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ABSTRACT 

Localization is a critical step in any navigation system. Through localization, the vehicle 

can estimate its position in the surrounding environment and plan how to reach its goal 

without any collision. This thesis focuses on underwater source localization, using sound 

signals for position estimation. We propose a novel underwater localization method based 

on machine learning techniques in which source position is directly estimated from 

collected acoustic data. The position of the sound source is estimated by training Random 

Forest (RF), Support Vector Machine (SVM), Feedforward Neural Network (FNN), and 

Convolutional Neural Network (CNN). To train these data-driven methods, data are 

collected inside a confined test tank with dimensions of 6m x 4.5m x 1.7m.  

The transmission unit, which includes Xilinx LX45 FPGA and transducer, generates 

acoustic signal. The receiver unit collects and prepares propagated sound signals and 

transmit them to a computer. It consists of 4 hydrophones, Red Pitay analog front-end 

board, and NI 9234 data acquisition board. We used MATLAB 2018 to extract pitch, 

Mel-Frequency Cepstrum Coefficients (MFCC), and spectrogram from the sound signals. 

These features are used by MATLAB Toolboxes to train RF, SVM, FNN, and CNN. 

Experimental results show that CNN archives 4% of Mean Absolute Percentage Error 

(MAPE) in the test tank. The finding of this research can pave the way for Autonomous 

Underwater Vehicle (AUV) and Remotely Operated Vehicle (ROV) navigation in 

underwater open spaces.  
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CHAPTER 1 

Introduction 

Oceans play a pivotal role in the life of our planet. Covering more than 70% of the surface area 

of the earth, oceans influence weather and climate, represent rich sources of food, renewable 

energy, oil, and minerals [1]. Ocean engineering is a multidisciplinary field aimed at exploring 

and discovering oceans to preserve underwater ecosystem, harness oceans green energy 

resources, and take advantage of their food supply.   

Underwater vehicles are being used to better understand the ocean. Spectrum of technologies 

such as Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) are 

available for object identification and vessel hull inspections [1]. ROV is an unoccupied 

underwater robot, as shown in Figure 1, that is remotely navigated by a human operator through 

connected cables. These are often used as an alternative for hydrographic diver investigations 

when diving by humans is either impractical or dangerous. Unlike ROV, an AUV conducts its 

mission without an operator intervention (Figure 2).  
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Figure. 1.1: Remotely Operated Vehicle [1] 

 

 

Figure. 1.2: Autonomous Underwater Vehicle [1] 
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1.1 Underwater Vehicle Navigation  

Navigation is an important task for any type of mobile robot to avoid collisions and reach a goal 

location. Accuracy of navigation is highly related to the quality of the gathered data, which is 

critical in some application such as mine countermeasures or navigation in confined spaces.  

A robot should be able to perform the following major steps to navigate in its surrounding 

environment [1]. 

• Localization refers to the robot’s ability to determine its own location according to fix 

reference points. It is the cornerstone of navigation process. If robot fails to localize itself 

precisely within the frame of reference, it will not be able to reach the destination.  

• Path planning can be regarded as a computational problem to find a sequence of movements 

to proceed from source to destination. An autonomous robot is expected to either construct or 

use a map and localize itself in the map for further movement.  

• Map building can be performed in metric framework or topological framework. In metric 

framework, which is more perceivable by humans, objects are considered in two-dimensional 

space. Being sensitive to noise, this representation is difficult to be used for precise distance 

measurement. The topological framework represents the environment as a graph with several 

nodes and arcs corresponding to places and paths between them, respectively.  

• Map interpretation is the process of using a map to figure out the best path from the current 

location to the destination. 

While many mobile robots rely on Global Positioning System (GPS) to find their position, 

underwater vehicles cannot make use of GPS signals which have high attenuation in underwater 

environment. In contrast to GPS signal, sound propagates efficiently in the water due to low 
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acoustic absorption in this medium. So, vast majority of underwater vehicles (UVs) are based on 

Sonar (sound navigation ranging) systems to navigate or communicate in underwater. Acoustic 

navigation systems can be classified into passive and active methods. While passive sonar is 

based on listening for the sound made by other objects, active sonar is based on emitting pulses 

of sounds and listening for echoes. 

1.2 Underwater Vehicles Applications 

Underwater vehicles (UV) have several applications ranging from hobby to research [2]. Hobby 

applications of UVs have gained a lot of public interest recently. People enjoy participating in 

competitions to accomplishing objectives using their homemade UVs. The oil and gas industries 

often utilize UVs to make seabed maps before installing pipelines, cutting their infrastructure 

costs, and minimizing their disruption to the environment. UVs can be used by researchers to 

study lakes and the ocean floor to investigate marine-life extinction, fish stocks population 

decline, etc. In addition, it can be useful to explore the natural disaster alerts such as tsunami and 

tropical cyclones.  

1.3 Objectives and Motivations 

The main objective of this research is to find accurate position of an underwater vehicle (UV) 

inside of a confined environment (such as a tank), using active sonar for acoustic positioning. 

The proposed method relies on sound propagation and distances measurement between a 

transmitter (beacon) and a set hydrophone. Four hydrophones were installed alongside the tank 

to estimate 3D position of an UV accurately using Time of Arrival (TOA) of an acoustic signal 

transmitted from the beacon. 
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Since accuracy is a critical step in navigation systems, we were motivated to develop a novel 

acoustic positioning based on machine learning techniques to pinpoint the sound source location. 

In addition, UV localization in small tanks can be regarded as a starting point for inspection and 

navigation in more realistic confined spaces like wells, caverns, or sunken ships.  

1.4 Challenges 

Sound penetration depth and propagation pattern in water depends on several factors such as 

temperature, salinity, and depth. These parameters cause refraction, bending of acoustic rays, 

which in turn brings several challenges [3]. Due to refraction, the transmitted sound may 

propagate from beacon to hydrophone through several paths. Moreover, hydrophone may receive 

reflected sound signals from boundaries and objects. This phenomenon called multipath 

propagation, is aggravated in a tank in which water is confined with several walls, ceiling, and 

floor.  Reverberation (echo) is another concern in UV navigation in confined spaces, which 

occurs when hydrophone receives several sound signals reflected from tank boundaries [4]. 

Since in this project the transmitter is mounted on the mobile UV, noise and doppler effect 

should also be taken into consideration. Doppler effect that causes frequency shifts, stems from 

relative movement between the transmitter and the hydrophone. 

To address aforementioned issues, machine learning methods are leveraged in this thesis to 

obviate the need for prior knowledge of underwater parameters and characteristics. Analytical 

approaches for underwater localization, on the other hand, take underwater acoustic channel into 

consideration, which needs accurate estimation of channel parameters. The characteristics of the 

channel such as sound propagation speed, attenuation and noise are mainly influenced by internal 
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factors including water salinity, depth and temperature as well as external factors like seabed 

profile, and reflective objects within the sea [5, 6]. 

1.5 Contributions 

The contributions of this thesis are summarized as follows:  

(1) The generalization power of machine learning techniques is used to improve localization 

accuracy by having limited number of collected data. This obviates the need for model-generated 

fields and exact characteristics of underwater environment beforehand [7,8]. 

(2) Most of previous methods attempt to solve source localization problem by regression 

approaches [9]. In this study, we consider source localization from classification point of view. 

For this purpose, the whole space of the confined tank is regarded as a set of finite positions. To 

estimate the location of the sound source, the output of the machine learning methods is matched 

to the nearest predefined position. 

(3) Apart from well-developed machine learning techniques [10], such as RF, SVM, and FNN, 

emerging CNN [11] with promising results was adopted and modified to be applicable of one-

dimensional data. 

1.6 Outline of Thesis 

The structure of this thesis is as follows: 

• Chapter 2 explains in detail underwater localization and its background. It defines the 

underwater channel and time delay estimation, required for UV acoustic localization. 

This chapter also reviews the state-of-the-art techniques relevance to underwater 

localization.  
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• Chapter 3, the proposed acoustic localization method, which is based on machine 

learning techniques is presented.  

• Chapter 4 explains the hardware setup including transmitter and receiver.  

• Chapter 5 presents experimental results and discusses the effect of different data 

acquisition parameters and classifiers hyperparameters on the localization accuracy. 

• Chapter 6 concludes the thesis by summarizing our contributions and making 

suggestions for future research 
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CHAPTER 2 

State of the Art 

This chapter first presents various underwater navigation systems. Then, acoustic localization 

method is presented, and different topologies currently being employed in this field will be 

compared. Acoustic channel and phenomena affecting acoustic signals propagation in 

underwater environments will also be studied in this chapter. Finally, State-of-the-art techniques 

for acoustic localization will be reviewed at the end of this chapter. 

2.1 Underwater Navigation Systems 

All underwater vehicles (UVs), including Remotely Operated Vehicles (ROVs) and Autonomous 

Underwater Vehicles (AUVs), rely on navigation systems to perform their missions. Navigation 

systems should have high accuracy and fast convergence to find the shortest path and avoid 

collision.  

Accuracy is the chief criterion in navigation systems, and positioning error is usually defined 

according to the size of UV and the underwater environment. As UVs and their reference points 

are floating in the water, their positions are constantly changing. To cope with this situation, 

navigation systems should be fast enough to converge rapidly before determined position being 

outdated. These systems should also be energy efficient to rely on battery powered devices and 

for long missions. Accuracy of estimated position in underwater navigation systems is highly 

dependent on the number of reference points. This is due to the fact that the high propagation 

delay and high-power attenuation of sound signal in underwater environment make localization 

systems error prone. In such systems, positions of hydrophones, which are relatively expensive, 

are usually considered as reference points. Consequently, to reach a good compromise between 

accuracy and cost, underwater localization systems should depend on as few reference points as 

possible. 

Because of the absence of global positioning system (GPS), underwater navigation is a 

challenging task. These systems should employ other sensors to navigate UVs in the water 
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environment. The most common sensors are compass, gyroscopes, camera, transceivers, beacon, 

hydrophone, and depth sensor [12]. 

Being inexpensive and low-power, compass is a basic navigation sensor used in the most 

underwater vehicles. It provides three-dimensional position of the local magnetic field. However, 

compass based navigation systems should be carefully calibrated when vehicle’s area of 

operation changes. Gyroscope measures changes in vehicle orientation according to physical 

laws. Accurate navigation systems, however, require high performance gyroscope sensors which 

are costly. An Inertial Navigation System (INS) utilizes three gyroscopes, mounted 

perpendicularly to each other. 

Unlike Inertial navigation systems, geographical positioning methods need sensors to capture 

and compare acquired information with previously generated datasets, characterizing 

geographical locations. Optical systems use camera to obtain underwater images. Underwater 

environments suffer from inadequacy of lighting, resulting in low quality images, especially in 

high depth areas. Reduced range of the camera limits the application of optical systems to 

shallow water navigation. To tackle this problem, some geographical positioning systems make 

use of acoustic signals instead of optical images. These sonar systems rely on acoustic equipment 

to emit and receive sound signals. While beacon (Pinger) emits a predefined sound signal 

periodically, hydrophone (underwater microphone) receives emitted signal. Some acoustic 

equipment such as transponder can both receive and emit signals. When transponder receives a 

signal with specific frequency, it sends a signal in response. Transducer is another emitter and 

receiver which transforms electric signal into acoustic signal and vice versa. Figure 2.1 shows 

different technologies for UV localization and navigation [13].  
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Figure. 2.1: Overview of underwater localization and navigation techniques [13] 

2.2 Acoustic Localization 

As electromagnetic energy cannot propagate effectively in water, acoustic signal is used 

frequently for underwater localization and communication. Acoustic localization aims to use 

sound signal to determine the distance and direction of its source. Location of UVs can be 

estimated either actively or passively. In active sonar, the sound source generates acoustic signal 

to produce an echo from the UV, which is then analyzed to determine the location of the object 

of interest. This method has been used by scientists to localize marine animals such as whales 

and dolphins. In the presence of several moving objects, active sonar receives a number of 

echoes, making localization process more challenging. A confined space with several reflections 

from walls, bottom and top also makes active sonar localization less effective. 
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To address this issue, passive acoustic method has been proposed which relies on a sound 

generator (beacon) and several sound receivers (hydrophone). The beacon is mounted on the UV 

and hydrophone arrays are either towed or independently deployed. Assume towed array 

configuration (Figure 2.2) including some hydrophones. By measuring the Time Difference of 

Arrival (TDOA) between the direct arrivals at the hydrophones, it is possible to estimate the 

location of beacon [15]. 

