoma - it affects the clear cells in the kidney.
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Since the method for treatment for each type differs, correctly identifying the type

of cancer is essential for proper treatment.

1.1.3 Few-shot Learning

Few-shot learning is an abstract term which involves processes and methods which

are used to train machine learning and deep learning models with as little data as

possible. This few-shot learning approach is used in cases where there is a lack of

data such as in disease classification and prediction studies or used for class labelling

when there is less amount of labelled data such as in image data.

1.1.4 Convolutional Neural Network

Neural networks are computational constructs that mimic the biological neural system

in order to learn and identify inherent patterns in data. These patterns in turn help

us to predict variables or classify them.

Convolutional Neural Network (CNN) is a type of Neural Network that is efficient

in performing classification. The first layer of the convolutional neural network is the

input layer which contains as many neurons as the number of features sent as input

into the CNN. After the input layer we add one or more convolutional layers and

pooling layers. In these layers, there are filters that summarize the data and output

summarized vectors. Finally, it consists of one or more dense layers and has an

output layer. The dense layer consists of different types of neurons for learning. The

output layer consolidates the learning and outputs the final summarized vector with

the weights. Our approach utilizes the retraining of the CNN with genetic operations

for improved performance in few-shot learning



5

1.1.5 Genetic Algorithms

In computer science, Genetic Algorithm (GA) is a metaheuristic inspired by the pro-

cess of natural selection based on the concept of Darwin’s theory of evolution for

solving both constrained and unconstrained optimization problems. Genetic algo-

rithm repeatedly modifies a population of individual solutions by selecting the best

individuals from the current population as parents and using them to produce children

for the next generation through a number of bio-inspired operators such as mutation,

crossover and selection. Over successive generations, the population evolves towards

an optimal solution. As the training process of a CNN is basically an optimization

problem, we use genetic algorithm towards this end.

Population

In a genetic algorithm, a population of solutions to an optimization problem is evolved

towards better solutions. The population can be sets of data, solution functions, etc.

Chromosome

Each solution, encoded with real or binary numbers or some other encoding, is rep-

resented by a chromosome which can be changed and altered. Chromosomes are

essentially the members of the population.

Evolution

The evolution, which is an iterative process, usually starts from a population of ran-

domly generated individuals, with the population in each iteration called a generation.

Fitness Function

In each generation, the fitness measurement of each and every individual in the pop-

ulation is evaluated, which is usually the value of the objective function in the opti-
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mization problem being solved. The more fit individuals are selected from the current

population to be modified by genetic operators for the formation of a new genera-

tion. The new generation of candidate solutions is then used in the next iteration of

the algorithm. Commonly, the algorithm terminates when either a maximum num-

ber of generations has passed, or a satisfactory fitness level has been reached for the

population. The fitness level can be any evaluation metric or any threshold value.

A typical genetic algorithm requires a genetic representation of the solution do-

main and a fitness function to evaluate the solution domain. A standard representa-

tion of each solution is by using an array. The main property that makes these genetic

representations convenient is that its parts are easily aligned due to their fixed size,

which enables simple crossover operations. Once the genetic representation and the

fitness function are defined, the algorithm proceeds to initialize a population of solu-

tions and then improving it through repetitive application of the selection, crossover,

and mutation operators. Next we describe the flow of how a genetic algorithm gen-

erally operates.

1. Initialization: The initial population contains several hundreds or thousands of

possible solutions often generated randomly. This allows a desirable sampling

of the entire range of possible solutions.

2. Evaluation: A fitness function is defined over the genetic representations of

the solutions to assign a fitness value to each member based on measuring the

quality of the represented solution according to some performance evaluation

criteria. The fitness function is problem dependent, henceforth making its cor-

rect determination an important step in the configuration of a working genetic

algorithm.

3. Selection: During each successive generation, whole or a portion of the current

population is selected to reproduce a new generation. Solutions involved in the
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reproduction are selected through a fitness-based process, where fitter solutions

are typically more likely to be selected. Some examples of selection strategies

are fitness-proportion selection (or most commonly known as roulette-wheel

selection), tournament selection, and stochastic universal sampling.

4. Genetic Operators: The next step is to create a next generation population of

solutions from the selected solutions through a combined use of genetic opera-

tors such as crossover and mutation. For the production of each new solution, a

pair of ”parent” solutions (or sometimes, just one solution) is selected from the

pool of previously selected fit individuals for breeding. By producing a ”child”

solution using the mentioned methods of breeding, a new solution is created

which mostly shares many of the characteristics of its ”parent(s)”. Again, new

parent(s) are selected for each new child, and this process continues until a new

population of solutions of appropriate size is generated. In order to produce a

new generation of solutions, this newly bred children can replace some or the

entirety of the members of a current generation. These processes ultimately

result in the next generation population of chromosomes that is different from

the previous generation. Generally, the average fitness of a population increases

by this procedure, since only the best organisms, along with a small proportion

of lesser fit solutions, are selected for breeding. These less fit solutions ensure

genetic diversity within the genetic pool of the parents and therefore, ensure the

genetic diversity of the subsequent generation of children. Although crossover

and mutation are known as the main genetic operators, it is possible to use

other operators such as regrouping, colonization-extinction, or migration in ge-

netic algorithm. To find a reasonable configuration of settings for the problem

class being worked on, parameters such as the mutation probability, crossover

probability and population size must be tuned properly. A very small mutation

rate may lead to genetic drift. A recombination rate that is too high may lead
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to premature convergence of the genetic algorithm. A mutation rate that is

too high may lead to loss of good solutions. So, the correct configuration of

tuning these parameters is an important step towards making a good genetic

algorithm.

