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Abstract

This dissertation proposes a new method of modelling turbomachinery blade bound-

ary layer and shock losses using the body force method. Body force methods are

used to model fan/compressor performance at a lower computational cost than un-

steady Reynolds-Averaged Navier-Stokes (URANS) computations in non-uniform in-

flows. Most loss modelling approaches in the literature require calibration. Some

recent work has shown the use of non-calibrated methods for entropy generation cal-

culations. However, recent non-calibrated methods cannot estimate flow losses with

boundary layer separation. In this dissertation, an artificial neural network has been

developed and trained to analytically relate the blade geometry and flow regime to

the boundary layer momentum thickness at the trailing edge. The trailing edge mo-

mentum thickness is used in a body force loss model that accounts for the relative

total pressure drop. This model is capable of predicting the loss at off-design con-

ditions. The accuracy of the model is over 90% in 2D cascades. The model is then

applied to the NASA rotor 67 compressor blade row. The model captures the high

entropy generation near the tip region for uniform and non-uniform inflows. For

non-uniform inflow, it predicts the isentropic efficiency to within 1% compared to a

URANS computation.
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Chapter 1

Introduction

The existing applications of blade-geometry-included computational fluid dynamics

(CFD) for axial turbomachinery, in general, require significant computational re-

sources to model the flow behaviour in a full annulus non-uniform inflow condition.

URANS (Unsteady Reynolds-Averaged Navier-Stokes) models are among the most-

used approaches which take into account the blades geometry in the CFD solver in

applications involving non-uniform/distorted flows. URANS simulations with the de-

tailed geometry of the blade rows in the computational domain use sliding interfaces

between rotating and stationary regions [1]. This approach can accurately predict

the flow within the rows. This enables the complete details of the interactions to be

modelled, including performance penalties for the blade rows due to the non-uniform

inflows. However, such simulations are expensive, requiring on the order of tens to

around one hundred million cells [1]. This complexity in modelling makes it difficult

to use in the design process of new-generation turbofan engines when distorted in-

flows occur at the design conditions [2]. In addition, when the design of the aircraft

comes into play, the aerodynamic interaction of the inlet flow of the engine and fan is

particularly important. For this reason, the demand for more straightforward mod-

elling with less computational cost that can accurately capture the relevant physics

is increasing [3].

The simplest way of accounting for engine effects on the external aerodynamics

around the wing, which is sometimes used by industry, is the “boundary condition”
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approach in which the solution domain sees the engine inlet and outlet as the global

domain boundaries [4]. A schematic of a computational domain with the engine inlet

and outlet as the zone boundaries is shown in Fig. 1-1. This approach simulates

the engine/airframe interactions. This method does not focus on the flow inside the

engine. Thus, the major disadvantage of this method is that in the case of non-

uniform flow at the engine inlet, the effects on the external flow cannot be observed

if the engine inlet is short enough to cause interaction between the fan and the inlet

stream.

Figure 1-1: Boundary conditions for simple simulation for fan/airframe interaction

To get the fan/compressor response in terms of the fan/engine interactions, the

“actuator disk model” is a simplified model that has received widespread use in simu-

lating of fan/inlet-distorted problems [5–8]. This model, as a zero-dimensional strat-

egy, is capable of capturing the responses to dynamic phenomena such as a local

stall or distorted inlet flows [9]. However, this approach needs fan/compressor perfor-

mance characteristic maps to accurately predict the pressure rise and flow turning in

a thin disk within the engine [10]. This fact reduces the flexibility of the method in

evaluating any new design, since in the design procedure, each new fan must utilize

2



the RANS method in various conditions to get the required data for the actuator disk

model [8]. Alternatively, if the radial equilibrium assumption is used, the tangential

velocity at the trailing edge can be calculated for an axial compressor [11]. In the

radial equilibrium approach, the radial pressure gradient is in a balance with the ef-

fect of centripetal acceleration due to the tangential component of velocity. However,

this assumption would not be appropriate for circumferentially distorted inflows; it

is only valid in axisymmetric flow. Figure 1-2 demonstrates different fan modelling

approaches with the corresponding fidelity and computational costs.

Computational costs

F
id

el
it

y

Actuator Disk

Model

Boundary Condition

Method

URANS

Uncalibrated

Body Force

Calibrated 

Body Force

RANS

Figure 1-2: Fidelity vs. computational cost for fan modelling approaches

The body force method lies between the actuator disk model (ADM) and bladed-

CFD methods in terms of both cost and fidelity. This method requires more geomet-

rical details compared to the ADM, but it still has much of its simplicity [12]. In

the body force model, flow within the fan is considered in the CFD solver, but the

rotor/stator geometries are not added in the calculations. Instead, body forces are

used as source terms in the governing equations in the rotor/stator swept volumes,

which account for the forces representing the blade impacts as if they were present.

Figure 1-3 shows the bladed CFD zone and the body force CFD zone. As shown on

the right side of the figure, the body force consists of two main parts: the parallel

force acting opposite to the local relative velocity direction accounting for entropy
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rise [13] and the part normal to the relative streamline which accounts for both flow

turning and the total pressure rise [12].

Figure 1-3: Flow field through bladed domain (upper) vs. through body force zone
(lower)

Body force modelling is an appropriate alternative to bladed URANS for non-

uniform inflow simulations as it does not require a time-resolved computation. This

massively reduces computational costs, typically by about 2 orders of magnitude,

since even with the access to large numbers of computing cores, all solvers have

practical limits on parallelization: one can’t allocate too few cells per core or else

the computation becomes very inefficient. Thus, the body force seems a promising

approach.

The first proposed model of the body force method by Gong [12] in compressors

included calibrating the source term using coefficients that are generally derived from

the design point conditions utilizing the RANS method. These suggested forces with

separate terms met the requirements of overall pressure rise and flow turning and
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reasonable response to circumferential unsteadiness. Following the studies on body

forces, research shifted to ways of eliminating calibration. Recently, a model for

flow turning has been analytically developed by Hall [14] which does not need any

calibration. Separately, a simple non-calibrated total pressure drop source term was

introduced by Godard et al. [15]. In another model introduced by Guo et al. [16],

simple non-calibrated viscous models have been introduced which lack accuracy off-

design due to their inability to capture highly coupled viscous-inviscid interactions.

A detailed literature review of the calibrated and non-calibrated fan models is found

in Chapter 2. Nevertheless, there is still a need for non-calibrated viscous and shock

wave induced body forces to act as parallel source terms which can accurately predict

both on- and off-design performance.

1.1 Calibration of Body Forces

The early body force model in compressor simulations by Gong [12] employed momen-

tum source terms accounting for flow turning based on angular momentum change.

That model also included entropy generation in the form of a parallel force. However,

flow turning and loss generation models in Gong’s approach required RANS models

to get calibration parameters from an operating point (usually the design point). In

an improved model by Chima [17], deviation calibration parameters were proposed to

be obtained from a near-stall operating point to yield better performance estimates

in stall studies. The model details are explained in the literature review in Chapter

2.

This initial approach to the use of volumetric (body) forces in fan/compressor

analysis still required the analysis of the RANS model at an operational point. This

dependency on calibrating the off-design conditions is a weakness for the volumetric

force model for purposes where low-cost computations are needed. In addition, in

terms of the design process flexibility, any design process requires assessing the re-

sponse of the multiple designs to the non-uniform inflows and then choosing the most

efficient one. Assessment of the performance of any design requires calibration using
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the corresponding RANS simulations.

Xu [18] in 2003, introduced a new viscous force in body force simulations based on

the drag coefficient. That work is a calibrated model as it needs RANS calculations to

obtain the drag coefficients. Tucker [19], in 2011, introduced a review of models where

large eddy simulations (LES) can be used for body force modelling calibration. The

viscous model in the calibrated body force was developed by Peters [20] in 2014. His

model shows an improvement in accuracy near stall and choke conditions compared

to Gong’s model. That model used the peak-efficiency operating point for calibration

parameters. Hill and Defoe [21] in 2018 used Peters’ viscous model and added off-peak

efficiency for calibration parameters to capture choke condition losses. The details

of the studies, as mentioned above, are discussed in Chapter 2. Consequently, over

time, research has shifted to reducing the dependency on calibrating the model, so

that for the volumetric force causing flow turning, an analytical model depending

solely on the local deviation has been introduced by Hall et al. [14]. In terms of the

loss model, a newer model has been presented by Thollet in 2017 [22] and used by

Benichou et al. [23] and Godard et al. in 2019 [15]. This new loss model does not

need RANS calibration. Figure 1-4 gives a hierarchy for the body force models in

terms of required calibration.

Previous studies have focused less on conveying the details of the blade boundary

layer and shock-induced losses in body forces without the need for calibration.

The non-calibrated loss model needs to account for the blade surface boundary

layer’s properties as it relates to the velocity distribution at each blade section. The

boundary layer properties in the streamwise direction along a cross-section of the

blade can be obtained by considering the boundary layer equations, which are in the

form of ordinary differential equations. These equations provide local momentum and

displacement thicknesses from leading to trailing edge. Entropy generation along the

streamline due to the boundary layers may be calculated by having the aforementioned

boundary layer properties. In addition, the displacement thickness can account for the

boundary layer blockage added to the blade in the flow field. Details of the boundary

layer governing equations are introduced in Chapter 2. The direct ways to compute
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Figure 1-4: Hierarchy for improvement of calibration models in body force methods

the boundary layer equation use iterative procedures that are introduced in Chapter

2. The iterative procedures are not suitable for body force modelling approaches.

These require chordwise velocity-distribution information on either side of the blade

sections and are not local-based approaches. In addition, these iterative methods

add to the cost of calculations, while the aim in non-calibrated body force models

is to reduce the computational costs. Thus, there are challenges in calculations of

boundary layer equations in non-calibrated body force simulations. These challenges

are described in the next Section.

This study seeks a method that uses the boundary-layer-calculation approach to
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achieve a no-calibration loss body force model. In the no-calibration body force ap-

proach, the entropy generation is calculated directly based on the flow regime and real

boundary layer properties along any streamline. It does not need RANS/experimen-

tal data to calibrate the body force in off-design conditions. The available approaches

to solve the governing equations of the boundary layer and the challenges to use these

solution methods in a body force modelling approach will be discussed in Chapter

2. A direct approach to obtaining the viscous losses in body force CFD is to solve

the integral boundary layer equations along each streamline within each blade row,

but this adds computational cost and becomes impractical for conditions at which

the blade surface boundary layer(s) is/are separated. In Chapter 2, this is explained

in detail. A less direct method is thus needed. So, an artificial neural network is

considered to be an indirect replacement. Thus, the challenge for direct calculations

of boundary layer equations in body force modelling will be explained in Section 1.2,

and a remedy with artificial neural network will be introduced to be a tool to get

rid of simultaneous boundary layer calculations but that still yields a boundary layer

solution for non-calibrated models. Consequently, it will be described in Chapter 4

that an artificial neural network based on a large dataset of boundary layer and flow

information can be a promising approach to provide the flow field boundary layer

solutions with an analytical formula that uses local streamline properties to predict

the viscous effects’ entropy generation.

1.2 Challenges

To capture the local viscous entropy generation in a body force model, it is required

to have the local boundary layer momentum thickness or dissipation coefficient. The

details of this dependency are introduced in Chapter 2. The local loss needs both the

precise velocity distribution around the blade and the simultaneous solution of the

boundary layer differential equations. In body force modelling, due to the absence of

the blade, these velocity and boundary layer properties for either side of the blade

are fictitious and are estimated to yield the momentum loss as a source term in the
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Navier-Stokes equations.

A no-calibration viscous model in body force computations seems to require solv-

ing the boundary layer equations along relative streamlines. Denton’s viscous loss

model [24] shows that local entropy generation is dependent on the cube of boundary

layer edge velocity and dissipation coefficient. The detail of the model is introduced

in Chapter 2. In addition, to obtain the local dissipation coefficient, local edge ve-

locity is needed to be taken into account in the boundary layer equations. Thus, in

body force computations, an accurate local normal force should represent the actual

pressure difference between the suction and pressure sides of the blade. The pres-

sure difference is related to the local edge velocities using Bernoulli’s equation along a

relative-frame streamline. The relationship between the local velocities on the suction

and pressure sides and the normal force is introduced in Chapter 3. In addition, the

viscous model predicts the local boundary layer displacement thickness, which alters

the effective airfoil geometry and, consequently, velocity distribution. So, there is a

coupling between the normal force and the viscous model. Figure 1-5 illustrates the

coupling dependency between flow turning and loss body forces for a no-calibration

method.

Estimation of boundary layer edge quantities in a body force calculation has sev-

eral challenges. In terms of the viscous loss calculations, additional governing equa-

tions are needed to convect viscous information downstream along relative streamlines

within rotor/stators. These add to the computational costs. Besides, extra variables

are required to be stored in the computations. This leads to a need for extra mem-

ory. In addition, the implementation of such calculations in commercial software is

complicated. Also, the calculations need iterative approaches to be robust. These

approaches require “sub-iterative” calculations within the CFD solution iterations.

This leads to significant extra computation costs. Furthermore, the coupling between

blade surface slope and displacement thickness in normal force computations causes

even more costs.

Another challenge in this regard is that the current state of the art normal force

is based on local deviation angle. The airfoil total camber angle is not used as the
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Figure 1-5: Mutual dependence of viscous body force model and blade loading

models only depend on the local camber surface shape. An alternative normal force

modelling approach is potential flow theory which can capture the flow around the

blade, but this requires airfoil section camber and thickness data. These models can

successfully assess the velocity distribution in 2D for uniform inflows. However, in

3D cases, the specific blade shape a given relative streamline will see is not known a

priori, so it is not possible to determine the required data for the velocity distribution

along the chord. In addition, the accuracy of potential flow models reduces when the

inflow is non-uniform.
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1.3 High-Level Approach

Based on the explanations provided so far, it is clear that one must first eliminate

the dependence on calibration for the viscous loss in body force models because this

method requires CFD analysis with the presence of blade geometry for design condi-

tions. Secondly, if precise calculations are required to produce the boundary layer’s

entropy generation, it seems necessary to calculate the coupled differential equations

of the boundary layer. This method also requires the exact distribution of velocity

around the blade, which current body force models cannot provide, and at the same

time solving these equations reduces the speed of analysis of the body force method.

Chapter 2 shows that the momentum thickness of the boundary layer at the

trailing edge can be related to the total pressure drop information and can be used

to calculate the parallel force. As a result, there is a need for a fast method that

can predict momentum thickness according to the inflow regime and some minimal

geometric parameters. Artificial neural network as a surrogate modelling approach is

a promising way to be able to accomplish this, as also introduced in Chapter 2.

In this dissertation a parallel force based on the highly-coupled velocity-boundary-

layer physics is introduced that can be implemented at design and off-design condi-

tions for fans/compressors. No calibration specific to the blade rows being modelled

is required. Artificial neural network is an encouraging approach that paves the way

for analysing coupled physics. For this purpose, an artificial neural network (ANN) is

capable of learning the correlation between the physical and geometrical parameters

and the boundary layer characteristics. Artificial neural networks train and learn the

contributions of the inputs at producing the outputs. A big dataset accounting for

real compressor operating conditions is generated, and an analytical equation for pre-

dicting local loss results. The artificial neural network can overcome the mathematical

singularity problems in the boundary layer equatons when flow separation exists and

avoids additional transport equations. This solves both the cost and complexity issues

identified in the previous section.

For this study, a fully-simultaneous solver (MISES [25]) was used to generate
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boundary layer data for a wide range of compressor airfoils operating at different

conditions to be utilized in an artificial neural network. The range of parameters

considered in the artificial neural network are discussed in Chapter 4. MISES uses

Euler CFD calculations for the flow outside the boundary layer, and the equations

are coupled with viscous governing equations that are simultaneously solved using

a Newton-Raphson solver. The equations are solved for all boundary nodes, and a

finite-difference method is used for spatial marching along the airfoil.

The artificial neural network generates an analytical equation that relates the ge-

ometry and physical conditions to trailing edge momentum thickness. Consequently,

a new parallel body force accounting for viscosity effects is provided so that it avoids

dependence on the calibration. The approach is described in detail and validated in

2D in Chapter 4. It is shown to work in 3D in both uniform and non-uniform flow in

Chapter 5.

1.4 Overview of Contributions

The contributions of this dissertation, which will be revisited in more detail in Chapter

6, are:

1. A new potential flow based analytical model has been proposed for 2D cascades

to be used as a new flow turning body force. This model works with high

accuracy for staggered airfoils in cascades. The model, however, is not suitable

for 3D blade simulations.

2. Based on Youngren’s relationship [26] between entropy generation and trailing

edge momentum thickness, a blade profile viscous loss body force is formulated.

The model accurately predicts loss given the correct trailing edge momentum

thickness.

3. An artificial neural network is shown for the first time to be able to predict

trailing edge momentum thickness when trained on a large dataset of 2D com-

pressor cascade solutions. The dataset itself and the resulting neural network
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are expected to be of use to the technical community. The model works well

overall and captures entropy generation trends.

4. In the supersonic flow regime it was found that the use of a shock loss model

has a high impact on entropy generation and spanwise mass flux predictions.

A new shock loss model using Denton’s shock entropy generation approach [24]

is introduced. The loss prediction improvement is considerable at the design

rotational speed for the NASA rotor 67 blades.

5. In non-uniform inflows, the new model over-predicts the efficiency penalty by

5%. Nevertheless, the new non-calibrated loss model is capable of recognizing

azimuthal and spanwise entropy generation trends correctly, which is a promis-

ing improvement over previous non-calibrated loss models.

1.5 Dissertation Outline

Background and review of the relevant literature on non-uniform and distorted in-

let flows, actuator disk models, body forces, viscous models, potential flow theory,

and artificial neural networks in turbomachinery are provided in Chapter 2. Chap-

ter 3 presents a new flow turning model for 2D staggered cascades. It examines the

performance of Denton’s loss model with constant dissipation coefficient. Chapter

4 introduces Youngren’s momentum defect model as the total pressure loss in body

force. It describes the architecture of the artificial neural network and input variables

for calculating the momentum thickness. The assessment of the new model for cap-

turing the trailing edge momentum thickness is also detailed in Chapter 4. Chapter

5 assesses the performance of the models in 3D rotor blades for both uniform and

non-uniform inflows. Conclusions and recommendations for future work are given in

Chapter 6.
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Chapter 2

Literature Review

This chapter establishes the state of the art concerning the phenomena of non-uniform

flows in fan/compressors, relevant modelling methodologies, and distinguishes the

research gaps in the body force loss models that this work aims to fill.

2.1 Early Fan/Compressor Non-Uniform Inflow Stud-

ies

Jang et al. [27] have shown that flow distortion at the fan/compressor leading-edge

vicinity reduces the performance and stability of the compression system. They con-

sidered the distortions that are created by a spinner nose and analyzed the flow with

numerical simulations. In a study by Boldman et al. [28], it was shown that the

blockage effect of the fan creates the lip separation and distortion at duct inlets.

That research was conducted by experimental instruments on a low-subsonic fan test

rig and the results showed that a similar stationary blockage which replaces the fan

provides the same effects on the inlet distortions.

Plas et al. [29] worked on the boundary layer ingestion effects on turbofan en-

gine fuel consumption. The distortion transfer across the fan was studied. They

investigated the effect of inflow non-uniformity on fuel consumption.

Kemp and Sears [30] studied non-uniform flow at blade trailing edges that comes
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from the wakes. They investigated the effect of drag on the wake size and non-uniform

parameters of the flow. Greitzer [31] studied the local distortions such as stall on the

performance of compressors. He introduced a model that can capture the flow inlet

distortions and its effects on stall.

There have been many studies on the prediction and simulation of non-uniform

flows within compressor/fans to assess stability criteria. Mazzawy [32] developed a

model based on the deviation from undistorted flows to analyse the stability. That

model followed the response to the circumferential distortion using multiple parallel

compressor segments. The work equation is implemented on two segments. The defi-

ciency of this model is that it depends on the prescribed non-uniform static pressure

and has no general applicability.

Later, Hah et al. [33] implemented URANS simulation for the transonic com-

pressor with time-varying inlet conditions. The URANS simulations are beneficial in

tracing the shock-boundary layer interaction.

Following the extensive research on non-uniform flows in turbomachines and re-

vealing their importance in interaction with the fan/compressor, the need for sim-

pler models was affirmed. In this respect, the initial thoughts were drawn to the

use of averaging methods. Cumptsy and Horlock [34] showed that the features of

the non-uniform inflows in turbomachinery could be used with an averaging method

that preserves the non-uniform quantities but make the simulations simpler. They

introduced formalized averaging methods to be used in non-uniform flows in turbo-

machinery. Following the push of studies towards more straightforward methods in

turbomachines in non-uniform flow, actuator disk model methods were proposed.

2.2 Actuator Disk Model

An actual disk model (ADM) is a zero-thickness plane presenting the pressure rise

and the swirl using radial equilibrium equations and the prescribed work. One of the

original ideas to study non-uniform flow response with actuator disks is Yeh’s [35] in

1959. That model was a mathematical treatment of flow upstream and downstream of
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the disk in which cascade calculations were implemented and an analytical solution

for both circumferential and radial distortions investigated. The model considered

stall propagation. This model uses the small perturbed velocity assumption. The

study mentioned above was confined to a single row simulation. Nevertheless, the

method yields qualitative insight into the response of blades rows to distortion.

This field of study was continued in 1962 by Hawthorne [11]. He developed the

first actuator disk model considering 2D cylindrical coordinates and extracted an

analytical model and applied it for compressible and incompressible flows. Following

the proposed method by Hawthorne, in 1978 Hawthorne et al. [36] developed the

non-uniform actuator disk model in which the model was based on vorticity analysis

and the changes of vorticities across the disk were considered. This study showed

that radius-based calculations are not enough to examine the compressor’s response

to non-uniform flow, and three-dimensional effects must be taken into account to

capture the physics.

In recent years, the actuator disk model has been used in analysing fan flows. Van

der Spuy et al. [37] in 2011 used CFD with an actuator disk model including source

terms for blade forces to investigate low flow rate fans. At low flow rates, the radial

flow distortions play important role in the performance. The authors extended an

empirical actuator disk model with calibration for each blade row to take into account

the radial direction variations. Thus, they concluded that the actuator disk model

needs calibration to avoid the under-prediction issue within the modelling process.

Developments in the field of actuator disk modelling moved to fan-nacelle interac-

tions. In 2011 Thouault et al. [3] studied the inlet lip separation and fan interactions

using an actuator disk model. The study focused on the recognition of affecting

physical and geometrical parameters on the boundary layer separation. This model

is a combined form of “boundary condition” approach ADM in which the fan exit

is the outer domain inlet boundary, and the inlet of the fan is considered the exit

of the outer domain in CFD. However, based on the stator exit conditions where

the fan outflow tends to be uniform, the fan stator exit (domain inlet) condition is

prescribed from URANS simulations, and the simulations capture the distorted fan
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inflow. Although the model has good accuracy in tracking the fan inlet separation

physics, it still has the limits of the “boundary condition” approach and depends on

the URANS simulations or fan performance maps. In addition, it does not capture

the flow characteristics within the rotor/stator.

Akturk and Camci [8] studied fan performance in response to inlet distortions

using a radial equilibrium based actuator disk model. The model uses a prescribed

pressure jump as the rotor response to the flow and adds it to momentum equations.

The pressure rise is determined by the flow properties on the fan surface and the

velocity triangle approach to account for the swirl. This model is confined to the

incompressible flow, and there is no mechanism to take losses into account.

Other than implementing a total pressure rise coming from RANS or performance

characteristic maps to predict the flow turning at the trailing edge by radial equi-

librium methods in ADMs, plenum-throttling dynamic models have been proposed

for stall and post-stall transients in compressors [5] and [38]. These models predict

fan performance in non-uniform cases but cannot still capture fan-inlet interaction

dynamics.

It seems that not only do ADMs not capture losses in most cases but also they

have some constraints for non-uniform flows based on the assumptions. Other recent

papers have looked at more sophisticated implementations of actuator disks, including

hybrid approaches in which body forces are also used. However, all these approaches

have some limitations, and a recent review paper by Godard [39] directly compares

the ability of body force and actuator disk approaches to capture the fan aerody-

namics in ultra-high bypass ratio (UHBR), short nacelle configurations. The authors

conclude that body force models can capture inlet separations and fan-inlet coupling

far more accurately than actuator disk methods, and with a two-order-of-magnitude

computational cost reduction compared to full-wheel, unsteady RANS computations.

In addition, the body force model appears more promising when the loss computations

play a role in the predictions.

The approach of this dissertation could be used in an ADM. However, the ADM’s

limitation with regards to capturing fan-distortion interaction limits the utility of
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such an implementation and thus the focus for the remainder of this dissertation is

on body force methods.

2.3 Body Force Methods

From Godard’s recent analysis it is clear that body force models are the better ap-

proach for capturing inlet-fan coupling in short nacelle configurations. Body force

modelling deals with no-bladed CFD in which the fan/compressor is modelled with

body forces acting on the fluid in the rotor/stator swept volumes.

A body force model captures the locally pitchwise-averaged performance of a fan

by distributing momentum and energy (and sometimes mass) source terms throughout

the swept volumes of the blade rows. This allows for the effects of radial flows,

local responses to distortion, and other features of real turbomachine response to be

captured so long as the distortion wavelengths are long compared to the blade pitch.

The idea originates from Marble [40] and was later taken up by Gong [12] where

it was used to study stall inception. In Gong’s approach, the body force vector is

broken into three parts, one turning the flow without work being done another solely

producing total pressure rise and the third one accounting for total pressure loss:

𝑓 = 𝑓𝑡𝑢𝑟𝑛𝑖𝑛𝑔 + 𝑓𝜋 + 𝑓𝑝 (2.1)

In Eq. 2.1 𝑓𝑝 is the total pressure loss term which acts in the streamline direction

but opposite to the local relative velocity, 𝑓𝜋 is the total pressure increase due to

the work acting on the axial direction and 𝑓𝑡𝑢𝑟𝑛𝑖𝑛𝑔 acts normal to the local relative

velocity vector 𝑊 to turn the flow towards the camberline angle in the relative frame

but has no effect on the total pressure. The circumferential component of this force

is calculated as:

𝑓𝑡𝑢𝑟𝑛𝑖𝑛𝑔,𝜃 = 𝐶𝑉𝑥(𝑟Ω + 𝑉𝑥𝑡𝑎𝑛(𝜅)− 𝑉𝜃) (2.2)

where 𝑟 is local radius, Ω is the rotational speed, 𝑥 and 𝜃 are axial and circumferential

directions, respectively. The constant 𝐶 is calibrated from RANS simulations to
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ensure the correct deviation angle at the design flow coefficient and 𝜅 is the local

blade metal angle. This shows that Gong’s model needs bladed RANS results and

geometrical data to calibrate the deviation. Furthermore, the parallel force in Gong’s

model is calculated as:

𝑓𝑝,𝑖 = −𝐾𝑝

ℎ
𝑉𝑖𝑊𝑖 (2.3)

where 𝐾𝑝 is a constant coming from a RANS model. Subscript i is the ith component.

V and W are absolute and relative frame velocities, respectively and ℎ is the cascade

pitch which is the spacing between two successive blades in a row.

The Euler equations with no mass sources are:

∇.(𝜌𝑉 ) = 0 (2.4)

𝜌𝑉 .∇(𝑉 ) +∇𝑝 = 𝑓𝑛 + 𝑓𝑝 (2.5)

𝜌𝑉 .∇(ℎ𝑡) = 𝜌𝑟Ω𝑓𝜃 −𝑊 .𝑓𝑝 (2.6)

where 𝑓𝑛 and 𝑓𝑝 are the source terms accounting for normal and loss (viscous/shock)

parallel forces, respectively, with the unit of force per volume (in SI 𝑁
𝑚3 ). Also, ℎ𝑡 is

the specific total enthalpy and 𝜌 is the fluid density. The first term on the right hand

side of Eq. 2.6 refers to the work input by the rotor rotation and circumferential force

and the second term corresponds to work done by viscous forces.

Later in 2003 Xu changed the viscous body force from Gong’s model to a drag

coefficient based approach [18]:

𝑓𝑝 = −𝐶𝐷
0.5𝜌𝑊 2𝑆

𝑉 𝑜𝑙
(2.7)

where 𝐶𝐷 is drag coefficient and there is no explicit equation to predict it (comes from

bladed RANS simulations), S is the blade camber surface area and 𝑉 𝑜𝑙 is body force

zone volume for a single passage. Xu showed that a simple drag coefficient model
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in a non-uniform flow is quite adequate to model time mean effects. However, for

the cases when separations are present variations in the drag coefficient may become

large and more detailed modelling may be required. The reason for this is that the

drag coefficient is obtained directly by integrating the surface friction coefficient.