                    

 

Figure. 2.2: Active sound source localization using hydrophones array. 

2.3 Positioning Systems 

Underwater acoustic positioning systems have been used for oil and gas exploration, marine 

science and archaeology as well as security operations [14]. In these systems, location of an UV 

is estimated by a set of transponders, called baseline, which are installed on a mothership. Based 

on the distance between transponders, these systems can be categorized into: Long Baseline 

(LBL), Short Baseline (SBL) and Ultra-Short Baseline (USBL) [15]. 

2.3.1 Long Baseline (LBL) 

This method is based on some transponder beacons and one transducer. Beacons are installed on 

the seabed with a typical distance of 50 to 2000 meters, and the transducer is fixed to the UV 

[15]. Figure 2.3. shows LBL configuration.  
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First, the transducer on the UV sends an acoustic signal. After receiving this signal, the 

transponder beacons transmit another signal in response. Then, the UV receives the reply pings 

which have different frequencies to prevent any interference. The distance between the UV and 

each transponder can be calculated, based on the time difference between the transmitted signal 

from transducer and the reception of its response from each beacon. To find the position of the 

UV based on triangulation of acoustic signals, at least three transponders are required. In order to 

provide redundancy and quality check, fourth transponder might also be deployed. After finding 

the position of UV relative to the ship, its exact position can be obtained by having a priori 

knowledge of the ship position. 

 

Figure. 2.3: Long baseline positioning system [15] 

2.3.2 Short Baseline (SBL) 

Unlike LBL, transponders are mounted on floating platforms like a ship in SBL configuration 

(Figure 2.4), and the distance between them ranges from 20 to 50 meters [15]. There is a positive 
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correlation between the transponders distance and localization accuracy; the longer the distance, 

the higher the accuracy.   

 

Figure. 2.4: Short baseline positioning system [15] 

2.3.3 Ultra Short Baseline (USBL) 

This method is composed of a single transponder, mounted to the object to be tracked, and an 

array of transducers, closely spaced with the approximated distance on the order of 10 cm 

(Figure 2.5). Same as the other two previous methods, USBL is also based on the Time of Flight 

Estimation of an acoustic pulse and its response to measure the distances. Due to proximity of 

transducers, however, phase-differencing method should be employed in conjunction with 

trilateration approach in order to calculate the angle to the transponder and increase localization 

accuracy [15]. 
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Figure. 2.5: Ultra short baseline positioning system [15] 

 

2.3.4 Comparison between Positioning Systems 

Each of the positioning methods has its own merits and disadvantages [15]. The main advantage 

of LBL is its high localization accuracy which is in the range few centimeters over a wide area. 

However, since transponder beacons should be installed on the seabed, this method is costly and 

time-consuming to set up.  

Both SBL and USBL methods rely on a floating platform to install transponders which is not 

practical in confined spaces.  Localization accuracy of SBL depends on the dimensions of the 

floating platform; the accuracy seemingly declines when the size of floating platform is short.  

Because of easy installation and usage, USBL is the most popular positioning system, but in 

comparison with LBL and SBL methods, USBL has higher localization error.  
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2.4 Acoustic Channel Modeling 

Since focus of this work is on acoustic underwater localization systems, it is beneficial to study 

acoustic channel model and the way sound signal travels in underwater environment. The 

characteristics of the channel are influenced by various factors which make underwater 

localization a challenging task.  

2.4.1 Sound Speed 

The speed of sound in water usually varies between 1440 m/s to 1550 m/s, depending on the 

pressure, salinity, and temperature of water. The increase of local pressure and density reduce 

propagation delay. In the ocean, water temperature first decreases with the increase of depth, and 

then it becomes stable. Considering these parameters, the sound speed can be estimated using the 

Equation (2-1) [16] 

                                        𝐶 = 1449.2 + 4.6𝑇 + (1.34 − 0.01𝑇)(𝑆 − 35) + 0.016𝓏                              (2-1) 

Where C is the sound speed in seawater, T is the temperature in Celsius, S is the salinity in parts 

per thousands and z is the depth of the water. 

2.4.2 Attenuation and Noise 

An acoustic signal traveling in underwater environment is attenuated, resulting in path loss due 

to the degradation of the amplitude of the signal. Ambient noise also affects the strength of the 

acoustic signal passing through channel. Acoustic noise is usually considered as a Gaussian noise 

with power spectral density decaying at around 18 dB per decade [16].  

2.4.3 Doppler Effect 

Frequency of transmitted sound is altered due to motion of either beacon or hydrophone, 

according to Doppler effect. This frequency shifts aggravated by the low speed of the sound. If 

beacon and hydrophone move with the u and v velocities, respectively, Doppler effect can be 

expressed as [17]: 

                                                             𝑓′ = 𝑓 
𝑐 ±𝑢

𝑐 ∓ 𝑣,
                                                     (2-2)                                                                                                              
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Where 𝑓 and 𝑓′ are the frequencies of transmitted sound by the beacon, and the received one by 

the hydrophone, respectively. C is the propagation velocity of the wave in a stationary medium.   

2.5 Propagation Models 

To measure the distance between beacon and hydrophone for localization, propagation speed of 

the sound signal should be multiplied by the delay time. In order to estimate the delay time of the 

sound, signal model should be determined to describe the propagation mechanism of the sound 

signal in acoustic environment. In the following, three main propagation models will be 

described [18]. 

2.5.1 Single-path Mode 

In its simplest form, it can be assumed that there is only one direct path between the beacon and 

hydrophone in which the sound signal travels. Assume we have N hydrophones. The received 

signal by the nth hydrophone (𝑥𝑛[𝑘]) is the delayed and attenuated (∝ 𝑛) versions of the source 

signal (s[𝑘]), affected by additive noise (𝑤𝑛[𝑘]).  

                              𝑥𝑛[𝑘] =  𝛼𝑛𝑠[𝑘 − 𝑡 − 𝑓𝑛(𝜏)] + 𝑤𝑛[𝑘],   𝑛 = 0,1, … , 𝑁 − 1                       (2-3)                                      

Where 𝑓𝑛(𝜏) is the relative delay between sensors 0 and n. This model can be used in deep ocean 

environment when the beacon and hydrophone are far from the sea surface and sea bottom.  

 

Figure 2.6: Single-path propagation model [18] 
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2.5.2 Multi-path Mode 

In a more realistic situation, the hydrophone may receive sound signals from multiple paths, 

caused by reflection from the seabed, sea surface as well as direct path. This model is often 

utilized in shallow environments. 

Assume there are M paths between the beacon and the hydrophones. If attenuation coefficient 

and delay time of the path between nth hydrophone and beacon through mth path are denoted by  

∝ 𝑛𝑚 and 𝜏𝑛𝑚, then hydrophone n receives a signal (𝑥𝑛[𝑘]) which is the sum of m signals, 

contaminated by an additive noise (𝑤𝑛[𝑘]) [18]: 

                𝑥𝑛[𝑘] =  ∑ 𝛼𝑛𝑚
𝑀
𝑚=1 𝑠[𝑘 − 𝑡 − 𝜏𝑛𝑚] + 𝑤𝑛[𝑘],   𝑛 = 0,1, … , 𝑁 − 1                          (2-4) 

 

Figure 2.7: Multi-path propagation model [18] 

2.5.3 Reverberation Mode 

This model can be regarded as the extended version of multi-path mode. In a confined space, the 

hydrophone receives signals from numerous paths, resulting from reflections from the room 

boundaries, such as walls, ceiling, and floor. Since parameters which affect the sound speed such 

as temperature and pressure are constant in a confined space, this environment can be described 

by a linear time invariant model (LTI) [18]. So, in the reverberation mode with an impulse 

response of ℎ𝑛  for the nth hydrophone, the received signal for hydrophone n is [18]: 
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                                                         𝑥𝑛[𝑘] = ℎ𝑛 ∗  𝑠[𝑘] + 𝑤𝑛[𝑘]                                             (2-5) 

Where * denotes convolution operation and 𝑤 represents the additive noise. However, estimating 

all N channel impulse responses would be a challenging task for utilizing this model. 

 

Figure 2.8: Reverberation propagation model [18] 

2.6 Time Delay Estimation 

After estimating the speed of sound (section 2.4.1) and determining its propagation mechanism 

(section 2.5), distance between sound receiver and the signal source can be calculated through 

following methods: 

2.6.1 Time of Arrival (TOA) 

TOA is the delay between the transmission of a sound signal at the beacon and its reception at 

the hydrophone. To measure TOA, sound receiver should be synchronized with the sound source 

to know the exact starting time of the sound propagation [19]. Upon receiving the acoustic 

signal, the receiver calculates the delay. Then, the distance to the sound source can be measured 

knowing the estimated underwater sound speed and Time of Arrival.  As mentioned in section 
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2.4.1, several factors may affect the sound speed in water, causing this method error prone. 

Synchronization between sound source and receiver can also lead to accuracy problem. 

2.6.2 Time of Flight (TOF) 

To obviate the need of synchronization between the sound transmitter and the receiver, Time of 

Flight method has been proposed. TOF method requires that both nodes are capable of both 

sending and receiving acoustic signals. First, transmitter emits a sound signal. Upon receiving 

this signal, receiver sends another sound signal in response. Finally, the transmitter calculates the 

distance according to the round-trip-time [19].  

2.6.3 Time Difference of Arrival (TDOA) 

Another method to eliminate the synchronization requirement is Time Difference of Arrival. 

TDOA is based on pairs of spatially separated hydrophones in which one of the hydrophones is 

considered as the master (reference), while the remaining are the slaves (auxiliary). cross-

correlation is one of the most common methods to measure TDOA [20].  

When the hydrophones are in close vicinity to each other, it can be assumed that the 

contaminating noise is identical for the received signal by these sensors. As the signals received 

by the hydrophones are very similar, they have a high cross-correlation. So, cross-correlation can 

be utilized to estimate TDOA. 

2.7 Localization Estimation 

To localize the exact position of an underwater sound source, not only the distance but also the 

direction of the source is required. The most common location estimation technique is 

trilateration, which is based on determining TDOA [21].  

For the sake of simplicity, assume three hydrophones are available on a 2D plane. After finding 

TDOA, each hydrophone can measure the distance of the sound source. The potential position of 

the sound source can be on the circumference of a circle with radius equals to the measured 

distance. According to Figure 2.9, the intersection of three circles corresponding to each 

hydrophone, determines the correct position of the sound source. After estimating the location of 
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the source of interest across 2D plane, pressure sensors can be utilized to measure the third 

dimension, which is depth. 