5. Termination: The above process is repeated until some termination condition

has been reached. Common terminating conditions are finding a solution that

satisfies minimum criteria, reaching a fixed number of generations, or reaching

a plateau in the highest ranking solution’s fitness.

1.2 Problem Definition

The lack of genetic data prevents widespread analysis and prediction of diseases and

their subtypes. The problem considered in this thesis is to perform classification of

disease subtypes with the limited amount of data accurately.

1.3 Thesis Motivation

Diseases in general cannot be diagnosed until the symptoms manifest in the body.

Recent studies have confirmed that even before symptoms manifest, the signs of the

disease can be found by observing the genetic changes in the body such as gene ex-

pression. This is the key to predicting diseases and for genetic medicine. Also, several

diseases have different subtypes which can alter the way of treatment. So accurate

diagnosis is important for proper treatment. Fast and accurate diagnosis can help

the treatment and recovery in a long way.

Disease prediction at the current level is only used in prediction and diagnosis.

In the future this can be used to tailor genetic medicines which can improve specific



9

bodily immune functions and greatly reduce the side effects thus approaching illness

and recovery in a new manner. The cures are also specifically tailored for each in-

dividual’s needs and not as a blanket cure. This has already been proposed in the

precision medicine plan in several countries.

In this initiative, several research works attempt to properly track genetic activity.

The problem with such an analysis is that there is scare availability of data for each

disease, so work must be done to train models with less amounts of data. This process

is called as few shot learning and has been addressed by some previous works[28]. The

identification of cancer types is essential for proper treatment, hence previous works

focus on cancer type classification. The limitation of the existing work is that it does

not attempt to incorporate domain knowledge in the model. It also has a range where

the performance can be improved.

The limitations of the existing work motivated the author to research and pro-

pose a new architecture which can alleviate the existing problems. This research aims

to propose an architecture that performs few shot learning and that utilizes domain

knowledge(gene grouping) to improve the performance of the classifier.

1.4 Thesis Statement

The objective of this research is to propose a new approach for few shot learning

such that inherent domain knowledge can be used to improve the performance of a

classifier. Our thesis attempts to introduce domain knowledge in the form of gene

grouping and exploit the grouping with genetic algorithms to create a few shot train-

ing architecture
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Our proposed approach is to use domain knowledge to improve the few-shot learn-

ing capability of the existing approach. Since the existing approach uses a convolu-

tional neural network and modifies its architecture, we also modify it in such a way

that it utilizes the domain knowledge. The domain knowledge is incorporated in the

form of gene grouping which was proposed by the Human Genome Organization[4]

based on the molecular structure of each gene.

We solve the few-shot learning problem by proposing a new algorithm that utilizes

domain knowledge.

1.5 Thesis Contribution

This thesis addresses the lack of data problem in genetic disease prediction and pro-

poses a novel architecture that improves the performance of cancer subtype classifica-

tion when less amounts of data are available. The proposed algorithm utilizes genetic

algorithm concepts to retrain convolutional neural networks to prevent overfitting and

selects the best model for classification.

The proposed GACNN model consists of three distinct variations to previous

work which makes it better for solving the problem at hand. Each step is designed

to address the limitations of the existing algorithm.

• Genetic Algorithms: The GA is used to optimize the solution and to introduce

variations to prevent overfitting and to select a fit model.

• Convolutional neural networks: The CNNs are repeatedly retrained to familiar-

ize similar features and make the distinct features stand out.

• Gene grouping: This is a highly unique step as previous works do not consider

gene grouping for consolidation. This imparts an inherent grouping which can

be exploited using genetic algorithms.
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1.6 Thesis Organization

The rest of the thesis/research work is organized in the following manner.

In chapter II, we discuss related work/literature review in the field of cancer

subtype classification , classification methods, genetic algorithms, types of genetic

operations and other disease type classification methods

In chapter III, We introduce our proposed few shot GACNN which is a novel few

shot algorithm that works with genetic data such as mRNA data. It also acts as a

self regulatory algorithm which prevents overfitting and chooses the best network. In

this chapter, we give detailed description of the GACNN and how it integrates gene

grouping to give accurate classification results.

Chapter IV, We explain our experimental setup. This chapter presents the details

of tested environmental setups, details of tested datasets and evaluation methods. It

also presents the test results of the GACNN and compared the GACNN performance

on four different types of cancer datasets. This chapter consists of detailed represen-

tation of AMI scores for each proportion of the dataset

Chapter V concludes the research, explains insights received during the work and

sets up the field of opportunities for the future work.
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Chapter 2

Related Work and Literature

Review

This chapter focuses on related works and researches used for background study,

concept-building, and theoretical background of our thesis. We discuss and analyze

works of literature that are relevant to the few shot problem specific to the disease

prediction paradigm

2.1 Disease Subtype Classification methods

Based on the background study, related works, and limitations of the previous works,

we propose a novel approach for few shot learning in RNA-Seq data. We describe our

proposed model in detail in Chapter 3.

Disease classification has become an active research field ever since the announce-

ment of the Precision medicine initiative[9] and has become more active since the

advent of the COVID 19 pandemic. Genetic disease prediction works on the premise

that any kind of disease, before it shows any physical symptoms must show changes

in the genetic content in the blood. This helps in prognosis of the disease. Diseases



13

also have subtypes based on the area affected and other factors which also affects

the method of treatment. We consider cancer and its various subtypes for our study

because accurate diagnosis of the disease is essential for proper treatment.