Defoe and Spakovszky have shown the capability of body force models for captur-

ing the noise in boundary layer ingestion flows [41–43]. The results have shown that

the body force approach is able to capture the rotor shock noise and inlet boundary

layer ingestion interactions.

Studies of loss model advanced with the improvement of Gong’s model by Peters

[20]. Peters concluded that Gong’s model showed little accuracy in conditions close

to stall and choke. To remedy the limitations of Gong’s model, Peters redesigned a

new model in which the loss model depends on the local relative Mach number. His

proposed model is:

𝑓𝑝 =
𝐾𝑝1

ℎ
[𝑀2

𝑟𝑒𝑙 +𝐾𝑝2(𝑀𝑟𝑒𝑙 −𝑀𝑟𝑒𝑓 )
2]𝑊 2 (2.8)

where 𝑀𝑟𝑒𝑓 is the average relative Mach number at the blade row at peak efficiency.

𝐾𝑝1 and 𝐾𝑝2 are calibration coefficients coming from the bladed RANS simulations at

the peak efficiency condition. However, these coefficients need an iterative procedure

in which the results of body force and the results of bladed RANS calculations are set

to be compared to achieve a best fit. Peters et al. [44] used the calibrated approach

to successfully capture the interaction of a ultra high bypass ratio (UHBR) fan with

a short inlet nacelle, but this approach required detailed data of the fan for bladed

RANS simulations which is generally unavailable to airframers in the parametric

fan/nacelle design process.

Hall et al. [14] developed an analytical normal force model that requires no calibra-

tion. He used it to investigate fan stage design attributes for boundary-layer-ingesting

turbofan engines. While only fan camber surface geometry data is needed, the model

is lossless. This model uses the local deviation (𝑑) angle using a linear lift coefficient

for an isolated blade. That is to say, the lift coefficient in an isolated blade using the
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linear flow theory is correlated with local deviation as 𝐶𝑙 = 2𝜋𝑑. Therefore, the local

lift force appears to be:

𝐹𝐿 = 𝐶𝑙(0.5𝜌𝑊
2𝑆) (2.9)

Accounting for finite-pitch effects, the volumetric normal force becomes:

𝑓𝑛 = 𝐶𝑙
0.5𝜌𝑊 2

|𝑛𝜃|ℎ
=

(2𝜋𝑑)(0.5𝜌𝑊 2)

|𝑛𝜃|(2𝜋𝑟𝐵
)

(2.10)

where 𝑛𝜃 is the circumferential component of the unit vector normal to the camber

surface and 𝐵 is the number of blades in the rotor/stator row. The normal force is

exerted normal to the relative flow streamline. A schematic of a blade camber surface,

the normal vector to the camber surface, the flow relative velocity, and normal/parallel

force vectors are shown in Fig. 2-1.

Figure 2-1: Geometric description of local blade camber surface normal unit vector
𝑛̂𝑐, relative velocity 𝑊 , and momentum normal source 𝑓)
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Hall’s model (Eq. 2.10), has shown appropriate responses and acceptable predic-

tions on non-uniform fan inflows under different non-uniform conditions. However,

this model has no parameter that captures flow compressibility. Defoe et al. [45]

showed that by scaling the response to weaker distortions, it is possible to make good

predictions for more substantial distortions. They used an inviscid model, so the

non-uniform effects of the flow on fan efficiency were not examined.

Continuing non-uniform flow studies on the fan/compressor, Hill and Defoe [21]

developed the Hall analytical model by adding a compressibility parameter to capture

the transonic shock wave impacts on flow turning. Then, they combined it with the

Peters’ calibration-based loss model. However, they concluded that Peters’ method

is not sufficient to model the efficiency of a transonic compressor in choke conditions,

and therefore introduced an improved loss model. These innovated methods for both

the normal/turning and loss models show an improvement in the compressor input

work calculations’ quality in the span-wise direction. However, both the normal and

the loss force predictions rely on calibration.

Thollet et al. [46] studied the blockage factor parameter in the body force model

with Gong’s calibrated normal force and Peters’ calibrated loss force and reviewed

those models with the blockage factor effect in the simulations. They concluded that

the addition of specific source terms to capture metal blockage greatly enhances the

accuracy of the flow prediction in transonic blade rows, both in terms of work co-

efficient and choking mass flow rate. In another attempt to study the fan engine

performance under boundary layer ingestion (BLI) distortions, an interdisciplinary

fan engine configuration was proposed by Vega et al. [47]. They used a calibrated

aerodynamic body force model for 3D CFD calculations and integrated it with a

zero-dimensional engine cycle program to assess the engine’s fuel consumption. Even

though the body force model is a reduced-order simulation that decreases the com-

putational costs for fuel consumption multi-disciplinary platforms, that integrated

model used Gong’s calibrated viscous model that requires experimental data. The

other simplified loss model has been used by Liu et al. to assess fan performance using

the body force model [48]. They used a radial distribution of loss for case-specific
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simulations and implemented it in the body force model. That loss simulation may

not be a general approach in body force models.

Dufour et al. [49] demonstrated that the body force approach is beneficial in pre-

dicting fan windmilling rotational speeds for high bypass ratio configurations. That

model, however, requires in advance calibration coefficients from bladed CFD analy-

sis to be used in the body force model with Gong’s approach for normal and parallel

forces.

In a different approach, Guo and Hu [50] have tried a loss model in the body force

method using simple calculations of the blade loss coefficient and converting it to

the entropy produced along the streamline. This method requires knowing the total

temperature of the airfoil’s trailing edge. However, the method is based on simple

models.

Recently, some studies have been accomplished in body force modellings for cap-

turing the stall/surge dynamics [51, 52]. The stall studies show that the empirical

data are required for loss models. Thus, the simulations may be limited to a specified

range of operating conditions.

New developments in parallel force model have been implemented for non-uniform

inflows in fans by Godard et al. [15]. In this model, the local friction coefficient (𝑐𝑓 ) is

calculated using an empirical equation. The model is dependent on the local deviation

angle (𝑑) and the deviation (𝑑𝑟𝑒𝑓 ) at maximum efficiency from the body-force model.

That model is:

𝑓𝑝 =
𝜌𝑊 2

|𝑛𝜃|(2𝜋𝑟𝐵
)

(︀
𝑐𝑓 + 𝜋 (𝑑− 𝑑𝑟𝑒𝑓 )

2)︀ (2.11)

The model requires no calibration with bladed computations, however the friction

coefficient is a simple correlated model for turbulent flow over a flat plate. This

model does not include the separation and displacement thickness losses in a detailed

manner. The same equation has been used by Benichou et al. [23], as well. The

results of [23] show that the loss prediction for a stator in non-uniform flow has a

37% of error in loss coefficient, meaning that an improvement in the loss body force
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is required.

Recently, Minaker and Defoe coupled an analytical, inviscid body force model with

a turbofan primary design scheme to predict the crosswind separation speeds for fan

and nacelle systems [53, 54]. In their research, geometry data are determined for the

specified fan operating designs, and the body force simulations assess the crosswind

separation speeds. However, the simulations do not include any loss models.

All body force approaches conceptually involve taking the local pressure difference

across a blade and smear it out over a blade pitch to yield a body force per unit

volume. Similarly, immersed boundary methods with smeared geometry (IBMSG)

for fan modelling have been successfully applied by Cao et al. [55] and Ma et al. [56].

This modelling approach still requires some calibration of the forces to ensure that

the correct deviation and loss are achieved.

In summary, it is recognized that the methods of loss prediction in body force

models started with Gong’s [12] calibration method and have been upgraded by Pe-

ters’ model [20] over time. Recently, Thollet [22] offered a simple model without the

need for calibration, but this model does not have the necessary quality in modelling

non-uniform inflows [23]. Therefore, it is necessary to develop a model without the

need for calibration, but in an improved way. In the next section, the theories of

conventional loss and entropy production models in turbomachinery are reviewed.

2.4 Background Related to Loss Models

In the blade row in compressors/fans, the fluid boundary layer is strongly coupled

to the non-viscous flow outside the boundary layer. Boundary layer flows are also

associated with the dissipation of mechanical energy, which exhibits itself as a loss or

inefficiency of the fluid motion. The flow in the boundary layer creates vorticities that

conflict with the potential flow theory for velocity prediction, but it also changes the

flow field due to the blockage it produces. The velocity changes around the airfoil stem

from displacement effects that the boundary layers have on the flow. Denton [24] has

discussed the different loss mechanisms in turbomachinery. He has illustrated that
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the boundary layer viscous shear work comes from integrating the shear work across

the boundary layer. In conclusion, he introduced the entropy generation rate per unit

surface of the boundary layer in the form of:

𝑆̇ =
𝜌𝑐𝒟𝑢

3
𝑒

𝑇
(2.12)

where 𝑐𝒟 is the boundary layer local dissipation coefficient, 𝑢𝑒 is boundary layer edge

velocity, and 𝑇 is the local static temperature. That method requires an accurate

airfoil loading model, which delivers accurate local velocities, distributed along the

chord, since it is dependent on the cube of velocity. In a simple way of correlating the

dissipation coefficient based on the experimental data, Schlichting [57] has presented

an equation:

𝑐𝒟 = 0.0056𝑅𝑒
(−1/6)
𝜃 (2.13)

where 𝑅𝑒𝜃 is local momentum thickness Reynolds number. This equation requires the

local momentum thickness for which there is no available analytical equation without

any need for iterative procedures.

Regarding the shock wave entropy generation, Denton has provided an equation

for weak shocks in terms of the local relative Mach number as:

Δ𝑠 ≈ 𝑐𝑣
2𝛾 (𝛾 − 1)

3 (𝛾 + 1)2
(︀
𝑀2

𝑟𝑒𝑙 − 1
)︀3

(2.14)

where 𝑐𝑣 is specific heat at constant volume and 𝛾 is isentropic expansion factor (heat

capacity ratio). Equation 2.14 constitutes the base for the shock loss model of the

body force modelling in this dissertation as discussed in Chapter 4.

Youngren [26] has introduced a mass-average loss where the total pressure defect

is calculated by the momentum thickness. In that model, assuming adiabatic walls

and that the edge pressure is equal to the local pressure inside the boundary layer,

the local total pressure defect is linearized to:
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𝛿𝑝𝑡 =
𝑝𝑡𝑒
𝑝𝑒

𝜌𝑒𝑢𝑒𝛿𝑢 (2.15)

where 𝛿𝑢 is velocity deviation from edge velocity (𝛿𝑢 = 𝑢𝑒−𝑢), 𝑝𝑡𝑒 is the total pressure

at the boundary layer edge and 𝑝𝑒 is the static pressure at the boundary layer edge.

A schematic of the boundary layer geometry for the loss calculations is shown in Fig.

2-2.

Figure 2-2: Schematic of geometry for boundary layer calculations

The mass-averaged total pressure defect across the boundary layer, used in MISES

[25] is:

Δ𝑝𝑀𝑡,𝑙𝑜𝑐𝑎𝑙 =

∫︁ 𝑦𝑝𝑖𝑡𝑐ℎ

0

𝛿𝑝𝑡
𝑑𝑚̇

𝑚̇
=

𝑝𝑡𝑒
𝑝𝑒

𝜌2𝑒𝑢
3
𝑒

𝑚̇
𝑏𝜃 (2.16)

where 𝑏 is the streamtube width, Δ𝑝𝑀𝑡,𝑙𝑜𝑐𝑎𝑙 is mass-averaged total pressure loss, 𝜃 is

boundary layer momentum thickness, and 𝑚̇ is the mass flow rate. Therefore, the

total pressure drop of a cascade is the total pressure defect at the trailing edge:
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Δ̄𝑝
𝑀
𝑡,𝑙𝑜𝑠𝑠 = 𝑝𝑡,𝑖𝑛𝑙𝑒𝑡 − 𝑝𝑡,𝑒𝑥𝑖𝑡 =

[︂
𝑝𝑡𝑒
𝑝𝑒

𝜌2𝑒𝑢
3
𝑒

𝑚̇
𝑏𝜃

]︂
𝑒𝑥𝑖𝑡

(2.17)

For fan/compressor cases, Eq. 2.17 can be considered as the profile loss (neglecting

the shock loss). Since the details of the momentum thickness at the exit are adequate

to find the total pressure loss, this model forms the base of the viscous loss body force

model in this dissertation.

Further studies have been conducted by Singh [58] in loss simulation of 3D test

cases which capture shock-boundary layer interactions. In that research, a 3D time-

marching CFD-based computer program for a transonic compressor was introduced.

The model uses an inviscid solver but uses integral boundary layer equations on

the blade surface to calculate the displacement thickness, and then the displacement

thickness updates the 3D compressor geometry. The boundary layer equations are

two-dimensional, and a simple treatment of shock-boundary-layer interaction is in-

cluded. It was shown that even the 2D boundary layer approach on 3D geometry

calculations is encouraging.

2.5 Boundary Layer Equations

The theory of boundary layers and the governing equations and some solutions have

been presented by Schlichting in [57]. Assessing the boundary layer’s physics and

its governing equations is needed to achieve a reliable viscous entropy generation

prediction. The accurate viscous entropy generation may provide a robust viscous

parallel force in a body force approach. For the sake of precise prediction of viscous

entropy generation, it is necessary to model the coupled physics of the boundary layer

and the flow of the effectively inviscid region outside the boundary layer. To get the

momentum defect in the boundary layer, the integral momentum equation needs to

be solved:
𝑑𝜃

𝑑𝜉
+ (2 +𝐻 −𝑀2

𝑒 )
𝜃

𝑢𝑒

𝑑𝑢𝑒

𝑑𝜉
=

𝑐𝑓
2

(2.18)
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where 𝐻 is the boundary layer shape parameter and 𝜉 is streamwise direction coor-

dinate. One of the promising correlations for the skin friction coefficient has been

introduced by Drela and Giles [59] for both the laminar and turbulent regimes. Their

work suggests a fully-simultaneous mathematical approach for solving of the bound-

ary layer equations coupled with an inviscid Euler equation solver. In addition to

being dependent on the boundary layer edge Mach number and skin friction coeffi-

cient, the momentum thickness is reliant on the shape parameter as well, which is

defined as:

𝐻 =
𝛿*

𝜃
(2.19)

where 𝛿* is the displacement thickness, defined as:

𝛿* =

∫︁ 𝛿

0

(1− 𝜌𝑢

𝜌𝑒𝑢𝑒

)𝑑𝜂 (2.20)

where 𝛿 is boundary layer thickness and 𝜂 is a dummy variable of integration across

the boundary layer thickness. The displacement thickness accounts for the boundary

layer blockage effects. In viscous-inviscid solvers (described in the next Section), the

displacement thickness is added to the blade thickness to account for the effective

blade reshaping by the boundary layer’s presence.

At high incidence angles or for highly cambered airfoils, the velocity around the

airfoil has high gradients, leading to high shape parameter values and consequently,

flow separations in the boundary layers. Thus, a supplementary equation is required

to capture the shape factor values.

One of the well-known equations for capturing shape factor parameter is Head’s

model [60]. This model is suitable for fully-turbulent boundary layers. In Head’s

model, the turbulent region of flow is assumed to be bounded by a flow that is non-

turbulent and substantially irrotational. Interaction between the two flow regimes

is generally introduced as entrainment (of the non-turbulent by the turbulent flow).

In Head’s model, a differential equation for the entrainment has been proposed that

provides the shape parameter. However, the model is appropriate only for fully-

turbulent boundary layers. The other approach is to use the kinetic energy integral
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boundary layer equation [59]. In this approach, the kinetic energy shape parameter

(𝐻*) is calculated by an ordinary differential equation. Drela and Giles have focused

on this equation in [59]:

𝜃
𝑑𝐻*

𝑑𝜉
+ (2𝐻** +𝐻*(1−𝐻))

𝜃

𝑢𝑒

𝑑𝑢𝑒

𝑑𝜉
= 2𝑐𝒟 −𝐻* 𝑐𝑓

2
(2.21)

where 𝐻* is boundary layer kinetic energy shape parameter and 𝐻** is density shape

parameter. An empirical equation accounting for the dissipation coefficient has been

introduced for the laminar regime in [59]. However, for the turbulent regime, due to

the presence of two layers in turbulent region in the boundary layer (wall layer and

wake layer), the dissipation coefficient is expressed as a sum of two contributions [59]:

𝑐𝒟 =
𝑐𝑓
2
𝑈𝑠 + 𝐶𝜏 (1− 𝑈𝑠) (2.22)

where 𝐶𝜏 is shear coefficient which is a measure of stress in wake layer and 𝑈𝑠 is an

equivalent normalized wall slip velocity which is defined as:

𝑈𝑠 =
𝐻*

2

(︂
1− 4

3

𝐻𝑘 − 1

𝐻

)︂
(2.23)

where 𝐻𝑘 is kinematic shape parameter which is defined as:

𝐻𝑘 =

∫︀ 𝛿

0
(1− 𝑢

𝑢𝑒
)𝑑𝜂∫︀ 𝛿

0
𝑢
𝑢𝑒
(1− 𝑢

𝑢𝑒
)𝑑𝜂

(2.24)

In Drela’s model, one extra ordinary differential equation is coupled with the other

equations. A shear stress lag equation is [59]:

𝛿

𝐶𝜏

𝑑𝐶𝜏

𝑑𝜉
= 4.2(𝐶0.5

𝜏𝐸𝑄
− 𝐶0.5

𝜏 ) (2.25)

where 𝐶𝜏𝐸𝑄
is the equilibrium shear stress coefficient which is expressed by an empir-

ical equations as:

𝐶𝜏𝐸𝑄
= 𝐻* 0.015

1− 𝑈𝑠

(𝐻𝑘 − 1)3

𝐻2
𝑘𝐻

(2.26)
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The last ordinary differential equation remaining to get the details of the boundary

layer is to predict the position of transition from laminar to turbulent flow. Drela has

included the spatial amplification rate with empirical relation:

𝑑𝑛̂

𝑑𝜉
=

𝑑𝑛̂

𝑑𝑅𝑒𝜃

1

2

(︂
𝜉

𝑢𝑒

𝑑𝑢𝑒

𝑑𝜉
+ 1

)︂
𝜌𝑒𝑢𝑒𝜃

2

𝑢𝑒𝜉

1

𝜃
(2.27)

If separation of the flow does not occur within the boundary layer, solving the four

equations 2.18, 2.21, 2.25 and 2.27 is sufficient to evaluate the momentum thickness.

Pazireh and Defoe [61] presented a body force model in which the boundary layer

equations are introduced through transport equations, convecting momentum thick-

ness, shape factor parameter, shear stress coefficient and the amplification ratio along

the relative frame streamlines as the fictitious viscous characteristics for parallel force

calculations in the body force model. However, when separation occurs, Eq. 2.21

is not solvable, and thus, Goldsten’s singularity problem appears. This singularity

means that shape parameter approaches infinity and the solution cannot be obtained.

The issue originates from the high degree of coupling between the local boundary layer

edge velocity and the displacement thickness so that the velocity changes in a way

to prevent the displacement thickness from progressing to infinity. To avoid the sin-

gularity, iterative procedures have been proposed. These procedures start with an

initial guess for local displacement thickness and velocity distributions and then are

updated by a range of methods. The following section describes a brief discussion of

the boundary layer iterative methods.

2.6 Iterative procedures for two-way coupling be-

tween viscous-inviscid interactions

In two-way viscous-inviscid coupling procedures, separate calculations of outer invis-

cid flows and the inner viscous flows are combined to produce a composite solution

of the overall flow. These techniques require a non-linear inviscid flow solver and vis-

cous differential equations with the boundary conditions on the matching edges with
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displacement thickness and boundary layer edge velocity as the interactive variables

of the two solvers. Iterative procedures accomplish simultaneous solutions. Figure

2-3 is a schematic of four conventional iterative methods of inviscid-viscous solvers in

turbomachinery applications.

Figure 2-3: Iterative techniques for viscous-inviscid interaction calculations - (a) fully
inverse method, (b) semi-inverse method, (c) semi-simultaneous method and (d) fully
simultaneous method

In direct solution (one-way coupling), the velocity comes from an inviscid solver

and is implemented into the viscous solver. Then, the displacement thickness as

an output of viscous solver is implemented into the inviscid solver to update the

geometry thickness and the procedure iterates until the difference in velocity or dis-

placement with previous iterations matches the error criterion. This strategy works

for the attached boundary layers. However, in the presence of separation, the cal-

culation features should be modified. As shown in Fig. 2-3(a), the fully-inverse

approach implies that the initial displacement is given to the viscous solver, and the
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velocity is determined using Eqs. 2.18 and 2.21. Then that velocity is returned to the

inviscid solver, and with Newton-Raphson or any non-linear equations solver, the cor-

responding displacement is calculated for discrete points on the matching edge. This

procedure continues until the error criterion is met. The low speed of this method is

its disadvantage. The semi-inverse method (shown in Fig. 2-3(b)) was developed to

speed-up the inverse technique convergence rate. In the semi-inverse approach, the

input of both solvers is the displacement thickness. This reduces the complexity in

the inviscid solver. The displacement thickness is then updated using the difference

of velocity prediction in each iteration. This strategy still has divergence problems in

some cases as it is sensitive to the relaxation factor. The semi-simultaneous approach

(shown in Fig. 2-3(c)) uses the simultaneous attributes of the calculations, which

helps reduce sensitivity to the relaxation factor, and adds a modification formula for

avoiding the singularity problem. The reader is referred to refs. [62–64] for more

mathematical procedure details of these methods.

2.7 Airfoil Loading Models

Hall’s loading normal force model employs only the camber surface data and forces

the flow to adjust to the camberline direction with a force dependent on the local

deviation [14]. However, in reality blade loading depends on the camber and thick-

ness distributions of the airfoil section along the streamline. The calculation of the

velocity/pressure distributions around an airfoil in inviscid flow using an analytical

model is one of the noteworthy problems in fan/compressor body force modelling

approaches. Doing this accurately requires airfoil camber and thickness distributions.

Potential flow theory is a promising approach that provides the induced velocities

around an airfoil. Although there are several approaches to create airfoil loading in

potential flow theory, distributed singularities along the chord of the airfoil is one

of the favoured methods. Thickness effects are captured using source singularities

distributed along the chord. The effects of the camber and any non-zero angle of

attack, which produce the load on the airfoil, are captured with vortex distributions.
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An accurate velocity distribution model can lead to a new normal body force model

which can track the actual local load in body force simulations. Previous studies have

been carried out on isolated blades by Powell [65]. He introduced an analytical model

for calculating of velocity distribution around an isolated blade. Later, the potential

flow around the airfoils has been extended for cascade by taking into account the

finite-pitch effects by Baddoo and Ayton [66]. This section introduces the loading

models for staggered cascades that can form a basis for body force models in future

studies, especially for situations where the local viscosity effects in the calculations

require knowledge of the edge velocities on both sides of the blade.

2.7.1 Isolated Airfoil Potential Flow

We begin with an isolated blade geometry definition. A schematic of the geometry

nomenclature is illustrated in Fig. 2-4. Consider an isolated thin airfoil under the

assumption of small disturbances in a two-dimensional, steady, incompressible flow.

𝑊∞ is the free stream relative to blade velocity, 𝜂𝑡ℎ is the distance between camberline

and blade surface, 𝜂𝑐 is the distance between chordline and camberline, c is chord

length, 𝛼* is angle of attack.

Figure 2-4: Airfoil geometry details for velocity distribution calculations in potential
flow theory

We treat all lengths as being non-dimensionalized so that the semi-chord of the

airfoil is 1. In any plane normal to the leading edge of the airfoil a system of rectan-
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gular co-ordinates 𝜁, 𝑧 is used where the 𝜁-axis is along the chord with 𝜁 = −1 at the

leading edge. Powell [65] has presented a model to calculate the velocity distribution

around an isolated airfoil as:

𝑊𝑆𝑆,𝑃𝑆(𝜁) =
cos𝛼*(︀1 + 𝒜(1)(𝜁)

𝐵2
± 𝒜(4)(𝜁)

𝐵1

)︀
± sin𝛼*

𝐵2

(︁
1 + 𝒜(3)(𝜁)

𝐵1

)︁√︁
1−𝜁
𝜁√︁

1 +
(︀𝒜(2)(𝜁)±𝒜(5)(𝜁)

𝐵2

)︀2 𝑊∞ (2.28)

where the subscripts 𝑆𝑆 and 𝑃𝑆 refer to suction side and pressure side, respectively.

𝐵1 and 𝐵2 are compressibility factors applied to the contributions to the velocity dis-

tribution due to camber and thickness, respectively. 𝒜1 to 𝒜5 are shape parameters.

The shape parameters are defined as:

𝒜(1)(𝜁) =
1

𝜋

∫︁ 1

−1

𝑑𝜂𝑡ℎ
𝑑𝑥0

1

𝜁 − 𝑥0

𝑑𝑥0 (2.29)

𝒜(2)(𝜁) =
𝑑𝜂𝑡ℎ
𝑑𝜁

(2.30)

𝒜(3)(𝜁) =
1

𝜋

∫︁ 1

−1

[︂
𝑑𝜂𝑡ℎ
𝑑𝑥0

− 𝜂𝑡ℎ
2𝑥0 (1− 𝑥0)

]︂
1

𝜁 − 𝑥0

𝑑𝑥0 (2.31)

𝒜(4)(𝜁) =
1

𝜋

√︃
1 + 𝜁

1− 𝜁

∫︁ 1

−1

𝑑𝜂𝑐
𝑑𝑥0

√︂
1 + 𝑥0

1− 𝑥0

1

𝜁 − 𝑥0

𝑑𝑥0 (2.32)

𝒜(5)(𝜁) =
𝑑𝜂𝑐
𝑑𝜁

(2.33)

The precise form of compressibility factors are presented in [65] as:

𝐵1 =
√
1−𝑀2 (2.34)

𝐵2 =
√︁
1−𝑀2

(︀
1− 𝐶𝑝𝑖

)︀
(2.35)
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where:

𝐶𝑝𝑖 = 1−
(︀
1 +𝒜(1)

)︀2
1 +

(︀
𝒜(2)

)︀2 (2.36)

The flow around an airfoil with a boundary layer can be represented by the inviscid

flow about a suitable chosen displacement surface. This is a valid assumption for

subsonic flow. Therefore, the surface thickness can be updated as:

𝜂𝑡ℎ,𝑣𝑖𝑠 = 𝜂𝑡ℎ + 𝛿* (2.37)

This approach is capable of capturing the velocity distribution on either side of the

blade. A sample of the chordwise velocity distribution using Powell’s model around

the airfoil NACA 6412 is shown in Fig. 2-5. The maximum error on the suction side

is 5% and on the pressure side is 3%.
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Figure 2-5: Normalized velocity distribution on either side of NACA6412 at𝑀∞ = 0.3

2.7.2 Cascade Airfoil Potential Flow

Baddoo and Ayton [66] have presented a model that employs potential flow theory

for an infinite cascade. In that model, the perturbation size of the singularities on

the airfoil is assumed to be comparable to the aspect ratio of the airfoils. That model

uses Riemann–Hilbert’s theory to convert the potential flow from a single airfoil to
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repeated airfoils, accounting for the cascade pitch in the calculations. The model

calculates the airfoil surface tangent velocities:

𝑊𝑆𝑆,𝑃𝑆(𝜁) = ±𝛼*𝑒−𝜋/𝑠

√︃
sinh (𝜋 (1− 𝜁) /𝑠)

sinh (𝜋 (1 + 𝜁) /𝑠)
−

1

𝑠

∫︁ 1

−1

𝑑𝜂𝑡ℎ
𝑑𝑥0

coth

(︂
𝜋 (𝑥0 − 𝜁)

𝑠

)︂
𝑑𝑥0

∓ 1

𝑠

√︃
sinh (𝜋 (1− 𝜁) /𝑠)

sinh (𝜋 (1 + 𝜁) /𝑠)
×

∫︁ 1

−1

𝑑𝜂𝑐
𝑑𝑥0

√︃
sinh (𝜋 (1 + 𝑥0) /𝑠)

sinh (𝜋 (1− 𝑥0) /𝑠)

[︂
coth

(︂
𝜋 (𝑥0 − 𝜁)

𝑠

)︂
− 1

]︂
𝑑𝑥0

(2.38)

where 𝑠 is the non-dimensional pitch spacing that is 𝑠 = 2ℎ
𝑐
. Since the normalized

chord is 2, the normalized pitch is 2 times the actual pitch to chord ratio.