 

Figure 2.9: Triangulation method [20] 

2.8 Literature Review 

This section surveys the state-of-the-art techniques pertaining to underwater acoustic 

localization. We review the major acoustic channel models, including sound transmission and 

propagation mechanisms. Subsequently, conventional underwater localization papers based on 

Long Baseline (LBL), Short Baseline (SBL), and Ultra Short Baseline (USBL) methods will be 

reviewed. Finally, novel approaches that leveraged machine learning methods for underwater 

localization will be presented.  
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2.8.1 Acoustic Channel Model 

Accurate description of the underwater channel plays a pivotal role in underwater 

communication and sound source localization. Doppler shift effect is important to consider 

because of the relative low propagation speed of acoustic waves in underwater medium and 

motion of underwater Vehicle.  

In [22], the impact of the use of speed measurement in a localization algorithm was explored. 

The Doppler effect in communication from the anchor to the UV, induced by the movement of 

the UV, was utilized to measure the speed of the UV while communicating and ranging.  

2.8.2 Conventional Underwater Localization 

Underwater localization algorithms, relying on Time of Arrival (ToA) and triangulation method, 

assume that the acoustic signal travel path is a straight line. However, underwater acoustic speed 

diversities can transform the straight lines into refracted trajectories. The refraction phenomenon 

was considered in [3] to determine the positions of UV. 

Uncertainties in sound propagation speed and time synchronization in measuring Time of Arrival 

(ToA) were taken into consideration in [23]. The anchors measure the ToAs of the signals from 

the other anchors to estimate the sound propagation speed. The agents measure the ToAs of the 

signals broadcast by the anchors and combine the ToAs measured in two consecutive intervals to 

estimate the clock skews. Then, the weighted Least Squares (WLS) algorithm was used to 

calculate the agents positions and clock offsets. 

An acoustic positioning system, capable of estimating, in real time, the position of an object 

inside a confined test tank was proposed in [18]. It was based on a periodic transmission and 

reception of modulated sequences. Time of Arrival was estimated through the cross correlation 

between the received signal and a reference signal. An array of 4 hydrophones was used, and the 

ToA estimated through each one is conjugated to obtain the position of the acoustic source. 

To improve the ToA estimation of an acoustic signal, the use of pseudo-random binary 

sequences modulated in Binary Phase Shift Keying (BPSK) was proposed [19]. The proposed 
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algorithm for improving the correlation peak, considerably increased the precision of the 

localization system. 

2.8.3 Machine Leaning based Underwater Localization 

Maneuvering vehicles can cause error in Long Baseline (LBL) acoustic localization systems. 

This is due to vehicle motion between the time the vehicle sends signal and the times of 

reception for the acoustic replies from the various transponders. A motion-compensated model 

for vehicle localization was developed based on Bayesian inference algorithm which includes 

travel-time corrections for all receptions as unknown parameters [24].  In a similar work [25], the 

Bayesian localization method introduced in [24] was tested in both shallow and deep water. This 

method used the time difference of direct and surface-reflected arrivals of pulsed signals at two 

hydrophones of known depths. Uncertainties in measured quantities such as TDOAs, 

hydrophone depths, and sound speed profile were considered by the Bayesian approach to 

localize the sound source more precisely.  

The potential of machine learning for underwater source localization through a fluctuating ocean 

was studied in [7]. Conventional methods rely on knowledge of the environmental parameters, 

which is not available in a random and fluctuating underwater channel. Requiring only training 

data without the need for environmental characteristics makes machine learning techniques a 

suitable candidate for localization task in fluctuating channels. Performances of Kernel 

regression as well as the local linear regression were compared for sound localization in 

fluctuating environment. 

In [9], source localization is regarded as a supervised learning regression problem and is solved 

by generalized regression neural network (GRNN). Machine learning framework and the 

acoustic propagation model were combined to obtain the training data of GRNN from the 

acoustic propagation model. 

More details of machine learning methods for acoustic signal processing and application can be 

found in [10].  
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2.9 Summary 

This chapter reviewed different underwater localization and navigation techniques. Then, 

underwater channel and various parameters affecting sound propagation were studied. Finally, 

state-of-the-art underwater source localization methods, especially machine learning based 

approaches, were reviewed.  
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CHAPTER 3 

Machine Learning based Underwater Localization 

This chapter presents the proposed method for underwater sound source localization which is based on 

Machine Learning (ML) technique. First, we briefly review machine learning techniques which will be 

used in this project. Then, supervised machine learning algorithms utilized for acoustic localization will 

be explained.  Unlike analytical methods, ML approaches learn directly from data, obviating the need for 

underwater channel parameters estimation [26]. In other words, ML methods only rely on acoustic data 

and do not need any propagation models of the known environment to predict source location. Figure 3.1 

depicts the main methods for acoustic source localization [27]. 

 

Figure 3.1: Overview of acoustic source localization methods [27] 

3.1 Machine Learning Principals 

Acoustic data have been frequently used in various underwater engineering projects including 

mammal vocalizations, source localization, as well as seabed imaging and map creation. In these 

applications, data analysis is challenging due to data corruption, reverberation, and large data 

volumes. To address these acoustics challenges, machine learning techniques have been 

proposed.  

ML is a family of techniques for automatically detecting and utilizing patterns in data. The 

extracted patterns can be used later to estimate data labels based on measured attributes. Take 

Acoustic Source Localization

Model-based Methods Data-driven Methods

Probabilistic Pattern 
Recognition 

Direct 
Regression

Machine 
Learning

FNN SVM RF

Deep Neural 
Network



 

25 
 

source localization as an example; based on recorded acoustic data, a label can be assigned to 

each data which indicates the position of the sound source. For this purpose, ML methods are 

expected to gain implicit knowledge from the data and learn how to assign labels. Learning 

algorithms are based on a set of data, called training set, with predefined labels, and statistical 

methods to cope with uncertainty in data collection and measurements. ML methods are often 

divided into two major categories [10]: supervised and unsupervised learning. In supervised 

learning, the goal is to learn a predictive mapping from inputs to outputs using training set with 

known labels. In unsupervised learning, however, no labels are available, and the task is to 

extract complex and subtle patterns within the data. 

Although ML methods have provided compelling solutions for practical engineering 

applications, they have their own drawbacks [10]. Since ML is data-driven, quality of the 

predicted labels of extracted patterns highly correlated to the quality of collected data for ML 

training. That is, ML models require significant amounts of training data to perform accurately 

and reliably. Training data collection is a tedious and time-consuming task, especially in large 

and dynamic environments such as oceans. Further, if the working environment changes, the data 

collection process and training step should be repeated again. A good illustration for this is 

utilizing sound localization in a confined task which was trained in an opens underwater space. 

Another major shortcoming of an ML model is their complexity which hinders model 

interpretation. In other words, ML models are involved black-box models, and hence, no 

physical insight into them is possible. 

3.2 Supervised Learning 

The aim of supervised learning is to learn a predictive mapping from inputs to outputs given that 

the training data set consists of labeled input and output pairs. In the case of sound localization, 

for instance, the input is the received sound signals to the hydrophones while 3D position of the 

sound source regarded as the output. Supervised learning is the most widely used ML category, 

ranging from simple methods such as nearest-neighbor classifiers to more sophisticated 

algorithms like Support Vector Machine (SVM) and Neural Network (NN) [10]. In the 

following, four supervised methods used in this thesis will be briefly presented. 
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3.2.1 Support Vector Machines 

Support Vector Machine (SVM) is a supervised machine learning algorithm which can be used 

for both classification and regression tasks. Assume classification challenge with two classes in 

which the aim is to find the hyper-plane that differentiates the two classes with minimum error 

rate. Instead of taking all training samples into account, SVM only considers closest samples to 

the desire hyperplane, which are called support vectors. SVM is a maximum-margin classifier. In 

order to cope with noisy samples which may cause error, SVM endeavors to maximize the 

distances between support vectors and hyperplane, called margin. Consider Figure 3.2 with three 

potential hyperplanes (A,B, and C). Among them hyperplane C has the maximum margin. 

 

Figure 3.2: Two class sample classification with three different hyperplanes [28] 

In the case of linear separable classes, SVMs can be easily formulated as follow [10]:  

                                                                𝑦 = 𝑋𝑤 + 𝑤0                                                             (3-1) 

where 𝑤 and 𝑤0 the weights and biases. A decision hyperplane satisfying 𝑋𝑤 + 𝑤0 = 0 is used 

to separate the classes. If the calculated output 𝑦𝑚  is above the hyperplane ( 𝑦𝑚 > 0 ), the 

estimated class label is 𝑠𝑚 = +1, otherwise 𝑠𝑚 = −1. Since the margin between two classes is 

2

‖𝑤‖
 we can minimize 

1

2
‖𝑤‖ to find the weights. So, the weights 𝑤 and 𝑤0 are estimated by the 

following quadratic program [10]: 

min
𝒘,𝑤0

1

2
 ‖w‖ 2

2 

                                                    Subject to sm(𝐰𝑇𝐱𝑚 + 𝑤0) ≥ 1∀𝑚                                     (3-2) 
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The first formula in Eq. 3-2 is called objective function, while the second formula is the 

constraint that implies all training samples should be correctly classified. 

When classes are linearly non-separable, as in Figure 3.3 (a), the SVM algorithm should map 

low dimensional input space into a higher dimensional space. This technique is called the kernel 

trick and it is used to convert not separable problem to separable problem. In this case, if we use 

a kernel  𝑧 = 𝑥2 + 𝑦2 , data samples will be differentiated by a linear hyperplane in 𝑧 space 

(Figure 3.3 (b)). After converting this linear hyperplane to lower dimensional input space, 𝑥 and 

𝑦, a non-linear hyperplane can be obtained (Figure 3.3 (c)). 

   

(a)                                                    (b)                                                     (c) 

Figure 3.3: kernel trick. (a): Non-separable classes. (b): high order data transformation. (c): non-

linear hyperplane 

For non-linear classification problems, Equation 3-2 can be kernelized (𝑘 is the kernel function) 

to make the data linearly separable in a non-linear space. The most common kernels include 

polynomial, Gaussian radial basis function, and Hyperbolic tangent. Equation 3-3 can be solved 

using the Lagrangian dual method [28].  

                                        𝐿 (𝐚) =  ∑ 𝑎𝑖
𝑀
𝑖=1 −

1 

2 
  ∑ ∑ 𝑎𝑖𝑎𝑗𝑠𝑖𝑠𝑗𝑘(𝑿𝑖, 𝑿𝑗)𝑀

𝑗=1
𝑀
𝑖=1                            (3-3)                                                  

Subject to         0 ≤  𝑎𝑖 ≤ 𝐶                                                              

∑ 𝑎𝑖𝑠𝑖

𝑀

𝑖=1

= 0 



 

28 
 

As mentioned before, SVM can also be used for regression. The first version of SVM for 

regression was proposed in 1996 and is called support vector regression (SVR) [33]. 

minimize 
1

2
 ‖𝒲‖2 

                                             Subject to  |𝒴𝑖 − 〈𝒲, 𝒳𝑖〉 − 𝑏|  ≤  𝜀                                            (3-4) 

Where 𝑥𝑖 is the ith training sample and 𝑦𝑖 is its corresponding target value. Weights and bias are 

presented by 𝑤, 𝑏 . Parameter ε is a free parameter that serves as a threshold to determine 

acceptable error value. According to the constraint of Equation 3-4, the difference between target 

value and predicted value that is inner product of input and weight plus bias should be less than 

the predetermined error value. Figure 3.4 shows predictions of SVR with different thresholds ε. 

As it can be seen, the prediction becomes less sensitive to errors when ε increases. 

 

Figure 3.4: The effect of threshold in the constraint in regression SVM [28] 

3.2.2 Neural Networks 

In this section, we review two different types of Neural Networks (NNs): Multi-Layer Perceptron 

(MLP), and Convolutional Neural Network (CNN). 
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3.2.2.1 Multi-layer Perceptron 

 

Although linear models, like linear SVM, can efficiently be fit for linear separable problems, 

they are unable to model non-linear functions. To tackle this problem, as stated in section 3.2.1, 

SVM utilizes kernels to transfer the features into a more useful non-linear space. However, the 

number of these kernels are limited, and they are general functions with moderate performance 

for many tasks.  