The recent work about cancer subtype classification by Tianle ma et al [28] ad-

dresses a core issue in genetic disease prediction. It involves addressing the lack of

data by using few shot learning. We have chosen this paper as our base and have

addressed the issues mentioned in it and have attempted to improve on it. This pa-

per describes the problem of lack of data in genetic disease prediction and proposes a

few shot semi supervised learning model called as ”AffinityNet”[27] which performs

better with less amount of data. This paper utilizes kNN attention pooling to group

similar features and emphasize on distinct features. They also incorporate the at-

tention pooling in the convolutional neural network. Neural networks tend to work

better with more data. Hence attention pooling is incorporated to compensate for

the lack of data. This step is to incorporate few shot learning into the convolutional

neural network. Although this paper is comprehensive in addressing the few shot

problem using a convolutional neural network, it does not use domain knowledge to

improve few shot learning or optimize it. This has been mentioned in its future work,

which is what we are trying to address. We implement the algorithm in the paper in

conjunction with our dataset in order to compare the performance of our algorithm

with affinitynet.

Other similar work regarding cancer subtype classification[45][17][44] include the

work by Pooya Mobaderasany, Lee ad Cooper et al.[30], in which they use tissue

biopsy images to predict and classify disease subtypes. Although this is a much

accurate method, this involves the utilization of an invasive procedure and the data

for tissue biopsy is much harder to retrieve than the genetic data which is retrieved

from blood and hence we go with RNA-seq data which can be easily gathered from

blood samples rather than from surgery.
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Ekaterini Blaveri et al.’s[2] work on bladder cancer subtype classification takes

a similar problem and tries to solve it. Instead of m-RNA, they use cDNA dataset

for classification. they also use conventional supervised machine learning methods

rather than neural networks to solve the problem. They also incorporate the cherry-

picking strategy which involves manually studying the predictor genes to see if they

can actually be helpful for classification and prediction. Other cancer identification,

prognosis, classification and class identification methodologies have also been widely

explored in[19][7][41][20][21][42]

Class discovery methods proposed by Golub et al., [15] is essential for determining

the classes in cancer. The author proposed a method to determine when a variation

of a cancer can be classified as a subtype such that it warrants a different treatment

procedure. Class discovery is performed till today when new findings about cancer

are released and the cancer subtype classification problem evolves further.

2.2 Computational Classification Methods

The computational method of optimizing a convolutional neural network using genetic

algorithms was recently proposed by Parsa Esfahanian and Mohammad Akhavan[13]

in their work. They have implemented the genetic algorithm as a layer to improve

training speed and optimization but does not address the issue of few shot learning

which we address in our method.

Naive Bayes classifier[47] is a prominent machine learning method used for classi-

fication. It utilizes conditional probabilities to classify the dataset. Since it is a tried

and tested method, it serves as a benchmark for classification.

Random forest algorithm[5] emerged after bagging and boosting techniques as a

dominant classification method. It is a combination of tree predictors such that each

tree depends on the values of a random vector sampled independently and with the
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same distribution for all trees in the forest.Since it is predominantly used for classi-

fication and has consistently given reliable scores, we take it for benchmarking. The

work by Stephane Wenric et al.[43] uses random forest algorithm on the same TCGA

dataset which we use and show good accuracy scores. They perform differential ex-

pression analysis in order to identify the genes which are good indicators of cancer

and indicators of survival.

Convolutional neural networks[22][18] are predominantly used for image classifi-

cation. It involves sliding a filter across an image or matrix to summarize the values

such that the final layer contains a feature representation of the original data. Since

it gives a good representation of the input data, retraining it with similar features in

a single group would make the model sensitive to unique features in the data.

2.3 Genetic Algorithms

Genetic algorithm repeatedly modifies a population of individual solutions by select-

ing the best individuals from the current population as parents and using them to pro-

duce children for the next generation through a number of bio-inspired operators[25]

such as mutation,crossover and selection. There are different ways of performing such

genetic operations. For example the work by Survana Patil et al. [32] details on the

types of mutation operations that can be done and for what problems each mutation

strategy works the best. It describes mutation methods such as dynamic mutation

, schema mutation, compound mutation, cluster based adaptive mutation and hyper

mutation. We use schema mutation in our approach where we perform mutation

whenever the fitness value stabilizes.

For crossover[39], the work by Umbarker et al.[40] describes various crossover

strategies used for the crossover operation in a genetic algorithm. They list meth-

ods such as 1-point crossover, K-Point crossover, shuffle crossover, reduced surro-
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gate crossover, uniform crossover, average crossover, discrete crossover, flat crossover,

heuristic crossover, elitist crossover and other multivariate crossover techniques. We

use elitist crossover technique to perform crossover.

There have also been several instances where genetic algorithms have been used

for optimizing neural networks[36]. [29] The work by Paulito Palmes et al. [31] uses

mutation to introduce variation in order to prevent overfitting in neural networks.

They are used in optimizing the weights[11][46], the intermediate values, the training

rate and every other aspect of the neural network

2.4 Few Shot Learning Methods

Few-shot learning involves using less amounts of data to train algorithms. Some

commonly used few-shot learning methods are described as follows.

The prototypical networks[37] for few- shot learning work by Jake Snell et al.,

depicts a method of few shot learning which involves using distances between the

prototypes of classes and the actual classes using softmax and SGD. It is a simplistic

approach that is essential in reducing the complexity in image data, but does not

work well with RNA-Seq data.