Powell’s airfoil loading model [65] shown in Eq. 2.28 uses shape parameters which

account for the source and vortex distributions on only isolated airfoils. In addition,

Baddoo and Ayton’s model [66] is limited to low-camber airfoils as the model assumed

that source and vortex distributions on the chord are equivalent to placing them on

the camberline. Furthermore, both models take leading-edge velocities to add to

the local perturbations which account for thickness and camber effects. Moving the

vorticity and source distributions from the chordline to the camberline in Baddoo

and Ayton’s method needs to be completed in order to obtain a model for velocity

distributions in highly cambered cascades. In Chapter 3, such a modified model for

cascade airfoil velocity distributions is introduced.

2.8 Artificial Neural Networks in Turbomachinery

An artificial neural network mimics the structure of the human neural network where

there is a dense network comprising thousands to millions of neurons throughout the

human brain. Neurons receive signals from an input system and pass the information

to a main-frame in which the information is transferred to the output. A neuron
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is a switch with information input and output [67]. An artificial neural network

consists of a few to tens of neurons in each layer and the neurons are connected to

the neighbour layers with weighting coefficients. Figure. 2-6 shows an architecture

of a neural network sample that includes five neurons in the hidden layer with four

inputs and one output. The mathematical procedure is explained later. Mostly when

referring to an 𝑛 layer network it implies that the number of hidden layers is 𝑛. In

this dissertation, a one-layer network refers to a network with a hidden layer.

Input

Input

Input

Input

Output

Hidden
layer

Input
layer

Output
layer

Figure 2-6: An architecture of a one hidden layer neural network

A neural network in a turbomachinery application is an example of supervised

learning. Supervised learning implies that to train the network, data samples com-

prising input and output data are needed. More clearly speaking, supervised learning

looks for an algorithm that relates the input to the output data based on the training

dataset [68]. On the contrary, unsupervised learning refers to methods where there

is no output label and the learning process is followed by the correlations between

samples. The reader is referred to the work of Zhao and Liu [68] for more detailed

information on the algorithms for supervised and unsupervised learning. Neural net-

works can be applied to both classification and regression problems. Dreiseitl and

Ohno-Machado [69] have discussed artificial neural networks for both classification

and regression and compared the performance with other machine learning methods

in a review paper. Since the subject in this dissertation concentrates on turboma-

chinery physics where the variables are continuous (not discrete), we focus on the
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regression type of neural network.

From a data perspective, inputs and output are attributes of a sample in the

dataset. An example in turbomachinery CFD can be that any local cell is a sample

which has flow properties and turbulence information. Therefore the attributes for the

cell can be fluid Mach number, Reynolds number, distance from the wall, turbulence

kinetic energy, etc. Thus, if the turbulence kinetic energy is dependent on the three

other attributes, then there would be three input variables and one output. The

total number of cells times the number of CFD simulations with different conditions

form the number of samples. Another example can be the global turbomachinery

parameters considered for artificial neural network. For a specific compressor, mass

flow rate and rotational speed provide the pressure ratio and isentropic efficiency

information. Thus, in this example, there are four attributes: the mass flow rate

and rotational speed are inputs and the isentropic efficiency and pressure ratio are

outputs. Data from performance characteristics maps for different conditions would

be data samples. After explaining the mathematical structure of a feed-forward back-

propagation network in the coming paragraphs, a few state-of-the-art papers which

apply ANNs to turbomachinery are described.

A neural network aims to provide an analytical equation that estimates the output

based on any given input. There are multiple neural network architectures, but here

we describe the feed-forward back-propagation approach, which is most often used

for turbomachinery applications.

The calculations in the feed-forward method start with normalizing the input data.

We assume a one-layer network has𝑚 inputs and 𝑛 neurons in the hidden layer ending

up with 𝑜 outputs. 𝑋 represents the input vector. 𝑋𝑚𝑖𝑛 is considered to be a vector

that includes the minimum of each input attribute on the whole dataset. 𝑋𝑚𝑎𝑥 is

a vector including the maximum of each input attribute on the whole dataset. The

normalized input vector 𝐹1 is calculated as:

𝐹1,𝑖 = 2
(𝑋𝑖 −𝑋𝑚𝑖𝑛,𝑖)

𝑋𝑚𝑎𝑥,𝑖 −𝑋𝑚𝑖𝑛,𝑖

− 1 𝑖 = 1, ...,𝑚 (2.39)
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So that −1 < 𝐹1,𝑖 < 1. The matrix 𝑤1 is considered to be a weighting matrix between

the normalized input vector and hidden layer neurons and thus has size 𝑛×𝑚. Thus,

the arrays on any 𝑖th row of the matrix 𝑤1 represent the contribution of the inputs

on the 𝑖th neuron. The matrix 𝑤2 is the weighting matrix between the hidden layer

and output with a dimension of 1× 𝑛. A bias vector 𝑏1 with the dimension of 𝑛× 1

is used in the hidden layer. The non-normalized input to the hidden layer is thus the

vector 𝑤1𝑋 + 𝑏1. This vector is then normalized to an interval of [0,1]. This is done

by a transfer function. A well-known transfer (activation) function is a hyperbolic

tangent sigmoid function, which is defined as:

𝑡𝑎𝑛𝑠𝑖𝑔(𝑎) =
2

1 + 𝑒−2𝑎
− 1 (2.40)

where 𝑎 is any input variable. The variables assigned to every single neuron in the

hidden layer should be normalized. Therefore, the vector 𝐹2 is the variables on the

hidden layer (normalized of 𝑤1𝑋 + 𝑏1 with the hyperbolic sigmoid function) and is

calculated as:

𝐹2,𝑗 = 𝑡𝑎𝑛𝑠𝑖𝑔

(︃
𝑚∑︁
𝑖=1

𝑤1,𝑗,𝑖 × 𝐹1,𝑖 + 𝑏1,𝑗

)︃
𝑗 = 1, ..., 𝑛 (2.41)

Similarly, the information from the hidden layer to the output layer is transferred

using implementing of hyperbolic tangent sigmoid function on another bias vector 𝑏2

summed with the matrix multiplication of 𝑤2 and 𝐹2 as:

𝐹3,𝑘 = 𝑡𝑎𝑛𝑠𝑖𝑔

(︃
𝑛∑︁

𝑗=1

𝑤2,𝑘,𝑗 × 𝐹2,𝑗 + 𝑏2,𝑘

)︃
𝑘 = 1, ..., 𝑜 (2.42)

𝐹3 is a normalized vector, which should be converted back to the original output

value. With considering 𝑦𝑚𝑎𝑥 as the maximum output in the whole dataset and 𝑦𝑚𝑖𝑛

as the minimum output in the dataset, the predictive output 𝐹4 is calculated as:

𝐹4,𝑘 =
(𝐹3,𝑘 + 1)

2
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛 𝑘 = 1, ..., 𝑜 (2.43)

In the feed-forward procedure, the weighting matrices and bias vectors are initially

39



randomly generated. All samples in the dataset are given to the network. Based on

the inputs, outputs are predicted through Eqs. 2.41 to 2.43. The root mean square

error is used for all 𝒩 samples in the dataset as:

𝑅𝑀𝑆 =

√︃∑︀𝒩
𝑑=1(𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑑 − 𝐹4,𝑑)2

𝒩
(2.44)

where 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 is the actual output in dataset.

In the back-propagation algorithm, gradient optimization is used to minimize

the RMS error. So, the derivative of the RMS error with respect to the weight

matrices and bias vectors are calculated, and the matrices and vectors are updated

in each iteration until the gradients and RMS error are minimized. The detailed

mathematical steps for the derivative calculations have been discussed by Svozila et

al. [70].

Advanced studies have been conducted by researchers in the field of ANN appli-

cations in turbomachinery in recent years. A creative idea in the development of

turbulent closure terms using an ANN was proposed by Tracey et al. in 2015 [71].

They produced a large data using the Spalart-Allmaras turbulent model for different

conditions and offered a machine-learned turbulent model that predicts the skin fric-

tion coefficients for the 2D plates and 3D wings. The turbulent kinematic viscosity

and three model source terms were given to the ANN to generate a new advanced tur-

bulence model. Any cell at any condition is taken as a sample (observation). However,

in that work, the selection of predominant attributes has remained a challenge.

Weatheritt et al. in 2017 [72] used an ANN to come up with an algebraic equa-

tion for the Reynolds stress closure term that shows an improvement compared to

the traditional RANS simulations. That model used the anisotropy tensor, scalar

invariants for the anisotropy tensor, and the basis for the anisotropy tensor as the

attributes. However, their model showed poor results in high vorticity regions. That

year, Weatheritt et al. [73] applied the previous anisotropy tensor in a modified closure

equation to a turbine wake case. Stress tensor predictions showed an improvement,

however the model is not capable of accurately predicting the far-wake region.
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Recently, an ANN has been used in fan body force modelling by Luis et al. in

2018 [74]. In that work, instead of the common body force equations, the body force

values on each local position in the blade swept volume was replaced by the blade

forces extracted from the bladed RANS simulations. Those extracted blade forces

were given to the ANN. Forces were calculated based on the cell position using the

algebraic equations that were generated by ANN. That model has a lack of accuracy

in the prediction of the body forces in the tip region.

2.9 Concluding Remarks

Studies of the boundary layer loss literature show that the velocity distribution around

the blade and the boundary layer properties are highly intertwined. Both Powell [65]

and Baddoo and Ayton’s models [66] need full blade geometry to determine the load-

ing and this confines the methods to 2D cascades. On the other hand, even if there is

a known velocity distribution around the blade, it will not be possible to calculate the

boundary layer’s properties under the conditions of separation of the flow within the

boundary layer in body force models without significantly increasing the calculation

cost. The equations for the velocity distribution calculations around the blade have

other limitations that mean they are not currently feasible to implementation for 3D

compressors. These equations are rooted in the potential flow theory method, which

will lead to poor accuracy in non-uniform inflows. Also, calculations with this method

require the geometry of the airfoil surface on different sections of the blade from the

leading edge to the trailing edge, making it difficult to employ for three-dimensional

flows.

Youngren’s Eq. (2.17) shows that just by having the momentum thickness, the

boundary layer loss can be predicted. This equation, along with some simplifying

assumptions, which are mentioned in Chapter 4, forms a new model for the loss that

is discussed in this dissertation. The new model does not need any edge velocity

distribution estimates. Finally, after making sure that the loss depends only on

trailing edge momentum thickness, artificial neural network is used using the neural
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network method to provide an analytical model to calculate the momentum thickness

at low computational cost. The fourth chapter deals with this issue in detail.
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Chapter 3

A New Body Force Model for 2D

Cascades

This chapter introduces a no-calibration body force loss model based on Denton’s

viscous entropy generation model [24]. In addition, a potential flow based turning

model which is a hybrid of Powell’s isolated blade theory [65] and Baddoo and Ayton’s

finite pitch model [66] in a 2D cascade is introduced to be used to yield the required

local boundary layer edge velocities in the loss model. The results of the blade loading

model are assessed. In addition, the results of a loss model with constant dissipation

coefficient in body force calculations are assessed.

3.1 Denton’s Loss Model For No-Calibration Body

Force

To compute a viscous body force, it is required that the properties of boundary layers

on either side of the blade be determined. Denton [24] declared that the rate of

entropy increase along a relative streamline is related to the viscous force per unit

mass acting on the fluid in the direction of the streamline. Thus, the viscous body
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force (with units 𝑁
𝑚3 ) is related to the entropy generation by:

𝑓𝑝 = 𝜌𝑇
𝑑𝑠

𝑑𝜉
(3.1)

The entropy flux in the blade boundary layer along the streamline is calculated as:

𝑆̇ = 𝜌𝑊ℎ|𝑛𝜃|
𝑑𝑠

𝑑𝜉
(3.2)

Utilizing Denton’s relationship (Eq. 2.12) for the local entropy generation in a bound-

ary layer [24] and combining with Eq. 3.2 yields:

𝜌𝑇
𝑑𝑠

𝑑𝜉
=

𝑐𝒟𝜌𝑊
3
𝑒

𝑊ℎ|𝑛𝜃|
(3.3)

Combination of Eqs. 3.1 and 3.3 gives the loss body force as:

𝑓𝑝 =
𝑐𝒟𝜌𝑊

3
𝑒

𝑊ℎ|𝑛𝜃|
(3.4)

The local loss body force is the summation of the suction and pressure side volumetric

forces. The overall viscous loss force per unit volume is:

𝑓𝑝 =
𝜌

𝑊ℎ|𝑛𝜃|
(︀
𝑐𝒟,𝑆𝑆𝑊

3
𝑆𝑆 + 𝑐𝒟,𝑃𝑆𝑊

3
𝑃𝑆

)︀
(3.5)

It can thus be seen that the edge velocities from the loading model are required for the

viscous losses to be determined. Section 3.2 introduces a new analytical flow turning

model that captures the local velocities on either side of the blade in a 2D cascade.

3.2 A New Flow Turning Model In 2D Cascades

The author of this dissertation combined the two models of Powell [65] and Baddoo

and Ayton [66] and developed a new analytical model which uses the local relative

velocity in body force calculations. The integrals for the shape parameters are up-

dated for finite-pitch cascade effects and the inlet velocity is replaced by the flow local
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relative velocity in a body force implementation. The local relative velocity repre-

sents the local potential flow with no perturbation to which the camber and thickness

perturbations are added.

Baddoo and Ayton [66] introduced a modified Plemelj formula explaining that in

a periodic singularity distribution, for any singular distribution of a function 𝑓(𝑡) the

following relation is satisfied:

1

𝜋

∫︁ 1

−1

𝑓(𝑡0)

𝑡0 − 𝜁
𝑑𝑡0 =

1

𝑠

∫︁ 1

−1

𝑓(𝜏)𝑐𝑜𝑡ℎ

(︂
𝜋 (𝜏 − 𝜁)

𝑠

)︂
𝑑𝜏 (3.6)

Thus, the shape parameter related to the thickness source distribution in Powell’s

model (Eq. 2.29) changes for a cascade calculation to:

𝒮(1)(𝜁) = −1

𝑠

∫︁ 1

−1

𝑑𝜂𝑡ℎ
𝑑𝑥0

coth

(︂
𝜋 (𝑥0 − 𝜁)

𝑠

)︂
𝑑𝑥0 (3.7)

In addition, Baddoo and Ayton proposed that the vortex distribution for the

periodic blades in a cascade may have a solution for the velocity perturbation of the

form:

𝒮(3)(𝜁) = 𝑒−𝜋/𝑠

√︃
sinh (𝜋 (1− 𝜁) /𝑠)

sinh (𝜋 (1 + 𝜁) /𝑠)
(3.8)

𝒮(4)(𝑥) = ∓1

𝑠

√︃
sinh (𝜋 (1− 𝜁) /𝑠)

sinh (𝜋 (1 + 𝜁) /𝑠)
×

∫︁ 1

−1

𝑑𝜂𝑐
𝑑𝑥0

√︃
sinh (𝜋 (1 + 𝑥0) /𝑠)

sinh (𝜋 (1− 𝑥0) /𝑠)

[︂
coth

(︂
𝜋 (𝑥0 − 𝜁)

𝑠

)︂
− 1

]︂
𝑑𝑥0

(3.9)

The other two shape parameters are the same as in Powell’s model:

𝒮(2)(𝜁) =
𝑑𝜂𝑡ℎ
𝑑𝜁

(3.10)

𝒮(5)(𝜁) =
𝑑𝜂𝑐
𝑑𝜁

(3.11)

Thus, an analytical model to calculate the velocity distribution around a finite
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pitch airfoil cascade in body force computations is:

𝑊𝑆𝑆,𝑃𝑆(𝜁) =
cos𝛼*(︀1 + 𝒮(1)(𝜁)

𝐵2
± 𝒮(4)(𝜁)

𝐵1

)︀
± sin𝛼*𝒮(3)(𝜁)

𝐵1𝐵2√︁
1 +

(︀𝒮(2)(𝜁)±𝒮(5)(𝜁)
𝐵2

)︀2 𝑊 (3.12)

where 𝑊 in the body force model is the local relative velocity.

Figure 3-1 shows the nomenclature used for the 2D cascade calculations. 𝑐 is the

chord length, ℎ is the pitch, 𝑅𝐿𝐸 is the leading edge radius, 𝑡𝑚𝑎𝑥 is the maximum

thickness, 𝑥𝑡𝑚𝑎𝑥 is the position of maximum thickness, 𝜒 is the airfoil camber (differ-

ence between leading and trailing edge blade metal angles), 𝑥𝑐𝑚𝑎𝑥 is the position of

maximum camber, 𝜎 is the chord to spacing ratio, 𝜙𝑇𝐸 is the trailing edge boat-tail

angle, 𝑖 is the incidence angle, 𝜆 is the stagger angle, and 𝜅𝐿𝐸 and 𝜅𝑇𝐸 are the blade

metal angles at the leading and trailing edges, respectively.

Figure 3-1: Schematic of geometry parameters for airfoil shape definition

Two compressor cascades were chosen to assess this new analytical blade loading

model. Schematic views of these cascades are shown in Fig. 3-2.

The detailed data of the geometries are given in Table 3.1. The thickness and cam-

ber functions used to define the airfoil parameterizations are presented in a Python

code in Appendix A. Cascade 1, with a blunt leading edge and 6% thickness, rep-

resents a compressor operating in nearly incompressible flow. However, cascade 2,

with a sharper leading edge, represents a compressor operating in the high subsonic

regime.
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(a) Cascade 1 (b) Cascade 2

Figure 3-2: Studied cascades for the viscous model assessment

Table 3.1: Geometry data for cascades 1 and 2

parameter cascade 1 cascade 2
𝑡𝑚𝑎𝑥

𝑐
0.06 0.05

𝑥𝑡𝑚𝑎𝑥

𝑐
0.4 0.5

𝜒(deg) 25 15
𝑥𝑐𝑚𝑎𝑥

𝑐
0.5 0.5

𝑅𝐿𝐸

𝑐
0.005 0.001

𝜙𝑇𝐸 (deg) 10 10
𝜆 (deg) 25 30

The loading is given by the pressure difference across the blade at a given location,

𝑝𝑃𝑆 − 𝑝𝑆𝑆. This is smeared out over a blade pitch ℎ = 2𝜋𝑟/𝐵, where 𝑟 is the local

radius and 𝐵 is the number of blades in a blade row, to yield a body force per unit

volume 𝑓𝑛:

𝑓𝑛 =
𝑝𝑃𝑆 − 𝑝𝑆𝑆

ℎ|𝑛𝜃|
(3.13)

Bernoulli’s equation can be used to express the pressure difference in terms of the

squared velocity difference:

𝑝𝑃𝑆 − 𝑝𝑆𝑆 = 0.5𝜌
(︀
𝑊 2

𝑆𝑆 −𝑊 2
𝑃𝑆

)︀
(3.14)

It should be reiterated that suction side and pressure side velocities take into

account the compressibility factors 𝐵1 and 𝐵2. The compressibility factors used in

the velocities were presented in Eqs. 2.34 and 2.35.
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Combining Eqs. 3.12, 3.13, and 3.14 leads to a new normal body force:

𝑓𝑛 =
0.5𝜌 (𝑊 2

𝑆𝑆 −𝑊 2
𝑃𝑆)

|𝑛𝜃|(2𝜋𝑟𝐵
)

(3.15)

MISES was used to carry out bladed CFD calculations to be the reference results

for body force modelling comparisons. In MISES the inlet relative Mach number

and relative flow angle are given to the solver. In the body force model a 2D Fluent

solver [75] was used. User-defined-functions were used to implement the analytical

model calculations in the source terms. The grid independence study for the 2D body

force solutions is detailed in Chapter 4. The shape parameters used in Eqs. 3.7 to

3.11 are evaluated numerically. First order finite differences are used for derivatives

and the rectangle rule is used for integrals. Appendix B provides the MATLAB code

used for the shape parameters calculations.

The velocity distributions which result from the body force model for cascade 1

at an inlet Mach number of 0.3 for two incidence angles (0 and 6 degrees) are shown

alongside MISES results in Figs. 3-3 and 3-4. At zero incidence angle, the maximum

velocity error on the suction side is about 2% while the maximum velocity error for

the pressure side is about 13%, which occurs at the trailing edge. One deficiency of

the model is that it does not ensure zero loading at the trailing edge as required by

the Kutta condition. However, very low loading after 90% chord does not affect the

flow turning significantly. Good agreement for the pressure side velocity is shown at

an incidence angle of 6 degrees. The suction side has a maximum error of 5%.

To assess the performance of the new loading model for producing flow turning,

the flow turning angles have been calculated using both Hall’s and the new analytical

models. The flow angle differences from leading to trailing edge (𝛽𝐿𝐸 − 𝛽𝑇𝐸) for

cascade 1 at an inlet Mach number of 0.3 and solidity of 1 are presented in Fig. 3-5.

The new model shows a good consistency with MISES results. The maximum error

for the new loading model appears at 5 degrees incidence angle and is 5%. Hall’s

model has an error of 7% at -6 degree incidence angle. Overall, performance of the

new model is better than Hall’s model.
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Figure 3-3: Comparison of analytical velocity distribution model with MISES CFD
results for cascade 1 - 𝑀∞ = 0.3, stagger angle = 25(deg), i = 0(deg), solidity = 1.0

Cascade 2 with the body force model has been simulated and the velocity dis-

tributions for a solidity of 1.2, inlet Mach number of 0.65, and incidence angle of 4

degrees are shown in Fig. 3-6. The inconsistency is clear in the first 10% chord, but

otherwise agreement is very good. The higher loading prediction in the first 10%

chord leads to over-prediction of flow turning. The flow turning for cascade 2 at an

inlet Mach number of 0.65, and solidity of 1.2 is presented in Fig. 3-7. The flow turn-

ing body force by Hall’s model uses a compressibility factor as described by Minaker

and Defoe in [53]. The maximum error of flow turning with new body force model

for the considered range of incidences, is at -6 degree where the error is 25%, which

is a high discrepancy. However, this model has a better prediction of flow turning in

positive incidence angles compared to Hall’s model. Given that the model predicts

the loading distribution accurately, it is a good way of obtaining 𝑊𝑆𝑆 and 𝑊𝑃𝑆 for a

loss model.

In the next Section, the model is used with Denton’s body force loss model, (Eq.

3.5) for which the local pressure side and suction side velocities are needed.
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Figure 3-4: Comparison of analytical velocity distribution model with MISES CFD
results for cascade 1 - 𝑀∞ = 0.3, stagger angle = 25(deg), i = 6(deg), solidity = 1.0
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Figure 3-5: Comparison of flow turning of new loading model with MISES CFD
results and Hall’s model for cascade 1 - 𝑀∞ = 0.3, stagger angle = 25(deg), solidity
= 1.0
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Figure 3-6: Comparison of analytical velocity distribution model with MISES CFD
results for cascade 2 - 𝑀∞ = 0.65, stagger angle = 30(deg), i = 4(deg), solidity = 1.2
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Figure 3-7: Comparison of flow turning of new loading model with MISES CFD
results and Hall’s model for cascade 2 - 𝑀∞ = 0.65, stagger angle = 30(deg), solidity
= 1.2
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3.3 Denton’s Loss Model with Constant Dissipa-

tion Coefficient

Since there is no direct method for body force boundary layer calculations, as de-

scribed in previous Chapters, a constant dissipation coefficient of 0.002 is used in the

loss model. This value comes from the Denton’s article [24] in which the author of that

work has concluded that the dissipation coefficient in turbomachinery applications is

around 0.002.

For cascade 1 with the new analytical model, the viscous loss coefficient has been

computed by Denton’s body force loss model. The viscous loss coefficient is computed

as:

𝜔𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =
𝑝𝑡,𝐿𝐸 − 𝑝𝑡,𝑇𝐸

𝑝𝑡,𝐿𝐸 − 𝑝𝐿𝐸
(3.16)

Figure 3-8 shows the loss coefficient for a range of incidence angles between -6 to

6 degrees. Except the low incidence angles between -1 to 1 degrees, the model has a

large discrepancy, generally under-predicting the loss coefficient. At higher incidence

angles, the actual average dissipation coefficient values as computed by MISES are

high and reach over 0.003 . The velocity distribution and loading model results (in

Fig. 3-5) show that the main part of this discrepancy originates from the constant

dissipation coefficient assumption, since the edge velocities are well-predicted. In the

boundary layer calculations, the maximum dissipation coefficient is generated near

the leading edge where the local velocities have higher values as well. To carry out

more assessment of this modelling approach, the loss coefficient for cascade 2 at an

inlet Mach number of 0.65 has been computed. The results of this simulation are

presented in Fig. 3-9. The higher Reynolds number and higher inlet Mach number

for this cascade shows that the constant dissipation coefficient assumption is not valid

for loss modelling at all. Thus, the loss model should be improved to a more robust

model in body force calculations.
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Figure 3-8: Comparison of viscous loss coefficients of new load model with MISES
CFD results for cascade 1 - 𝑀∞ = 0.3, solidity = 1.0, Re = 335000
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Figure 3-9: Comparison of viscous loss coefficients of new load model with MISES
CFD results for cascade 2 - 𝑀∞ = 0.65, solidity = 1.2, Re = 700000
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3.4 Concluding Remarks

The new analytical loading model uses the chordwise geometry data to calculate the

shape parameter integrals along the chord. In 3D blades, the section geometry data

for the loading calculations are dependent on the relative flow streamlines, and the

streamline chordwise geometry data are not know a priori. Thus, using this model

in its current form in 3D cases is challenging. However, in a 2D approach, the new

analytical model is a promising method that can capture the flow turning and pro-

vides the suction and pressure side local velocities. Furthermore, it was shown that

even with the velocity distribution, Denton’s loss model with a constant dissipation

coefficient is not appropriate for entropy generation prediction in body force mod-

elling. The reason is that this model depends on the cube of velocity so that a minor

error in velocity prediction can have a considerable effect on the loss prediction. In

addition, the model is dependent on the local boundary layer dissipation coefficient.

The results show that a constant dissipation coefficient is not an acceptable idea. At

higher incidence angles, higher dissipation coefficients exist. Besides, there is no di-

rect method to calculate the local boundary layer quantities. In the next Chapter, it

will be shown that Youngren’s [26] loss model, which is the model used in MISES, can

be a replacement for loss predictions. That model requires the trailing edge quantities

and a novel neural network model along with some reasonable assumptions will be

shown to yield a reliable body force loss model.

54



Chapter 4

A New Body-Force-Based Loss

Model

This chapter introduces a new viscous body force model based on the total pressure

defect model presented by Youngren [26] used in MISES by Drela and Youngren [25]

A simple shock loss model based on the Denton’s framework [24] is also presented.

The assessments and validation of the viscous and shock models are discussed. The

viscous (boundary layer) losses are related to blade geometry and flow parameters

using an artificial neural network.

4.1 Viscous Loss Body Force Model

The base of the loss model in this chapter is Eq. 2.17 in which the boundary layer

and flow quantities at the trailing edge determine the relative total pressure loss.

Assumptions are made to simplify this model.

∙ The flow velocities on either side of the trailing edge are approximately equal

(neglecting the wake area, the properties are uniform, thus the boundary layer

edge velocities are the same as that of the outside flow).

∙ The density across the pitch at the trailing edge is approximately uniform
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∙ Flow outside of the boundary layer is inviscid and isentropic. Shock losses are

handled by a separate model.

∙ The deviation angle at the trailing edge is small (cos(𝛽𝑇𝐸 − 𝜅𝑇𝐸) ≈ 1)

Figure 4-1 shows the uniform flow at the trailing edge based on these assumptions.