To overcome the limitation of SVM, Neural Networks (NNs) have been proposed. NNs provide 

the algorithmic way to learn the non-linear mapping of the inputs directly from specific training 

data. In this thesis, we will use feed forward NNs (FNN), also called multi-layer perceptron 

(MLPs), to approximate mapping functions. In FNNs, unlike recurrent NN (RNN), information 

flows only from the features to the labels, without any feedback loop. NNs are composed of a 

series of layers: input layer, hidden layer, and output layer. Figure 3.5 shows a fully connected 

FNN with one input layer (𝑥), two hidden layers (𝑧(1), 𝑧(2)), and one output layer (𝑦). The 

number of hidden layers plus the output layer is called the NN depth that affects the capacity and 

performance of NNs. 

The hidden and output layers utilize a non-linear function, called activation function, to 

transform the inputs to the outputs. Softmax, sigmoid, hyperbolic tangent and rectified linear 

units (ReLU) are the most common activation functions [10]. Each unit in the hidden and output 

layers computes the weighted sum of the received signals and pass it through an activation 

function. For instance, assume the qth unit in the first hidden layer that receives signal from N 

neurons in the input layer. If weight and bias between the input layer and the first hidden layer 

are represented by 𝑤𝑛𝑞
(1)

, 𝑤𝑞0
(1)

, the input of the qth unit can be obtained as follow [10]: 

                                                                𝑎𝑞 =  ∑ 𝑤𝑛𝑞
(1)

𝑥𝑛 + 𝑤𝑞0
(1)𝑁

𝑛=1                                                (3-5)                                                          

The output of the hidden unit 𝑧𝑞
(1)

= 𝑔1(𝑎𝑞), with 𝑔1is the activation function of the neurons in 

the first layer. 
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Figure 3.5: A feedforward neural network architecture [28] 

To obtain weights and biases of the network, NN training is needed that is based on a loss 

function and its gradients. A typical loss function, L, for classification is cross-entropy. Given 

the target values S and input features X, the average cross-entropy L and weight estimate are 

given by: 

𝐿(𝑤) =  − 
1

𝑃
 ∑ ∑ 𝑆𝑃𝑚

𝑀

𝑚=1

𝑃

𝑃=1

 ln 𝑦𝑃𝑚 

                                                               𝑤̂ = arg min
𝑤

𝐿(𝒘)                                                      (3-6) 

To find the optimum value of the weights, 𝑤̂, that results in minimum loss, the gradient of the 

objective, ∇𝐿(𝑤), is obtained via backpropagation. It uses the derivative chain rule to find the 

gradient of the cost with respect to the weights at each NN layer. The simplest weight update is 

obtained by taking a small step in the direction of the negative gradient [28]:  

                                                       𝑾𝑛𝑒𝑤 = 𝑾𝑜𝑙𝑑 −  𝜂 ∇ 𝐿 ( 𝑾𝑜𝑙𝑑)                                         (3-7) 

With 𝜂 called the learning rate, which controls the step size. 
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3.2.2.2 Convolutional Neural Networks (CNN) 

 

In recent years, Deep Neural Networks (DNNs) have gained immense popularity due to their 

excellent performance in various applications. Convolutional NNs (CNNs) are a class of DNN 

used mainly for analyzing visual imagery. They are designed to diminish the number of weighted 

links in a conventional NN and memory requirements. In fully connected NNs, each neuron is 

connected to every neuron in the previous layer, resulting to excessive number of weights 

especially for large networks. In CNNs, on the other hand, each neuron is connected only with 

subsets of neurons in the former layer, called filter size. To reduce the number of parameters, for 

a given filter, the same weights are used for all receptive fields, called weight sharing. Local 

connectivity and weight sharing not only significantly reduce number of weights but also offer 

other beneficial properties. Limiting the local receptive field can capture spatially correlated 

features within an image and consequently results in better representation and recognition. 

Weight sharing brings about shift invariance property because a filter must model well signal 

content that is shifted in space. Figure 3.6 shows a deep neural network consists of two main 

parts: feature hierarchy and classifier.   

 

Figure 3.6: Architecture of a CNN [10] 

3.2.3 Random Forests 

The random forest (RF) classifier is an extension of the decision tree model, which tries to 

predict classes through series of yes/no questions. Assume N samples (𝑥𝑛) are available to train 
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the decision tree. The input data can be partitioned into two regions by defining a cutoff value, 𝑐 

along the ith dimension. 

𝑿𝑛 ∈  𝑋𝑙𝑒𝑓𝑡     𝐼𝑓 𝑋𝑛𝑖 > 𝑐 

                                                         𝑿𝑛 ∈  𝑋𝑟𝑖𝑔ℎ𝑡     𝐼𝑓 𝑋𝑛𝑖 ≤ 𝑐                                                (3-8) 

Where 𝑐 is the cutoff value and 𝑥𝑛𝑖 is the ith dimension of nth sample xleft and xright are the left and 

right regions, respectively. To find the optimum vale of the cutoff in the training process, a cost 

function, 𝐺, is defined as follow: 

                                                                 𝑐∗ =  arg min
𝑐

𝐺(𝑐)                                                    (3-9) 

𝐺(𝑐) =
𝑛𝑙𝑒𝑓𝑡

𝑁
𝐻(𝑥𝑙𝑒𝑓𝑡) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁
𝐻(𝑥𝑟𝑖𝑔ℎ𝑡)            

where nleft and nright are the numbers of points in the regions left and right regions. H(.) is an 

impurity function. For the classification problem, the Gini index is usually utilized as the 

impurity function. It is a measure of homogeneity from 0 (homogeneous) to 1 (heterogeneous).  

                                  𝐻(𝑥𝑚) =  
1

𝑛𝑚
 ∑ 𝐼 (𝑡𝑛 , ℓ𝑚) [1 −  

1

𝑛𝑚
𝐼 (𝑡𝑛, ℓ𝑚)]                      𝓍𝑛 ∈ 𝓍𝑚

     (3-10) 

where 𝑛𝑚   is the number of points in region 𝓍𝑚 and 𝑙𝑚 represents the assigned label for each 

region, corresponding to the most common class in the region: 

                                                      ℓ𝑚 = arg max
𝑟𝑘

∑ 𝐼 (𝑡𝑛, 𝑟𝑘)𝑋𝑛 ∈ 𝑋𝑚
                                          (3-11) 

Where 𝑟𝑘 are the source range classes and 𝑡𝑛 is the label of point 𝑋𝑛 in region 𝑚, and: 

                                                       𝐼 (𝑡𝑛, 𝑟𝑘) =  {
1   𝑖𝑓 𝑡𝑛 =  𝑟𝑘

  0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                               (3-12)                                                           

Figure 3.7 Shows the decision tree classifier that partitions the samples into three regions with 

the two cutoff values.  
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Figure 3.7: Random forest classifier [28] 

In order to use RF for regression challenge rather than classification problem, mean of the true 

class, 𝑟𝑛, for all points in the region should be utilized to obtain the estimated class, 𝑙𝑚, for each 

region. In addition, the mean squared error is used as the impurity function. 

                                                                ℓ𝑚 =  
1

𝑛𝑚
 ∑ 𝑟𝑛𝑥𝑛 ∈ 𝑥𝑚

                                                (3-13) 

𝐻 (𝑥𝑚) =  ∑ (ℓ𝑚 − 𝑟𝑛)2

𝑥𝑛∈ 𝑥𝑚

 

3.3 Source Localization Algorithm 

The proposed method for underwater source localization relies on the machine learning 

techniques. Unlike model-based methods which require the environmental parameters, data-

driven approaches are based on training data to extract subtle information and model the sound 

propagation underwater.  Therefore, quality of collected data plays a pivotal role in this thesis. 

After data acquisition by the hydrophones, some preprocessing steps such as noise removal 

should be performed to enhance the quality of the acoustic data. Then, these data are divided into 

three disjoint parts: training, validation, and test data, to train machine learning models and 

evaluate their performances. Details of each step will be presented in the following: 

3.3.1 Data Acquisition  

In order to estimate the location of a moving object based on acoustic positioning method, a 

sound source is mounted on the ROV and several hydrophones are installed in different positions 
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in the tank. The sound source, also called beacon or transducer, generates acoustic signals with 

predefined frequency. The hydrophones convert the received sound signal to electric signal. 

Figure 3.8 Shows the schematic setup for data acquisition in a tank. Thanks to the confined 

underwater space, we can move the sound source in finite positions and record the received 

hydrophone signals.  Stationary conditions of the tank guarantee accurate environment 

perception, using enough training data.   

 

Figure 3.8: Data acquisition in the test tank 

Assume that the beacon sends sound signals periodically over time. Figure 3.9 shows the 

oscillogram that presents the waveform and amplitude of the sound over time. The Spectrogram 

of the source which is one the most common time-frequency representations is depicted in Figure 

3.10 [28]. Since the beacon generates a sharp signal in the time domain, this impulse signal 

contains a wide range of frequencies, as shown in Figure 3.11. 
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Figure 3.9: Oscillogram of the generated sound signal 

 

 

Figure 3.10: Spectrogram of the signal represented in Figure 3.9 
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Figure 3.11: Spectrum of the signal represented in Figure 3.9 

 

To analyze the quality of a signal, a chart of correlation statistics (called correlogram) is usually 

utilized [10]. Figure 3.12 shows the auto-correlogram of the source signal. As it can be seen, 

with a small shift in the time domain, the autocorrelation coefficient was sharply declined. This 

means that the sound signal transmitted by the beacon is not similar to itself even after a small-

time variance. It should also be noted that the highest the correlation peak, the more precise the 

TOA, and consequently the more accurate localization results. 
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Figure 3.12: Correlogram of the signal represented in Figure 3.9 

 

3.3.2 Data Preparation 

There is a consensus among data scientists that there is no general algorithm to perform best on 

every problem. Different circumstances such as the type of problem, the amount of training, and 

the cost functions determine the best algorithm for the particular problem. In the other words, by 

optimizing the parameters of an algorithm to fit the given problem, it can outperform other 

algorithms.  

To select the optimum model, the data should be divided into three disjoint sets: training, 

validation and test sets. The given dataset is usually divided equally to create these subsets. Take 

Neural Networks (NN) as an example; the training set is used to optimize the parameters of the 

classifier (the weights) based on the learning algorithm. The validation set is used to optimize the 

hyperparameters of the algorithm (number of hidden units, learning rate). Finally, the test set is 

utilized to estimate the true error rate of the model. 
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Figure 3.13 shows the procedure of using training, validation and test sets for model selection 

and error estimation. The approach is managed in the following steps: 

(i) Divide the available data into training, validation, and test data 

(ii) Select the architecture and training parameters 

(iii) Train the model using the training set 

(iv) Evaluate the model using the validation set 

(v) Repeat steps (ii)–(iv) using different architectures and training parameters 

(vi) Select the best model and train it using data from the training and validation sets 

(vii) Assess the model using the test set 

 

Figure 3.13: The use of training, test, and validation sets in supervised machine learning methods 

3.3.3 Error Estimation 

To measure the error rates for the given source localization task, mean absolute percentage error 

(MAPE) over N samples is used as [28]: 
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                                                           𝐸𝑀𝐴𝑃𝐸 =  
100

𝑁
 ∑ |

𝑅𝑝𝑖− 𝑅g𝑖

𝑅g𝑖
|𝑁

𝑖=1                                          (3-14) 

where 𝑅𝑝𝑖 and 𝑅𝑔𝑖  are the predicted range and the ground truth range, respectively. MAPE is 

frequently used as an error measure in localization applications because it considers both the 

magnitude of error and the frequency of correct estimates. 