Another approach involves meta Learning[34] which uses meta data to perform

few- shot learning. Although this method has been proposed for semi supervised

labelling of images using meta data, this method has a larger scope in terms of few

shot learning for genetic data, as plenty of meta data will be available for few-shot

learning in patient samples. This approach has not yet been explored for few shot

learning using genetic data.

The work by [33] Sachin Ravi et al. implements an LSTM in a deep learning

neural network which is modified for few-shot learning. They also use a modified

form of meta learning for few-shot learning by automatically self-adjusting weights.
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The work by Yanbin Liu et al. [26] uses a transducive propagation network for

few-shot learning. The model performs good with image datasets. It exploits feature

embeddings and transfer learning to similar datasets to perform few-shot learning.

The work by Boyang Deng et al. [12] implements few-shot learning in Convo-

lutional neural networks This few-shot learning method is implemented on image

dataset. It works by training the algorithm on a well known visual dictionary and

then transferring the weights to try and classify unlabelled images. They also incor-

porate some unsupervised clustering for class discovery.
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Chapter 3

Proposed Approach

3.1 Introduction

As discussed in Chapter 1, cancer subtype classification[24] is important for diag-

nosis and proper treatment. According to the precision medicine initiative, we use

genetic data in order to analyze and classify cancer subtypes. But the problem is the

lack of sufficient samples available for analysis. Hence we resort to few-shot learning

techniques. We try to incorporate the available data in such a manner that accurate

classifiers can be trained. We also introduce genetic algorithms to help with intro-

ducing variations in the available data to enable training the convolutional neural

network and to prevent overfitting.

3.2 Architecture

The architecture of our proposed approach is depicted in figure 3.1. It shows how

the data is split by incorporating domain knowledge, and how the CNNs are trained

with genetic algorithms to select the optimal model and the optimal featureset. Our

proposed approach has four major steps that define it. They are
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1. Gene Grouping

2. Convolutional Neural Network

3. Genetic Operations

4. Model Selection

These steps ensure that few shot learning is performed with the use of domain

knowledge in our proposed approach.

Figure 3.1: Architecture of the proposed approach

3.3 Gene grouping

A gene group[4] is a set of genes that share important characteristics. In many cases,

genes in a group share a similar sequence of DNA building blocks (nucleotides). These

genes provide instructions for making products (such as proteins) that have a similar

structure or function. In other cases, dissimilar genes are grouped together because

proteins produced from these genes work together as a unit or participate in the same

process.
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Figure 3.2: Example of a Gene group AGPAT

Classifying individual genes into groups helps us describe how genes are related to

each other. Researchers can use gene groups to predict the function of newly identified

genes based on their similarity to known genes. Similarities among genes in a group

can also be used to predict where and when a specific gene is active (expressed).

Additionally, gene groups may provide clues for identifying genes that are involved in

particular diseases. Sometimes not enough is known about a gene to assign it to an

established group. In other cases, genes may fit into more than one group. No formal

guidelines define the criteria for grouping genes together. Classification systems for

genes continue to evolve as scientists learn more about the structure and function of

genes and the relationships between them. Hence exploring the gene grouping would

help us in identifying key indicators for a disease subtype[38]. Since some groups have

less than ten features, we rearrange the groups such that each group has more than
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50 features. We get a total of 113 groups after consolidation. The figure below shows

the distribution of the features across the groups.

Figure 3.3: Histogram of number of features in groups

3.4 Genetic Operations

Genetic algorithm consists of genetic operations which are recursively performed to

introduce variation and to generate a new population. The two genetic operators

which we are going to implement in our approach are mutation and crossover.

3.4.1 Mutation

Let us consider the gene groups G1, G2. . . Gn and let us consider the set of features

in the group as G1 as G11, G12, G13, G14, . . . , G1n

The top N groups are chosen based on the Adjusted Mutual Information score
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and they are randomly paired with each other. We create a mutation pool M which

contains the features that were not selected during the feature selection process.

For performing mutation, any feature is randomly chosen in the group and in

the mutation pool and the chosen feature in the group is replaced with the random

feature in the mutation pool.

Before Mutation

G1 = {G11, G12, G13, G14, . . . , G1n}

M = {M1,M2,M3,M4, . . . ,Mn}

After Mutation

G1 = {G11, G12, G13,M3, . . . , G2(n/2), . . . .G2n}

We perform mutation by following the schema mutation methodology where mu-

tation is performed whenever the fitness function gets stuck in a local optima

3.4.2 Crossover

Lets us consider the gene groups consisting of groups G1, G2, . . . , Gn. The top N

groups are chosen based on the AMI score and they are randomly paired with each

other. Let us consider a pair of groups G1, G2. For performing crossover, any half

of the features are chosen in random in the first group and they are exchanged with

corresponding set of features in the second group of the pair. The crossover operation

is depicted in figure 3.4.

Before Crossover

G1 = {G11, G12, G13, G14, . . . , G1(n/2), . . . , G1n}

G2 = {G21, G22, G23, G24, . . . , G2(n/2), . . . , G2n}

After Crossover

G1 = {G11, G12, G13, G14, . . . , G2(n/2), . . . , G2n}
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G2 = {G21, G22, G23, G24, . . . , G1(n/2), . . . , G1n}

We perform crossover by following the elitist crossover strategy where the top N

groups are selected and crossover is performed among them.

The crossover operation performed in our approach is presented in the figure below

Figure 3.4: Crossover operation performed in the proposed approach

3.5 Convolutional Neural Network

Neural networks are computational constructs that mimic the biological neural system

in order to learn and identify inherent patterns in data. These patterns in turn help

us to predict variables or classify them.