Figure 4-1: Schematic of uniform flow at trailing edge

Now, we return to Eq. 2.17:

Δ̄𝑝
𝑀
𝑡,𝑙𝑜𝑠𝑠 = 𝑝𝑡,𝑖𝑛𝑙𝑒𝑡 − 𝑝𝑡,𝑒𝑥𝑖𝑡 =

[︂
𝑝𝑡𝑒
𝑝𝑒

𝜌2𝑒𝑢
3
𝑒

𝑚̇
𝑏𝜃

]︂
𝑒𝑥𝑖𝑡

(2.17)

By applying the isentropic flow assumption outside the boundary layer, we write

𝑝𝑡𝑒
𝑝𝑒

in terms of the relative Mach number:

𝑝𝑡𝑒
𝑝𝑒

= (1 + 0.2𝑀2
𝑟𝑒𝑙,𝑇𝐸)

𝛾
𝛾−1 (4.1)

Applying the assumptions about the flow uniformity and direction at the trailing

edge:

𝑚̇ = 𝜌𝑇𝐸𝑊𝑇𝐸|𝑛𝜃|𝑇𝐸 (ℎ− 𝛿*𝑇𝐸) 𝑏 (4.2)
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Thus, the mass-averaged relative total pressure loss in Eq. 2.17 can be written as:

(𝑝𝑡,𝑟𝑒𝑙,𝐿𝐸 − 𝑝𝑡,𝑟𝑒𝑙,𝑇𝐸)𝑣𝑖𝑠𝑐𝑜𝑢𝑠 ≈
(1 + 0.2𝑀2

𝑟𝑒𝑙,𝑇𝐸)
𝛾

𝛾−1𝜌𝑇𝐸𝑊
2
𝑇𝐸

(ℎ− 𝛿*) |𝑛𝜃|𝑇𝐸

𝜃𝑇𝐸 (4.3)

where 𝑀𝑟𝑒𝑙,𝑇𝐸 is the relative Mach number, 𝜌𝑇𝐸 is the flow density and 𝑊𝑇𝐸 is the

flow relative velocity at the trailing edge. Also, 𝛿* is the displacement thickness

(sum of displacement thickness of suction and pressure sides (𝛿*𝑆𝑆 + 𝛿*𝑃𝑆)) and 𝜃𝑇𝐸 =

𝜃𝑇𝐸,𝑆𝑆 + 𝜃𝑇𝐸,𝑃𝑆.

Further assumptions are made below to interpret this loss in terms of a force per

unit volume:

∙ Boundary layer blockage caused by the displacement thickness may be ne-

glected. In the common compressor operations 𝛿*

ℎ
< 0.02 [76]. This assumption

is valid for attached flows. In the next chapter, it will be shown that the as-

sumption is violated in some separated flows. Nevertheless, the aim is to have

the most simplified and straightforward computations. Including this would

require blade thickness effects be included and updated within the normal force

model, which is outside the scope of this dissertation. Thus, the displacement

thickness is skipped for simplification purposes.

∙ The compressor chord length and camber arc length are considered to be almost

equal. For circular arc camber airfoils, the chord-length to camber-length ratio

is 2 sin(𝜒/2)
𝜒

, where 𝜒 is the camber angle. For a camber of 45 degrees (a high

camber angle for a compressor), the chord to camber length ratio is 0.975.

The local loss body force is calculated as:

𝑓𝑝 =
𝑑𝑝𝑡,𝑟𝑒𝑙
𝑑𝜉

(4.4)

where 𝜉 represents the relative streamline direction. Eq. 4.4 with the previous as-

sumption that the chord and camber arc lengths are almost equal in compressor

airfoils is developed to:
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𝑓𝑝 =
𝑑𝑝𝑡,𝑟𝑒𝑙
𝑑𝜉

≈ 𝑝𝑡,𝑟𝑒𝑙,𝐿𝐸 − 𝑝𝑡,𝑟𝑒𝑙,𝑇𝐸

𝑐
(4.5)

Combining Eq. 4.3 with Eq. 4.5 leads to a loss body force:

𝑓𝑝,𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =
(1 + 0.2𝑀2

𝑟𝑒𝑙,𝑇𝐸)
3.5𝜌𝑇𝐸𝑊

2
𝑇𝐸(︀

2𝜋𝑟
𝐵

)︀
|𝑛𝜃|𝑇𝐸

(︂
𝜃𝑇𝐸,𝑆𝑆 + 𝜃𝑇𝐸,𝑃𝑆

𝑐

)︂
(4.6)

where 𝑐 is the chord length. In the next step, the trailing edge flow quantities need

to be estimated at any position on the relative streamline based on the local flow

quantities. Mass continuity in a body force with no blockage at the steady-state

condition implies that:

𝜌𝑊 cos(𝛽) = 𝜌𝑊𝑥 = 𝜌𝑇𝐸𝑊𝑇𝐸|𝑛𝜃|𝑇𝐸 (4.7)

where 𝛽 is the local relative velocity angle with respect to the axial axis and 𝜌 and

𝑊 are the local density and relative velocity at any position within the rotor/stator

in body force simulation. This equation assumes that the contraction in passage has

a low impact on the flow velocity and the radial velocity is negligible. In Chapter

5, it will be shown that in a rotor case, this assumption is valid for a wide range of

span ratios except the hub region. In incompressible flow the axial velocity remains

constant from the leading to trailing edge. Thus we have:

𝑊𝑇𝐸 =
𝑊𝑥

cos(𝜅𝑇𝐸)
(4.8)

Similarly, assuming that the speed of sound remains constant due to small changes in

temperature (in NASA rotor 67 the static temperature at design speed changes from

285 to 295 K which is only 3% variation) we have:

𝑀𝑟𝑒𝑙,𝑇𝐸 =
𝑀𝑥

cos(𝜅𝑇𝐸)
(4.9)

Therefore, with assuming constant axial velocity and using mass continuity, Eq.
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4.6 can be re-written as:

𝑓𝑝,𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =
(1 + 0.2( 𝑀𝑥

|𝑛𝜃|𝑇𝐸
)2)3.5𝜌𝑊 2

𝑥(︀
2𝜋𝑟
𝐵

)︀
(|𝑛𝜃|𝑇𝐸)3

(︂
𝜃𝑇𝐸,𝑆𝑆 + 𝜃𝑇𝐸,𝑃𝑆

𝑐

)︂
(4.10)

This model accounts for the loss within the blade row and does not take into account

the mixing losses. In addition, it does not include the boundary layer blockage effects.

This viscous body force model is a simplified method that requires only the trailing

edge momentum thickness and trailing edge blade metal angle. The assessment of the

body force model detailed in Section 4.3 shows that all the assumptions made in the

model in a 2D cascade have over 90% accuracy. In 3D simulations, a discrete number

of the trailing edge metal angles for specified span fractions can be given to the solver

and the relevant trailing edge angle at any position in the body force domain can be

calculated by interpolation for the local span fraction.

4.2 Shock Loss Body Force Model

Neglecting radius change effects, the relative total pressure is related to the entropy

rise using Gibbs equation:

Δ𝑠 = −𝑅
Δ𝑝𝑟𝑒𝑙,𝑡
𝑝𝑡,𝑟𝑒𝑙

(4.11)

Assuming that normal shock waves appear with local supersonic relative flow,

Denton’s shock loss in Eq. 2.14 can be inserted in Eq. 4.11 to get the changes of

relative total pressure:

(𝑝𝑡,𝑟𝑒𝑙,𝐿𝐸 − 𝑝𝑡,𝑟𝑒𝑙,𝑇𝐸)𝑠ℎ𝑜𝑐𝑘 = 𝑝𝑡,𝑟𝑒𝑙
𝐶𝑣

𝑅

2𝛾 (𝛾 − 1)

3 (𝛾 + 1)2
(︀
𝑀2

𝑟𝑒𝑙 − 1
)︀3

(4.12)

The shock loss prediction presented in Eq. 4.12 is appropriate for normal shocks

[24]. Thus, it over-predicts the shock loss with the same relative Mach number com-

pared to the oblique shock. A volumetric shock loss model is obtained by dividing

the total pressure change by the staggered blade spacing:
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𝑓𝑝,𝑠ℎ𝑜𝑐𝑘 =

⎧⎪⎨⎪⎩
𝑝𝑡,𝑟𝑒𝑙

𝐶𝑣
𝑅

2𝛾(𝛾−1)

3(𝛾+1)2
(𝑀2

𝑟𝑒𝑙−1)
3

( 2𝜋𝑟
𝐵 )|𝑛𝜃|

𝑀𝑟𝑒𝑙 > 1

0 𝑀𝑟𝑒𝑙 ≤ 1

(4.13)

Fig 4-2 shows the shock loss coefficient computations in the body force and MISES

for cascade 2. The inlet flow angles are the same for all the simulations. However,

based on the shock wave effects on the upstream flow, the incidence angles vary. As

expected, the model over-predicts the shock losses for high Mach numbers. To have a

correct shock calculation, the normal component of Mach on the shock wave should be

used in the entropy generation equations [24]. However, in the body force modelling,

the shock wave angle and its normal component Mach number cannot be determined.

The model has an error of 25% at Mach number of 1.3. This error is acceptable as in

a transonic rotor (as will be shown in the next Chapter), only in the outer 30% span

does the relative Mach number become greater than one such that shock losses come

into the computations.

1.1 1.15 1.2 1.25 1.3 1.35 1.4

Relative Mach Number

0

0.02

0.04

0.06

0.08

0.1

0.12

MISES bladed CFD

Body force

Figure 4-2: Assessment of shock loss for cascade 2

The total volumetric loss is:

𝑓𝑝 = 𝑓𝑝,𝑠ℎ𝑜𝑐𝑘 + 𝑓𝑝,𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (4.14)
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4.3 Assessment of Viscous Loss Body Force

To validate the viscous loss body force model presented in Eq. 4.6, the trailing edge

momentum thicknesses from MISES are prescribed in 2D compressor cascades. In a

2D solver, with uniform inflow, the flow with the body force model is axisymmetric

with periodic boundary conditions employed. Hall’s loading model was used for flow

turning. Grid independence was ensured by increasing the number of axial cells along

the blade axial chord (with corresponding increases upstream and downstream) until

the loss coefficient stopped changing.

This was done for the cascade 1. The results are shown in Table 4.1. 40 axial cells

is sufficient while 20 is likely adequate. The results shown in this chapter are for 40

axial cells.

Table 4.1: Grid independence study for body force model in cascade 1 with 𝑀 = 0.3.
Zero incidence, 𝜎 = 1.0, Reynolds number based on chord 3.35× 105.

Cells along chord 𝜔
10 0.0126
20 0.0135
40 0.0139
60 0.0139

To assess the body force loss model, three cascades are considered. These cascades

are shown in Fig. 4-3. Cascade 1 and 2 are the same as those used for assessment in

Chapter 3. The geometry information of these cascades are shown in Table 4.2. The

viscous loss coefficient for cascade 1 for a range of incidence angles between -6 to 6

degrees is shown in Fig. 4-4. The flow regime is nearly incompressible as the inlet

Mach number is 0.3. The maximum error is 7%. Cascade 2 is modelled at a Mach

number of 0.65 to assess the model’s performance for high subsonic Mach numbers.

The viscous loss coefficient for cascade 2 for a range of incidence angles between -6

to 6 degrees are shown in Fig. 4-5. The maximum error is 9%, and for the range

of incidence angles considered, the model over-predicts the loss coefficient. In this

regime, the axial velocity is not constant and is reduced as the density increases.

Higher axial velocities in some chordwise regions lead to over-prediction. As a highly
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cambered airfoil airfoil, cascade 3 is modelled to assess the impact of high deviation.

The viscous loss coefficient for cascade 3 for a range of incidence angles between -6

to 6 degrees are shown in Fig. 4-6. Equ. 4.10, contains a term with the cube of

the cosine of the blade metal angle at the trailing edge. Recall that it was assumed

that the blade metal angle is equal to the flow angle at the trailing edge. In this

cascade, a deviation of approximately 10 degrees occurs. The cube of the cosine of

that 10-degree difference in the calculations can create an error of over 8% in loss

coefficients. Thus, for highly cambered airfoils with high deviations at the trailing

edge, the loss model tends to yield high errors. This error can be doubled if the flow

is the high-subsonic regime.

(a) Cascade 1 (b) Cascade 2

(c) Cascade 3

Figure 4-3: Studied cascades for the viscous model assessment
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Table 4.2: Geometry data of cascades 1 and 2

parameter cascade 1 cascade 2 cascade 3
𝑡𝑚𝑎𝑥

𝑐
0.06 0.05 0.085

𝑥𝑡𝑚𝑎𝑥

𝑐
0.4 0.5 0.48

𝜒(deg) 25 15 50
𝑥𝑐𝑚𝑎𝑥

𝑐
0.5 0.5 0.57

𝑅𝐿𝐸

𝑐
0.005 0.001 0.001

𝜙𝑇𝐸 (deg) 10 10 17
𝜆 (deg) 25 30 13
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Figure 4-4: Validation of viscous loss model with prescribed trailing edge momentum
thickness for cascade 1 (𝜎 = 1.0,𝑀∞ = 0.3, 𝑅𝑒 = 335000)
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Figure 4-5: Validation of viscous loss model with prescribed trailing edge momentum
thickness for cascade 2 (𝜎 = 1.2,𝑀∞ = 0.65, 𝑅𝑒 = 700000)
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Figure 4-6: Validation of viscous loss model with prescribed trailing edge momentum
thickness for cascade 3 (𝜎 = 2,𝑀∞ = 0.4, 𝑅𝑒 = 440000)
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4.4 Artificial Neural Network to Estimate Trailing

Edge Momentum Thickness

An analytical relationship that can correctly predict the momentum thickness of the

boundary layer at the trailing edge of the airfoil is needed for an uncalibrated body

force model. Machine learning with artificial neural network tools was used by the

author to train a network and provide an analytical model. In the process, a program

was developed in the Python language, which builds blade geometry parametrically

using the approach from work by Lu et al. [77]. In that paper, a method is introduced

wherein the airfoil shape is defined by a set of geometric parameters. A Bezier curve

is used to define the camber-line. The analytical equation defining the thickness

distribution is:

𝑡 = 𝑡1𝜁
0.5 + 𝑡2𝜁 + 𝑡3𝜁

2 + 𝑡4𝜁
3 + 𝑡5𝜁

4 (4.15)

where 𝜁 is the chordwise coordinate and 𝑡 is the local thickness. There are five

coefficients 𝑡1 to 𝑡5 which are obtained by solving five closure equations:

1) Maximum thickness value is known.

2) Chord fraction of maximum thickness position is known.

3) The slope of equation on the maximum thickness is zero.

4) Trailing edge boat-tail angle is known.

5) Leading edge radius (𝑅𝐿𝐸) is related to the first and second deravative of thickness

by:

| 𝑡′′

(1 + 𝑡′2)1.5
| = 1

𝑅𝐿𝐸

(4.16)

A Python function for the geometry generation is available in Appendix A. The

code transfers the blade geometry to MISES and the mesh generation and flow solu-

tion are then carried out. Ten physical and geometric variables are chosen as the main

parameters specifying the boundary layer characteristics of any compressor cascade.

The variables are shown in Table 4.3. Table 4.4 shows the ranges of the variables and

the steps used to define the parameter space.
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Table 4.3: Variables for neural network training

Parameter Definition
𝑡𝑚𝑎𝑥

𝑐
maximum thickness to chord ratio input

𝑥𝑡𝑚𝑎𝑥

𝑐
position of maximum thickness to chord ratio input

𝜒(deg) camber angle input
𝑥𝑐𝑚𝑎𝑥

𝑐
position of maximum camber to chord ratio input

𝑖 (deg) incidence input
𝑀∞ incoming free stream relative Mach number input
𝑅𝑒𝑐 chord-based Reynolds number input
𝑐
ℎ

solidity input
𝑅𝐿𝐸

𝑐
leading edge radius to chord ratio input

𝜙𝑇𝐸 (deg) trailing edge boat-tail angle input
𝜃𝑆𝑆

𝑐
suction side momentum thickness to chord ratio output

𝜃𝑃𝑆

𝑐
pressure side momentum thickness to chord ratio output

The boundary layer equations show that the flow Reynolds number and velocity

distribution are needed to determine the boundary layer behaviour. The analytical

blade loading model showed that the incoming relative Mach number, incoming flow

angle and camber and thickness data are needed to provide the velocity distribution

around the blade. Based on these observations, the variables shown in Table 4.3 were

chosen as the complete set of parameters that determine the trailing edge momentum

thickness. A large dataset from this data generation process was stored. The process

was executed automatically until the results were provided for the defined ranges of

the variables. Around 400,000 combinations of geometries and physical conditions

have been generated and given to the neural network for training.

Taylor et al. [78] showed that one hidden-layer for compressor problems works

well. The double-layered neural network structure is used with a hidden layer and an

output layer with 40 neurons by the feed-forward back-projection method. Thus, the

input vector contains 10 nodes, the hidden layer 40 neurons and the output layer 2

nodes in this research. There is no specific criteria for the optimum architecture in

a neural network. However, from one to three layers with ten to forty neurons were

tested to assess the optimum structure. The momentum thickness to chord ratio for

either side of the blade are the two output variables in the study. It also should be
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Table 4.4: Ranges for data generation from CFD used in artificial neural network and
steps

Parameter Range Step
𝑡𝑚𝑎𝑥

𝑐
0.025-0.15 0.025

𝑥𝑡𝑚𝑎𝑥

𝑐
0.3-0.5 0.1

𝜒(deg) 10-40 15
𝑥𝑐𝑚𝑎𝑥

𝑐
0.4-0.6 0.1

𝑖 (deg) (-6)-(6) 1
𝑀∞ 0.2-1.6 0.2
𝑅𝑒𝑐 1× 105 − 1.51× 106 4.7× 105
𝑐
ℎ

0.5-2 0.5
𝑅𝐿𝐸

𝑐
0.001-0.021 0.005

𝜙𝑇𝐸 (deg) 0-10 5

mentioned that both linear (rectified linear unit activation) and non-linear (sigmoid

tangent hyperbolic) functions were tested for the training, and due to the non-linear

nature of the output quantities and continuous structure of the dependency of output

to input, the sigmoid tangent hyperbolic functions performed best for this particular

ANN. The difference between the artificial-neural-network-based viscous model and

calibration in the body force approach is that the artificial neural network is a trained

model operating for any types of blade row with no need for single-passage bladed

RANS simulations. Calibrated models are case-specific.

The convergence of the training process for the current study is shown in Fig. 4-7.

During an epoch the data are presented for training. In this work, 70% of the data

were used for training. Fifteen percent of the dataset was used in the validation set in

which the performance of the model is evaluated. Data may be interchanged between

the training set and validation set during the iterative optimization process. A test

set is not introduced during training and is only used for assessment. The process

continues until the weighting matrices and bias vectors yield a minimum error between

the actual outputs and the predicted outputs. The error is defined by the mean square

error of the predicted and actual output data. The artificial neural network has gone

through 19 epochs in this case. After the 14th epoch, there is no significant change
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in mean square error and the training is completed at the 19th epoch where the best

validation performance which is the minimum mean square error within the training

process is reached at 2.4× 10−7.
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Figure 4-7: Training process error in artificial neural network for momentum thickness
data training

The analytical functions to calculate the momentum thickness to chord ratio of

either side of the blade at the trailing edge are presented through Eqs. 4.17 to 4.21.

𝑋 is the input vector as shown in Eq. 4.17:

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡𝑚𝑎𝑥

𝑐

𝑥𝑡𝑚𝑎𝑥

𝑐

𝜒

𝑥𝑐𝑚𝑎𝑥

𝑐

𝑖

𝑀∞

𝑅𝑒𝑐

𝑐
ℎ

𝑅𝐿𝐸

𝑐

𝜙𝑇𝐸

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.17)
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The model equations are the same as those presented in Chapter 2. Here, 𝑋𝑚𝑖𝑛

and 𝑋𝑚𝑎𝑥 are:

𝑋𝑚𝑖𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.025

0.3

5

0.4

−6

0.1

1× 105

0.5

0.001

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.18)

𝑋𝑚𝑎𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.15

0.5

40

0.6

6

1.6

1.51× 106

2

0.02

10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

and the outputs are:

𝐹4,𝑘 = 2
(𝐹3,𝑘 + 1)

2
(𝑦𝑚𝑎𝑥𝑘

− 𝑦𝑚𝑖𝑛𝑘
) + 𝑦𝑚𝑖𝑛𝑘

𝑘 = 1, 2 (4.20)

where ⎡⎣ 𝜃𝑆𝑆,𝑇𝐸

𝑐

𝜃𝑃𝑆,𝑇𝐸

𝑐

⎤⎦ =

⎡⎣𝐹4,1

𝐹4,2

⎤⎦ (4.21)
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and, 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are:

𝑦𝑚𝑖𝑛 =

⎡⎣0.00099497
0.00015109

⎤⎦ (4.22)

𝑦𝑚𝑎𝑥 =

⎡⎣0.037774
0.018823

⎤⎦ (4.23)

The weighting coefficient matrices 𝑤1 and 𝑤2 and the bias vectors 𝑏1 and 𝑏2 are

presented in Appendix B.

The comparison of trailing edge momentum thickness between the ANN model

and CFD solver (MISES) for 31 random samples in both the subsonic and supersonic

regimes are shown in Figs. 4-8 and 4-9 for trained data. As was mentioned earlier, the

test dataset is never trained. They only are used to assess the final performance of the

model. The selection of test datasets is randomly made in the training process, and

the user only determines what percentage of data be considered as a test set. Samples

10, 12, and 17 are among the predictions which have a large error for the suction side.

These data could be from the test dataset, which is not trained. Another reason for

some of the discrepancies is that at high incidence angles or in some highly cambered

cases, the CFD solver may not have reached convergence so that the provided data

for ANN for some variables may be incomplete. However, the average error for the

suction side momentum thickness is 11% and for the pressure side it is 17%. The

results show that the prediction works for subsonic and supersonic regimes. However,

at some cases the error could be high.

The compressor cascades in Fig. 4-3 are considered again to assess the ANN model.

None of those cascades are among the trained dataset for ANN. However, cascade

1 and cascade 2 have geometries which are in the ranges where the neural network

has been trained. On the other hand, cascade 3 has a high camber and high trailing

edge boat-tail angle, which are not within the defined range. Figure 4-10 shows the

comparison of the ANN predicted momentum thickness and loss coefficients with data

from MISES for incidence angles between -6 to 6 degrees for cascade 1. The maximum
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Figure 4-8: Comparison of non-dimensional momentum thickness of suction side for
31 random samples with predicted model of ANN and actual data

error of momentum thickness is at an incidence angle of -6 degrees, where the error is

26%. Figure 4-11 shows the some comparison for cascade 2. The ANN model under-

predicts the momentum thickness. The maximum error is 23% at the incidence angle

of -6 degrees. At positive incidence angles, the error is up to 8%. Figure 4-12 shows

the some comparison again now, for cascade 3. Again, recall that the camber and

trailing boat-tail angle of cascade 3 are not within the defined range for the ANN

training data to assess how the model behaves beyond the defined geometry ranges.

A high discrepancy is shown for this cascade for all incidence angles. This case’s

error has a minimum of 9% at the incidence of 6 degrees and a maximum of 27% at

the incidence of -6 degrees. The current results show that at high negative incidence

angles this model can have the accuracy issues.

To show how the ANN model performs beyond the defined range for the incidence

angle, Fig. 4-13 illustrates the normalized trailing edge momentum thickness for a

range of Mach number and the range of incidence angles from -10 to 10 degrees. All

other variables are kept constant. As it is shown, the model predicts the increasing

trend of the momentum thickness for the high incidence angles even though the

training data did not include those incidence angles. This implies that the model will
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Figure 4-9: Comparison of non-dimensional momentum thickness of pressure side for
31 random samples with predicted model of ANN and actual data

not fail in real conditions where high incidence angles occur.
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Figure 4-10: Comparison of trailing edge momentum thickness(upper) and loss coef-
ficient (lower) from MISES and ANN model for cascade 1(𝜎 = 1.0,𝑀∞ = 0.3, 𝑅𝑒 =
3.35× 105)
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Figure 4-11: Comparison of trailing edge momentum thickness(upper) and loss coef-
ficient (lower)from MISES and ANN model for cascade 2(𝜎 = 1.2,𝑀∞ = 0.65, 𝑅𝑒 =
7× 105)
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Figure 4-12: Comparison of trailing edge momentum thickness(upper) and loss coef-
ficient (lower) from MISES and ANN model for cascade 3(𝜎 = 2.0,𝑀∞ = 0.4, 𝑅𝑒 =
4.4× 105)
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Figure 4-13: Momentum thickness prediction with ANN for a range of incidence angle
beyond the defined range in training
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4.5 Concluding Remarks

Drela and Youngren’s loss model was the base of the new body force loss model in this

chapter. The assumptions made in the new body force model can have an accuracy

of over 90% in loss predictions with the accurate trailing edge momentum thickness

prescription. The ANN model has poor predictions at high negative incidence angles.

The prediction of this model for non-trained blades can have good accuracies, but

it does not guarantee the accuracy at all conditions. In addition, a weak prediction

is shown with around 27% error in non-trained geometries which are not within the

range of defined variables used in the neural network training.

In next the chapter, the performance of this model on a 3D rotor case study is

investigated.
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Chapter 5

Body Force Model Assessment in a

3D Compressor Rotor

In this chapter, NASA rotor 67 [79] is selected as a case study to assess the new

loss body force model. Mesh independence and the solver setup are discussed. The

results of the simulations are presented in two parts. The first part examines the

compressor performance for three different rotational speeds with uniform inlet con-

ditions. The results are compared with experimental data and with single-passage

bladed RANS simulations. The second part focuses on non-uniform inlet condition

simulation results. The outcomes are compared with bladed URANS simulations.

5.1 Case Study and Simulation Setup

5.1.1 Case Study

The NASA rotor 67 rotor-only blade row has been examined to assess the new body

force approach. This test case is a transonic compressor. Table 5.1 describes the

geometry and design-speed operational data. The diameter, hub-to-tip radius ratio

and aspect ratio are for leading edge positions. 𝜋 is the mass-averaged total pressure

ratio. Figure 5-1 illustrates the compressor rotor.

Given that 𝑇𝑟𝑒𝑓 (288 K) and 𝑝𝑟𝑒𝑓 (101.325 kPa) are the reference condition’s
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Table 5.1: NASA rotor 67 characteristics at design point

Corrected rotational speed (RPM) 16043
Diameter (m) 0.505

𝑟ℎ
𝑟𝑡

0.42

𝜋 1.63
𝑚̇𝑐𝑟 (kg/s) 32.2

Isentropic efficiency (%) 92
Number of Blades 22

Aspect ratio 1.56

temperature and pressure, the corrected mass flow rate is:

𝑚̇𝑐𝑟 = 𝑚̇

√︀
𝑇𝑡,𝑖𝑛/𝑇𝑟𝑒𝑓

𝑝𝑡,𝑖𝑛/𝑝𝑟𝑒𝑓
(5.1)

The corrected rotational speed is:

Ω𝑐𝑟 =
Ω√︀

𝑇𝑡,𝑖𝑛/𝑇𝑟𝑒𝑓

(5.2)

This compressor rotor at its design condition has flow in the low subsonic regime

(𝑀𝑟𝑒𝑙 around 0.5 at the hub) and flow in the high subsonic regime at mid-span,

and flow in the transonic/supersonic regime at the tip (𝑀𝑟𝑒𝑙 around 1.3). In the

computational domain, the inlet and outlet ducts are eight times the length of the

mid-span chord (three times the leading edge tip radius). In the following section,

the RANS and URANS setup are introduced. After that, the mesh studies for both

the bladed RANS and body force are detailed.

5.1.2 BLADED RANS and URANS Computational Setup

ANSYS CFX R19.1 [80] is used in the bladed RANS and URANS simulations since

it is robust for turbomachinery simulations. A steady-state solver in CFX with ideal

gas accounting for the flow compressibility is used for the single passage computations

with uniform flow, and an unsteady solver with the full-annulus geometry is used for
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Figure 5-1: NASA rotor 67

non-uniform inflow. The turbulence model employed is the shear stress transport

(SST) approach by Menter [81]. A first-order discretization is used for the turbulent

transport equations and second-order discretization is used for all other transport

equations. The interface between the inlet duct and rotating duct for a steady state

is a mixing plane which is 8% of the rotor LE tip radius away from the hub leading

edge. Figure 5-2 is a schematic of the single passage solution domain and interface

position. One interface is used at the rotor-stationary duct mesh interface. The side

surfaces are set as periodic boundary conditions. There is no gap between the rotor

tip and the shroud.

The unsteady solver requires a sliding interface between rotating and stationary

mesh regions. In the uniform inflow RANS simulations, the inlet flow is considered to

have total pressure of 101325 kPa and static pressure is set at the outlet. The inlet

total temperature is fixed at 288 K. In this study, to avoid having endwall losses,

the wall condition on the shroud and hub have been selected as zero-shear stress

conditions. This ensures that all the entropy generation only occurs within the rotor
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swept volume, due to the profile and shock losses, to assess the new loss model. The

no-slip condition is applied on the rotor blade. The boundary conditions for non-

uniform inflow with URANS simulations is described in Section 5.3. The results are

compared to the experimental data provided by the previous research of Fidalgo et

al [82].