3.4 Summary 

This chapter briefly reviewed supervised machine learning techniques needed in this thesis. We 

use Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Support Vector 

Machine (SVM), and Random Forest (RF) for underwater sound source localization. Data 

collection, the keystone of supervised machine learning algorithms, was explained in detail. 

Finally, Mean Absolute Percentage Error (MAPE) was introduced as a criterion to evaluate the 

localization methods. Experimental results of the proposed localization method will be explored 

in the chapter 5. 
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CHAPTER 4 

Implementation 

This chapter describes the hardware and experimental setup used in this project. The hardware 

consists of two main parts: transmitter and receiver.  

4.1 Transmitter 

In order to generate appropriate acoustic signals, three main modules should be connected as 

shown in Figure 4.1. FPGA is responsible to generate sound signals, which will be amplified by 

the transducer driver. Then, the amplified sound signal is fed to the piezoelectric transducer to be 

transmitted in the underwater environment. In the following each of these blocks will be 

explained in more details.  

 

Figure 4.1: Schematic of the transmission unit 

4.1.1 FPGA 

Xilinx LX45 FPGA is used as the transmitter in this project to generate sound signals. In this 

manner, amplitude and frequency of the sound signal can be controlled. ATLYS board includes 

this FPGA and PMOD port, which enables us to connect the FPGA to the transducer driver. 

Figure 4.2 shows ATLYS board used in this project. 
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Figure 4.2: ATLYS board for sound generation [29] 

The board was designed in a way that allows it to be useful for a variety of applications. 

According to the top-level diagram of the FPGA implementation, shown in Figure 4.3 the 

transmitter has two operating modes. These modes can be selected by External Selection Input 

(the blue command line). If this input is High, the FPGA can communicate with an external PC 

through an UART interface to receive parameters from the user. Otherwise, the FPGA reads 

messages that has been previously uploaded into a RAM. 
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Figure 4.3: Block diagram of the transmitter unit 

The FPGA has four modules: Sequencer, Address Generator, PSK Modulator and DDS. The 

sequencer module provides inputs for the Address Generator module, according to its inputs. 

Figure 4.4 shows the output of the sequencer for the given inputs, Tsequence, Tmessege when Nsequence 

is set to 3 to generate three samples. For underwater localization system in a confined space, 

Tsequence, Tmessege should be set in a manner to guarantee that the generated signal and its 

reverberation are received by the hydrophones before generating another sound signal. 

 

Figure 4.4: Generated signal with 3 samples per each period 
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The second module, Address Generator, receives the Sequence and Message signals from 

Sequencer. Whenever the Sequence input is high, the Start TX output is set to high to inform the 

PSK Modulator that a sequence with the stored parameters in a 256x64 RAM, should be 

transmitted. However, if the Message input is set to high, the parameters relative to the new 

message are considered to transmit a signal. This module also has four outputs that are connected 

to the inputs of the PSK Modulator.  

The PSK Modulator performs modulation based on either its internal RAM contents or external 

parameters (Modulation, Symbol Duration, Start Address, and Nwords). When Start TX is set to 

high, it starts reading Nwords words from its RAM, starting at Start Address. The type of 

modulation (BPSK or QPSK) and the duration of each symbol are determined by Modulation, 

Symbol Duration inputs.  

The final module in the FPGA is Direct Digital Synthesis (DDS) that relates each phase value 

with the logical values to be input into the Transducer Driver to generate a sinusoidal signal. 

This operation is performed by a Look Up Table (LUT) which is implemented on a 128x2 RAM. 

Whenever Load Symbol is active, Symbol Phase and the carrier’s period are added to the current 

phase. The resulting phase is looked up in the LUT to generate TP and TN outputs. 

4.1.2 Transducer Driver 

The transducer driver utilized in this project consists of two transistors and a transformer (Figure 

4.5). This block has two inputs (TP, TN) that receive signals from the Direct Digital Synthesis 

module in FPGA. The two transistors are driven by TP and TN to allow current to flow through 

the transformer in opposite directions. For example, when TP=1 and TN=0, the top transistor is 

on and a positive signal is generated at the output. Figure 4.6 shows the output signal of the 

transducer driver for different input values. By alternating the logic values of the inputs, a semi-

sinusoidal signal can be generated at the output.  
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Figure 4.5: Transducer driver circuit 

 

Figure 4.6: Transducer output for different command values  

 

4.1.3 Transducer 

After generating electrical signal by the driver, transducer should be utilized to convert the 

electrical signal to sound signal. We used Neptune Sonar company transducer (Figure 4.7) which 

can transmit signals with frequencies ranging from 16kHz and 30 kHz and has a maximum 

transmission power of 400W. 
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Figure 4.7: Transducer [30] 

4.2 Receiver 

The reception block is responsible for filtering and amplifying the received signal, and 

converting it to digital format using analog to digital convertor (ADC) for signal processing and 

storage. Figure 4.8 depicts the three main blocks of the receiver. 

 

Figure 4.8: Schematic of the receiver unit 

4.2.1 Hydrophones 

In this project four hydrophones of the model TC4013 made by Teledyne company were utilized 

to acquire acoustic signals [31]. They have a frequency range between 1 Hz and 170 kHz and a 

high sensitivity relative to its size. Figure 4.9 shows one of these hydrophones. The overall 

characteristics of this omnidirectional hydrophone are shown in Figure 4.10. 
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Figure 4.9: Hydrophone [31] 

 

Figure 4.10: Technical details of the hydrophone [31] 

4.2.2 Analogue Front-end 

In order to convert sensor output to a proper input signal for an ADC, analog front-ends are 

required. They usually consist of Op-Amps and filters, and other necessary signal processing 

circuits needed for best performance. In this project, hydrophones are connected to an analog 

front-end board consisting of a two-stage amplifier, followed by a low-pass filter (Figure 4.11). 

The first stage of the amplifier has a fixed gain (10x), while the gain of the second stage can be 

adjusted in the range of (0.1x-2500x). A low pass filter has the cut-off frequency of 250kHz.  
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Since the Red Pitay board (Figure 4.12) has only two analog inputs, two of them are required to 

handle four hydrophones: a primary and a secondary one. The inputs of the hydrophones H0 and 

H2 are multiplexed into the channel A of the board, while H1 and H3 are multiplexed into channel 

B.  

 

Figure 4.11: Schematic of the analog front-end board 

 

Figure 4.12: The Red Pitay board 
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4.2.3 Digital Platform 

Received sound signals are converted to electric signals by the hydrophones. Then, the electric 

signals are amplified and filtered by an analog front-end module.  The final module is a digital 

platform that is required to sample the processed analog signals and convert them into digital 

numeric values to be read by. This process is called Data Acquisition (DAQ) and enables us to 

manipulate and store the digital signals by a computer.  

Figure 4.13 shows main blocks in a typical DAQ board which is an interface between real world 

and a computer. Signal conditioning circuitry transforms noisy real-world signals into 

appropriate forms needed for the next stage. For instance, in an analog-to-digital converter 

(ADC) application, signal voltage limiting, and anti-aliasing filtering can bring about more 

accurate measurement. The second block is ADC that converts real-world analog data into digital 

signal required for computers. DAQ relies on computer bus to transmit data to a computer. The 

most common computer buses are USB, PCIe, or Ethernet. Figure 4.14 shows the effect of the 

different DAQ submodules on the input analog input signal.  

 

 

Figure 4.13: Schematic of the data acquisition system 
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Figure 4.14: Different signals demonstration 

(a) Analog input signal. (b) Conditioned signal. (c) Digitized signal. (d) Sampled signal. 

To perform different tasks such as visualization, processing, and storage on the measurement 

data, DAQ software should be installed on the computer. DAQ software includes driver software 

and application software. Through driver software, application software can control the DAQ 

device with menu-based configuration or an Application Programming Interface (API). National 

Instrument (NI) company [32], for example, has developed NI-DAQmx driver software which is 

compatible with NI data acquisition hardware. NI-DAQmx enables users to reduce development 

time and take full advantage of their data acquisition applications. NI company also provided 

FlexLogger application software to facilitate building data-logging systems with NI DAQ 
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hardware, without any programming. Apart from driver software and application software, users 

can utilize programming environment to develop their own application to acquire, analyze, and 

present data. Programming environment, for instance, enables users to have access to low-level 

timing and triggering information as well as synchronize with multiple devices. By using 

libraries APIs, users can access and control their DAQ device in a more flexible way. LabVIEW 

(Laboratory Virtual Instrument Engineering Workbench) is a programming environment based 

on the graphical language, named G, for a visual programming from National Instruments [32]. 

Figure 4.15 shows a compact DAQ with embedded LabVIEW software [32]. 

 

Figure 4.15: NI cDAQ 9134 [32] 

In this project we used NI 9234 data acquisition module and NI-DAQmx driver software, both 

developed by National Instruments [32]. The main reason for selecting NI 9234 module is that it 
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is a four-channel dynamic signal acquisition module and enables us to acquire information from 

four hydrophones simultaneously.  This data acquisition module delivers 102 dB of dynamic 

range and signal conditioning at 2 mA constant current for hydrophones. The maximum 

sampling rate of it is 51.2 kS/s, which can be automatically adjusted by built-in anti-aliasing 

filters. Figure 4.16 shows the NI 9234 data acquisition module. 

 

Figure 4.16: NI 9234 DAC [32] 

Figure 4.17 shows the circuitry of the NI 9234 data acquisition module. Signal conditioning is 

performed on each analog input signal (AI) through prefilter and differential amplifier block. 

Filtering is performed by a set of analog and digital filters that differentiate in-band and out-of-

band signals according to the frequency range, or bandwidth of the signals. A Delta-Sigma ADC 

converts the conditioned signal into a digital signal. The analog input is connected to chassis 

ground through two parallel diodes and a 50 Ω resistor for safety measures and over-voltage 

protection. Each channel can be configured for AC or DC coupling by turning the Integrated 

Electronics Piezoelectric (IEPE) excitation current on or off via driver software.  



 

52 
 

 

Figure 4.17: Schematic of the NI 9234 board [32] 

Sampling rate frequency (𝑓𝑠) is determined by frequency of a master time base (𝑓𝑀), which is 

13.1072 MHz in NI 9234. Equation 4.1 provides the available data rates: 

                                                                𝑓𝑠 =  
𝑓𝑀÷256

𝑛
                                                               (4-1) 

where n is any integer from 1 to 31. Depending on the value of n, sampling frequency can 

increase from 1.652 kS/s to 51.2 kS/s. Table 4.1 Indicates the NI 9234 overall specifications. 

 

 

 

 

 

 

 

 



 

53 
 

Table 4.1: Technical details of NI 9234 board [32] 

 

 

Input Characteristics 

Number of channels 4 analog input 

channels 

Input coupling AC/DC (software-

selectable) 

Input range ±5 V 

Overvoltage protection -6 V to 30 V 

Input impedance 305 kΩ 

 

 

 

Sampling Characteristics 

ADC resolution 24 bits 

Type of ADC Delta-Sigma  

Sampling mode Simultaneous 

Internal master timebase 13.1072 MHz 

Minimum data rate  1.652 kS/s 

Maximum data rate 51.2 kS/s 

 

Accuracy 

Gain Error 0.05%, ±0.005 dB 

Offset Error ±0.04%, 2.3 mV 

Total Harmonic Distortion 

(THD) 

-95 dB 

Power Requirements Active mode 900 mW  

Sleep mode  25 μW 

Physical Characteristics Weight  173 g 
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4.3 Software 

As mentioned earlier, to transfer measured data into computer for processing and storage, driver 

software and application software are required. 

