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Abstract

The Internet of Things (IoT) is an emerging phenomenon in the public space. Users
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were able to interact with them through speech. This thesis presents a Composi-
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Language Query Interfaces to the Semantic Web, addressing privacy and auditabil-

ity needs in the process. This could be particularly useful in healthcare or legal

applications, where confidentiality of information is a key concern.
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Chapter 1

Preface

My involvement in the SpeechWeb project began in 2009 when I had begun my Un-

dergraduate degree in Computer Science at the University of Windsor. Back then,

I worked with Dr. Frost as part of my Outstanding Scholars scholarship and be-

came familiar with developing SpeechWeb applications in the Haskell programming

language.

Dr. Frost and Dr. Rahmatullah Hafiz had successfully shown in 2012 that it

was possible to parse highly ambiguous left-recursive context-free grammars using

functional combinators as part of Dr. Hafiz’s doctoral dissertation. This opened the

doors to a larger NSERC project that was intended to demonstrate that Compo-

sitional Semantics is an appropriate choice for building a Natural Language Query

Interface to the Semantic Web. At the same time, I set out to work on my Under-

graduate thesis, and in 2013, it was presented at ASONAM’13 [13].

In 2014, although I wasn’t formally credited, I helped contribute to a paper that

was published at the ESWC [12]. I developed the query program that Dr. Frost

used in his demonstration at the conference. The main reason I wasn’t credited was

that I joined the research group after the paper itself had been submitted.

In 2016, I completed my Master’s degree with Dr. Frost as my supervisor. My

task was to extend the English coverage of the NLQI with chained prepositional

phrases. In doing so, I discovered that the word “by” as in “discovered by” could be

treated in the same way as a preposition, simplifying the grammar and the semantics

1



Chapter 1. Preface 2

while also allowing for more flexible queries.

In 2017, I began my Doctoral studies aiming at bringing the SpeechWeb to the

Semantic Web. This would require both improving the time complexity of query

evaluation within the semantics, and also enhancing the query interface with an

even broader coverage of English. It would also require allowing the NLQI to run

on a wide variety of devices, including those with low power requirements and using

the semantics with non-event based triplestores. During this year, Eric Matthews, a

fellow graduate student at the University of Windsor, completed his Master’s degree

thanked me in his Thesis Report for helping him write his thesis [10].

I explored multiple avenues towards solving the problem. I learned about hetero-

geneous computing and became involved with the Khronos Group OpenCL Working

Group with my colleague Paul Preney at the University of Windsor. We published a

poster paper at IWOCL 2017 that dealt with extending build systems for heteroge-

neous OpenCL applications. We were both credited in the OpenCL 2.2 specification

released that year [8].

Pursuing heterogeneous computing, at the end of 2017, I obtained an OCE Tal-

entEdge Academic Internship to develop a simulator for Additive Manufacturing

processes. I published a paper on leveraging heterogeneous computing for accel-

erating simulations for these applications in 2018 at CAD Conference in Paris [9].

There, I was invited to submit a full paper to the CAD and Applications Journal

which was subsequently published in 2019 [5]. The work is featured in the software

APlus which is used by companies around the world for Additive Manufacturing

applications.

Although the mathematics behind developing 3D Printing simulations and Nat-

ural Language Processing applications are dissimilar, both benefit from the same

High Performance Computing techniques for implementing and accelerating them.

In particular, I learned a lot about making programs efficient at the microarchi-

tectural level using techniques such as SIMD vectorization and using efficient data

layouts. Although none of the papers in this dissertation use heterogeneous com-

puting, notes are made in the Future Work sections of each paper presented where
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specialized hardware could be used to accelerate certain computations required by

the semantics. In particular, FPGAs, a form of reprogrammable hardware, could

be used to accelerate the construction of the FDBR, a datastructure central to the

thesis.

Using the microarchitectural-level insight I had gained from this research track,

I was able to successfully get the Haskell demo from my Master’s thesis running

on a low power consumer network router and I realized that the work would be

appropriate for Internet of Things (IoT) applications. As we pursued this avenue in

the course of my studies, Dr. Frost and I published in both conferences and book

series. My contributions to those papers are described as follows:

In 2018, Dr. Frost and I published our first paper in this line of research to-

gether at NLIWoD [7], a satellite event of the ISWC, seeking to re-awaken interest

in Compositional Semantics as an approach for creating Natural Language Query

Interfaces. We also discussed how certain superlatives and graded quantifiers could

be handled within the semantics. My contributions to this paper included the im-

plementation of the demonstration program, including the website, as well as the

discussion of the FDBR, a fundamental datastructure used in this thesis, and how

prepositional phrases are handled.