Figure 5-2: Schematic of single passage domain for uniform inflow computations

5.1.3 Body Force Computations Setup

Both uniform and non-uniform inflows in the body force model use a steady-state

solver. Since there are no blades in the body force model, there is no unsteady in-

teraction between the rotor blades and the non-uniform inflow, so a steady solution

is sufficient. ANSYS Fluent R19.1 [75] was selected for the body force simulations.

ANSYS Fluent has the capability to extend its functionality using user-defined func-

tions in the C programming language. An axisymmetric-swirl 2D solver was used for

uniform flow. Air with ideal gas properties is the operating fluid. An inviscid solver is

used as there are no viscous walls. Figure 5-3 shows the solution domain for uniform

inflow calculations with the 2D axisymmetric solver.

The body force parallel to the relative streamline in the body force domain ac-

counts for entropy generation. Several user-defined functions in the C language were
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Figure 5-3: Schematic of 2D axisymmetric solution domain for uniform inflow com-
putations

developed to implement the body force approach. The artificial neural network an-

alytical coefficients were defined as matrices, and the viscous body force model was

implemented in a “DEFINE ADJUST” macro which computes the source terms and

stores them in memory. The calculated body forces are sent to a “DEFINE SOURCE”

macro which adds the sources to the governing equations. Also, the loading model

for the turning force is calculated within the cells in the body force domain using

another “DEFINE ADJUST” macro and is used in every iteration within the solu-

tion to add the body forces to the Navier-Stokes and energy equations in “DEFINE

SOURCE” macros. Additional transport equations with zero diffusivity and zero

sources are solved along with the central governing equations: the analytical loss

model requires leading-edge relative Mach number, incidence angle and chord-based

Reynolds number. As shown in the viscous body force model discussion in Chapter 4,

the local loss calculations in any cell needs to have the properties mentioned above. A

preliminary investigation showed that the PISO solver for pressure-velocity coupling

performs more robustly than SIMPLE or Coupled solvers. So, PISO coupling was

used in the setup. Hall’s loading model with the new viscous model as well as the

shock loss model form the base of the body force models employed in this chapter.

This is consistent with the 2D setup used foe body force assessment in Chapter 4.

The governing equations with no mass sources used for the body force modelling

are:

∇.(𝜌𝑉 ) = 0 (5.3)
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𝜌𝑉 .∇(𝑉 ) +∇𝑝 = 𝑓𝑛 + 𝑓𝑝 (5.4)

𝜌𝑉 .∇(ℎ𝑡) = 𝜌𝑟Ω𝑓𝜃 −𝑊 .𝑓𝑝 (5.5)

∇ (𝜌𝑉 𝜑) = 0 (5.6)

where 𝜑 is any scalar for additional transport equations mentioned earlier.

For flow in a 3D blade row, the chord length needed for the loss model can be

estimated using the distance from leading edge to trailing edge at constant span

fractions. For the current study, 14 sections of the blade with constant span fraction

are defined and the corresponding chord length are prescribed in the calculation. The

chord length of the cells in rotor swept volume are interpolated using the local radius

and linear interpolation with the available data. The local span fraction is calculated

and the corresponding blade geometry is interpolated from the available data.

5.1.4 Mesh Independence Studies

Bladed Case

ANSYS Turbogrid [83] was used to generate the mesh around the blades for the

(U)RANS simulations. The computational domain consists of a stationary inlet duct,

a rotating rotor region, and a rotating outlet duct. A mesh independence study was

carried out to ensure reliable results. The number of cells for a single passage ranged

from 2.3 × 105 to 5 × 106 cells. The pressure ratio prediction for several grid cases

are shown in Table 5.2. The results for a rotational speed of 9620 RPM, showed that

2 × 106 cells are sufficient. The reason that this speed was chosen is that it is the

one used in the URANS simulations discussed later in this Chapter. Fig. 5-4 shows

the spanwise pressure ratio for four mesh sizes. The spanwise pressure ratio trend is

the same for all of them. However, the figure shows that from 1M cells to 2M cells

there are very low changes in pressure ratio. The boundary layer mesh on the blade
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consists of 14 layers with expansion ratio varying from 1.06 to 1.4 and the y+ reaches

to the maximum of 30 on the blade wall. These values demonstrate that the grid

resolution is adequate to capture the flow separation within the boundary layer.

Table 5.2: Grid independence study at rotational speed of 9620 RPM and 𝑚𝑐𝑟 = 21
(kg/s) for single passage RANS

Number of cells 230k 570k 1M 2M 5M
𝜋 1.209 1.191 1.185 1.183 1.183
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Figure 5-4: Spanwise pressure ratio for four different cells - Bladed RANS simulations

Figure 5-5 shows the single passage bladed mesh and tip section grid. Boundary

layer refinements are generated around the blade to properly capture viscous effects.

The blade tip has no gap with the shroud to avoid tip-leakage losses.

Body Force

Pointwise [84] software was used to generate a fully structured grid for the body force

computations. For this purpose, a 2D grid was made to be implemented in Fluent’s

axisymetric-swirl solver to assess the uniform inflows and a full-annulus grid was

generated to be implemented in Fluent for non-uniform inflow. A grid independence
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(a) (b)

Figure 5-5: (a) Single passage bladed grid, (b) blade tip grid for 2M cells

study was carried out to ensure reliable results. The flow pressure and temperature

gradients are less sensitive to the number of cells in the radial direction than the

axial direction within the body force domain. The hub and shroud are considered

to be inviscid walls and do not require dense boundary layer meshes. The studies

show that changes in the number of cells from 20 to 30 in the radial direction do not

modify the result accuracy. Thus, 20 cells in the radial direction are set for the radial

direction. This resolution is sufficient for the non-uniform flow as well. As will be

discussed later, the non-uniform simulation and comparison with the bladed URANS

results show this grid resolution’s validity. However, the results’ accuracy is more

sensitive to the number of cells in the axial direction. The axial cell size is gradually

stretched moving away from the body force zone. This upstream grid resolution

enhancement causes the solver to capture the flow suction velocity gradients before

entering the rotor domain with reasonable accuracy. Table 5.3 displays the grid

independence study results for the 2D axisymmetric body force simulations. The

results show that 50 cells in the body force zone in the axial direction are sufficient.

Figure 5-6 shows the body force grid structures for axisymmetric (uniform inlet) and

Full-annulus (non-uniform inlet). In the full-annulus body-force grid, 120 cells are

used in the circumferential direction.

In the next section, the results of the uniform inflow computations at three rota-

tional speeds are presented and discussed.
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Table 5.3: Grid independence study of body force at rotational speed of 9620 RPM
and 𝑚𝑐𝑟 = 21 (kg/s) for single passage

Chordwise cells 15 30 40 50 60
𝜋 1.230 1.195 1.189 1.186 1.186

Figure 5-6: 2D axisymmetric grid for uniform flow study (upper), Full annulus grid
for non-uniform flow study (lower)
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5.2 Uniform Inflow Modelling

Figure 5-7 shows the performance map of pressure ratio vs corrected mass flow rate

for NASA rotor 67 at three different rotational speeds. The results of the body force

and bladed RANS computations are plotted along with the experimental results from

Fidalgo et al. [82]. The experimental setup geometry includes a spinner nose while

there is no spinner nose in the numerical bladed RANS simulations. Since the spinner

nose affects the hub section velocity and we aim to have the flow field with more

compatibility with the assumptions made for the loss model, the RANS simulations

do not include a spinner nose in the computations. However, the experimental results

are a measure to approximate the accuracy of the computations to see how accurate

the model captures the physics. CFD pressure ratios are mass-averages and the

averaging plane at the downstream is 4% of the rotor LE tip radius away from the

hub after the rotor.

The pressure ratio results show that the turning model and the new viscous model

capture the pressure ratio in good agreement with bladed RANS simulations at a

variety of different conditions. With the definition of pressure ratio error as:

𝑒𝑟𝑟(%) =
𝜋𝐵𝐹 − 𝜋𝑅𝐴𝑁𝑆

𝜋𝑅𝐴𝑁𝑆 − 1
× 100 (5.7)

the maximum error appears to be at 80% of design rotational speed and the corrected

mass flow rate of 24.5 kg/s, where RANS predicts the pressure ratio as 1.42 while

body force over-predicts it as 1.46, having 9% error. Comparing the body force model

with the experimental data at 100 % of the rotational speed shows the over-prediction

of the pressure ratio at lower mass flow rates. At lower mass flow rates where the

high incidence angles appear, flow separations occur, and high values of displacement

thickness are established. Consequently, the blade loading is altered. There is no

means in the current loading model to take into account the boundary layer blockage

at high incidence angles, and the flow deviation is underestimated with Hall’s model.

Below the mass flow rate of 33.5 kg/s, due to intense flow separations, the current

RANS model could not converge.
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Figure 5-7: Pressure ratio vs corrected mass flow rates for three rotational speeds for
NASA rotor 67 - experimental results from [82]

Fig. 5-8 shows the performance map of isentropic efficiency vs corrected mass flow

rate for the rotor-only case of NASA rotor 67. The results of body force and bladed

RANS simulations are plotted along with the experimental results from Fidalgo et

al. [82].

Fig. 5-9 shows the performance map of temperature ratio vs corrected mass flow

rate for the rotor-only case of NASA rotor 67. The results of body force temperature

ratios demonstrate that the Hall’s model over-predicts the input work. That is to say,

for the worst case, at the 80% of design speed, a higher pressure ratio over-prediction

suffers more from the input work in the body force than the entropy generation under-

prediction. The details of the contribution of work input and loss on the total pressure

ratio are described in the next Section.

Next, the detailed spanwise results from these computations for all three rotational

speeds and two mass flow rates for each speed are presented and discussed. The

spanwise results are circumferentially-averaged for the bladed computations.
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Figure 5-8: Efficiency vs corrected mass flow rates for three rotational speeds for
NASA rotor 67 - experimental results from [82]

5.2.1 60% Speed Spanwise Results

At 60% rotational speed, the inlet relative Mach numbers range from 0.3 to 0.78 from

hub to tip. There are no shock waves, and there are no endwall and tip gap losses in

the bladed RANS simulations. The only loss sources are the blade boundary layers.

This speed is a reference for the non-uniform simulation, which is discussed in Section

5.3. First, we consider Hall’s model accuracy in terms of the blade loading and flow

turning at two different mass flows. One of the flow coefficients is the design condition

and the other is a lower flow coefficient which has high incidence angles across the

span. The normalized flow coefficient is defined as:

𝜑 =
𝑉 𝑀
𝑥 /𝑈𝑚𝑖𝑑

(𝑉 𝑀
𝑥 /𝑈𝑚𝑖𝑑)𝑑𝑒𝑠

(5.8)

where 𝑉 𝑀
𝑥 is the mass-averaged axial velocity just upstream of the rotor, 𝑈𝑚𝑖𝑑 is

the rotor blade speed at mid-span, and the subscript 𝑑𝑒𝑠 refers to design condition

quantities.

To compare the body force model with the bladed single passage RANS, two

normalized flow coefficients, 0.93 and 1, have been selected. Figure 5-10 shows the
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Figure 5-9: Temperature ratio vs corrected mass flow rates for three rotational speeds
for NASA rotor 67

spanwise total pressure ratio for 𝜑 = 0.93. The results show that the body force

model over-predicts the pressure ratio and the accuracy reduces as the span ratio

increases from 30% to 100%. The overall pressure ratio using the body force model

is 1.23 and the bladed single passage RANS predicts the overall pressure ratio to be

1.21. Thus, the error for the overall pressure ratio is 9.5% while the local error reaches

a maximum of 21% at the tip.

Figure 5-11 demonstrates the spanwise total temperature ratio for 𝜑 = 0.93. The

overall temperature ratio is over-predicted by 4%. However, unlike the pressure ratio,

the temperature ratio is well-predicted at the tip by the body force but gets worse

at 50% to 90% span ratio. To assess the contributions of loss and input work to

the pressure rise over-prediction, spanwise isentropic efficiency is plotted in Fig 5-

12. The results show that the prediction of entropy generation and relative total

pressure drop is predicted with good accuracy by the body force model from 20% to

80% span. However, at the hub and near the tip, the isentropic efficiency is over-

predicted. The velocity vector contours in these regions are provided to illustrate the

physical conditions of the boundary layers.

Figure 5-13 presents the relative velocity vectors for the rotational speed of 60%
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Figure 5-10: Spanwise pressure ratio at 60% speed for corrected mass flow rate of
18.8 kg/s (𝜑 = 0.93)

with the normalized flow coefficient of 𝜑 = 0.93 at the tip. Figure 5-13a shows the

leading edge zone. The streamlines on the suction side attest that flow separation

occurs near the leading edge. This early separation leads to the higher displacement

thickness, and Fig. 5-13b shows that the suction surface boundary layer is very thick

at the trailing edge. Thus, a high deviation with a high blockage occurs. A couple of

physical phenomena occur, which may cause the viscous model to fail at these condi-

tions. First off, the model assumes that the flow at the trailing edge is parallel to the

trailing edge blade metal angle. In the current condition, the velocity vectors at the

suction side do not follow the aforementioned assumption. Secondly, velocity values

at either side of the blade at the trailing edge are different. Thirdly, the displacement

thickness is not negligible: the estimation of displacement to pitch ratios for the two

normalized flow coefficients from the bladed single passage RANS simulations are

shown in Fig. 5-14. More importantly, the radial velocity changes at hub and tip due

to the contraction of the gas path leads to deviation from the assumption that the

axial velocity remains constant along the streamline. The assumption of a constant

axial velocity is further violated when the effects of blockage are also significant in

the flow path.
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Figure 5-11: Spanwise temperature ratio at 60% speed for corrected mass flow rate
of 18.8 kg/s (𝜑 = 0.93)

Figure 5-15 presents the relative velocity vectors for the rotational speed of 60%

with the normalized flow coefficient of 𝜑 = 0.93 at the hub. The low pitch along with

a high separation zone with high blockage at the hub causes higher flow acceleration

compared to the other radial sections. Axial velocity contours for both body force

and bladed single passage simulations on the meridional plane at the rotational speed

of 60% with normalized mass flow coefficient of 𝜑 = 0.93 are shown in Fig. 5-16.

The blockage effects on the axial velocity in the near-hub region for the bladed case

is visible. However, the story is different for the body force simulation since there

is no blockage. Consequently, the flow acceleration is less compared to the bladed

simulation at the hub region. Nevertheless, the assumption of constant axial velocity

at mid-span for the body force simulations appears reasonable.

The impact of changing suction (pressure ratio) on axial velocity within the blade

row can be considered by looking at the normalized spanwise mass fluxes at the

leading and trailing edges. Two planes located 4% of the rotor LE tip radius from

the hub’s leading and trailing edges in the axial direction are used for the mass-flux

plots. Figure 5-17 shows the spanwise mass flux at the leading edge. The body force

model yields more suction at 50% span at the leading edge. However, the bladed
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Figure 5-12: Spanwise isentropic efficiency at 60% speed for corrected mass flow rate
of 18.8 kg/s (𝜑 = 0.93)

RANS computations yield almost uniform flow at the leading edge. This comes from

the blade blockage impact on the upstream flow. While there is no blade in the

body force simulation, the mid-span streamlines see smaller stream-tubes compared

to the hub where a radial change in the hub curve leads to a stream-tube with a

larger area. Consequently, a lower axial flow is conducted through the hub region.

This can be seen in Fig. 5-16 for the body force flow field. However, in the presence

of the blades, the lower pitch at the hub accelerates the incoming flow and reduces

the leading edge incoming axial velocity non-uniformity compared to the body force

model. Figure 5-18 shows the spanwise mass flux at the trailing edge. Due to high

blockage at low span fractions, the flow acceleration and mass flux from the leading

to the trailing edge are higher compared to higher span fractions. Consequently, mass

flux decreases as the span fraction increases for the bladed case. A loss acting in the

opposite direction of the streamline affects the mass flux. In the tip region where a

thick turbulent boundary layer is generated, high shear work acts on the flow which

reduces the mass flux compared to lower span fractions. Figure 5-12 showed that a

high entropy generated region appears at the tip region, and the blades experience

fewer losses in the lower span. Thus, higher blade blockage and lower loss at lower
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(a)

(b)

Figure 5-13: Streamline velocity vectors at the tip at 60% speed and corrected mass
flow rate of 18.8 kg/s, (a) leading edge view, (b) a pitch spacing view

radii cause the higher accelerated axial velocity and mass fluxes in the first half span.

To further evaluate the loss body force model, the spanwise behaviour of the off-

design flow coefficient (𝜑 = 0.93) is compared with the design flow coefficient (𝜑 = 1).

The difference between the viscous effects for these two conditions is shown in Fig.

5-14, where it is clear that the design flow coefficient has a negligible displacement

thickness compared to the off-design state. For this purpose, to investigate the per-

formance of the rotor at the design flow coefficient, Figures 5-19 to 5-21 show the

spanwise total pressure ratio, total temperature ratio and isentropic efficiency for the

flow rate of 20.3 (𝜑 = 1), respectively.

At the flow coefficient 𝜑 = 1 the rotor-exit relative total pressure at the tip is lower

than at mid-span for both body force and bladed RANS computations. However,
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Figure 5-14: Spanwise boundary layer displacement to pitch ratio at 60% speed for
corrected mass flow rates of 18.8 kg/s (𝜑 = 0.93) and 20.2 kg/s (𝜑 = 1)

unlike at 𝜑 = 0.93 where the temperature ratio in the body force at the tip was the

same as the bladed RANS, the temperature ratio at the tip for 𝜑 = 1 is over-predicted.

This implies that the main part of the over-predicted pressure ratio at the tip comes

from the over-prediction of the total temperature ratio. Figure. 5-21 shows that the

over-prediction of the isentropic efficiency at the tip is lower compared to what occurs

at 𝜑 = 0.93. While the body force has a difference of 7% compared to the bladed

RANS at the tip for 𝜑 = 1, it has a high difference of 19% for 𝜑 = 0.93. The boundary

layer blockage is the principle reason for the different behaviours in the loss prediction.

As was shown in Fig. 5-14, the design state encounters a negligible displacement

thickness at the tip compared to 𝜑 = 0.93. A lower displacement thickness yields

a less flow deviation angle at the trailing edge. Thus the flow is more aligned to

the blade metal angle than for 𝜑 = 0.93. So at 𝜑 = 1, the flow better matches the

assumptions in the viscous loss model. In addition, the lower displacement thickness

has a reduced impact on the blade de-cambering. The body force loading model

does not include the re-cambering in the computations. The comparison of Figs. 5-17

and 5-22 shows that the upstream mass flux is not influenced by the viscous effects.

However, Fig. 5-23 indicates that the mass flux is more uniform at the trailing edge
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Figure 5-15: Relative velocity vectors at the hub at 60% speed and corrected mass
flow rate of 18.8 kg/s (𝜑 = 0.93)

for the body force computation since there is no blade blockage affecting the hub

section. Overall, the new loss model has a good loss prediction. Both the body force

and the bladed RANS estimate the total isentropic efficiency to be 92%.
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Figure 5-16: Normalized axial velocity contour on meridional plane for 60% speed
with corrected mass flow rates of 18.8 kg/s (𝜑 = 0.93)
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Figure 5-17: Spanwise non-dimensional mass flux at leading edge - 60% speed for
corrected mass flow rate of 18.8 (kg/s)
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Figure 5-18: Spanwise non-dimensional mass flux at trailing edge edge - 60% speed
for corrected mass flow rate of 18.8 (kg/s)

1.15 1.2 1.25 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
ze

d
 S

p
a
n

Body Force

Bladed Single Passage (RANS)

Figure 5-19: Spanwise pressure ratio at 60% speed for corrected mass flow rate of
20.2 kg/s (𝜑 = 1)
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Figure 5-20: Spanwise temperature ratio at 60% speed for corrected mass flow rate
of 20.3 kg/s (𝜑 = 1)
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Figure 5-21: Spanwise isentropic efficiency at 60% speed for corrected mass flow rate
of 20.3 kg/s (𝜑 = 1)
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Figure 5-22: Spanwise non-dimensional mass flux at leading edge - 60% speed for
corrected mass flow rate of 20.3 kg/s (𝜑 = 1)
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Figure 5-23: Spanwise non-dimensional mass flux at trailing edge edge - 60% speed
for corrected mass flow rate of 20.3 kg/s (𝜑 = 1)

5.2.2 80% Speed Spanwise Results

In this section the body force modelling at 80% rotational speed with normalized

flow coefficient of 𝜑 = 0.93 (corrected mass flow rate of 24.5 kg/s) is discussed. In

Fig. 5-8 it was shown that at this condition, a worst-case of isentropic efficiency is

predicted by the body force. To assess the performance, the spanwise pressure ratio

is shown in Fig 5-24. Over 40% span, over-prediction occurs and it becomes worse as

the span fraction increases. However, the temperature ratio is well captured by the

blade loading model as shown in Fig.5-25. Consequently, Fig 5-26. shows that the

poor performance in the loss generation predictions occur at the top 20% span. To

have a deep analysis of this discrepancy, the spanwise relative Mach number at the

leading edge is shown in Fig 5-27. The top 20% span shows that the Mach number

at the leading edge lies between 0.9 to 1.1. This is the main cause of the issue in

the loss prediction. The reason is that when generating the ANN training data in

MISES, at high incidence angles the software suffered from divergence problems for

the transonic flow regime. Still, the decreasing trend of the isentropic efficiency from

hub to tip is captured by the loss model. Fig. 5-28 shows the spanwise mass flux
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at the trailing edge for both the body force and the bladed RANS simulations. The

high amount of under-prediction of loss in the tip region leads to a higher mass flow

rate at that area in the body force compared to the bladed simulations. As it was

discussed earlier, the loss affects the local mass flow rate.
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Figure 5-24: Spanwise pressure ratio at 80% speed for corrected mass flow rate of
24.5 kg/s (𝜑 = 0.93)

5.2.3 100% Speed Spanwise Results

This section considers 100% rotational speed where the rotor incoming relative Mach

number experiences the supersonic flow from 50% span to the tip of the blade. Thus,

shock losses play an important role along with the viscous loss in the performance

predictions by the body force model. To assess the shock loss and viscous loss, the

simulations in the body force were carried out in two ways. Firstly the body force

only included the viscous loss and in the second case, the body force included both

the viscous and shock losses. Fig 5-29 shows the spanwise pressure ratio for the

normalized flow coefficient of 𝜑 = 1.03 (corrected mass flow rate of 33.5 kg/s). This

mass flow rate was the lowest flow rate for the bladed simulations where convergence

was reached. The pressure ratio comparison with and without shock loss models

shows that a considerable improvement in the pressure ratio prediction is made when
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Figure 5-25: Spanwise temperature ratio at 80% speed for corrected mass flow rate
of 24.5 kg/s (𝜑 = 0.93)

a shock loss is added to the loss model in the body force simulations. It shows that

the pressure ratio is well-predicted in the tip region. Figure 5-30 shows the spanwise

total temperature ratio at 100% rotational speed. The temperature ratio over the top

30% span shows that a shock has a high effect on the total temperature added to the

flow. This difference in the temperature ratio shows the difference of viscous work

which adds to the total enthalpy. Nevertheless, the shock loss model has rendered

the body force capable of capturing the temperature ratio trend accurately at the

tip. Figure 5-31 shows the spanwise isentropic efficiency and highlights the shock loss

effects in the entropy generation predictions. As shown, when taking into account the

shock loss, the entropy generation is accurately predicted over the top 30% span. This

implies that a good shock loss model in the supersonic regime plays an important role

in the entropy generation. At the hub, the viscous loss is over-predicted. At mid-span

where the flow behaviour is closer to those assumed in the loss model, the accuracy

of the loss is good. Figures 5-32 and 5-33 show the spanwise normalized mass fluxes

at the leading edge and trailing edge, respectively, for 100% rotational speed. The

shock loss has no effect on the incoming mass flux to the rotor, however, at the

trailing edge, it is affecting the mass flux and due to the shock loss, a lower mass
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Figure 5-26: Spanwise isentropic efficiency at 80% speed for corrected mass flow rate
of 24.5 kg/s (𝜑 = 0.93)

flux is passed through the top span region compared to the no-shock model, resulting

in good agreement with the bladed mass flux. It also should be mentioned that a

viscous loss that reduces the local mass flux, alters the local velocity and consequently

the local flow deviation angles are affected. At lower mass fluxes, higher deviation

angle end up with the higher loading force by Hall’s model and the total input work

changes.

To sum up, at all the operating conditions, the body force shows higher suction

at mid-span fractions because of the lack of blade metal blockage. The total pressure

rise depends on both the flow turning and loss models. At design flow coefficients the

viscous loss model is accurate compared to at lower flow coefficients. Violations of

the assumptions made for the loss model occur at the hub and tip. The shock model

improves the loss prediction with a high impact in the body force.
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Figure 5-27: Spanwise leading edge relative Mah number at 80% speed for corrected
mass flow rate of 24.5 kg/s (𝜑 = 0.93) - from body force computation
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Figure 5-28: Spanwise non-dimensional mass flux at trailing edge edge - 80% speed
for corrected mass flow rate of 24.5 kg/s (𝜑 = 0.93)
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Figure 5-29: Pressure ratio in spanwise at 100% speed for corrected mass flow rate of
33.5 kg/s (𝜑 = 1.03)
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Figure 5-30: Spanwise temperature ratio at 100% speed for corrected mass flow rate
of 33.5 kg/s (𝜑 = 1.03)
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Figure 5-31: Spanwise isentropic efficiency at 100% speed for corrected mass flow rate
of 24.5 kg/s (𝜑 = 0.93)
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Figure 5-32: Spanwise non-dimensional mass flux at leading edge edge - 100% speed
for corrected mass flow rate of 33.5 kg/s (𝜑 = 1.03)
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Figure 5-33: Spanwise non-dimensional mass flux at trailing edge edge - 100% speed
for corrected mass flow rate of 33.5 kg/s (𝜑 = 1.03)

5.3 Non-Uniform Inflow Modelling at 60% Speed

A boundary layer ingestion type of inlet boundary condition has been analyzed for

non-uniform flow simulations. The depth of the inlet boundary layer is considered

to be half of the inlet diameter, and the velocity profile is quadratic within the

boundary layer where 𝑉𝑤𝑎𝑙𝑙 = 0.5𝑉𝑚𝑎𝑥. This boundary layer represents a low-speed

turbulent boundary layer [45]. Previous work by Defoe et al. [45] shows that Hall’s

flow turning model works well for such vertically stratified distortions. 60% rotational

speed is chosen for which the inlet maximum axial Mach number is around 0.3 at the

corrected mass flow rate of 20.5 (kg/s). Due to the low Mach number we assume

incompressible flow and calculate the total pressure from the velocity distribution.

The body force and bladed computation are carried out at the same corrected mass

flow rate, which is 20.5 (kg/s) with flow coefficient of 0.5 (𝜑 = 1), close to the design

point to prevent operating in unstable conditions. The profile of total pressure and

the related contour plot are shown in Fig. 5-34.

𝑈𝑚𝑖𝑑 is the mid-span blade speed. At the uniform inlet condition a pressure ratio
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Figure 5-34: Non-uniform inlet boundary condition of total pressure

of 1.21 with the body force and 1.19 with the bladed RANS simulations are predicted.

Both the bladed and body force simulations predict the isentropic efficency to be 92%.

The time step for the bladed URANS with non-uniform inflow was 9.45×10−6(𝑠).

This ensures that in one time step, the rotor rotates one degree and there are thus

16.36 steps per blade passing period. It is worth mentioning that a better resolution

occurs if the time step is chosen in a way that it ensures only one cell in circumferential

direction is passed in one time step but due to the limited computation resources,

we selected one degree instead of one cell. The run time was 15 revolutions. The

domain geometry is the same as for the uniform flow cases. The mid-span normalized

mass flux upstream of the rotor half a mid-span chord from the rotor leading edge for

the body force and bladed URANS computations are shown in Fig. 5-35. The body

force shows more suction than URANS at mid-span since the overall mass flux in the

undistorted region, is higher.