4.3.1 Driver Software 

In this project we used NI-DAQmx driver software [32] to take full advantage of many features 

of NI 9234 data acquisition hardware. DAQ Assistant is one of the main features in NI-DAQmx 

that facilitates development experience through obviating the need for programming. Figure 4.18 

shows DAQ Assistant graphical interface. User can utilize this interface to create a virtual 

channel consisting of a physical channel on a DAQ device and the configuration information. 

Acquisition or generation parameters including timing and triggering information, input range, 

and custom scaling can be set by DAQ Assistant (Figure 4.18). 
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Figure 4.18: DAQ assistant graphical interface 

DAQ Assistant can also generate code to configure and use the task in an application program 

such LabVIEW. In this manner specified acquisition or generation tasks can be performed with 

higher flexibility. Figure 4.19 displays how LabVIEW code can be generated automatically and 

also shows the resulting generated LabVIEW code. 
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Figure 4.19: Automatic LabVIEW code generation 

4.3.2 Application Software 

Data acquisition applications are usually controlled by using various general-purpose 

programming languages.  LabVIEW and MATLAB are two common programming languages 

which have been used frequently to visualize, process, and store measured data by a hardware. 

MATLAB Data Acquisition Toolbox is used in this project to monitor, analyze, and save sound 

signals for underwater localization application [33]. With this toolbox we can configure NI 9234 

data acquisition hardware and transfer its received sound data into MATLAB software for 

localization.  

In addition to receiving data from DAQ devices, user can send out data over device-specific 

analog and digital output channels. Several functions are available for controlling analog and 

digital input/analog, counter/timer in a DAQ device. Data Acquisition Toolbox can synchronize 

multiple devices to acquire signals from several DAQ devices.   

The toolbox supports well-established DAQ vendors including National Instruments. Table 4.2 

shows the list of vendors supported in the MATLAB. 
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Table 4.2: List of DAQ vendors supported by MATLAB [33] 

 

After conncting a hydrophone to channel 0 of NI 9234 data acquistion hardware, and attaching 

DAQ device to the computer via USB port, we can discover list of supported devices by the 

daqlist command in MATLAB. Figure 4.20 shows the output of the MATLAB command. For 

the sake of simplicity, other DAQ devices such as Microsoft internal sound card are not shown in 

this figure. 

 

Figure 4.20: Recognition of the connected DAQ device by MATLAB 

The next step is to create a data acquisition and add a channel with microphone measurement 

type (Figure 4.21). Parameters of the microphone channel such as sensitivity property can be set 

to the value specified in the sensor's data sheet.  
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Figure 4.21: Creating a channel to receive hydrophone signals 

We can set the acquisition scan rate (scans per second) and use read command to acquire four 

seconds of data. To play back the acquired microphone signal audioplayer command can be 

utilized. 

 

Figure 4.22: MATLAB commands for recording and playing hydrophone sound signals 

The acquired data can be presented in time or frequency domains. It should be noted that by non-

blocking commands, user can work in the MATLAB command window during the acquisition 

process. This is called background acquisition. On the other hand, using foreground acquisition 

causes MATLAB to wait for the entire acquisition to complete before executing next command.  

4.4 Experimental Setup 

All experiments were performed in a confined underwater environment containing fresh water. 

The test tank has a length of 6 m, a width of 4.5 m and a depth of 1.7 m. The effects of 

reverberation and multi-path are considerable due to small dimensions of the pool. The beacon 
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was mounted at the top of the ROV and moved to the different positions within the tank. 

Hydrophones were located at the different positions inside the confined tank (hydrophone 

layouts will be discussed in chapter 5). In the next chapter, accuracy of the proposed underwater 

localization method will be examined as a function of beacon and hydrophones positions.  

4.5 Summary 

This chapter focused on the practical aspects and experimental setup of this project. Hardware 

and software units of the transmitter and receiver blocks were explained in detail. Then data 

acquisition board required to convert captured data into computer readable format was explained. 

Finally, underwater test tank, used to collect data and evaluate the performance of the proposed 

localization system, was described.  
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CHAPTER 5 

Experimental Results 

This chapter begins with the description of acoustic data set generation to perform underwater 

source localization based on machine learning techniques. For this purpose, feature extraction 

methods should be applied on the received acoustic data, and the results should be stored in a 

data base. In this project, three different feature extraction approaches were deployed: pitch of 

the acoustic signal, the Mel-Frequency Cepstrum Coefficients (MFCC), and Speech Spectrogram 

(SS) [34]. The prepared data set is divided into train, validation, and test subsets, as discussed in 

chapter 3. Then, Machine Learning (ML) techniques will be utilized to train and finetune 

classifiers using the training and validation sets, respectively. Performance of the proposed 

underwater ROV localization method will be evaluated by the validation set. 

5.1 Feature Extraction 

Data-driven ML approaches heavily rely on feature extraction phase to reduce dimensionality of 

their input patterns for better data representation. From pattern recognition point of view, feature 

extraction refers to the process of finding the most discriminative information from raw data 

which maximizes class separation. In acoustic signal processing, feature extraction methods can 

broadly fall into three main groups [34]: (i) temporal features, (ii) spectral features, and (iii) 

spectro-temporal features. Since the temporal features are defined in time domain, they can be 

easily extracted and have easy physical interpretation. Examples of temporal features include: 

the energy of signal, zero crossing rate, maximum amplitude, and minimum energy. On the other 

hand, spectral features are frequency-based features. Fourier Transform converts the time 

domain signal into the frequency domain. Fundamental frequency, frequency components, and 

power spectral density are the most common spectral features used in speech recognition. While 

temporal features and spectral features are one-dimensional (1D) features, spectro-temporal 

features can be regarded as two-dimensional (2D) features. Spectrogram, for instance, is a visual 

representation of the spectrum of frequencies of a signal as it varies with time. The main reason 

for using 2D features is to leverage convolutional neural networks which have shown 

satisfactory results for image classification. 
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5.1.1 One-dimensional Features 

This subsection briefly describes pitch and Mel-Frequency Cepstrum Coefficients (MFCC) as 

one-dimensional features.  

• Pitch [34] 

Sound tones can be described by several auditory attributes such as pitch, duration, loudness, and 

timbre. Pitch is a perceptual attribute that determines if a sound is "higher" or "lower". Since 

only sounds with clear and stable frequency have pitch, this attribute can be used to differentiate 

voice from noise. Figure 5.1 shows time-domain representation of the pronounced word "two". It 

consists of two parts: the consonant “T” and the vowel “WO”. While the consonant part can be 

regarded as noise sound (t<2.7s), the vowel segment (t>2.7s) has a strong fundamental 

frequency, so it can be considered as voiced sound.  

 

Figure 5.1: Time-domain representation of a sound signal 

To measure the pitch, the sound signal is regarded as a set of overlapping windows. The sound 

signal in each window is assumed to be stationary without considerable change over time. In this 

example window size is set to 30 ms with a 25 ms overlap. Figure 5.2 shows pitch counter of the 

sound in Figure 5.1. 
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Figure 5.2: Pitch counter of the sound in Figure 5.1 

To differentiate voiced and noise sounds, zero crossing rate (ZCR) can be used. ZCR is defined 

as the rate at which the signal changes from positive to negative or vice versa. ZCR above a 

given threshold implies that the sound is noise-like, while small ZCR shows that the sound has a 

dominant frequency and can be considered as a voiced sound. Figure 5.3 shows the voiced signal 

after applying a threshold on ZCR. 

 

Figure 5.3: Pitch counter after thresholding Figure 5.2 with threshold value of 300 

• Mel-Frequency Cepstrum Coefficients (MFCC) [34] 

In this project we extract MFCC as a spectral feature vector from underwater sound signals.  

Short-term power spectrum of a sound can be represented by Mel-frequency cepstrum (MFC). 
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MFCCs are coefficients that collectively make up an MFC. Figure 5.4 illustrates how MFCC can 

be derived for the speech signal. Figure 5.5 shows 13 MFCCs of the sound signal. This process 

can be performed as follows [34]: 

- Take the Fourier transform of a signal in a window.  

- Map the powers of the spectrum obtained above onto the Mel scale, using triangular 

overlapping windows.  

- Take the logs of the powers at each of the Mel frequencies. 

- Take the discrete cosine transform of the list of Mel log powers. 

- The MFCCs are the amplitudes of the resulting spectrum. 

 

Figure 5.4: MFCC extraction process 

 

Figure 5.5: One-dimensional features values including pitch and 13 MFCCs 
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5.1.2 Two-dimensional Features 

Apart from one-dimensional features described in section 5.1.1, we utilize spectrogram which is 

a spectro-temporal feature. Spectrogram shows the presence of a particular frequency at a 

specific time. For the sake of simplicity, amplitude of each frequency is proportional to the color 

of each point in the spectrogram. Figure 5.6 shows spectrogram of a sound signal. Such two-

dimensional way of representing the signal enables us to leverage convolutional neural networks 

which have shown promising results in visual imagery applications. More details of spectrogram 

calculation can be found in [34]. 

 

Figure 5.6: Time-domain and spectrogram of a sound signal 
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Figure 5.7 shows spectrogram of various sounds. As it can be seen, different sound signals have 

distinct spectrograms which makes it easy for the classifier to learn the differences and 

differentiate the corresponding signals. 

 

(a) : Spectrogram of “two”                   (b) : Spectrogram of”six”  

                                                   

(c) : Spectrogram of ”Matlab”                       (d) : Spectrogram of “noise” 

Figure 5.7: Spectrogram of different sounds 
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5.2 Preprocessing 

After data collection, preprocessing step should be performed to make the data suitable for 

machine learning purposes. The most common preprocessing technique is data normalization 

which makes the data zero-mean and unit-variance. This can be simply achieved by subtracting 

the mean from the data and dividing the result by standard deviation. 

                                                                       𝓍′ =
𝓍−𝓍̅

𝜎
                                                              (5-1) 

Where 𝑥 is the raw data, 𝑥 is the mean of the data values, and 𝜎 is the standard deviation. 

Normalization step should be performed on each feature individually because the pitch and 

MFCCs are not on the same scale (Figure 5.8). It is worth mentioning that in this project, other 

preprocessing tasks, such as noise removal, sound smoothing, and echo cancelation are not 

performed because experimental results show that the machine learning methods can learn these 

nonideal situations. 

 

Figure 5.8: Normalizing One-dimensional features values 

It should also be noted that the length of the received audio signal varies according to the 

distance between the sound signal and the hydrophone. The more the distance, the wider the 

received signal. This is mainly due modal dispersion and multipath propagation which are 

intensified by distance. Since the number of MFCCs depends on the signal length, we select the 

width of windows and overlapping period between consequent windows adaptively to extract a 

fix number of FCCs. Thirteen MFCCs were extracted in this project because experimental results 

show that 10 to 20 coefficients can accurately describe the signals. A fixed number of features is 
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needed when utilizing those machine learning techniques, such as neural networks, with fix 

parameters, like number of neurons in input layer.  

5.3 Hydrophone Layouts 

Performance of machine learning methods strongly depend on the quality and quantity of the 

training data set. Data collection, however, is a challenging and time-consuming task. It involves 

several steps including collecting, preprocessing, analyzing, and visualizing. After performing all 

these steps, feature extraction can be performed. To the best of our knowledge, there is no public 

data set available for underwater sound localization in a confined space. So, in this project we 

generated the training set manually. For this purpose, the hydrophones were installed at different 

locations within the water tank and the beacon mounted at the top of an ROV which was moved 

manually. Figure 5.9 shows three different hydrophone layouts.  