In 2019, we presented at WEBIST [4], where our paper was nominated for the

Best Student Paper Award. Our paper dealt with how our semantics can accommo-

date “non-compositional” features of English such as superlatives. In particular, we

give mention to the n2 −n binary relations that can be obtained from n-ary events

such as those that underlie n-ary transitive verbs. We were subsequently invited to

submit an extended paper as a chapter for the WEBIST Springer Book. My contri-

bution to this paper included the discussion of how our approach could be used with

traditional relational databases, the demonstration program and implementation,

and some of the examples and discussion around them.

In February 2020, we presented at IEEE ICSC [1]. In our IEEE ICSC 2020 paper,

we described how to handle transitive verbs with n-ary relations in the semantics

and gave a full treatment of the semantics in the Lambda Calculus. We also had
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the beginnings of an idea how to adapt the semantics to relational databases. My

contributions to this paper include the discussion of how to generate FDBRs from

n-ary relations, the formal denotations for chained prepositional phrases, as well as

parts of the denotation used for transitive verbs and the examples shown. We were

invited to submit to the ASTESJ journal for a special issue, but we did not submit

a paper.

In March 2020, we submitted our WEBIST Springer Book [6] paper dealing

with improving the computational complexity of our approach by showing how a

Compositional Semantics can be memoized. A complete application architecture is

presented that permits both online and offline computation of the FDBR datastruc-

tures that are fundamental to the semantics. We also show how superlative phrases

such as “the most” can be accommodated. My contributions to this paper were

all aspects related to memoization, implementation, demonstration, discussion of

syntactic and semantic ambiguity, description of the application architecture, deno-

tation for the superlative phrase “the most” including nesting superlatives phrases

within chained prepositional phrases, discussion regarding accommodating nega-

tion, and the discussion for how to use the approach with relational databases. As

of November 2020, our paper is now available via Springer.

In November 2020, we presented our latest paper at WEBIST [2]. Our WEBIST

2020 paper describes how to accommodate negation in our semantics for applica-

tions where the Closed World Assumption holds. Denotations for words entailing

negation, such as “not”, “non” and “no”, are presented along with a denotation for

transitive verbs that can handle negated expressions. Notably, the denotations for

“no”, “non” and “not” can be omitted to restore the Open World Assumption where

appropriate. My contributions to this paper include the modifications to the seman-

tics to accommodate negation, including integrating negation with the architecture

presented in the WEBIST Springer Book chapter, the denotation for “not”, and the

example queries given.

As of October 2020, we have successfully embedded the semantics directly within

the web browser to remove the need of intermediary servers to process queries. The
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goal of this is to allow your web browser to communicate directly with Semantic Web

triplestores as though they were ordinary websites served over HTTP. Currently, a

version of the query interface is available that does this with event-based triplestores.

We aim to publish our approach in a functional programming conference as we

believe it to be a useful method to create Natural Language Query Interfaces directly

in the web browser.

We have also gained industry interest in crossing the gap to non event-based

triplestores using Machine Learning approaches [3]. Our next goal is to combine

the techniques developed above to query DBPedia with our semantics by leveraging

a Machine Learning approach to perform reification on the non-event based triples.

This will allow us to directly benchmark our approach against other query interfaces.

As of December 2020, my Master’s thesis [11] has been cited 4 times according

to Google Scholar and my ASONAM’13 paper has been cited 8 times according to

Microsoft Academic.
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Chapter 2

Introduction

The Internet of Things (IoT) is an emerging phenomenon in the public space. Re-

motely controlled lights, voice assistants connected directly to powerful search en-

gines, and refrigerators that can predict when you’ll run out of food are just some

examples of where IoT is entering the lives of people around the world. Users with

accessibility needs could especially benefit from these “smart” devices if they were

able to interact with them through speech.

Privacy is a particular concern about popular voice assistants that are currently

in use. They function by sending their queries directly to a remote server for

processing which then return results to the user. This architecture makes their use

in confidential environments problematic, such as in a medical or law office.

Another concern is about the trustworthiness of the returned results. In expert

systems, it’s not enough to just have the answer to a query – users need to be

confident that the result is indeed correct.

This thesis describes a framework for building NLQIs using Compositional Se-

mantics that addresses these concerns. In particular, the use of a Compositional

Semantics guarantees that the results returned will be as correct as the data in the

database. It is also auditable: information is available for the returned results that

justifies their inclusion in the result. This can be used to verify that the retrieved

information indeed exists within the triplestore or database it was retrieved from.