The contours of the trailing edge total pressure to ambient static pressure ratio

( (𝑝𝑡)
𝑝∞

) (𝑝∞ = 101325 (kPa)) at the exit of the rotor for both body force and bladed

URANS are illustrated in Fig. 5-36. The body force captures the trailing edge total

pressure well compared to the bladed URANS. The contours of non-dimensional total
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Figure 5-35: Normalized mass fluxes at mid-span upstream of the rotor modelled by
body force and bladed URANS

temperature ( 𝑇𝑡

𝑇∞
) and at the outlet section of the rotor for both body force and bladed

URANS time-averaged results are illustrated in Fig. 5-37. The highest temperature

ratio in the body force model is 0.05 more than the bladed case. Hall’s loading

model does not take into account the displacement thickness effects on the loading

and since there are high incidence angles in the incoming flow to the rotor due to the

non-uniform inflow, this leads the model to over-predict the work input. Figure 5-38

shows the incidence angles for the body force and the bladed URANS simulations.

The body force computation predicts the incidence to be around 4 degrees at the

hub while the URANS shows that an incidence of around 6 degrees appears. Both

simulations have the same maximum incidence angles in the tip region. The lower

incidence angles for the body force at the hub is the main reason that the body force

is under-predicting the entropy in that region. The mid-span region experiences the

minimum incidence angles.

The contours of non-dimensional entropy ( (𝑠−𝑠∞)𝑇∞
𝑈2
𝑚𝑖𝑑

) at the outlet section of the

rotor for both body force and bladed URANS time-averaged results are illustrated

in Fig. 5-39. The high entropy region near the tip is qualitatively captured by the

body force. However, the current loss model poorly captures the entropy rise near
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the hub. As it was shown in the uniform simulations, the varying axial velocity at the

hub region violates the assumptions made for the viscous loss model. In addition, the

displacement thickness variation in the non-uniform flow affects the local mass flux

and consequently the local loading. This leads to more error in the predictions of the

body force model compared to the bladed URANS. The performance characteristic

maps including non-uniform operations are shown in Figs. 5-40 and 5-41 for pressure

ratio and isentropic efficiency, respectively. The overall results of the body force and

bladed URANS simulations are shown in Table 5.4 and are compared with uniform

inflow at the same corrected mass flow rate. The results show that at the same mass

flow, the body force model estimates the isentropic efficiency to be 90% for non-

uniform flow and 92% for clean inflow. Thus, the body force model predicts that the

non-uniform inflow yields a 2% of drop in isentropic efficiency. The bladed RANS

yields an isentropic efficiency for uniform flow of 92%, and the URANS shows that

the efficiency is 89%, so there is 3% decline in isentropic efficiency for non-uniform

flow.

A 2% efficiency penalty due to a BLI distortion is typical of what has been found

in the literature [85,86], so the 3% penalty from the URANS is in the agreement with

the literature.

The new loss model recognizes the high and low entropy generation regions and

predicts a lower efficiency in non-uniform inflow conditions. It performs well in the

tip regions, but the hub entropy generation prediction is poor. Blockage effects and

different mass flux predictions in addition to the assumptions made for the loss model

contribute to the entropy generation shift in the exit plane.

5.4 Concluding Remarks

In this chapter, the loss model was assessed in a 3D rotor case study. There are

discrepancies in the spanwise local entropy generation but the increased loss at mid-

span is well predicted by the loss model except at 80% speed in the transonic regime.

In addition, the shock loss improves the loss predictions significantly. Furthermore, at
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60% speed where there are no shock loss, the entropy generation and loss predictions

are in good agreement at design. The model captures a reduced pressure ratio in non-

uniform inflows compared to the uniform inflow and only a 1% difference in predicted

efficiency penalty shows that the model performs greatly in a quantative manner in

non-uniform inflow. It is worth noting that the 2% efficiency penalty predicted by

the body force is in line with those found for other boundary-layer ingestion fans.

Table 5.4: Comparison of body force and bladed CFD for the same mass corrected
flow rate (20.5 kg/s) for uniform and non-uniform inflows

𝜋 𝜂(%)
Body Force (uniform) 1.21 92

Body Force (non-uniform) 1.20 90
RANS (uniform) 1.19 92

URANS (non-uniform) 1.18 89
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Figure 5-36: Contours of normalized total pressure for body force (upper) and time-
averaged URANS (lower) at the rotor trailing edge
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Figure 5-37: Contours of normalized total temperature for body force (upper) and
time-averaged URANS (lower) at the trailing edge
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Figure 5-38: Incidence angles for non-uniform inflow in body force and bladed URANS
simulations
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Figure 5-39: Contours of normalized entropy for body force (upper) and time-averaged
URANS (lower) at the trailing edge
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Figure 5-40: Pressure ratio vs corrected mass flow rates at 60% mass flow rate for
uniform and non-uniform inflows
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Figure 5-41: Efficiency vs corrected mass flow rates at 60% mass flow rate for uniform
and non-uniform inflows
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Chapter 6

Summary, Contributions, and

Future Work

This dissertation aimed to develop a parallel force model for the body force method

without the need for calibration using RANS simulations. Previous loss models either

use simplifications without calibration and are not suitable for the separated flow on

the blade surface (Benichou et al. [23] showed that loss prediction error in the stator

for non-uniform inflow is 37% with the latest no calibration loss model) or require

calibration, in which case the computational costs increase. The current study uses

the total pressure defect model of Drela and Youngren as the viscous base model and

Denton’s shock model as the base for shock effects. An artificial-neural-network-based

equation yields an analytical model for viscous loss calculations which is implemented

in parallel force computations. This chapter gives a summary of the accomplishments

in this study, then goes through describing the dissertation contributions. In the end,

recommendations for future work are presented.

6.1 Summary

The body force model is a simplified simulation approach that is a promising method

for studying new turbofan engine designs facing non-uniform conditions. Body force

models can capture the fan/inlet interactions at low computational cost. An accurate
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no-calibration approach requires the solution of the boundary layer equations along

each relative streamline using the local flow quantities. It was shown that the bound-

ary layer solution requires the velocity distribution around the blade. The direct

solution of the boundary layer uses an iterative procedure that adds to the cost of

the computations. Therefore, a viscous profile loss body force, which depends on the

local flow and trailing edge momentum thickness, has been introduced. It was also

shown that an indirect way of carrying out boundary layer calculations to obtain the

momentum thickness at the trailing edge is an artificial-neural-network-based model.

Thus, a new ANN model has been presented using the blade geometry and the flow

parameters to predict the trailing edge momentum thickness. In addition, a simple

shock loss model was introduced. The model was assessed in 2D cascades and a 3D

rotor case study.

6.2 Contributions

The contributions arising from the dissertation are:

1. A new loading model for 2D cascades is introduced that predicts the velocity

distribution and flow turning in the body force computations. This model can be

used in Denton’s based loss generation models where the local velocities for the

suction and pressure sides are used along with the dissipation coefficient. It was

also shown, however, that the assumption of constant dissipation coefficient can

lead to significant under-prediction of loss coefficient even when good agreement

of the edge velocities exists. This finding supports the idea that a different

approach to computing loss in a body force model is needed, one that does not

rely on dissipation coefficient.

2. A new body force model for viscous loss, based on trailing edge momentum

thickness, is presented. It is based on Drela and Youngren’s approach for loss

determination. It was shown that when the trailing edge momentum thickness

for 2D cascades is prescribed from MISES, the model does an excellent job of
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predicting the loss coefficient.

3. A machine-learning-based model for the trailing edge momentum thickness

based on seven geometric and three flow variables was developed and trained

on a large dataset of approximately 400,000 cascade computations from MISES.

For cascades at constant radius and constant streamtube area, it was shown to

be able to reliably predict trailing edge momentum thickness. When applied

to a 3D compressor rotor, the model is able to predict loss with reasonable

accuracy between 25% and 85% span where streamtube contraction has a low

impact on the axial velocities. In the transonic regime the data-driven approach

lacks accuracy since the provided data is insufficient. Overall, these results sug-

gest that the machine-learning-based approach is promising, but that training

data which includes radius and streamtube area changes would be beneficial to

include.

4. A new shock loss model is introduced to the body force simulations, based on

Denton’s shock loss formulation. Inclusion of this model massively increases the

accuracy of the efficiency prediction in regions of supersonic relative flow.

5. The new loss model captures local entropy generation trends correctly for a non-

uniform inflow representative of boundary layer ingestion. The model still lacks

accuracy at the hub in the non-uniform case due to axial velocity variations

which are neglected in the ANN model and also due to the mass flux predition

in the body force model that is different with the bladed URANS, but the

overall efficiency (and efficiciency penalty) prediction in non-uniform flow for

the non-calibrated model can be considered an advancement of the state of the

art.

6.3 Future Work

The following additional work is recommended based on the findings of this disserta-

tion:

120



1. The neural network in this study has used ten independent variables, whereas

the real physics has more parameters which affect the loss. The range of inci-

dence angles in the available data is between -6 to 6 degrees, while at off-design

conditions, the incidence angles were shown to exceed these bounds. Future

studies with a broader range of variables may help upgrade the current analyt-

ical model.

2. A sensitivity analysis on the boundary layer calculations is needed to preserve

the most dominant variables for ANN input and skip the less sensitive parame-

ters to reduce the complexity of the ANN training while increasing the accuracy.

3. The studies of loss generation around the airfoil showed that the leading edge

radius plays a vital role in determining the amplification ratio progress. The

sharper leading edges are more susceptible to higher shape factors and separa-

tions than blunt leading edges. So, it seems that a sensitivity analysis on the

leading edge radius is required to improve the loss model.
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Appendix A

Python Code Running MISES

"""Module containing function that calls the geometry data and creates

geometry file as input for MISES

Then, it runs the MISES and creates the output as text files and subsequently

saves the text file in a folder with the name of CreatedDtata

Developed by Syamak Pazireh (Sept 2019)"""

import MisesFunctions as mf

import MISES_InputData as MID

import os

import os.path

import shutil

from numpy import arange

import os

import time

def file_generation (thickness,thickness_position, maximum_camber,

max_camber_position, incidence, Mach, Re, solidity,R_LE,TE_beta):
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# *********************************** Calling MISES input files generator

************************************************

#Inputs: thickness, maximum camber, max camber position

, incidence, Mach, Re, solidity

ext = MID.InputData(thickness,thickness_position, camber

, max_camber_position,incidence, Mach, Re, solidity,R_LE,TE_beta)

return ext

"""

try:

os.remove("ises.{0}".format(ext))

except:

pass

try:

os.remove("stream.{0}".format(ext))

except:

pass

try:

os.remove("blade.{0}".format(ext))

except:

pass

try:

os.remove("{0}".format(ext))

except:

pass

"""

incidence = 0

Mach = 0.1
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Re = 1000000

thickness = 0.05

max_thickness_position = 0.5

camber = 20

max_camber_position = 0.5

solidity = 1.0

R_LE = 0.01

TE_angle = 5

start_time = time.time()

for incidence in arange(-6,7,1):

for Mach in arange(0.25,1.7,0.2):

for Re in arange(100000,1700000,470000):

for camber in arange(25,50,15):

for max_thickness_position in arange(0.3,0.8,0.1):

for max_camber_position in arange(0.4,0.7,0.1):

for thickness in arange(0.02,0.16,0.025):

for solidity in arange(0.5,2.5,0.5):

for R_LE in arange(0.015,0.021,0.005):

for TE_angle in arange(10,15,5):

#Inputs: thickness,thickness_position, maximum camber, max camber position,

incidence, Mach, Re, solidity,R_LE,TE_beta

ext = file_generation (thickness,max_thickness_position, camber,

max_camber_position, incidence, Mach, Re, solidity,R_LE,TE_angle)

# Run ISET to create the mesh

command = ’iset’

try:

mf.RunIset(command, ext, cwd_in=None, dump=False)
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except:

pass

# Run ISES to run the simulations

command = ’ises’

try:

a = mf.RunIses(command, ext, Nrun=50, cwd_in=None, dump=False)

# Remove idat file and do not run iplot (if no convergence reached)

# Otherwise, run iplot and save the output

if a == 0:

os.remove("idat.{0}".format(ext))

else:

# Run IPLOT to create the output file

command =’iplot’

try:

mf.RunIplot(command, ext, cwd_in=None, dump=False)

print(’iplot terminated’)

except:

pass

except:

pass

try:

# Extract the data from iplot output file

data = open(’{0}.txt’.format(ext), ’r’)

lines = data.readlines()

SS = []

PS = []

XS = []

ZetaS = []
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UeS = []

ThetaS = []

HS = []

Mach_S = []

XP = []

ZetaP = []

UeP = []

ThetaP = []

HP = []

Mach_P = []

"""

The data are read from MISES outputfile and written to the text file as input

of artificial neural network platform

"""

# In this section the code splits the suction and pressure side data and puts

them in arrays

i = 0

SS.append(lines[i+2].split()) # Splilit the data in each line of iplot text

file to 12 parts

XS.append(SS[i][0]) # Assign first column as x/c of suction side

ZetaS.append(SS[i][2]) # Assign 3rd column as s/c of suction side

(streamline)

UeS.append(SS[i][4]) # Assign 5th column as Ue/a0 of suction side

(velocity distribution)

ThetaS.append(SS[i][6]) # Assign 7th column as momentum_thickness/chord

of suction side

HS.append(SS[i][7]) # Assign 8th column as shape factor parameter of

suction side

Mach_S.append(SS[i][11]) # Assign 12th column as Mach number of suction
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side

index = float(XS[i])

while index<1:

i += 1

# Save suction side data in lists

SS.append(lines[i+2].split()) # Splilit the data in each line of iplot

text file to 12 parts

XS.append(SS[i][0]) # Assign first column as x/c of suction side

ZetaS.append(SS[i][2]) # Assign 3rd column as s/c of suction side

(streamline)

UeS.append(SS[i][4]) # Assign 5th column as Ue/a0 of suction side

(velocity distribution)

ThetaS.append(SS[i][6]) # Assign 7th column as momentum_thickness

/chord of suction side

HS.append(SS[i][7]) # Assign 8th column as shape factor

parameter of suction side

Mach_S.append(SS[i][11]) # Assign 12th column as Mach number of

suction side

index = float(XS[i])

index_s = i+1

i = 2+(i+1)+2-1

j = 0

PS.append(lines[i].split()) # Splilit the data in each line of iplot text file

to 12 parts

XP.append(PS[j][0]) # Assign first column as x/c of suction side

ZetaP.append(PS[j][2]) # Assign 3rd column as s/c of suction side

(streamline)
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UeP.append(PS[j][4]) # Assign 5th column as Ue/a0 of suction side

(velocity distribution)

ThetaP.append(PS[j][6]) # Assign 7th column as momentum_thickness/chord

of suction side

HP.append(PS[j][7]) # Assign 8th column as shape factor parameter of

suction side

Mach_P.append(PS[j][11]) # Assign 12th column as Mach number of suction

side

index = float(XP[j])

while index<1:

j += 1

i += 1

# Save suction side data in lists

PS.append(lines[i].split()) # Splilit the data in each line of iplot text

file to 12 parts

XP.append(PS[j][0]) # Assign first column as x/c of suction side

ZetaP.append(PS[j][2]) # Assign 3rd column as s/c of suction side

(streamline)

UeP.append(PS[j][4]) # Assign 5th column as Ue/a0 of suction side

(velocity distribution)

ThetaP.append(PS[j][6]) # Assign 7th column as momentum_thickness

/chord of suction side

HP.append(PS[j][7]) # Assign 8th column as shape factor

parameter of suction side

Mach_P.append(PS[j][11]) # Assign 12th column as Mach number of

suction side

index = float(XP[j])

index_p = j+1
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FS = []

for k in range(0,index_s-1):

num = (((1 + 0.2*float(Mach_S[k+1])**2)**3.5 * float(UeS[

k+1])**3*float(ThetaS[k+1])) - \

((1 + 0.2*float(Mach_S[k])**2)**3.5 *

float(UeS[k])**3*float(ThetaS[k]))) / (float(ZetaS[k+1])

-float(ZetaS[k]))

FS.append(num)

FS.append(0)

FP = []

for k in range(0,index_p-1):

num = (((1 + 0.2*float(Mach_P[k+1])**2)**3.5 * float(UeP[

k+1])**3*float(ThetaP[k+1])) - \

((1 + 0.2*float(Mach_P[k])**2)**3.5 *

float(UeP[k])**3*float(ThetaP[k]))) / (float(ZetaP[k+1])

-float(ZetaP[k]))

FP.append(num)

FP.append(0)

# In this section, a text file is oppend and the all nessasary data

are written in it

# thickness,max_thickness_position, camber, max_camber_position, incidence,

Mach, Re, solidity,R_LE,TE_angle

fid = open(’{0}.txt’.format(ext), ’w’)

fid.write(’%s%12s%15s%7s%7s%10s%9s%9s%9s%13s%3s%4s%6s%14s%12s%12s%30s%10s\n’

%(’x’,’s’,’Ue/a0’,’theta’,’H’,’Mach’\

,’t_max’,’X_t_max’,’camber’,’X_camer_max’,’i’,’M0’,’Re’,’solidity’,’L.E.

radius’,’T.E.angle’,’d/ds((1+0.2Me^2)*Ue^3*theta)’,’[17]/h’))
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fid.write(’\n’)

fid.write(’%95s\n’%(’"Suction Side"’))

fid.write(’\n’)

for i in range(0,index_s):

fid.write(’%11.8f%11.8f%7.4f%11.8f%7.4f%8.5f%7.4f%10.7f%5d%7.1f%11d%6.2f%9

d%4.1f%12.3f%9d%25.13f%25.13f\n’\

%(float(XS[i]),float(ZetaS[i]),float(UeS[i])

,float(ThetaS[i]),float(HS[i])

,\

float(Mach_S[i]),thickness,max_thickness_position,camber,

max_camber_position,incidence

, Mach, Re, solidity,R_LE,TE_angle,FS[i],FS[i]*solidity))

fid.write(’\n’)

fid.write(’%95s\n’%(’"Pressure Side"’))

fid.write(’\n’)

for i in range(0,index_p):

fid.write(’%11.8f%11.8f%7.4f%11.8f%7.4f%8.5f%7.4f%10.7f%5d%7.1f%11d%6.2f%9d

%4.1f%12.3f%9d%25.13f%25.13f\n’\

%(float(XP[i]),float(ZetaP[i]),float(UeP[i])

,float(ThetaP[i]),float(HP[i])

,\

float(Mach_P[i]),thickness,max_thickness_position,camber,

max_camber_position,incidence,

Mach, Re, solidity,R_LE,TE_angle,FP[i],FP[i]*solidity))

fid.close()

# Finally move the txt file to the saving folder (all files are saved there)

cwd = os.getcwd()
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current = "{}".format(cwd) + "/" + ext + ".txt"

destination = "{}".format(cwd) + "/CreatedData/" + ext + ".txt"

try:

shutil.move(current,destination)

except:

pass

current = "{}".format(cwd) + "/" + ’idat.’ + ext

destination = "{}".format(cwd) + "/DatFiles/" + ’idat.’ + ext

try:

shutil.move(current,destination)

except:

pass

except:

pass

try:

os.remove("ises.{0}".format(ext))

except:

pass

try:

os.remove("stream.{0}".format(ext))

except:

pass

try:

os.remove("blade.{0}".format(ext))

except:

pass

try:

os.remove("{0}".format(ext))
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except:

pass

execution_time =time.time() - start_time

# path joining version for other paths

cwd = os.getcwd()

DIR = "{}".format(cwd) + "/CreatedData/"

number_of_files = len([name for name in os.listdir(DIR) if

os.path.isfile(os.path.join(DIR, name))])

# Generates execution time filename

time_filename = ’time for execution of {0} files’.format(number_of_files)

fid = open(time_filename, "w")

fid.write(’%s\n’%(’execution time’))

fid.write(’%15.2f\n’%(execution_time))

fid.write(’%s\n’%(’number of generated files’))

fid.write(’%d’%(number_of_files))

fid.close();

import matplotlib.pyplot as plt

import os

from numpy import arange

import numpy as np

import math

from math import pi, atan, sin, cos, sqrt, pow, tan, asin
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def

airfoil(max_thickness,max_thickness_position,

camber,max_camber_position,R,TE_angle):

"""

The geometry of space parameterized airfoil is generated

This airfoil section is used in compressor and Specifications

Developed by Syamak Pazireh (Oct 2019)

"""

t_max = max_thickness # t_max/chord

t_max_position = max_thickness_position # t_max_position/chord

p = max_camber_position

# max_camber_position/chord

R_LE = R # Fraction of LE radius over chord

beta = TE_angle # Trailing edge boat-tail angle

#m = max_camber # max_camber/chord

d = tan(camber*pi/180)

m = (sqrt(1-4*d**2*(p-1)*p)-1)/(4*d)

y_t = []

y_c = []

THETA = []

dyc_dx = []

CLx = []

CLy = []

NumberOfNodes = 200
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x = arange(0,1+(1./NumberOfNodes),(1./NumberOfNodes))

CLx = x

i = 0

# Calculation of local y_c (camberline) NACA 4 digit camberline

for X in x:

if X<p:

y_c.append(m/p**2*(2*p*X-X**2))

# equation of camber line

dyc_dx.append(2*m/p**2*(p-X))

# slope of camberline

else:

y_c.append(m/(1-p)**2*((1-2*p)+2*p*X-X**2))

# equation of camber line

dyc_dx.append(2*m/(1-p)**2*(p-X))

# slope of camberline

THETA.append(atan(dyc_dx[i]))

i += 1

CLy = y_c

XT = t_max_position

# ref paper is : "An improved geometry parameter airfoil parameterization

method" Lu Xiaoqiang et. al. 2018 Journal of Aerospace science and technology

C = np.array([[XT**0.5,XT**1,XT**2,XT**3,XT**4],[0.5*XT**-0.5,1,2*XT

,3*XT**2,4*XT**3],\

[0.25,0.5,1,1.5,2],[1,0,0,0,0],[1,1,1,1,1]])

B = np.array([t_max/2,0,-tan(beta/2*pi/180),sqrt(2*R_LE),0])
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A = np.dot(np.linalg.inv(C),B)

y_t = []

xtop = []

ytop = []

xbot = []

ybot = []

for i in range(0,len(CLx)):

y_t.append(A[0]*CLx[i]**0.5+A[1]*CLx[i]**1+A[2]*CLx[i]**2+

A[3]*CLx[i]**3+A[4]*CLx[i]**4)

xtop.append(CLx[i] + (y_c[i])*sin(THETA[i]))

ytop.append(CLy[i] + (y_t[i])*cos(THETA[i]))

xbot.append(CLx[i] - (y_c[i])*sin(THETA[i]))

ybot.append(CLy[i] - (y_t[i])*cos(THETA[i]))

return x,y_c,ybot,ytop,y_t,xtop,xbot,dyc_dx

"""

(Xc,Yc,YL,Yu,Y,Xu,XL,dyc_dx) = airfoil(0.1,0.4,0.1,0.4,0.01,15)

#(max_thickness,max_thickness_position,camber,max_camber_position,R,,TE_angle)

plt.plot(Xc, Yc,’r’,Xu,Yu,’b’,XL,YL,’m’)

plt.xlabel(’x/c’)

plt.ylabel(’y/c’)

plt.title(’airfoil’)

plt.xlim(0, 1)

plt.ylim(-0.5, 0.5)

plt.grid(True)
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plt.show()

"""

"""Module containing function definitions for generating

input geometry and solver

conditions for MISES.

Developed by Syamak Pazireh (Sept 2019)"""

import os

import os.path

import math

from math import pi, atan, sin, cos, sqrt, pow, tan

import airfoil_geometry_generator as agg

import matplotlib.pyplot as plt

import numpy as np

def InputData(thickness, thickness_position, camber, max_camber_position,

incidence, Mach, Re, solidity,LE_Radius,TE_beta):

print (’Generating input data for MISES’)

# **************** NACA 4 digit camber with C4 profile compressor

******************************

t = thickness # Maximum thickness (percentage of the chord)

# Set Flow Angles For Analysis

zeroincidance = 0 # degrees

minangle = 0 # degrees

maxangle = 0 # degrees
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intervangle = 0 # delta degrees

# ----------------------Stream Tube Specifications

-----------------------

Xstreamstart = -20 # X coordinate of the streamtube at start.

Xstreamend = 20 # X coordinate of the streamtube at the end.

radiusstart = 1 # m’ -Radius at X coordinate of the streamtube at start.

radiusend = 1 # m’ -Radius at X coordinate of the streamtube at the end.

Thicknessstart = 1 # Thickness at X coordinate of the streamtube at start.

Thicknessend = 1 # Thickness at X coordinate of the streamtube at the end.

r=(radiusstart+radiusend)/2

# Set ------------------------------Geometry

Parameters-----------------------------------

chord = 1 # m’

Lref = 1

# --------------------------------Set Up Grid

Parameters--------------------------------

Xinletgrid = 2 * chord

# Distance from the leading edge. Usually 2 times the chord (Lref/rmean) is ok.

Xoutletgrid = 2 * chord

# Distance from the trealing edge. Usually 2 times the chord (Lref/rmean) is ok.

# ---------------------------SET UP AIRFOIL DATA NAME

-----------------------------------
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name = ’airfoil’

# ++++++++++++++++++++++++ calling data generator

+++++++++++++++++++++++++++++++++++++++++++++++++++++

# ================================== Define blade - Shape Space

=======================================

(Xc,Yc,YL,Yu,Y,Xu,XL,dyc_dx) =

agg.airfoil(thickness,thickness_position,camber,max_camber_position

,LE_Radius,TE_beta)

# Camber Line

CLx = Xc

CLy = Yc

xtop = []

ytop = []

xbot = []

ybot = []

for i in range(1,len(CLx)):

xtop.append(Xc[i])

ytop.append(Yu[i])

for i in range(0,len(CLx)):

xbot.append(Xc[i])

ybot.append(YL[i])
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# Assemble data required for MISES blade file

X = xtop[::-1] + xbot

Y = ytop[::-1] + ybot

XCFX = xbot[::-1] + xtop

YCFX = ybot[::-1] + ytop

ZCFX = XCFX

ThetaCFX = YCFX

CFX = ZCFX + ThetaCFX

Xdim = X

Ydim = Y

# round off trailing edge

Xdim1=Xdim*10;

Ydim1=Ydim*10;

# Plot Blade

"""

plt.plot(Xc, Yc,’r’,Xc,YL,’b’,Xc,Yu,’b’)

plt.xlabel(’x/c’)

plt.ylabel(’y/c’)

plt.title(’airfoil’)

plt.xlim(0, 1)

plt.ylim(-0.5, 0.5)

plt.grid(True)

plt.show()

"""

# ============================== INPUT DATA FOR EXECUTABALE MISES FILES

================================
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# Blade File

LE_CamberLine_angle = atan(dyc_dx[0])

LE_CamberLine_angle = LE_CamberLine_angle * 180/pi

sinl = dyc_dx[0]

sout = dyc_dx[-1]

"""sinl = 0

sout = 0"""

chinl = Xinletgrid

chout = Xoutletgrid

pitch = 1/solidity # non-dimensinal pitch with respect to chord which is

pitch/chord

AOA = incidence + LE_CamberLine_angle

AOA = AOA*pi/180

# Case name

name_of_file = "i-{0}-M-{1}-Re-{2}-mt-{3}-mtp-{4}-c-{5}-mcp-{6}-s-{7}-

R_LE-{8}-TE-{9}".format(\

incidence,Mach,Re/1000000.0,thickness,thickness_position,camber,

max_camber_position,solidity,LE_Radius,TE_beta)

blade_filename = ’blade.’ + name_of_file

# opens BLADE.* file

fid = open(blade_filename, "w")
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#writes title/ header and flow angles, blade angles and pitch

and current blade

geometry coordinates

fid.write(’%s\n’%(name_of_file))

fid.write(’%12.8f%12.8f%12.8f%12.8f%12.8f\n’%(sinl,sout,chinl,chout,pitch))

z = [Xdim,Ydim]

zp = np.transpose(z)

for i in range(0,len(Xdim)):

fid.write("%12.8f %12.8f\n" %(zp[i][0],zp[i][1]))

# Closes BLADE.* file

fid.close()

# ============================ Stream File

==============================================

Wheelspeed = -0

streamstart = Xstreamstart

streamend = Xstreamend

nondimradiusstart =radiusstart

nondimradiusend = radiusend

bstart = Thicknessstart

bend = Thicknessend

# Write out stream file

# Generates full output filename

stream_filename = ’stream.’ + name_of_file
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# Opens STREAM.* file

fid = open(stream_filename, "w")

fid.write(’%12.8f\n’%Wheelspeed)

fid.write(’%12.8f %12.8f %12.8f\n’%(streamstart,nondimradiusstart,bstart))

fid.write(’%12.8f %12.8f %12.8f\n’%(streamend,nondimradiusend,bend))

# Closes STREAM.* file

fid.close();

# ======================== ISES File

===========================================

Mach_in = Mach

Mach_out = Mach

p2_p01 = 1/(1 + 0.2 * Mach_out**2)**3.5

p1_p01 = 1/(1 + 0.2 * Mach_in**2)**3.5

Globvars = [1,2,5,15,6] # | grid exit slope | LE stag. pt.