 

(a) 
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(b) 

  

(c)   

Figure 5.9: Different hydrophone layouts 
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In layout A, three hydrophones were installed on the surface of the tank and only one 

hydrophone was at the bottom. Experimental results show that this layout does not have a good 

coverage. When the beacon is on the surface, far away from the hydrophones, localization error 

increases. In layout B, two hydrophones were installed on the tank surface while two other 

hydrophones were installed on the floor. To have a wide coverage, hydrophones were located at 

the opposite corners at each plane. However, layout B is not able to capture sound reverberations 

from test tank walls. To address this issue, in layout C the hydrophones were located far from the 

frontal and dorsal walls. It should be noted that other hydrophone layouts can be proposed for 

sound localization, which may require more training data to produce reliable results.  

5.3.1 Uniform Sampling 

In the simplest form, the beacon can be located at different positions, equally spaced in the test 

tank. Number of collected data depends on the spatial resolution. Since the rectangular water 

tank has dimensions of 6.0 m x 4.5 m x 1.7 m, uniform sampling with 10cm resolution results to 

45,900 samples. Manually collecting such immense data set is a tedious and time-consuming 

task. In response to this issue, we reduced the spatial sampling resolution to 50cm and collected 

samples at 342 positions uniformly. Taking the length of ROV into consideration (approximately 

60cm), 50cm resolution can be acceptable in noncritical applications. Figure 5.10 shows the 

uniform sampling process. 

 

Figure 5.10: uniform sampling process 
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5.3.2 Nonuniform Sampling 

Uniform sampling requires significant amounts of time to produce high quality data resulting 

adequate localization accuracy. To reduce the total acquisition time, nonuniform sampling 

method can be deployed in which a smaller number of samples are collected in the areas with 

unambiguous interpretation to speed up the experiment. In other words, while the number of 

acquired samples is reduced in the central area of the tank to minimize the collection time, the 

sampling spatial resolution is elevated at critical areas such as tank corners to maintain 

localization accuracy. Figure 5.11 shows nonuniform data acquisition. In this experiment, 100 

samples were collected nonuniformly. Most of the data were gathered from the tank floor, 

ceiling, and corners which highly experience multi-path and reverberation phenomena. After 

positioning the beacon at the predefined location within the tank, the received signals by the 

hydrophones (H1,H2,H3,H4) and (x,y,z) of that point are recorded as the data and its 

corresponding label.  This location is called ground truth and it will be used later to train 

machine learning methods. 

 

Figure 5.11: Nonuniform data acquisition process 

5.4 Classification Results 

As stated in Chapter 3, based on the type of estimated range, source localization can be regarded 

as classification or regression. While output of the classification module is discrete, the 
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regression module represents the estimated range as a continuous value. This section illustrates 

the results of MLP, CNN, SVM, and RF machine learning techniques in the classification 

domain. 

• Range resolution 

In the classification regime, unlike regression approach, the position of the sound signal is 

quantized.  The number of classes corresponds to the number of these quantized values which are 

determined by the resolution of range steps. As stated in Section 5.2.1, to alleviate data 

collection burden, the maximum number of classes was set to 342 in uniform sampling method, 

corresponding to 50cm range resolution. The number of classes determines the accuracy of the 

localization algorithm and affects the time of the machine learning algorithms.  In case of non-

uniform sampling, Section 5.2.2, the maximum number of classes is limited to 100. 

• Snapshots 

When the beacon is positioned at predetermined locations, sound recording process should be 

repeated for several times. The number of repeating this experiment is called snapshots. Since 

the beacon is mounted at the top of the ROV and sound of the ROV motors are stochastic, the 

propagated sound of the beacon is contaminated by different noises. Moreover, in a confined 

space, not only the location of the beacon but also its direction affects the received sound of the 

hydrophones. Assume the beacon is located near to the left wall of the water tank. If the beacon 

sends sound signals to the left, the hydrophones on the right receive signals with high 

reverberation caused by the left side wall reflection. But if the beacon is aligned to the right, the 

hydrophones receive signal with less reverberation. Therefore, data collection should be repeated 

several times at each position. Increasing the number of snapshots can make the localization 

system more robust to noise and nonideal phenomena, such as reverberation.  

• Dataset 

Each hydrophone receives a sound signal with the length of 40ms to 100ms, according to its 

distance from the beacon and acoustic condition. These samples are divided into frames of 20ms 

with an overlap of 50%. For the sake of simplicity, assume the average of received signals is 

60ms. Therefore, five frames are extracted for each signal. Having four hydrophones, locating 

the beacon in 342 locations in uniform sampling scenario, and propagating the sound signal in 

five different directions (snapshot), we will have 34,200 (5×4×342×5=34200) frames (training 
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samples). Then, one-dimensional features, including pitch and MFCCs, or two-dimensional 

feature, spectrogram, are extracted from these frames and concatenated to build the dataset. In 

other words, in the case of uniform sampling and one-dimensional features, the dataset has 

34,200 rows and 14 columns (pitch and 13 MFCCs). When non-uniform sampling is utilized, the 

dataset has 10,000 rows (5×4×100×5=10000) and 14 columns. In case of two-dimensional 

feature, we will have 34,200 and 10,000 spectrogram images for uniform and non-uniform 

sampling scenarios, respectively. 

5.4.1 Feed Forward NNs (FNN) 

As stated in Section 5.1, pitch and MFCC coefficients were extracted from the received sound 

signals. Since the feature vector consists of one pitch parameter and 13 MFCCs, the neural 

network with 14 neurons in the input layer was deployed. In the FNN, the number of neurons at 

the output layer is three, corresponding to (x,y,z) of the estimated location. Performance of the 

proposed localization system is evaluated when number of hidden layers and number of neurons 

in each layer vary. Neural networks with one and two hidden layers are utilized because 

increasing the number of hidden layers exponentially increase the number of links in the 

network, which requires more training data. We also investigate the number of neurons in each 

hidden layer. Usually, the number of hidden neurons is power of two, because they are more 

effective than other numbers. This is due to fact that training neural networks is based on matrix 

multiplication, which is performed in batch sizes that are power of 2. Therefore, selecting 

number of hidden neurons as power of two can elevate the network training speed. In this 

research the number of hidden neurons was increased from 32 to 2048.  

We used MATLAB 2018 Neural Network Toolbox for training the FNN. The learning algorithm 

is gradient descent and learning rate is set to 0.01. According to Figure 5.12, the best validation 

performance occurs at epoch 70 which corresponds to 9% MAPE (see section 3.3.3 for MAPE 

definition).  
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Figure 5.12: Localization error on train, validation and test data sets 

Table 5.1 shows the effect of different parameters on the FNN result. Although increasing the 

number of hidden neurons enables the network to capture more of the variance in the data, it 

raises the computational burden. Experimental results show that accuracy of the localization 

system does not improve by increasing the number of hidden layers in FNN. So, FNNs with one 

and two hidden layers were investigated in this research. As shown in Table 5.1, non-uniform 

sampling for training data collection results to more accurate localization. Minimum of MAPE of 

7% (non-uniform) and 10% (uniform) is obtained when FNN has one hidden layer with 1024 

neurons. Shortage of training data may account for performance decline when number of hidden 

layers or hidden neurons are increased. 

In next step, we explore the effect of spatial resolution, number of classes, on the localization 

accuracy. Moreover, performance of the localization system is investigated when number of 

snapshots vary. For the sake of simplicity, number of hidden layers and number of hidden 

neurons are set to the values which yield the minimum MAPE in the previous experiment (Table 

5.1). As Table 5.2 shows, by increasing the number of classes, the localization error decreases. 
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Performance of uniform sampling is always inferior to non-uniform sampling method. With 300 

classes, uniform sampling result is still less than non-uniform outcome with 100 classes. 

Performance of the proposed method is tested using 1, 5, and 10 snapshots. According to Table 

5.2, increasing the number of snapshots makes the localization system more robust to the input 

data variation. However, experimental results show that using 5 snapshots makes the system 

robust enough and 10 snapshots does not considerably affect the MAPE of the localization 

system. It should be noted that maximum number of classes for non-uniform sampling is limited 

to 100. So, in Table 5.2 for class numbers of 200 and 300, MAPE cannot be estimated (NA). The 

minimum MAPE was achieved with 5 snapshots with 100 classes using non-uniform sampling. 

Table 5.1: Sensitivity of FNN classifier to number of hidden layer and hidden neuron 

    MAPE 

No. of 

hidden 

layers 

No. of 

hidden 

neurons 

No. of 

classes 

No. of 

snapshots 

Uniform 

sampling 

(%) 

Non-

uniform 

sampling 

(%) 

1 64 100 5 14 10 

1 128 100 5 15 10 

1 256 100 5 14 9 

1 512 100 5 13 9 

1 1024 100 5 10 7 

1 2048 100 5 11 8 

2 64 100 5 11 9 

2 128 100 5 12 10 

2 256 100 5 12 10 

2 512 100 5 13 11 

2 1024 100 5 12 9 

2 2048 100 5 12 10 
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Table 5.2: Sensitivity of FNN classifier to number of classes and snapshots 

    MAPE 

No. of 

hidden 

layers 

No. of 

hidden 

neurons 

No. of 

classes 

No. of 

snapshots 

Uniform 

sampling 

(%) 

Non-

uniform 

sampling 

(%) 

1 1024 10 1 19 16 

1 1024 10 5 16 13 

1 1024 10 10 17 13 

1 1024 20 1 16 12 

1 1024 20 5 13 10 

1 1024 20 10 13 10 

1 1024 50 1 12 10 

1 1024 50 5 11 9 

1 1024 50 10 10 8 

1 1024 100 1 12 9 

1 1024 100 5 10 7 

1 1024 100 10 10 7 

1 1024 200 1 9 NA 

1 1024 200 5 8 NA 

1 1024 200 10 8 NA 

1 1024 300 1 13 NA 

1 1024 300 5 11 NA 

1 1024 300 10 12 NA 

 

5.4.2 Support Vector Machine (SVM) 

Gaussian radial basis function (RBF) kernel is used in the SVM classifier. This classifier has two 

hyperparameters, C and γ [Eq. 3-3] which were tested over [10-3  10-1]  and [101  103], 

respectively. Experimental results show that C=10-2 and Gama=101 result to the minimum error. 

Since localization problem is a multiclass problem and SVM is a binary classifier, we used 

ClassificationECOC classifier in MATLAB. This classifier performs a multiclass learning task 

by reducing it to multiple binary SVM classifiers. It uses the one-vs-one approach which splits 

the dataset into one dataset for each class versus every other class. For K classes, the one-vs-one 
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method requires K(K − 1)/2 binary classifiers. Number of localization classes is increased from 

10 to 300. We also increase the number of snapshots from 1 to 10. The results are in consensus 

with previous experiment which reports that non-uniform sampling is always superior to uniform 

sampling in terms of localization accuracy. Increasing the number of classes reduces the MAPE 

error, except for 300 class case.  Table 5.3 presents the MAPE of SVM classifier. As it can be 

seen, the minimum MAPE of SVM is 5% using non-uniform sampling with 5 snapshots and 100 

classes. 