The NLQIs produced with this framework are able to be run directly on the user’s

8
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own devices, such as their own computer, smartphone, or even internet router. The

actual queries the user makes never leave the device – the only time information

leaves the device is when a query to a Semantic Web triplestore needs to be made to

satisfy it. For domain-specific applications where confidentiality is important, the

server can be maintained entirely within that environment under the user’s control.

Our approach relies on a memoized event-based Compositional Semantics (CS)

supporting complex linguistic structures such as prepositional phrases, superlatives,

and negation. It is scalable, in that the architecture can scale from both small to

very large triplestores. It is efficient, in that it can run on low power hardware. It is

expressive, capable of handling queries with many complex linguistic features, and

finally it is precise, as it is based on a Compositional Semantics, where the answers

returned are as correct as the information retrieved from the triplestore.

2.1 Thesis Statement

This dissertation contains five papers that address the problem of creating Natural

Language Query Interfaces to the Semantic Web. It proves the following statement:

“A scalable, efficient, expressive and precise method for processing natural-

language queries to the Semantic Web can be built using a Compositional Semantics.”

This dissertation describes research that proves the thesis. The research was

originally published in refereed conference papers and book chapters that are re-

produced in Chapters 3 through 7. The rest of this chapter introduces the papers

above along with their novel contributions and related background information.

Please see Appendix B for a list of all 10 papers related to this Thesis that I

authored or co-authored.

2.2 Proof of Concept

Rather than prove the thesis statement mathematically, I have chosen to build an

interface that proves that the thesis is correct. It can be found at the following
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URL:

https://speechweb2.cs.uwindsor.ca/solarman/demo_sparql.html

Additionally, a version that runs entirely within the web browser is available at the

following URL:

https://speechweb2.cs.uwindsor.ca/solarman-wasm/

A list of example queries is provided on both websites and in the papers presented

in this report.

2.2.1 Speech support

Both interfaces are speech enabled – simply click on the microphone icon to the

left of the query box and speak a question into your microphone. You may need

to give Solarman permission to access your microphone – if this is the case, click

“Allow” on the prompt that appears. After speaking, the system will automatically

perform the query and use synthesized speech to read the result aloud back to you.

For example, try pressing the microphone button and speaking “who discovered a

moon that orbits mars” into your microphone – you should hear back the answer

“hall” from the NLQI. Supporting web browsers include Mozilla Firefox and Google

Chrome-based browsers at this time, including Microsoft Edge. Internet Explorer

is not supported.

2.3 Novel Contributions

We have made several novel contributions while researching the Thesis Statement.

They are outlined below:

• A denotation for n-ary transitive verbs in a CS

• A denotation for superlatives and comparatives such as “most” and “the most”

https://speechweb2.cs.uwindsor.ca/solarman/demo_sparql.html
https://speechweb2.cs.uwindsor.ca/solarman-wasm/
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• How the FDBR datastructure can be used to accommodate queries with “non-

compositional” features in a CS for a NLQI

• A memoized query evaluation framework for efficiently evaluating NL queries

to a triplestore using a CS

• A mapping between event-based triplestores and relational databases, and

how our event semantics can handle both types of databases

These contributions are described in more detail in the following chapters of this

dissertation.

2.4 Limitations

Our approach is currently geared towards expert systems and domain-specific ap-

plications. Although it maintains a very wide coverage of English in queries, it is

intended to be used in curated knowledge bases where there is a high degree of

certainty about the correctness of the contained information. One property of our

approach is that the answer is as correct as what is contained within the databases

themselves. Our approach has not yet been formally evaluated against other NLQIs

– we provide only qualitative comparisons with other NLQIs in this dissertation. In

our approach, a URI identifies an entity or an event uniquely within the universe of

discourse. In this thesis we have used URIs which identify entities uniquely within

this Windsor project.

Currently, numerical quantifiers such as “one”, “two” depend upon the Single Role

Assumption, where an event may have at most one entity fulfilling a particular role.

Note that while our demonstration uses our “Solarman” knowledge base to answer

NL queries about the solar system, the semantics as presented are highly general

and could be adapted to many different types of knowledge bases. One would need

to understand the domain-specific aspects of those knowledge bases and provide a

vocabulary to facilitate this. For example, with respect to a medical knowledge

base, one could answer the query “Does X contraindicate Y?”, where X and Y are
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names of drugs, by using our denotation for transitive verbs as the denotation of

“contraindicate” and selecting the relation underlying that verb as appropriate. This

applies to all other syntactic categories as well.