Convolutional Neural Network (CNN) is a type of Neural Network that is efficient

in performing classification. The first layer of the convolutional neural network is

the input layer which contains as many neurons as the number of features sent as

input into the CNN. After the input layer we add one or more convolutional layers

and pooling layers. In these layers, there are filters that summarize the data and

output summarized vectors. Finally, it consists of one or more dense layers and has

an output layer. The dense layer consists of different types of neurons for learning.

The output layer consolidates the learning and outputs the final summarized vector
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with the weights. An example CNN is illustrated with its different layers in Figure

3.5.

Figure 3.5: Convolutional Neural Network

The convolutional layer is special as it used to extract features from input matrices.

Neurons in this layer are positioned as two-dimensional arrays and referred to as the

activation map. Weights are arranged in a three-dimensional array known as the

kernel. Height, width, and depth might be changed for different input sizes. There

can be multiple kernels with different sizes, even for the same input matrix. The

kernel slides through the input matrix and creates a set of activation maps.

Convolutional layers reduce the weight optimization problem as they extract spa-

tial features and feed them to neurons rather than connecting one neuron to each cell

for the input matrix. In addition to the weights in kernels, a bias value is also added

while creating an activation map. The activation value calculation by convolution

layer can be expressed as follow in the equation 3.1

xlj,k = σ

(
yl−1 +

p∑
m=0

q∑
n=0

wl−1
m,nx

l−1
j+m,k+n

)
(3.1)

where xlj,k is the result activation value of the kth neuron in the jth row of the lth

layer, y is the bias shared among the layer, w is the weight parameter of the p × q

size kernel, and σ(z) is the activation function.
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The pooling layer is usually added just after the convolutional layer. Pooling layer

reduces dimensionality but does not reduce depths or channels. Convolutional layer

outputs feature maps as patches. Pooling layer kernels slides through these patches

and creates reduced and summarized feature maps. There are three types of kernels

used in CNN, which are Max Pooling, Min pooling, and Average pooling. Max pooling

takes maximum values of the window while filter slides; Min pooling takes minimum

value of the window while filter slides, and Average pooling takes an average of all

value in the window while filter slides through. The most common type of pooling

used in CNN is Max pooling. There can be multiple sets of convolutional layers and

pooling layers. After the convolutional layer and pooling layer, the resulting matrix is

flattened and fed into a dense layer, which is usually a multi-layer perceptron network.

Finally, the output layer will perform classification based on the summarized weights.

Our proposed approach uses a convolutional network in the core for classification. But

for the training process, we use multiple CNNs and we use a fitness score(AMI score)

to select the best CNN after the required number of generations are elapsed. This

ensures that every feature is given a fair chance in training and enables the genetic

fitness function to work optimally. We did not have a situation where the fitness

score does not not converge, so we did not apply for any steps to improve convergence.

Whenever the AMI scores stabilize, we introduce mutation and crossover until further

changes does not positively affect the score.

3.6 Evaluation Metrics

3.6.1 Adjusted Mutual Information

AMI is an adjustment of the Mutual Information (MI) score to account for chance,

which is suitable to measure the performance of clustering and classification[28] with

multiple unbalanced classes (AUROC is a similar metric but is mainly suitable for
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binary classification). AMI score is good for evaluating unbalanced classes which is

the case with the dataset we use for this thesis. We also measure accuracy, precision,

recall and F1 scores, but as they were unreliable in accurately measuring the few-shot

learning potential, they are not considered for this thesis.

3.6.2 Performance Comparison

In order to make sure that our proposed approach is better than the existing methods

of few-shot learning, we choose a wide variety of existing methods in machine learning

and neural networks to compare with our proposed approach. We also select the

approach of ’AffinityNet’ which has been proposed by the base paper of this thesis

and compare it with our method. The list of methods used for comparison are

• Multinomial Naive Bayes

• Random Forest

• Support Vector Machines

• Neural Networks

• AffinityNet

Multinomial Naive Bayes

Naive Bayes[47] is a machine learning classifier that uses probability. It is based

on the Bayes theorem on conditional probability with the “naive” assumption of

conditional independence between every pair of features given the value of the class

variable. Despite its simplistic assumptions, it is a pretty good classifier and is used

as a benchmark for new methods. According to Bayes rule, the probability of an

example E = (x1, x2, ..., xn) being class c is

p(c|E) = p(E|c)p(c)
p(E)
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E is classified as the class C = + if and only if

fb(E) = p(C=+|E)
p(C=−|E)

≥ 1,

where fb(E) is called as a Bayesian classifier.

Assume that all attributes are independent given the value of the class variable

p(E|c) = p(x1, x2, ..., xn|c) =
∏n

i=1 p(xi|c)

the resulting classifier is then:

fnb(E) =
p(C = +)

p(C = −)

n∏
i=1

p(xi|C = +)

p(xi|C = −)
(3.2)

where fnb is the Naive Bayes classifier

Since we have multiple classes, we use multinomial Naive Bayes classifier for clas-

sification.

Random Forest

Random forests[5] are a combination of tree predictors such that each tree depends

on the values of a random vector sampled independently and with the same distribu-

tion for all trees in the forest. The generalization error for forests converges as the

number of trees in the forest becomes large. The generalization error of a forest of

tree classifiers depends on the strength of the individual trees in the forest and the

correlation between them. Using a random selection of features to split each node

yields error rates that are favourable and robust with respect to noise.