Constraits = [1,4,3,16,6] # | set LE Kutta | set TE Kutta

"""Globvars = [1,2,5] # | grid exit slope | LE stag. pt.

Constraits = [1,4,3] # | set LE Kutta | set TE Kutta """

p1divpo1 = p1_p01 # ignored

s1 = tan(AOA) # inlet flow slope/direction

mp1 = -1.0 * chord # of Lrefs (=chord) uptsream of LE that BC is imposed

Mach_out = 0.0 # ignored

p2divpo1 = p2_p01 # outlet pressure

s2 = 0 # ignored

mp2 = 1.5 * chord # of Lrefs (=chord) downstream of TE that BC is imposed

msplitfrac = 0.0 # ignored

hwalldivhoa = 0.0 # adiabatic
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turbpercent = 9 # negative tells MISES it’s a %turb and not Ncrit value

ISMOM = 4 # type of isentropy/momentum handling

(generally do not change)

if Mach<1:

Mcrit = 0.98

else:

Mcrit = 0.85

if Mach<0.6:

tranloc1 = 1.02 # imposed turbulence transition on side

1 (>1 means none)

tranloc2 = 1.02 # imposed turbulence transition on side

2 (>1 means none)

Coeff_artificialdissipation = 1.0

else:

tranloc1 = 0.04 # imposed turbulence transition on

side 1 (>1 means none)

tranloc2 = 0.04 # imposed turbulence transition on

side 2 (>1 means none)

Coeff_artificialdissipation = -1.0 # negative value disables the second

order dissipation

# Write out ISES case definition file

# Generates full output filename

ises_filename = ’ises.’ + name_of_file
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# Opens ises.* file

fid = open(ises_filename, "w")

fid.write(’%d %d %d %d %d\n’

%(Globvars[0],Globvars[1],Globvars[2],Globvars[3],Globvars[4]))

fid.write(’%d %d %d %d %d\n’

%(Constraits[0],Constraits[1],Constraits[2],Constraits[3],Constraits[4]))

fid.write(’%12.8f %12.8f %12.8f %12.8f\n’%(0,p1divpo1,s1,mp1))

fid.write(’%12.8f %12.8f %12.8f %12.8f\n’%(Mach_out,p2divpo1,s2,mp2))

fid.write(’%12.8f %12.8f\n’%(msplitfrac,hwalldivhoa))

fid.write(’%12.8f %12.8f\n’%(Re,turbpercent))

fid.write(’%12.8f %12.8f\n’%(tranloc1,tranloc2))

fid.write(’%d %12.8f %12.8f\n’%(ISMOM,Mcrit,Coeff_artificialdissipation))

"""

fid.write(’%d %d %d\n’%(Globvars[0],Globvars[1],Globvars[2]))

fid.write(’%d %d %d\n’%(Constraits[0],Constraits[1],Constraits[2]))

fid.write(’%12.8f %12.8f %12.8f %12.8f\n’%(Mach_in,p1divpo1,s1,mp1))

fid.write(’%12.8f %12.8f %12.8f %12.8f\n’%(Mach_out,p2divpo1,s2,mp2))

fid.write(’%12.8f %12.8f\n’%(msplitfrac,hwalldivhoa))

fid.write(’%12.8f %12.8f\n’%(Re,turbpercent))

fid.write(’%12.8f %12.8f\n’%(tranloc1,tranloc2))

fid.write(’%d %12.8f %12.8f\n’%(ISMOM,Mcrit,Coeff_artificialdissipation))

"""

# Closes ISES.* file

fid.close();
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fid = open(name_of_file, "w")

for i in range(0,len(CFX)):

fid.write("%f," %(CFX[i]))

fid.close()

return name_of_file

"""Module containing function definitions for running Mises

To use, add "import MisesFunctions as mf" to your python script.

To call, use (for example) mf.RunIset(...)

Originally by Tim Houghton

Modified/updated by Nishad Sohoni (Oct 2012 to Feb 2013)

Developed for automated big data generation by Syamak Pazireh (Sept 2019)"""

import subprocess

import os

ospj = os.path.join

import warnings

import shutil

class Error(Exception):

"""Base class for MisesFunctions exceptions."""

pass

class IsetError(Error):

"""Exception raised in RunIset."""
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pass

class IsesError(Error):

"""Exception raised in RunIses."""

pass

def _dump_func(prog, prog_out):

"""Internal function to write dump file."""

with open(’{0}_dump.txt’.format(prog), ’w’) as fout:

fout.write(prog_out)

def RunIset(command, ext, cwd_in=None, dump=False):

"""Function to run iset. Inputs:

command: Command to run ISET.

Useful if the location of ’iset’ is not in the

system path, or if you have named it something

other than ’iset’.

ext: File extention for MISES imputs.

cwd_in: Directory in which the subprocess runs.

Use None as the default value.

dump: Will write ISET stdout to a dump file."""

print ("Running ISET...")

# Run ISET in a subprocess.

iset_proc = subprocess.Popen([command, ext], cwd=cwd_in,

stdin=subprocess.PIPE, stdout=subprocess.PIPE)

# Supply sequence of parameters to ISET

# "\n" is the same as hitting "Return"

iset_out = iset_proc.communicate("2\n\n3\n4\n0\n")[0].splitlines()
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#iset_out = iset_proc.communicate("1\n\n2\n\n3\n4\n0\n")[0]

# Check output

for line in iset_out:

if "Grid not initialized" in line or "grid not generated" in line:

if dump:

# Write output to dump file and exit

_dump_func("_".join(["iset",ext]), iset_out)

raise IsetError("{0}: Grid not initialized!".format(ext))

else:

for line in iset_out:

if "Number of streamlines" in line:

print ("{0}: Grid check probably ok.".format(ext))

return

def RunIses(command, ext, Nrun, cwd_in=None, dump=False):

"""Function to run ises. Inputs:

command: Command to run ISES.

Useful if the location of ’ises’ is not in the

system path, or if you have named it something

other than ’ises’

ext: File extention for MISES imputs

Nrun: Number of iterations.

This script will run ISES for Nrun iterations,

then quit, whether or not ISES has converged.

cwd_in: Directory in which the subprocess runs.

Use None as the default value.

dump: Will write ISES stdout to a dump file."""

print (’Running case {0} in ISES’.format(ext))

# Run ISES in a subprocess.
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ises_proc = subprocess.Popen([command, ext], cwd=cwd_in,

stdin=subprocess.PIPE, stdout=subprocess.PIPE)

# Supply sequence of parameters to ISES

# ’\n’ is the same as hitting ’Return’

ises_out = ises_proc.communicate(’{0}\n0\n’.format(Nrun))[0]

# Check output

if "Converged on tolerance" in ises_out.splitlines()[-3]:

print (’Convergence check ok.’)

a = 1

else:

print (’No convergence reached.’)

a = 0

"""

if dump:

# Write output to dump file and exit

_dump_func(’_’.join([’ises’,ext]), ises_out)

raise IsesError("Convergence check failed!")

"""

return a

def RunIplot(command, ext, cwd_in=None, dump=False):

"""Function to save data from iplot to a text file.

Inputs:

command: Command to run Iplot.

ext: File extention for MISES imputs

cwd_in: Directory in which the subprocess runs.

Use None as the default value.

dump: Will write Iplot stdout to a dump file."""
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print (’Running iplot’)

# Run IPLOT in a subprocess.

iplot_proc = subprocess.Popen([command, ext], cwd=cwd_in,

stdin=subprocess.PIPE, stdout=subprocess.PIPE)

# Supply sequence of parameters to IPLOT

# ’\n’ is the same as hitting ’Return’

iplot_out = iplot_proc.communicate

("8\n{0}.txt\n0".format(ext))[0].splitlines()

return
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Appendix B

MATLAB Code for Generating

Shape Parameters

function [] = main2()

clear all

clc

format long

global CLx CLy kapa s1 s2 s3 s4 s5 xtop ytop xbot ybot T NumberOfNodes

a = importdata(’ag17.txt’);

[max_thickness,max_thickness_position,camber,max_camber_position,R,TE_angle]

= airfoil_parameters_specifying( a ) ;

% Physical parameters

% A sample

max_thickness = 0.055 ;

max_thickness_position = 0.5;
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camber = 15;

max_camber_position = 0.5 ;

R = 0.001 ;

TE_angle = 10 ;

Stagger = 0;

Re = 300000;

x = [max_thickness max_thickness_position camber max_camber_position

incidence M0 115000 s_c R TE_angle] ;

NumberOfNodes = 80 ;

[Xc,Yc,Ybot,Ytop,y_t,Xtop,Xbot,dyc_dx] = ...

airfoil_geom(max_thickness,max_thickness_position,camber,max_camber_position

,R,TE_angle,Stagger) ;

AOA = atand(dyc_dx(1)) + incidence ;

CLx = Xc ;

CLy = Yc ;

xtop = Xtop;

ytop = Ytop ;

xbot = Xbot ;

ybot = Ybot ;

T = y_t ;

kapa = atand(dyc_dx) ;
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[Ue_S_pitch,Ue_P_pitch] = velocity_distribution (M0,AOA,s_c) ;

for i = 1:NumberOfNodes

d1 = sprintf(’%s%d%s%1.40d%s’,’s1[’,i-1,’] = ’,s1(i),’;’) ;

d2 = sprintf(’%s%d%s%1.40d%s’,’s2[’,i-1,’] = ’,s2(i),’;’) ;

d3 = sprintf(’%s%d%s%1.40d%s’,’s3[’,i-1,’] = ’,s3(i),’;’) ;

d4 = sprintf(’%s%d%s%1.40d%s’,’s4[’,i-1,’] = ’,s4(i),’;’) ;

d5 = sprintf(’%s%d%s%1.40d%s’,’s5[’,i-1,’] = ’,s5(i),’;’) ;

d6 = sprintf(’%s%d%s%1.40d%s’,’x_c[’,i-1,’] = ’,CLx(i),’;’) ;

d7 = sprintf(’%s%d%s%1.40d%s’,’kapa[’,i-1,’] = ’,kapa(i),’;’) ;

F1(i) = cellstr(d1) ;

F2(i) = cellstr(d2) ;

F3(i) = cellstr(d3) ;

F4(i) = cellstr(d4) ;

F5(i) = cellstr(d5) ;

F6(i) = cellstr(d6) ;

F7(i) = cellstr(d7) ;

end

F01 = mat2dataset(F1’) ;

F02 = mat2dataset(F2’) ;

F03 = mat2dataset(F3’) ;

F04 = mat2dataset(F4’) ;

F05 = mat2dataset(F5’) ;

F06 = mat2dataset(F6’) ;

F07 = mat2dataset(F7’) ;

F9 = [F01;F02;F03;F04;F05;F06;F07];
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export(F9,’file’,’data.txt’)

end

function [Xc,Yc,Ybot,Ytop,y_t,Xtop,Xbot,dyc_dx] = ...

airfoil_geom(max_thickness,max_thickness_position,camber

,max_camber_position,R,TE_angle,Stagger)

global NumberOfNodes

% """

% The geometry of space parameterized airfoil is generated

% This airfoil section is used in compressor and Specifications

% Developed by Syamak Pazireh (Oct 2019)

% """

t_max = max_thickness ; %t_max/chord

t_max_position = max_thickness_position ; % t_max_position/chord

p = max_camber_position ;

% max_camber_position/chord

R_LE = R ; % Fraction of LE radius over chord

beta = TE_angle ; % Trailing edge boat-tail angle

d = tan(camber*pi/180) ;

m = (sqrt(1-4*d^2*(p-1)*p)-1)/(4*d) ;

x = linspace(0,1,NumberOfNodes) ;

CLx = x ;

i = 0 ;
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% Calculation of local y_c (camberline)

for i=1:NumberOfNodes

X = x(i) ;

if (X<p)

y_c(i) = (m/p^2*(2*p*X-X^2)) ;

% equation of camber line

dyc_dx(i) = (2*m/p^2*(p-X)) ;

% slope of camberline

else

y_c(i) = (m/(1-p)^2*((1-2*p)+2*p*X-X^2)) ;

% equation of camber line

dyc_dx(i) = (2*m/(1-p)^2*(p-X)) ;

% slope of camberline

end

THETA(i) = atan(dyc_dx(i)) ;

end

CLy = y_c ;

XT = t_max_position ;

% ref paper is : "An improved geometry parameter airfoil parameterization

method" Lu Xiaoqiang et. al. 2018

% Journal of Aerospace science and technology

C = [XT^0.5 XT^1 XT^2 XT^3 XT^4 ;

0.5*XT^-0.5 1 2*XT 3*XT^2 4*XT^3;

0.25 0.5 1 1.5 2;

1 0 0 0 0;

1 1 1 1 1] ;
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B = [t_max/2 ; 0 ; -tan(beta/2*pi/180) ; sqrt(2*R_LE) ; 0] ;

A = inv(C)*B ;

for i =1:NumberOfNodes

y_t(i) =

(A(1)*CLx(i)^0.5+A(2)*CLx(i)^1+A(3)*CLx(i)^2+A(4)*CLx(i)^3+A(5)*CLx(i)^4 ;

xtop(i) = (CLx(i) + (y_c(i))*sin(THETA(i))) ;

ytop(i) = (CLy(i) + (y_t(i))*cos(THETA(i))) ;

xbot(i) = (CLx(i) - (y_c(i))*sin(THETA(i))) ;

ybot(i) = (CLy(i) - (y_t(i))*cos(THETA(i))) ;

end

for i=1:NumberOfNodes

if (xtop(i)== 0 && ytop(i) == 0)

alpha_top(i) = (0) ;

else

alpha_top(i) = (asin(ytop(i)/(sqrt(xtop(i)^2+ytop(i)^2)))) ;

end

if (xbot(i)== 0 && ybot(i) == 0)

alpha_bot(i) = (0) ;

else

alpha_bot(i) = (asin(ybot(i)/(sqrt(xbot(i)^2+ybot(i)^2)))) ;

end

if (x(i)== 0 && y_c(i) == 0)

alpha_camber(i) = (0) ;

else

alpha_camber(i) = (asin(y_c(i)/(sqrt(x(i)^2+y_c(i)^2)))) ;

end

Xtop(i) = cos(Stagger*pi/180 + alpha_top(i))*(sqrt(xtop(i)^2+ytop(i)^2)) ;
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Ytop(i) = sin(Stagger*pi/180 + alpha_top(i))*(sqrt(xtop(i)^2+ytop(i)^2)) ;

Xbot(i) = cos(Stagger*pi/180 + alpha_bot(i))*(sqrt(xbot(i)^2+ybot(i)^2)) ;

Ybot(i) = sin(Stagger*pi/180 + alpha_bot(i))*(sqrt(xbot(i)^2+ybot(i)^2)) ;

Xc(i) = cos(Stagger*pi/180 + alpha_camber(i))*(sqrt(x(i)^2+y_c(i)^2)) ;

Yc(i) = sin(Stagger*pi/180 + alpha_camber(i))*(sqrt(x(i)^2+y_c(i)^2)) ;

end

end

function [Ue_SS,Ue_PP] = velocity_distribution (M0,AOA,s_c)

global CLx CLy s1 s2 s3 s4 s5 xtop ytop xbot ybot T NumberOfNodes

X = CLx.*2 - 1 ;

TT = T.*2 ;

s = s_c.*2 ;

Y = CLy.*2 ;

k = NumberOfNodes ;

% % *********************** Ue Calculation

***********************************************

for j = 1:k-1

sum = 0 ;

for l = 1:k-1

if (j ~= l)

sum = (TT(l+1)-TT(l))*coth(pi*(X(l)-X(j))/s) +sum ;

end
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end

s1(j) = -1/s*sum ;

s2(j) = (T(j+1)-T(j))/(xtop(j+1)-xtop(j)) ;

s5(j) = (CLy(j+1)-CLy(j))/(CLx(j+1)-CLx(j)) ;

sum = 0 ;

for l = 1:k-1

if (j ~= l)

sum = (Y(l+1)-Y(l))*sqrt(sinh(pi*(1+X(l))/s)/sinh(pi*(1-X(l))

/s))*(coth(pi*(X(l)-X(j))/s) - 1)+sum ;

end

end

s4(j) = -1/s*sqrt(sinh(pi*(1-X(j))/s)/sinh(pi*(1+X(j))/s))*sum ;

s3(j) = exp(-pi/s)*sqrt(sinh(pi*(1-X(j))/s)/sinh(pi*(1+X(j))/s)) ;

end

%

s1(k) = s1(k-1) ;

s2(k) = s2(k-1) ;

s3(k) = s3(k-1) ;

s4(k) = s4(k-1) ;

s5(k) = s5(k-1) ;

% % *********************** Compressibility factors ***************************

Cpi = 1 - ((1+s1).^2)./(1+s2.^2) ;

if (M0<1)

beta = sqrt(1-M0^2) ;

B = sqrt(1 - M0^2 *(1 - M0*Cpi)) ;

else
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beta = pi*sqrt(M0^2-1)/2 ;

B = sqrt(M0^2 *(1-M0*Cpi)-1) ;

end

if(beta<1/3)

beta = 1/3;

end

% % **********************************************************************

Ue_SS = sqrt(abs(((cosd(AOA).*(1+s1./B+s4./beta)+sind(AOA)./beta.*(s3.

/B)).^2)./((1+((s2+s5)./B).^2))))*M0;

Ue_PP = sqrt(abs(((cosd(AOA).*(1+s1./B-s4./beta)-sind(AOA)./beta.*(s3.

/B)).^2)./((1+((s2-s5)./B).^2))))*M0;

% CpS = (1- (Ue_SS/M0).^2)./sqrt(1-M0^2) ;

% CpP = (1- (Ue_PP/M0).^2)./sqrt(1-M0^2) ;

% Ue_SS = sqrt(1- ((CpS.*0.7.*M0.^2 + 1).^(1/3.5) - 1 )./(0.2*M0^2)) ;

% Ue_PP = sqrt(1- ((CpP.*0.7.*M0.^2 + 1).^(1/3.5) - 1 )./(0.2*M0^2)) ;

end
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Appendix C

Artificial Neural Network Model

Coefficients

xmax_ANN[0] = 0.1499999999999999944488848768742172978818;

xmin_ANN[0] = 0.0249999999999999979183318288278314867057;

xmax_ANN[1] = 0.5000000000000000000000000000000000000000;

xmin_ANN[1] = 0.2999999999999999888977697537484345957637;

xmax_ANN[2] = 40.0000000000000000000000000000000000000000;

xmin_ANN[2] = 5.0000000000000000000000000000000000000000;

xmax_ANN[3] = 0.5999999999999999777955395074968691915274;

xmin_ANN[3] = 0.3999999999999999666933092612453037872910;

xmax_ANN[4] = 6.0000000000000000000000000000000000000000;

xmin_ANN[4] = -6.0000000000000000000000000000000000000000;

xmax_ANN[5] = 1.5999999999999998667732370449812151491642;

xmin_ANN[5] = 0.0999999999999999916733273153113259468228;

xmax_ANN[6] = 1510000.0000000000000000000000000000000000000000;

xmin_ANN[6] = 100000.0000000000000000000000000000000000000000;

xmax_ANN[7] = 2.0000000000000000000000000000000000000000;
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xmin_ANN[7] = 0.5000000000000000000000000000000000000000;

xmax_ANN[8] = 0.0200000000000000004163336342344337026589;

xmin_ANN[8] = 0.0010000000000000000208166817117216851329;

xmax_ANN[9] = 10.0000000000000000000000000000000000000000;

xmin_ANN[9] = 0.0000000000000000000000000000000000000000;

ymax[0] = 0.0377740000000000020197177263980847783387;

ymin[0] = 0.0009949699999999999690258878359827576787;

ymax[1] = 0.0188229999999999994542143610942730447277;

ymin[1] = 0.0001510900000000000187750509583750613274;

NumberofLayers = 1;

bias1[0] = -2.0808878071177629998089742002775892615318;

bias1[1] = -3.8814874884315888614594314276473596692085;

bias1[2] = 2.9625971323225201992102029180387035012245;

bias1[3] = -3.8383376846925059133752711204579100012779;

bias1[4] = -1.2288064735553749784457977511920034885406;

bias1[5] = 1.0861111533118279481868739821948111057281;

bias1[6] = 0.9895276073723939802562199474778026342392;

bias1[7] = -0.3167583379988440084318312983668874949217;

bias1[8] = -2.2896977548494681364843472692882642149925;

bias1[9] = -0.8891694461031469653988779100473038852215;

bias1[10] = 2.5065931110113019997243100078776478767395;

bias1[11] = -2.1657518235405519568814725062111392617226;

bias1[12] = -0.9982629374741469607812405229196883738041;

bias1[13] = 0.9160841864987530058783704589586704969406;

bias1[14] = 1.4731706467550500505581112520303577184677;

bias1[15] = 0.4235736924366679811981839520740322768688;

bias1[16] = 0.8409251279728250372258457900898065418005;

bias1[17] = 0.0073209636660619996015308963421830412699;

bias1[18] = -0.1892560666526330037662262384401401504874;

bias1[19] = 0.7858193223318139519761871270020492374897;
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bias1[20] = 0.9622743799120370145061542643816210329533;

bias1[21] = 0.6071742256314790475713039086258504539728;

bias1[22] = 0.8829438475999540347771699089207686483860;

bias1[23] = -0.7275370053164890160601885327196214348078;

bias1[24] = 2.5162756884517820665791987266857177019119;

bias1[25] = 1.0515379986534540979192797749419696629047;

bias1[26] = 1.3469350002577500369227436749497428536415;

bias1[27] = -1.2796345226386300897303271995042450726032;

bias1[28] = 1.3931853948822059408030327176675200462341;

bias1[29] = -0.9240189752880729745498911142931319773197;

bias1[30] = 1.9654000485611780035810625122394412755966;

bias1[31] = -0.9316950668131960267004387787892483174801;

bias1[32] = -1.4214953333730520057542889844626188278198;

bias1[33] = -1.6543294709189639846158570435363799333572;

bias1[34] = -1.9912952911394921073906516539864242076874;

bias1[35] = 1.6785003374125440078756810180493630468845;

bias1[36] = 1.9784358043314440589455216468195430934429;

bias1[37] = -1.7090268323451121013079045951599255204201;

bias1[38] = 1.5040604780271469298469355635461397469044;

bias1[39] = -4.9991752039636754290086173568852245807648;

bias2[0] = 0.3866316084141199760360052550822729244828;

bias2[1] = -0.3956789390961200081342497014702530577779;

W1[0][0] = -0.2142917395701590121959156931552570313215;

W1[0][1] = 0.1712283378008589984631271363468840718269;

W1[0][2] = 0.6418763595404549660017323731153737753630;

W1[0][3] = -0.1493634233156619917082252868567593395710;

W1[0][4] = 0.7779678743958630127153242028725799173117;

W1[0][5] = -1.3485474188076660428947661785059608519077;

W1[0][6] = -0.1130563856633139963037137931678444147110;

W1[0][7] = -1.3439590768506870510634598758770152926445;
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W1[0][8] = -0.0859306692332140048540267684984428342432;

W1[0][9] = -0.0436735520475309973997823931313178036362;

W1[1][0] = 1.4598802488438940017090317269321531057358;

W1[1][1] = -0.1489542250578400062188677566155092790723;

W1[1][2] = -0.4321252257244679872982828783278819173574;

W1[1][3] = 0.1978751863209680106336918470333330333233;

W1[1][4] = -0.2378351969521380060434978531702654436231;

W1[1][5] = 0.4833523395731080252168965216696960851550;

W1[1][6] = -3.1338805311005240028521257045213133096695;

W1[1][7] = 0.6408198160345599525555826403433457016945;

W1[1][8] = -0.0972610763857120058650806981859204825014;

W1[1][9] = -0.5635502187209630031716756093373987823725;

W1[2][0] = -0.7847720597017270316442250077670905739069;

W1[2][1] = 0.8362928992235310055036734411260113120079;

W1[2][2] = 0.4181991101347189987436081537452992051840;

W1[2][3] = -0.2422088727127340024303236987179843708873;

W1[2][4] = 0.1346979295223729999886330688241287134588;

W1[2][5] = -0.0572209264680480014786390086101164342836;

W1[2][6] = 1.0322523062020310113950927188852801918983;

W1[2][7] = -0.1802552795373119909339010291660088114440;

W1[2][8] = 0.0312151766441680009189774125388794345781;

W1[2][9] = 0.2994751742202430011552394262253073975444;

W1[3][0] = 0.2976835495152029831267270765238208696246;

W1[3][1] = 0.0508158491612199988973763709054765058681;

W1[3][2] = 0.2763429907240960159420239961036713793874;

W1[3][3] = -0.1229524061880010038505517400153621565551;

W1[3][4] = 0.1319484164116890012596883252626867033541;

W1[3][5] = -0.5992754593015590103277645539492368698120;

W1[3][6] = -2.2408806965022991519731476728338748216629;

W1[3][7] = -0.1912011105899220075876598912145709618926;
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W1[3][8] = 0.1464172585695119876980641038244357332587;

W1[3][9] = -0.1457469752224939962825800421342137269676;

W1[4][0] = -0.0279472209301720002361246741884315269999;

W1[4][1] = -0.6452932441614019909437161004461813718081;

W1[4][2] = 0.5588773597315309649147252457623835653067;

W1[4][3] = 0.2499889770682220124786709902764414437115;

W1[4][4] = -1.3824616937284599504920379331451840698719;

W1[4][5] = -0.4331717841924069833936528084450401365757;

W1[4][6] = 0.7064016880001879883366200374439358711243;

W1[4][7] = 0.9298418622625980178852955759793985635042;

W1[4][8] = -0.3193080629358310273957499703101348131895;

W1[4][9] = -0.5432336596841349507513996286434121429920;

W1[5][0] = -0.6526455383079260430534418446768540889025;

W1[5][1] = 0.0144933480245079994441770310231731855310;

W1[5][2] = -0.6626204640664680178829826218134257942438;

W1[5][3] = 0.2413581178662690118752465195939294062555;

W1[5][4] = -0.4192088285266210023749522406433243304491;

W1[5][5] = 2.1494674834014180220265188836492598056793;

W1[5][6] = 0.0462858319860309994075997508389264112338;

W1[5][7] = 0.4135467775321349792605474249285180121660;

W1[5][8] = -0.1782272434001760108568390705841011367738;

W1[5][9] = 0.1292010026477319883930761079682270064950;

W1[6][0] = -0.7412995177154300119326535423169843852520;

W1[6][1] = -0.4898380001334080025010564440890448167920;

W1[6][2] = 0.6476396731104100412679258624848444014788;

W1[6][3] = -1.2760609884280460502026244284934364259243;

W1[6][4] = 0.3500461894605569890259744170180056244135;

W1[6][5] = 0.6390121352371600504937987352604977786541;

W1[6][6] = 0.6641217383259939710526964518066961318254;

W1[6][7] = -0.4088127333361599724526058707851916551590;
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W1[6][8] = -0.3809880904634599940727923694794299080968;

W1[6][9] = -0.0687436269896630064435427698299463372678;

W1[7][0] = 0.0187349799093310016850910670882512931712;

W1[7][1] = -0.2110327911815879919910088347023702226579;

W1[7][2] = 0.1498572724534890099334916158113628625870;

W1[7][3] = -0.0026645528720130001558430432595514503191;

W1[7][4] = 0.3873356109768180122188141467631794512272;

W1[7][5] = 0.0826111793258119952998441704039578326046;

W1[7][6] = 0.2865417711562749936149430141085758805275;

W1[7][7] = 0.0762129212048780063648578675383760128170;

W1[7][8] = -0.0623919363176859975705923488931148312986;

W1[7][9] = 0.0539372351529539967307513848027156200260;

W1[8][0] = 1.4333484145065509274274972995044663548470;

W1[8][1] = -0.1845366455159850038736379929105169139802;

W1[8][2] = -0.3833043170549880196418257582990918308496;

W1[8][3] = 0.0454812763631270017272711925215844530612;

W1[8][4] = 0.1148235929775670016717015187168726697564;

W1[8][5] = -0.2837579931317690262737585271679563447833;