Table 5.3: Sensitivity of SVM classifier to number of classes and snapshots 

    MAPE 

No. of 

classes 

No. of 

snapshots 

Uniform 

sampling (%) 

Non-uniform 

sampling (%) 

10 1 18 17 

10 5 15 15 

10 10 14 15 

20 1 15 14 

20 5 13 11 

20 10 13 12 

50 1 14 9 

50 5 10 6 

50 10 11 7 

100 1 12 8 

100 5 9 5 

100 10 9 5 

200 1 9 NA 

200 5 7 NA 

200 10 8 NA 

300 1 11 NA 

300 5 8 NA 

300 10 7 NA 
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5.4.3 Random Forest (RF) 

Random forest is an ensemble classifier, consisting of a several decision trees. Each individual 

tree is trained on a randomly subset of the training set. After each tree makes its own prediction, 

the final prediction is made by majority voting method. In other words, the class which was 

selected by most of the tress is considered as the final decision of the random forest. This method 

of classifier combination is called bagging. In comparison with FNN, RF has less 

hyperparameter to choose. The minimum samples per leaf and the number of decision trees are 

the most important RF hyperparameters. In this project, minimum samples per leaf were 

increased linearly from 1 to 100. The number of decision trees was doubled from 10 to 1000. 

Experimental results show that when 500 trees were bagged to create the RF with a minimum of 

50 samples per leaf results to minimum MAPE. The lowest MAPE achieved by the RF is 9% 

using non-uniform sampling. RF also reaches 12% MAPE for uniform sampling. 
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Table 5.4: Sensitivity of RF classifier to number of classes and snapshots 

    MAPE 

No. of 

classes 

No. of 

snapshots 

Uniform sampling 

(%) 

Non-uniform 

sampling (%) 

10 1 24 15 

10 5 23 13 

10 10 23 13 

20 1 25 14 

20 5 22 11 

20 10 23 12 

50 1 22 12 

50 5 20 10 

50 10 20 10 

100 1 21 12 

100 5 18 9 

100 10 19 8 

200 1 17 NA 

200 5 14 NA 

200 10 14 NA 

300 1 16 NA 

300 5 12 NA 

300 10 13 NA 

 

5.4.4 Convolutional Neural Network (CNN) 

Two types of one-dimensional features (pitch and MFCCs), were extracted from the received 

sound signal and they were fed into different classifiers to localize an underwater sound source. 

Promising results of CNNs visual recognition on computer vision applications has motivated 

researchers to leverage CNN for sound processing applications. Since sound signal is one-

dimensional and CNNs require images which are two-dimensional, spectrogram of the signal is 

usually utilized.  
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Figure 5.13 (a) shows spectrogram of the beacon sound when it is far away from tank walls and 

when ROV motor is off. In this case, there is no reverberation, and the signal was not 

contaminated by the ROV noise sound. Figure 5.13 (b) shows spectrogram of the beacon sound 

when ROV motor is on.  

 

(a)                                                                         (b) 

Figure 5.13: The effect of motor noise on spectrogram of the received signal 

(a): ROV motors are off. (b): ROV motors are on. 

To see the effect of reverberation on the spectrogram, the beacon is located near to the tank wall 

in a perpendicular direction. Then, the beacon sends two sound signals (Figure 5.14 (a)). Because 

of the reverberation produced by the tank wall, four acoustic signals were received by the 

hydrophone (Figure 5.14 (b)).  
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(a)                                                                                        (b) 

Figure 5.14: The effect of reverberation on spectrogram of the received signal 

(a): Low reverberation. (b): High reverberation. 

 

As mentioned earlier in Section 5.3, at each location several samples were collected to include 

maximum variations in the samples. In this project maximum of 12 snapshots were used. In other 

words, at each position the beacon direction was changed to East, West, South, North, Up, and 

Down. At each direction two samples were recorded. Having 4 hydrophones and 12 snapshots, 

48 samples can be collected at each location. Considering non-uniform sampling method with 

100 classes, data set with the size of 4800 samples is available for training and evaluation of the 

CNN. The amplitudes of the collected spectrograms were scaled to range of [0,1] and 

spectrogram images are resized to 400x144.   

Figure 5.15 shows the CNN architecture used in this research. It includes five convolution layers. 

The convolution layers are followed by a batch normalization layer, a rectified linear unit 

(ReLU) activation layer, and a max pooling layer. The output layer is a fully connected layer 

with 3 neurons, followed by softmax activation needed for classification. Figure 5.16 shows the 

learning parameters. 
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Figure 5.15: The CNN architecture 

 

Figure 5.16: The CNN parameters in learning phase 

After defining the network architecture and learning parameters, the CNN was trained using 

trainNetwork in MATLAB. Performance of the localization system is shown in Figure 5.17. The 

network reached a 4% MAPE on test set after 30 epochs.  
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Figure 5.17: Performance of the CNN classifier 

In the following the effect of number of convolutional layers and filter size on the accuracy of 

the proposed CNN-based localization system will be investigated. For the sake of simplicity, 

number of classes is set to 100 and 12 snapshots were utilized in all experiments. The consensus 

about deep neural network architecture is that by increasing the depth of convolutional layers and 

reducing spatial size of feature maps, better results can be obtained [35]. Following this rule of 

thumb, several CNN architectures were explored in Table 5.5. As it can be seen, by increasing 

the number of convolutional layers the localization error reduces. However, MAPE suddenly 

rises when 6 convolutional layers are deployed. This can be contributed to the shortage of 

training spectrogram images. 
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Table 5.5: Parameter sensitivity of CNN classifier 

No. of 

conv. 

layers 

No. of hidden 

neurons 

Size of 

filter  

 MAPE 

(%) 

1 8 5 14 

1 8 10 13 

1 16 5 12 

1 16 10 14 

1 32 5 15 

1 32 10 15 

2 16-16 5-5 12 

2 16-32 5-10 13 

3 16-32-32 10-5-5 9 

4 16-32-32-32 10-5-5-5 7 

5 16-32-32-32-32 10-5-5-5-5 5 

6 
16-32-32-32-32-

32 

10-5-5-5-

5-5 
8 

 

5.5 Comparative Study 

In this chapter, performance of four different machine learning algorithms was evaluated for 

underwater sound source localization application. Each classifier was examined with various 

parameters including number of classes, number of snapshots, and model hyperparameters. In 

this section, only the best performances of these machine learning techniques will be compared.  

All experiments have been conducted on MATLAB 2018b installed on a laptop with Windows 

10 operating system, 12 GB memory, and Intel Core i5 @ 1GHz CPU. Table 5.6 compares 

performance of RF, SVM, FNN, and CNN in terms of training time and MAPE. As it can be 

seen, RF is the fastest classifier, but its performance is the worst. CNN achieves the lowest 

MAPE with 4%, however, its training time is considerably longer than other machine learning 

techniques. The lengthy training process hinders examining various network architecture and a 

wide range of hyperparameters to achieve the minimum localization error. One possible solution 

would be to utilize GPU (Graphics Processing Unit) rather than CPU (Central Processing Unit). 
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Performing matrix operations in parallel makes GPUs more effective for image and video 

processing applications. 

Table 5.6: Comparison between FNN, SVM, RF, and CNN classifiers 

Classifier 
Training 

Time  

 MAPE 

(%) 

Random Forest 65 s 9 

Support Vector Machine 120 s 5 

Feedforward Neural 

Network 
150 s 7 

Convolutional Neural 

Network 
35 m 4 
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CHAPTER 6 

Conclusion 

6.1 Summary 

The main goal of this thesis was to develop a sound source localization system for underwater 

vehicles positioning inside a confined test tank. The proposed system was based on underwater 

acoustic and machine learning techniques. A beacon, installed on a ROV, sends acoustic signals 

in the water which were received by 4 hydrophones, located at different positions inside of the 

tank. Acoustic signals were generated by Xilinx LX45 FPGA board. The collected signals by the 

hydrophones (Teledyne TC4013) were amplified and filtered by an analog front-end device 

(RedPitay board). The preprocessed analog signals were converted to digital format by the NI 

9234 data acquisition module and NI-DAQmx driver software. We used MATLAB 2018 to 

process the digital acoustic signals in a computer and utilized them for machine training. One of 

the main challenges in harnessing the power of machine learning techniques is training data 

collection, which was performed manually in this project. After locating the ROV in each 

predefined position, (x,y,z) of that point as well as received signals by the hydrophones were 

recorded in the dataset. Performance of four common machine learning methods were evaluated 

for source localization. While Random Forest (RF) has the lowest training time (65s), 

Convolutional Neural Network (CNN) reached the minimum localization error (MAPE 4%). 

Support Vector Machine (SVM) and Feedforward Neural Network (FNN) were moderate both in 

terms of time and accuracy. 

6.2 Contributions 

The novelties of this thesis are as follows:  

• Utilizing machine learning techniques. We leveraged the generalization power of machine 

learning techniques to improve localization accuracy. By collecting a limited number of data 

and without knowing the exact characteristics of underwater environment, neural networks, 

support vector machine, and random forest techniques were used for underwater localization. 
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• Classification instead of regression. Unlike previous methods which attempt to solve source 

localization problem by regression approaches, we consider source localization from 

classification point of view. To this end, the whole space of the confined tank is regarded as a 

set of finite positions. To estimate the location of the sound source, the output of the machine 

learning methods is matched to the nearest predefined position. 

• Utilizing deep neural networks. Convolutional neural network (CNN), which has shown 

promising results in various applications, was modified, and adopted for sound localization 

application. For this purpose, one-dimensional sound signals were converted to two-

dimensional images, using time-frequency technique. Then, the spectrogram images were 

considered as the inputs to train the CNN for localization task. 

6.3 Conclusion 

This thesis investigates the potential of machine learning approaches for underwater source 

localization in a confined space. The experimental results show that underwater vehicles 

localization problem can be solved by supervised learning approaches with high accuracy. These 

promising results can pave the way for utilizing machine learning techniques for source 

localization in rivers and oceans. However, large scale dataset preparation remains as a challenge 

for practical applications in open spaces. We found that spectrogram images and CNN can 

accurately approximate the location of an underwater sound source (MAPE 4%). To fully take 

advantage of CNNs potential, however, novel learning techniques should be utilized. For 

instance, fine-tunning methods can enhance CNN accuracy and deploying GPUs (Graphical 

Processing Unit) can diminish its training time.  

6.4 Future Work 

The following functionalities can be added to the developed system in the future: 

• Performing localization task in online scenario. The current study addressed localization 

problem in offline framework. However, in real-world applications, localization should be 

performed online which requires more emphasis on acoustic sound generation timing and 

hydrophones synchronization.  
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• Introducing more effective methods for training sample collection. Working in a confined 

underwater space such as a test tank, enabled us to collect data manually which was still 

tedious and time-consuming. Manual data gathering is impractical in underwater open spaces 

such as oceans. Semi-automatic data collection methods based on combination of underwater 

sound propagation models and real data will lighten training set preparation burden. 

• Introducing novel two-dimensional (2D) features. In this thesis, we used spectrogram images 

as 2D features and fed them to CNN to localize the sound source. During converting 1D 

sound signal to 2D images some information may not be well presented. Combinational 

techniques for 1D and 2D feature fusion can boost performance of the localization system.  

• Adopting recurrent deep neural networks. CNN was utilized in this research which is not 

completely matched with 1D sound signals. The use of Recurrent Neural Networks (RNN), 

such as long short-term memory (LSTM), can be explored in the future study.  

• Open space underwater localization. UV localization in confined spaces is completely 

different from open space aquatic environments positioning. Due to lack of external 

infrastructure, low illumination levels, high turbidity, and a lack of salient features in 

confined spaces, traditional localization methods cannot be utilized for such environments. 

Localization in confined space is challenging and has various applications in liquid storage 

tanks and sewers, sunken ships, underwater caves, and flooded tunnels. However, it is 

believed that applications of confined space exploration are limited, in comparison with open 

space environments. Combining localization methods in open space and confined aquatic 

environments is a great research topic. This thesis paved the way for utilizing machine 

learning methods for confined spaces which can be modified and combined with traditional 

localization methods for open environments. One possible solution is to collect a limited 

number of real data and leverage generalization power of machine learning techniques to 

make existing sound propagation models more accurate.  
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