A random forest is a classifier consisting of a collection of tree-structured classi-

fiers h(x,Θk), k = 1, ... where the Θk are independent identically distributed random

vectors and each tree casts a unit vote for the most popular class at input x.

Hence, we chose the random forest algorithm to compare performance in classifi-

cation.
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Support Vector Machine

A support vector machine constructs a hyper-plane or set of hyper-planes in a high

or infinite dimensional space, which can be used for classification, regression or other

tasks. Intuitively, a good separation is achieved by the hyper-plane that has the

largest distance to the nearest training data points of any class (so-called functional

margin), since in general the larger the margin the lower the generalization error of

the classifier. LinearSVC implements “one-vs-the-rest” multi-class strategy[10], thus

used for multi-class classification.

Neural Network

Neural networks[16] are computational constructs that mimic the biological neural

system in order to learn and identify inherent patterns in data. These patterns in

turn help us to predict variables or classify them. Since we use convolutional neural

networks, in order to bench mark against traditional neural networks, we choose a

simple ten layer neural network and test it with our data.

AffinityNet

AffinityNet[28] is the approach that is described in the base paper of our thesis. It

involves using semi supervised clustering and attention pooling layers in a convolu-

tional network in order to optimize the model for few shot learning. We use this in

order to benchmark our proposed approach.
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Chapter 4

Experiments, Discussions,

Comparisons and Analysis

In this chapter, we explain the details of the experimental setup and environments

such as tools and libraries used to implement the few shot GACNN, systems configu-

rations of data pre-processing step and CNN training and testing, dataset details, the

detailed configuration of CNN and layer details, train and test details and evaluation

method to test the results. We then present the results of the conducted various

tests. We recorded our proposed GACNN’s performance against machine learning

methods such as Naive Bayes classifier, SVM classifier, random forest classifier. We

also compare it against a traiditional 10 layer neural network. Finally we compare

our approach to the method proposed in the base paper which is the ’AffinityNet’

method. We conducted our experiments on three different types of cancer datasets

with the experimental setup explained in Chapter 3. We depict the nature of each

dataset by using Principal component analysis and represent it using scatterplots.

We illustrate the performance of all compared methods on each dataset as bar

charts. Charts plots average AMI score of all methods on 10 test runs on each

dataset. We verify the effectiveness of the methods in few-shot learning by utilizing
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a fraction of the dataset in each method.

4.1 Tools and libraries

We implemented our GACNN using Keras[8] with the Python 3.6 programming lan-

guage. The libraries and their versions that are used to implement our proposed

approach are listed below

• NumPy 1.17.1

• SciPy 1.3.1

• Pandas 0.25.1

• Tensorflow GPU 1.14.0

• Keras 2.31

• Plotly 4.10.0

We used VS Code IDE to implement and test the GACNN.

4.2 System Configurations

Data pre-processing and GACNN training was created using a google cloud cluster

with the specification of Intel Xeon Scalable Processor (Cascade Lake), 256 GB of

RAM.

4.3 Datasets

The proposed GACNN approach aims to classify cancer subtypes using RNA Seq

data.
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• TCGA Kidney Cancer RNA Seq dataset[35] (Firehose Legacy). This dataset

consists of datasets of three different types of kidney cancer specimens which

are Chromophobe, clear cell and papillary Carcinoma and consists of a total of

891 samples.

• TCGA Lung Cancer RNA Seq dataset[6][23] (Firehose Legacy). About 80 per-

cent to 85 percent of lung cancers are Non Small Cell Lung Cancer (NSCLC).

The main subtypes of NSCLC are adenocarcinoma and squamous cell carcinoma

and consists of 1018 samples.

• TCGA Uterine Cancer RNA Seq dataset (Firehose Legacy). This dataset con-

sists of datasets of three different types of uterine cancer which are Uterine

Endometrial Carcinoma, Uterine Carcinosarcoma and consists of

4.4 CNN configurations

Our proposed approach has a CNN as a classifier to classify cancer subtypes. CNN is

configured with different layers and activation functions. Details of CNN layers and

tunable parameters are given in the table 4.1.

We used four different proportions of training and test data. They are 80%,50%,20%

and 10% of data for training and the rest for testing. We used the same train test

split proportions for all the other state-of-the-art methods. We trained our model for

100 epochs during each generation. We used AMI score as the fitness function for

our approach and trained it for 200 generations even though AMI scores stabilized

earlier. After training, we loaded the best-saved model and tested the data.
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Layers Specification Activation func. No. parameters

Convolutional 32 filters with 4× 4 size relu 3104

Average Pooling 5× 5 kernal size N/A N/A

Flatten Flattens pooled matrix N/A N/A

Dense layer 300 neurons relu 240300

Dense layer 128 neurons relu 38528

Output 1 neuron sigmoid 129

Table 4.1: Convolution Neural Network configuration for the Proposed Approach .
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4.5 Training and Testing

Our GACNN takes the RNA-seq dataset and splits it into groups based on the gene

grouping. The split groups are then fed into a respective convolutional neural network

and each CNN is trained. While training each CNN the input groups are split row-

wise based on the samples in order to split for training and testing. This way, each

iteration through the CNN is validated with a train-test mechanism. Based on the

resulting accuracy of each CNN, a top N number of groups are selected and genetic

operations such as mutation and crossover is performed on the groups. The training

process is repeated until a satisfactory Adjusted Mutual Information(AMI) score is

obtained. The CNN with the best AMI score is chosen as the classifier.