W1[8][6] = -0.3478782580523249734483215434011071920395;

W1[8][7] = 0.8072000103686629568500165987643413245678;

W1[8][8] = -0.1079178617821630048467795859323814511299;

W1[8][9] = 0.1598082740726040062995139123813714832067;

W1[9][0] = 0.5255535858896469569856435555266216397285;

W1[9][1] = -0.1321023768200089987256973245166591368616;

W1[9][2] = -0.1655215084446750029023576189501909539104;

W1[9][3] = 0.0718773075408259964902413230447564274073;

W1[9][4] = -0.7015423544763319529948830677312798798084;

W1[9][5] = -1.0199872927635209585162101575406268239021;

W1[9][6] = -0.9185467496141519472274694635416381061077;

W1[9][7] = 0.5703810151116519566727447454468347132206;
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W1[9][8] = 0.0813237755761039987634219983192451763898;

W1[9][9] = 0.1371586921210030118878364646661793813109;

W1[10][0] = -1.1612479955550600863034560461528599262238;

W1[10][1] = -0.2545148857953810073162514981959247961640;

W1[10][2] = -0.2946963130894200144638261917862109839916;

W1[10][3] = -0.1327375927701530122782003218162572011352;

W1[10][4] = -0.0935480270313220063638226520197349600494;

W1[10][5] = -0.8446777318038289905643978272564709186554;

W1[10][6] = 1.3067678998214560248669613429228775203228;

W1[10][7] = -0.0046686768179909996639986857758231053594;

W1[10][8] = -0.0395598837111749979111863240177626721561;

W1[10][9] = 0.3150037689988470224200511893286602571607;

W1[11][0] = 0.2136627640467489985809379504644311964512;

W1[11][1] = 0.0376469140676789978949834392096818191931;

W1[11][2] = -1.1726050112267940583876679738750681281090;

W1[11][3] = -0.1734444408606030108010997992096235975623;

W1[11][4] = -0.2423177429510789959721250852453522384167;

W1[11][5] = -0.2632351026161889873122845528996549546719;

W1[11][6] = 0.0215966380328590015769130161515931831673;

W1[11][7] = -0.7593442049854539632747219002339988946915;

W1[11][8] = -0.0545780293644569994282456093515065731481;

W1[11][9] = -0.0945814387147539958888842193118762224913;

W1[12][0] = 0.6893978162231579887020416208542883396149;

W1[12][1] = 0.6211830132589180042401721948408521711826;

W1[12][2] = -0.0928075800643920062471536880366329569370;

W1[12][3] = -0.0461450410508549985211246280414343345910;

W1[12][4] = 0.1423903014642000086631412614224245771766;

W1[12][5] = -0.1178462384946890040282596601173281669617;

W1[12][6] = -0.2628690090004550117264159325713990256190;

W1[12][7] = 0.4489700642842229805218323690496617928147;
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W1[12][8] = -0.0452843415553220024483138672621862497181;

W1[12][9] = -0.3679591005682290028033776252414099872112;

W1[13][0] = 0.1766650483134679927577082025891286320984;

W1[13][1] = -0.5874240990787139571338570931402500718832;

W1[13][2] = 0.5466011750655529466413895534060429781675;

W1[13][3] = -0.6746511254996629958213816280476748943329;

W1[13][4] = -0.8603246085520840358284999638271983712912;

W1[13][5] = -0.2742705652093320178863677938352338969707;

W1[13][6] = -0.2530932287264109903368591858452418819070;

W1[13][7] = -1.0451407055190289341339848760981112718582;

W1[13][8] = 0.9123345108686820026377972681075334548950;

W1[13][9] = 0.1601230359557520022129040171421365812421;

W1[14][0] = 0.9740670393110310021356212928367312997580;

W1[14][1] = -0.5232008722601080297209819036652334034443;

W1[14][2] = -0.5302723648788919552643505994637962430716;

W1[14][3] = 0.2655572564938060153849619382526725530624;

W1[14][4] = -1.4929819958039489691259404935408383607864;

W1[14][5] = 1.1592397255804220979058527518645860254765;

W1[14][6] = -1.0038879763094550323643261435790918767452;

W1[14][7] = 1.4686103735146720516979712556349113583565;

W1[14][8] = 0.2248242529281070101188078069753828458488;

W1[14][9] = 0.2458470677047759900268886212870711460710;

W1[15][0] = -0.7466584966404530288031082818633876740932;

W1[15][1] = -0.1517986142882550015809073329364764504135;

W1[15][2] = -0.5155047395570909740669662824075203388929;

W1[15][3] = -0.1858541814487640053688011221311171539128;

W1[15][4] = -0.0925814412313469975446267312690906692296;

W1[15][5] = -0.0856485634765130066092808647226775065064;

W1[15][6] = 0.3982446432860550222798678987601306289434;

W1[15][7] = 0.0264840024271300010505481026257257326506;
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W1[15][8] = -0.1043281936516699953676479140085575636476;

W1[15][9] = -0.0994089255375709968109987357820500619709;

W1[16][0] = 0.2280145218118440064714036452642176300287;

W1[16][1] = -0.0905963233319929950315696487450622953475;

W1[16][2] = -0.1236305966010440016145111030709813348949;

W1[16][3] = 0.0258005151705349988766613478219369426370;

W1[16][4] = -0.6565507007314830278943418306880630552769;

W1[16][5] = -0.2264555406300469975189315618990804068744;

W1[16][6] = 0.3827797182900459782572966105362866073847;

W1[16][7] = 0.6484207832986480513071114728518296033144;

W1[16][8] = -0.1970885436867199913546500056327204219997;

W1[16][9] = -0.1766120758836549897718981583238928578794;

W1[17][0] = 0.8458863895526900211763177139800973236561;

W1[17][1] = -0.0534369155219689973002061833540210500360;

W1[17][2] = 0.1553640590533900134317946140072308480740;

W1[17][3] = 0.0015953447811310000024886956992986597470;

W1[17][4] = -0.5151947730902279865006221371004357933998;

W1[17][5] = 0.3277564102409359914069852948159677907825;

W1[17][6] = -0.2712209326897069838757658999384148046374;

W1[17][7] = 0.2183425355708630000162173701028223149478;

W1[17][8] = -0.2095215389256989968469468976763891987503;

W1[17][9] = 0.0001998453451219999973172830598500127053;

W1[18][0] = -0.1498650091388289973259873022470856085420;

W1[18][1] = -0.2914321466073619970593711059336783364415;

W1[18][2] = -0.6481360250840779713144002016633749008179;

W1[18][3] = -0.0013538989407330000429990901622545607097;

W1[18][4] = -0.5515686688856880071085697636590339243412;

W1[18][5] = -0.4598334378647879749912874558503972366452;

W1[18][6] = -0.0735744205833119974125011708565580192953;

W1[18][7] = 0.8203678652618650035677205778483767062426;
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W1[18][8] = 0.1520651739195600093967897237234865315259;

W1[18][9] = 0.1095352386915739995032481601811014115810;

W1[19][0] = 0.7692634409434599973565127584151923656464;

W1[19][1] = -0.1869857635656609895491442330239806324244;

W1[19][2] = -0.0191979496981759985285709291247258079238;

W1[19][3] = 0.0517324261860380024691252742741198744625;

W1[19][4] = -0.4088294080793309914767519330780487507582;

W1[19][5] = 1.2270751396140429090308998638647608458996;

W1[19][6] = 0.3367755838627429776366284386313054710627;

W1[19][7] = 0.4447376541833670260395194873126456514001;

W1[19][8] = -0.0990621451323450002979242867695575114340;

W1[19][9] = 0.0079257244657880004945482710354554001242;

W1[20][0] = 0.5068279743481559629358912388852331787348;

W1[20][1] = -0.0150467019214229995316411958583557861857;

W1[20][2] = -0.4159061999505149764821965163719141855836;

W1[20][3] = 0.1604778019683049949950515156160690821707;

W1[20][4] = -0.6005825082241800227933481437503360211849;

W1[20][5] = 0.9282402836813119506587099749594926834106;

W1[20][6] = -0.4271828481884509809418659642687998712063;

W1[20][7] = 0.3414429725412059801747943765803938731551;

W1[20][8] = 0.9238727166407529889369243392138741910458;

W1[20][9] = 0.0056858790049819996417768130925196601311;

W1[21][0] = -0.3943841832228209831612275593215599656105;

W1[21][1] = -0.0087163674450990002301464798506458464544;

W1[21][2] = -0.1719724103094489864318461513903457671404;

W1[21][3] = -0.0060296735952679999734349358675444818800;

W1[21][4] = 0.1299227477116310092153383948243572376668;

W1[21][5] = 2.4373834136593779398083370324457064270973;

W1[21][6] = 0.1068690843063089951359145857168186921626;

W1[21][7] = -0.0246631884418729990793295314688293728977;
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W1[21][8] = -0.0119716539959360008388289386971337080467;

W1[21][9] = 0.0479970237625549980831074492471088888124;

W1[22][0] = -0.1327673746634679963207759101351257413626;

W1[22][1] = 0.1475213931550579948837054189425543881953;

W1[22][2] = 0.2396791047152599940517347931745462119579;

W1[22][3] = 0.0410901563834010011277975138455076375976;

W1[22][4] = 0.3652210932749869742863779720210004597902;

W1[22][5] = 1.0302443034117929610005148788332007825375;

W1[22][6] = 0.6435411906355960054426645911007653921843;

W1[22][7] = -0.5181479230063119612026412141858600080013;

W1[22][8] = -0.1126484005779739977493036917621793691069;

W1[22][9] = -0.2227881951768919954748326972548966296017;

W1[23][0] = 0.3751737516933210114800090195785742253065;

W1[23][1] = -0.0416005743503760003210167894849291769788;

W1[23][2] = 0.0096416101979459999798960367911604407709;

W1[23][3] = 0.0069220092001170000287069150601837463910;

W1[23][4] = -0.1568635409747149989101444589323364198208;

W1[23][5] = -2.8249610347480538230513502639951184391975;

W1[23][6] = 0.4933543409664319923102482334797969087958;

W1[23][7] = 0.0850118308031909963862204904216923750937;

W1[23][8] = -0.0024871598994319998703061980194206626038;

W1[23][9] = -0.0299016292631240007682258408294728724286;

W1[24][0] = 0.8234016888852530025033615856955293565989;

W1[24][1] = -0.1636392172818849910509442224793019704521;

W1[24][2] = 0.0709726138942290002420421046736009884626;

W1[24][3] = -0.1404034189074480076797613037342671304941;

W1[24][4] = 0.6844783927470730056086267723003402352333;

W1[24][5] = 1.7746347643874988975198903062846511602402;

W1[24][6] = -0.2316612452573419966839196604269091039896;

W1[24][7] = -0.1156040086333850053224026055431750137359;
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W1[24][8] = -0.2902689671754660194480379686865489929914;

W1[24][9] = -0.0169617563099680006277747423837354290299;

W1[25][0] = 0.6586269262733660534436808120517525821924;

W1[25][1] = 0.2637570589214500160757381763687590137124;

W1[25][2] = 0.1347291698105499979654098297032760456204;

W1[25][3] = 0.2892707016652200091577640250761760398746;

W1[25][4] = 0.1598587112912830121569385255497763864696;

W1[25][5] = 1.1997821031115820655799097949056886136532;

W1[25][6] = -0.2081884797671980091848809024668298661709;

W1[25][7] = -0.0144622412209769995311559043216220743489;

W1[25][8] = -0.0118323152576060002666435977403125434648;

W1[25][9] = 0.7351966395607449911153707944322377443314;

W1[26][0] = 1.0047832700823209339802133399643935263157;

W1[26][1] = -0.4410181944009909926762702525593340396881;

W1[26][2] = -0.4355249770984139789931077757501043379307;

W1[26][3] = 0.2416303063693640007514318313042167574167;

W1[26][4] = -1.3279985715874480511899946577614173293114;

W1[26][5] = 0.7916368113345190193896883101842831820250;

W1[26][6] = -1.0558745558000499631390312060830183327198;

W1[26][7] = 1.2949391332677180344035150483250617980957;

W1[26][8] = 0.1955039305866859977722782559794723056257;

W1[26][9] = 0.1719317914361210009044356183949275873601;

W1[27][0] = 0.3121404542743980159436034682585159316659;

W1[27][1] = -0.0397585368109540024383896650306269293651;

W1[27][2] = -0.0777851095531350011924587306566536426544;

W1[27][3] = -0.0215078324704669997247119539451887249015;

W1[27][4] = -0.1656245912572620049285632148894364945590;

W1[27][5] = -3.6960692147235230109458825609181076288223;

W1[27][6] = 0.8235364401306369819266706144844647496939;

W1[27][7] = 0.2106435776369499912608063141306047327816;
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W1[27][8] = 0.0103985192016520008179147893656590895262;

W1[27][9] = 0.0164815611044310007804458706459627137519;

W1[28][0] = 0.9435622172440439880958251706033479422331;

W1[28][1] = -0.3528733004223780223007622680597705766559;

W1[28][2] = 0.1731581394334990031680376887379679828882;

W1[28][3] = 0.0839479553119820004480899910959124099463;

W1[28][4] = 1.2854635102685600944738553153001703321934;

W1[28][5] = -0.4647972418682599915484843222657218575478;

W1[28][6] = -0.8770798571543709787334819338866509497166;

W1[28][7] = -0.1625147677942209989421229465733631514013;

W1[28][8] = -0.7896956481189739696091578480263706296682;

W1[28][9] = -0.0676433087704080004964879435647162608802;

W1[29][0] = -0.6727970827183400448490147027769125998020;

W1[29][1] = 0.1146855936223930005901650019950466230512;

W1[29][2] = 0.6370511323556079519292438817501533776522;

W1[29][3] = -0.1344682189011250084131887660987558774650;

W1[29][4] = 0.5390208276945860355056083790259435772896;

W1[29][5] = 0.3401972747395339835563277119945269078016;

W1[29][6] = 0.3477981477762310258405875629250658676028;

W1[29][7] = -1.2857897358176579860611354888533242046833;

W1[29][8] = 0.1177645712032869967922366072343720588833;

W1[29][9] = 0.0125603886066739996868468765001125575509;

W1[30][0] = -0.6071954429525869834094464749796316027641;

W1[30][1] = 0.3533568891691239999275353511620778590441;

W1[30][2] = -0.6027242309487980120863426236610393971205;

W1[30][3] = 0.4336606040874820267028155740263173356652;

W1[30][4] = 0.0414357256543999991071913768792001064867;

W1[30][5] = -1.5682834733680028893587632410344667732716;

W1[30][6] = -0.1288066485609420108726652642872068099678;

W1[30][7] = 1.1459414965716820944408027571626007556915;
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W1[30][8] = -0.1685799493129070125707613669874262996018;

W1[30][9] = 0.0350870116230520001643355954001890495420;

W1[31][0] = -0.8664337593802170500723036639101337641478;

W1[31][1] = -0.0500046678972220007275417685832508141175;

W1[31][2] = -0.0120267853474550004411192105635564075783;

W1[31][3] = -0.1080980177071020065238116103500942699611;

W1[31][4] = 0.3769900719530310251315086134127341210842;

W1[31][5] = -3.8745104135065369099777399242157116532326;

W1[31][6] = 0.7926130593190710005302435092744417488575;

W1[31][7] = -0.3268951401990859984003634508553659543395;

W1[31][8] = -0.1160166226346750067976998366248153615743;

W1[31][9] = 0.0182545838918510006099182874095276929438;

W1[32][0] = -0.7106958187489189615604345817700959742069;

W1[32][1] = 0.2840726483345459851825864916463615372777;

W1[32][2] = -0.1322661890987139876596501153471763245761;

W1[32][3] = 0.3635296400609859812647073340485803782940;

W1[32][4] = -0.2525958340058599982391740468301577493548;

W1[32][5] = -0.5176246984679380158667072464595548808575;

W1[32][6] = 0.1696749090228230061327963085204828530550;

W1[32][7] = 0.8171882459156439848513286960951518267393;

W1[32][8] = 0.1746310907858250049962123284785775467753;

W1[32][9] = 0.2440537844731699990141748912719776853919;

W1[33][0] = -0.5925106102751329650857314845779910683632;

W1[33][1] = 0.0617492958719629975172793479032407049090;

W1[33][2] = 0.0139312594256039996160057015117672563065;

W1[33][3] = -0.0468007328564550018068501913148793391883;

W1[33][4] = 0.1728356675158579935924763049115426838398;

W1[33][5] = 2.0409615485138679069621048256522044539452;

W1[33][6] = 0.0176345336810399995475240331188615527935;

W1[33][7] = -0.1662606553235840001203627025461173616350;
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W1[33][8] = -0.4791770640782270218593907884496729820967;

W1[33][9] = -0.3046018597717489728715634100808529183269;

W1[34][0] = -1.0930335392802079663709946544258855283260;

W1[34][1] = 0.1198076290013500022624270968663040548563;

W1[34][2] = -0.5010331827836479456905749430006835609674;

W1[34][3] = 0.2558921869480639821325951288599753752351;

W1[34][4] = -0.2318057331600349990630149932258063927293;

W1[34][5] = -0.4768542710990930078018834592512575909495;

W1[34][6] = -0.8342227828210629914096330139727797359228;

W1[34][7] = 0.1091505820090930001242668367922306060791;

W1[34][8] = -0.1153211048470449973102347485109930858016;

W1[34][9] = 0.2223840336282270069290234459913335740566;

W1[35][0] = 1.0167898259421439544070153715438209474087;

W1[35][1] = -0.0073568421638230000261793328775183908874;

W1[35][2] = 0.0827897118477659982316296805038291495293;

W1[35][3] = 0.0285096620800629994840758030250071897171;

W1[35][4] = -0.2487931606991820032703799370210617780685;

W1[35][5] = -0.4505183356690850016157412483153166249394;

W1[35][6] = 0.5261449252087819772327748069074004888535;

W1[35][7] = 0.4251232819837910126281599332287441939116;

W1[35][8] = -0.0179487181264310000083916918356408132240;

W1[35][9] = -0.0452344592065680034531638398220820818096;

W1[36][0] = 0.9959750650498530033516431103635113686323;

W1[36][1] = -0.1775201693204130071190860462593263946474;

W1[36][2] = 0.3188128479307359985917003086797194555402;

W1[36][3] = -0.7739189099129030191548395123390946537256;

W1[36][4] = 0.2706511419435699838942355199833400547504;

W1[36][5] = 0.6344359806610849750185820994374807924032;

W1[36][6] = 1.8617584223773380180944059247849509119987;

W1[36][7] = -0.2161142630122049879126677751628449186683;
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W1[36][8] = -0.0290701549735969989873840546579231158830;

W1[36][9] = -0.2668641184712259861733230081881629303098;

W1[37][0] = -0.3185166607804459926178708428778918460011;

W1[37][1] = -0.9275802905496609573887667465896811336279;

W1[37][2] = 1.2325358916860280622529444372048601508141;

W1[37][3] = 1.2806671750278020294189218475366942584515;

W1[37][4] = 0.0058187306234630002330088238693406310631;

W1[37][5] = 0.4350659443455410224643742367334198206663;

W1[37][6] = 0.0925551034494749985670480896260414738208;

W1[37][7] = 0.2718594352280799819610024314897600561380;

W1[37][8] = -0.3738378817519160124405175338324625045061;

W1[37][9] = 0.0386058533238970019718649950846156571060;

W1[38][0] = 0.1520992120143550008215527213906170800328;

W1[38][1] = 0.0438500481741600015017645830539549933746;

W1[38][2] = -0.5044714746989189535497644101269543170929;

W1[38][3] = 0.2241300613703730015835446920391405001283;

W1[38][4] = 0.2480594251879749967404364952017203904688;

W1[38][5] = 0.4293099091856160121061236623063450679183;

W1[38][6] = -0.1137066137563459977677382539695827290416;

W1[38][7] = -0.1069635819228989953577624305580684449524;

W1[38][8] = 1.5606374742807789246512584213633090257645;

W1[38][9] = 0.0191502345036009997969461693401171942241;

W1[39][0] = -0.2909132938899580134162192734947893768549;

W1[39][1] = 0.3848827522840920223323735172016313299537;

W1[39][2] = 0.7429732624235110272081783477915450930595;

W1[39][3] = -0.2098626294478060094750304642730043269694;

W1[39][4] = 1.2451240913367769280739594250917434692383;

W1[39][5] = -1.0733741315319440534636896700249053537846;

W1[39][6] = -0.2156330180369669946571775653865188360214;

W1[39][7] = -1.9958639538811209224178355725598521530628;
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W1[39][8] = -0.7092422375050929650441844387387391179800;

W1[39][9] = -0.2786838441928189968876949933473952114582;

W2[0][0] = 0.4926015134086529911883189924992620944977;

W2[1][0] = -0.1832277278086359983966247000353178009391;

W2[0][1] = 0.3605724275022549885072464803670300170779;

W2[1][1] = 0.4615227871805809845007217973034130409360;

W2[0][2] = 0.4059842274783519999736824956926284357905;

W2[1][2] = 0.1563588496888060064282655048373271711171;

W2[0][3] = 0.9091175133930800011938799798372201621532;

W2[1][3] = 0.6834839257097470310853282171592582017183;

W2[0][4] = 0.0279374546738400016121506297395171714015;

W2[1][4] = 0.0140899855016639995869409673900918278378;

W2[0][5] = -0.3521675878011280014234785085136536508799;

W2[1][5] = 0.0183433993905850016570280303085382911377;

W2[0][6] = -0.1001283162370049939493554802538710646331;

W2[1][6] = -0.0202599968668029997709290057628095382825;

W2[0][7] = 0.5051805100498449885293439365341328084469;

W2[1][7] = 0.1841369391050090009720463513076538220048;

W2[0][8] = 0.0494126277969359969932661158509290544316;

W2[1][8] = 0.2160314695833039921879503708623815327883;

W2[0][9] = -0.4434342621355260027904421349376207217574;

W2[1][9] = 0.2660373349657100261467235213785897940397;

W2[0][10] = 0.6408971954259840009271442795579787343740;

W2[1][10] = 1.1923076408702419914931169842020608484745;

W2[0][11] = -0.2555465371927799766993416596960742026567;

W2[1][11] = 0.3397862640045030135915737901086686179042;

W2[0][12] = 0.1202193051843220006347223716147709637880;

W2[1][12] = 0.2379970685179360057048825183301232755184;

W2[0][13] = -0.0245119829219639998041380124504939885810;

W2[1][13] = 0.0088994265553359996195892378523240040522;
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W2[0][14] = 0.7920382729873569616074746591039001941681;

W2[1][14] = -0.1805437395665880073725162446862668730319;

W2[0][15] = 0.3106433121467250257907721788797061890364;

W2[1][15] = 0.0810611484186089942260977636578900273889;

W2[0][16] = 0.3866825084480379759455104249354917556047;

W2[1][16] = -0.0857608790727920067276102145115146413445;

W2[0][17] = 0.6838936841556699786082162972888909280300;

W2[1][17] = -0.0688927398083050007704386530349438544363;

W2[0][18] = -0.3432761195444160029488500640582060441375;

W2[1][18] = -0.0536726561309179978076500105999002698809;

W2[0][19] = -0.5833756107236669485871516371844336390495;

W2[1][19] = 0.0903736302946240022127000202090130187571;

W2[0][20] = 0.3188100869498760037146212198422290384769;

W2[1][20] = 0.0160715527410499985083713880840150522999;

W2[0][21] = 1.2583223301536869964678544420166872441769;

W2[1][21] = 0.4138489150150649886761300422222120687366;

W2[0][22] = -0.6989595952688669733277038176311179995537;

W2[1][22] = 0.0437638946217270008443023243671632371843;

W2[0][23] = 1.5766405255141280328246011777082458138466;

W2[1][23] = -0.2114775206555239983607918929919833317399;

W2[0][24] = 0.1333024555215990003542714248396805487573;

W2[1][24] = -0.5002604713507039502218276538769714534283;

W2[0][25] = 0.0963863217932720006686508895654696971178;

W2[1][25] = 0.1221585157203410043624813852147781290114;

W2[0][26] = -0.9697096436021650500691748675308190286160;

W2[1][26] = 0.1944978879448290010056865639853640459478;

W2[0][27] = -0.8520040556914529883414388677920214831829;

W2[1][27] = 0.1908225951026789879438894104168866761029;

W2[0][28] = -0.0764786588576859965860066381537762936205;

W2[1][28] = -0.0882425565138710010781863957163295708597;
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W2[0][29] = -0.2748718525191010120245493908441858366132;

W2[1][29] = -0.2425730903103479885185578268647077493370;

W2[0][30] = -0.2291073401749439963914767304231645539403;

W2[1][30] = 0.1550885764940999889116568510871729813516;

W2[0][31] = -0.3184435837761500076581455687119159847498;

W2[1][31] = -0.1107751650702040041585050289540959056467;

W2[0][32] = 0.0103502270349080001399233452730186400004;

W2[1][32] = -0.2244122377315889982352103970697498880327;

W2[0][33] = -0.8435596781949940003997312487626913934946;

W2[1][33] = -0.5594057542346659861465241192490793764591;

W2[0][34] = -0.6287096282726930551731925334024708718061;

W2[1][34] = -0.0507140505466460028705100171464437153190;

W2[0][35] = -0.9805447672475730014340911111503373831511;

W2[1][35] = -0.3755303502065470144799519403022713959217;

W2[0][36] = -0.2199405358510380104064552142517641186714;

W2[1][36] = 0.0544745383233850022364208598446566611528;

W2[0][37] = -0.0505911252564949995291776474459766177461;

W2[1][37] = -0.0239683077262939983609335570235998602584;

W2[0][38] = -0.1256001025712200069861523843428585678339;

W2[1][38] = 0.0170446360261639999478244789088421384804;

W2[0][39] = 0.9860610803639510146822999558935407549143;

W2[1][39] = 0.4130208173560009909941470596095314249396;
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Appendix D

Post-processing MATLAB Code

for Time-Averaging

function [ ] = contour_CFD_time_averaging_PostProcessing( )

clear all

clc

format long

% Pre-allocate the variables that will save ALL of the data

% Preallocating_variables_save_all_data;

% Pressure contour post procesing for time-averaging

P = ’E:\PhD thesis’;

S = dir(fullfile(P,’*.csv’));

M = 0 ;

O = 0 ;

for l=1:numel(S)

%------------------------------INPUTS---------------------------------%

tic

F = fullfile(P,S(l).name);
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data = xlsread(F);

y = data(:,2) ;

z = data(:,3) ;

c = data(:,4) ;

C(:,:,l) = c ;

s = size(c);

j = 1 ;

for i = 1:1:s(1)

r(j,:) = sqrt(y(i)^2+z(i)^2) ;

j = j + 1 ;

end

Ri = min(r) ;

Ro = max(r) ;

i = 1;

for theta = 0:5:360

j = 1;

for r = Ri:0.002:Ro

Z(i,j) = r*sind(theta) ;

Y(i,j) = r*cosd(theta) ;

for k = 1:s(1)

distance(k) = sqrt((Z(i,j)-z(k))^2 + (Y(i,j)-y(k))^2);

end

[d,I] = min(distance) ;

O(i,j,l) = c(I) ;

j = j+1;

end

i = i+1;

end
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M = O(:,:,l) + M ;

toc

end

O2 = ((M./numel(S))+101325)./(101325) ;

figure(1) ;

[~, hC] = contourf(Y,Z,O2,200) ;

caxis([1.13 1.24])

h = colorbar(’peer’,gca,’SouthOutside’,’fontsize’,20,’FontName’,

’Times’,’FontWeight’, ’bold’);

h.Label.String = ’ p_t/ p_{t,in,clean}’;

h.Label.String = ’$ \frac{p_t}{(p_{t,clean})_{inlet}}$’;

h.Label.Interpreter = ’latex’;

h.Label.FontSize = 35;

shading flat

colormap jet

set(hC,’LineStyle’,’none’)

set(gca,’fontsize’,25,’FontName’, ’Times’,’FontWeight’, ’bold’,’XColor’,

’none’,’YColor’,’none’)

axis equal

end

187



Vita Auctoris

NAME: Syamak Pazireh

PLACE OF BIRTH: Tabriz, Iran

YEAR OF BIRTH: 1989

EDUCATION: Urmia University, B.Sc., Urmia, Iran, 2011

Iran University of Sci. and Tech., M.Sc., Tehran, Iran, 2013

188


	Body Force Modeling of Axial Turbomachines Without Calibration
	Recommended Citation

	tmp.1614698285.pdf.ZoRL2