2.5 An Extensible Natural-Language Query In-

terface to an Event-Based Semantic Web

Triplestore

Chapter 3 contains a paper that describes the Function Defined by a Binary

Relation (FDBR) and how it can be used to answer Natural Language queries

to event-based Semantic Web Triplestores. It was presented at NLIWOD 2018, a

satellite event of the ISWC.

Briefly, Semantic Web Triplestores are databases that contain Resource Descrip-

tion Framework (RDF) triples that describe facts about entities. Each component

of a triple is a Uniform Resource Identifier (URI) that uniquely identifies an en-

tity within that triplestore. As an example for how these are used, consider the

following:

<hall><discover><phobos> .

<hall><discover><deimos> .

The triples above can be read as “subject-predicate-object”.

Triplestores are accessible via a query method using an endpoint. The most

common query method in use for Semantic Web triplestores is SPARQL [3], however,

increasingly users are turning to other query methods as well, such as Linked Data

Fragments [2] being the recommended choice for querying DBPedia [4].

One problem with entity-based triples such as the example above is that it is

difficult to add contextual information to a set of triples. In the example above, it

is not clear if Asaph Hall discovered both Phobos and Deimos at the same time or

if these were separate events, and it is not clear what year those discoveries took

place. The triples must be reified [5] to obtain the contextual information.
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One method for reification is to use event-based triplestores, where the subject

of each triple identifies an event rather than an entity. The example above could

be expressed as:

<event1045><type><discovery> .

<event1045><subject><hall> .

<event1045><object><phobos> .

<event1045><year><1877> .

<event1046><type><discovery> .

<event1046><subject><hall> .

<event1046><object><deimos> .

<event1046><year><1877> .

Event-based triplestores allow additional contextual information about an event

to be expressed expressed by simply adding additional triples with that event as

the subject. In the example above, it is clear that both discovery events for Deimos

and Phobos took place within the same year.

We present a Natural Language Query Interface to event-based triplestores using

the Function Defined by a Binary Relation (FDBR), a datastructure first used by

Frost in [6] to provide a denotation for binary transitive verbs in a set-theoretic

version of Montague Semantics [7]. In 2016, Peelar showed that the FDBR can be

used to accommodate chained prepositional phrases in a Compositional Semantics

[1]. In this paper, we discuss how the FDBR can be used to answer other types

of Natural Language queries as well, including those with superlatives and graded

quantifiers.

2.6 A New Data Structure for Processing Natural

Language Database Queries

Chapter 4 contains a paper that describes how the FDBR is used to create deno-

tations of other linguistic constructs such as superlatives. It also discusses how the
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semantics can be readily adapted to relational databases. This paper was published

at WEBIST 2019. We were invited to submit an extended paper to the WEBIST

Springer Book, and at the conference we were nominated for Best Student Paper

Award.

2.7 A Compositional Semantics for a Wide-

coverage Natural-Language Query Interface

to a Semantic Web Triplestore

Chapter 5 contains a paper that describes the n2 − n functions defined by an n-

ary relation and how these can be used to accommodate transitive verbs in the

semantics with n-ary relations. This paper was presented at IEEE ICSC 2020. We

were invited to submit to the ASTESJ journal for a special issue, but we did not

submit a paper.

2.8 A New Approach for Processing Natural-

Language Queries to Semantic Web Triple-

stores

Chapter 6 contains a paper that describes how to adapt our semantics to relational

databases. It provides a full treatment of the application architecture of our query

interface, and discusses strategies for handling both syntactic and semantic ambi-

guity in the returned results over both speech and text modalities. It also describes

how the semantics are memoized to improve their computational complexity and

discusses that framework enables FDBRs to be precomputed and cached offline for

fast retrieval.

One of the key ideas behind this paper is to memoize the semantics by using the

expression tree obtained from the query itself. Each expression is uniquely named
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and the results are cached from the triplestore, drastically reducing the number of

evaluations that need to be performed during a query. The same architecture can

be used to cache and generate FDBRs offline for fast retrieval later. It addresses

both the efficiency and scalability aspects of the thesis statement.

We were invited to submit this paper for inclusion in the WEBIST Springer

Book, where it has been published.

2.9 Accommodating Negation in an Efficient

Event-Based Natural Language Query Inter-

face to the Semantic Web

Chapter 7 contains a paper that describes how to accommodate negation within

the semantics. This conference paper was presented at WEBIST 2020. The key idea

behind this paper is to track cardinality throughout the semantics by introducing

a new triplestore querying primitive to obtain the cardinality of the triplestore.