4.6 Evaluation metric

In machine learning, the evaluation of a model is an essential task in order to measure

its performance. Usually, accuracy is taken place as a performance metric. However,

accuracy is not good enough to measure the performance of a model if it is a multi-

class classification problem. In a multi-class problem, a model can make predictions

randomly and still have a chance that its predictions may be correct. In such a

case, we need another metric that can evaluate the model, whether it is predicting

randomly or learned to separate classes. We select Adjusted Mutual Information as

the evaluation metric. Details of Adjusted Mutual Information and its calculation

methodology are given in the following subsection.

4.6.1 Adjusted Mutual Information

Adjusted Mutual Information(AMI) is an evaluation metric that widely used in multi-

class classification problems. AMI adjusts the mutual information to account for

chance. It accounts for the fact that the MI is generally higher for two classes with
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a larger number of samples, regardless of whether there is actually more information

shared[28]. For two classes, the AMI is given as:

AMI(U, V ) =
[MI(U, V )− E(MI(U, V ))]

[avg(H(U), H(V ))− E(MI(U, V ))]
(4.1)

This metric is independent of the absolute values of the labels: a permutation of

the class or cluster label values won’t change the score value in any way.

This metric is furthermore symmetric: switching label true with label pred will

return the same score value.

4.7 Comparison and Analysis

4.7.1 Kidney Cancer Dataset

Kidney cancer dataset is sourced from The Cancer Genome Atlas (TCGA) program.

It consists of m-RNA expression datasets for 891 patients. So it is essentially a matrix

of 891 rows which are samples and 20532 columns which are featuresets. It consists of

three classes which are the three subtypes of Kidney cancer. They are chromophobe

carcinoma, clearcell carcinoma, and papillary carcinoma. The following figure 4.1

represents the principal component analysis of the dataset. It shows a distinction

between the classes, but has an overlap.

Cancer Subtype Samples
Clear Cell Carcinoma 534
Papillary Carcinoma 291

Chromophobe Carcinoma 66

Table 4.2: Distribution of Classes across Samples in Kidney Cancer Data
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Figure 4.1: Principal Component Analysis of the TCGA Kidney Cancer Dataset

4.7.2 Lung Cancer Dataset

Lung cancer dataset is sourced from The Cancer Genome Atlas (TCGA) program. It

consists of m-RNA expression datasets for 891 patients. So it is essentially a matrix

of 891 rows which are samples and 20532 columns which are featuresets. It consists of

three classes which are the three subtypes of Kidney cancer. They are chromophobe

carcinoma, clearcell carcinoma, and papillary carcinoma. The following figure repre-

sents the principal component analysis of the dataset. It shows a distinction between

the two available classes.
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Cancer Subtype Samples
Adenocarcinoma 517

Squamous Cell Carcinoma 501

Table 4.3: Distribution of Classes across Samples in Lung Cancer Data

Figure 4.2: Principal Component Analysis of the TCGA Lung Cancer Dataset

4.7.3 PCA on Uterine Cancer Dataset

Uterine cancer dataset is sourced from The Cancer Genome Atlas (TCGA) program.

It consists of m-RNA expression datasets for 891 patients. So it is essentially a

matrix of 891 rows which are samples and 20532 columns which are featuresets. It

consists of three classes which are the three subtypes of Kidney cancer. They are

chromophobe carcinoma, clearcell carcinoma, and papillary carcinoma. The following

figure 4.3 represents the principal component analysis of the dataset. It doesnot show
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a distinction between the two available classes.

Cancer Subtype Samples
Uterine Endometrial Adenocarcinoma 177

Uterine Carcinosarcoma 57

Table 4.4: Distribution of Classes across Samples for Uterine Cancer data

Figure 4.3: Principal Component Analysis of the TCGA Uterine Cancer Dataset

4.7.4 Performance comparison on Kidney Cancer Dataset

In order to effectively prove that our approach is better for few shot learning, we

reduce the dataset into multiple fractions and compare the performance across several

algorithms. The algorithms under consideration are

• GACNN(Proposed Approach)

• Affinitynet
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• NeuralNet

• Support Vector Machine

• Naive Bayes

• Random Forest

The AMI scores for each algorithm is is taken for a particular dataset and is

plotted for each fraction of the dataset.

Figure 4.4: Performance Comparison for the TCGA Kidney Cancer Dataset on 80
percent of the data

With 80 percent of the dataset in the above figure 4.4, there is not much difference

in performance amongst the chosen methods. This is to be expected due to the

availability of data.
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Figure 4.5: Performance Comparison for the TCGA Kidney Cancer Dataset on 50
percent of the data

With 50 percent of the dataset in the above figure ??, there is a discernible amount

of change amongst the AMI scores of the chosen methods. This is where our proposed

approach and affinityNet works well with less amount of data.
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Figure 4.6: Performance Comparison for the TCGA Kidney Cancer Dataset on 20
percent of the data

With 20 percent of the dataset in the above figure 4.6, there is an increasing

amount of change amongst the AMI scores of the chosen methods. This case further

supports our proposed approach and affinityNet for few shot learning.
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Figure 4.7: Performance Comparison for the TCGA Kidney Cancer Dataset on 10
percent of the data

With 10 percent of the dataset in the above figure 4.7, which is the norm for initial

patient studies, a much reliable score is obtained from the proposed approach and

affinitynet. Our method performs better due to using gene groups.

4.7.5 Performance comparison on Lung Cancer Dataset

The AMI scores of the various algorithms for the lung cancer dataset is plotted for

each fraction of the dataset below.
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Figure 4.8: Performance Comparison for the TCGA Lung Cancer Dataset on 80
percent of the data

With 80 percent of the dataset in the above figure 4.8, there is not much difference

in performance amongst the chosen methods. This is to be expected due to the

availability of data. We have observed similar results in the kidney cancer dataset.
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Figure 4.9: Performance Comparison for the TCGA Lung Cancer Dataset on 50
percent of the data

With 50 percent of the dataset in the above figure 4.9, there is a discernible

amount of change amongst the AMI scores of the chosen methods. This is where our

proposed approach and affinityNet works well with less amount of data.
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Figure 4.10: Performance Comparison for the TCGA Lung Cancer Dataset on 20
percent of the data

With 20 percent of the dataset in the above figure 4.10, there is an increasing

amount of change amongst the AMI scores of the chosen methods. This case further

supports our proposed approach and affinityNet for few shot learning.
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Figure 4.11: Performance Comparison for the TCGA Lung Cancer Dataset on 10
percent of the data

With 10 percent of the dataset in the above figure 4.11, which is the norm for

initial patient studies, a much reliable score is obtained from the proposed approach

and affinitynet. Our method performs better due to using gene groups.

4.7.6 Performance comparison on Uterine Cancer Dataset

The accuracy scores of the various algorithms for the Uterine cancer dataset is plotted

for each fraction of the dataset below.
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Figure 4.12: Performance Comparison for the TCGA Uterine Cancer Dataset on 80
percent of the data

With 80 percent of the dataset in the above figure 4.12, there is not much difference

in performance amongst the chosen methods. This is to be expected due to the

availability of data.
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Figure 4.13: Performance Comparison for the TCGA Uterine Cancer Dataset on 50
percent of the data

With 50 percent of the dataset in the above figure 4.13, there is a discernible

amount of change amongst the AMI scores of the chosen methods. This is where our

proposed approach and affinityNet works well with less amount of data.
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Figure 4.14: Performance Comparison for the TCGA Uterine Cancer Dataset on 20
percent of the data

With 20 percent of the dataset in the above figure 4.14, there is an increasing

amount of change amongst the AMI scores of the chosen methods. This case further

supports our proposed approach and affinityNet for few shot learning.
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Figure 4.15: Performance Comparison for the TCGA Kidney Cancer Dataset on 10
percent of the data

With 10 percent of the dataset in the above figure 4.15, which is the norm for

initial patient studies, a much reliable score is obtained from the proposed approach

and affinitynet. Our method performs better due to using gene groups.

The following table 4.5 represents standard deviation of AMI scores for all the

performance algorithms across the three cancer datasets

Method Kidney Cancer Lung Cancer Uterine Cancer
GACNN 0.014 0.029 0.035

AffinityNet 0.012 0.033 0.033
Neural Networks 0.041 0.069 0.060

SVM 0.079 0.016 0.077
Naive Bayes 0.063 0.017 0.019

Random Forest 0.039 0.019 0.076

Table 4.5: Standard Deviation of AMI scores across all methods among the three
datasets
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4.7.7 Analysis of Performance across Datasets

From the above results, we can observe that our proposed approach performs better

against other methods when there is less amount of data i.e. where there is few-

shot learning involved. We can see from the results that our predecessor method,

the affinitynet keeps up with our AMI scores but ours consistently perform better

withan exception of a few cases. We can also see that uterine cancer dataset has not

performed properly across the methods. This is due to the lack of proper identification

of classes of cancer, a lack of data and the nature of the cancer. Even in this case,

our method outperforms most methods in few-shot learning.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We proposed a genetic algorithm based convolutional neural network for few shot

learning in disease type prediction on RNA-seq data. This is a novel architecture

which constantly introduces variations in the form of genetic operations and retrain

the convolutional neural networks in such a way that it gets trained accurately on

less amount of data. We observe from the experimental results that our model has a

better weighted average score than the existing affinitynet model. We also introduce

domain knowledge in the form of gene grouping based on the molecular structure and

nature of the genes as recommended by the Human Genome Organization. Existing

latest method involves using attention pooling to achieve few shot learning. Although

this is efficient in performing few shot learning, it does not use the characteristics of

genetic data or any form of domain knowledge to optimize the results. We modify the

architecture of the convolutional neural network completely using genetic algorithms

such that it is fit for few shot learning. We also introduced genetic operations in

the training process to introduce variations so that the model is not overfitted. This

thesis focuses on elaborating the GACNN approach for few shot learning and also
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incorporates domain knowledge.

5.1.1 Discussion

This introduction of a genetic algorithm to convolutional neural networks can also

be applied to traditional neural networks, if the case demands for the utilization of

conventional neural networks. Other traditional machine learning methods cannot

be used in conjunction with this type of retraining as it gets overfitted really fast

and genetic algorithms do not introduce sufficient variation to the algorithm. This

architecture can also be broadly applied in disease classification problems in addition

to the subtype classification problems, if the source data is RNA-seq data. And as an

alternative version of the algorithm, the gene grouping can be replaced with random

grouping where the initial dataset is arbitrarily split into groups and features are

randomly assigned to it. This approach also works well for few-shot learning, although

incorporating domain knowledge will increase the performance of the algorithm as it

pre-assigns related features to each group.

5.2 Future Work

We tested our algorithm on different types of cancer datasets which use mRNA data.

This procedure can be extrapolated to work with other types of datasets given any

inherent grouping mechanism. As we have already discussed, even without the gene

groups, random grouping also seems effective in producing results for few shot learn-

ing. So, the proposed algorithm with random grouping can be applied to other

domains as well for semi-supervised learning or for few shot learning.
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