Negation in general only holds if the Closed World Assumption can be satisfied.

Informally, the Closed World Assumption can be characterized by the statement:

“The absence of evidence can be assumed as being evidence of absence”.

For example, if a particular entity p is not explicitly stated as being a member of the

“person” set, then it can be assumed that p is not a member of that set. The Open

World Assumption on the other hand does not assume this statement to be true.

In the previous example, this would mean that p cannot be assumed as not being a

member of the “person” set unless there is an explicit statement of non-membership

elsewhere in the database.

RDF itself is built on the Open World Assumption, however certain domain-

specific triplestores may have enough information such that the Closed World As-

sumption is valid for that triplestore. Where it is not, the denotations for “not”,

“non”, and “no” can be omitted, restoring the Open World Assumption that under-

lies the Semantic Web. This flexibility allows our approach to be used in expert
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systems and domain-specific applications where either assumption is appropriate.

2.10 Notation

In addition to standard Lambda Calculus and set-theory notation, the following

notation is used in this dissertation:

• “<subject> <predicate> <object> .” denotes an RDF triple

• ex denotes the entity x

• ev1234 denotes the event #1234

• ‖x‖ is the mathematical denotation of the phrase x

• xset is the set of all entities that are members of x

• xpred the logical predicate associated with the word x

• xFDBR is the FDBR of all entities that are members of x (a datastructure first

introduced in Chapter 3)

• Queries are written in a monospaced font

• property is used to denote a property, role, or type of an event.

• name is used to indicate query results and objects in the real world.

For example, ephobos is the mathematical object representing phobos, a moon that

orbits Mars.
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3.1 Introduction

One of the major advantages of the semantic web is that data on a topic can

be added with little knowledge of the way in which existing data is stored. This

is particularly the case with reified semantic web triplestores, where people can

add many properties such as the time, location, and implement used, to a triple

such as “<hall> <discovered> <phobos>”. For example, consider an event-based

triplestore containing the following triples, amongst others, where we use bare names

for URIs:

<event1030><type><discovery> .

<event1030><subject><hall> .

<event1030><object><phobos> .

Additional data can be added as follows:

<event1030><date><1877> .

<event1030><implement><refractor_telescope_1> .

<event1030><location><us_naval_observatory> .

Ideally, it should be possible to query these and other triples, using an extensible

Natural-Language Query Interface (NLQI).

In order to facilitate the extension of an NLQI, it helps if the query language

is based on a compositional semantics such as Montague Semantics (MS) [29] or a

version of it, and if the language processor is highly modular. Such an NLQI to

an online event-based triplestore has been constructed and is available through a

web interface, which is discussed in Section 3.2. The NLQI can accommodate com-

mon and proper nouns, adjectives, conjunction and disjunction, nested quantifiers,

intransitive and transitive n-ary verbs, and chained complex prepositional phrases

(PPs). The NLQI is implemented as an executable specification of an attribute

grammar (EAG) using parser combinators in the pure functional programming lan-

guage Haskell. Our parser/interpreter can handle ambiguous left-recursive gram-

mars and fully dependent synthesized and inherited attributes. We begin in section

3.2 with a demonstration of our NLQI. In section 3.3, we discuss our modification
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to Montague Semantics and our compositional event semantics. In section 3.4 we

discuss quantifier scoping. In section 3.5, we describe our implementation of the

NLQI as an EAG. In section 3.6, we discuss how our interface can be extended. In

section 3.7, we discuss related work. We conclude in section 3.8.

The motivation for this work is to rekindle an interest in Montague-like Compo-

sitional Semantics (CS) for query processing. Compositional Semantics have many

benefits which have been exploited in many computing applications, including the

facilitation of extensibility.

3.2 A Demonstration of our NLQI

We have built a small “Solarman” triplestore containing approximately 22,000 facts

about the moons in our solar system, the planets they orbit, and the people who

discovered them, when, where and with which telescope or other device. Our NLQI

can answer many questions with respect to the “Solarman” triplestore, but no other

questions yet. We have installed our NLQI to Solarman on a server and also on a

home wireless router to ensure that our approach requires only minimal computing

power (the answer time on the router is as fast as on the server.) The triplestore

is stored using the Virtuoso semantic web software which supports a SPARQL

Protocol and RDF Query Language (SPARQL) endpoint. Our NLQI is accessible

through the following web page, which contains example queries, and lists of words

and categories of words that can be used in queries:

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

Event-based triples consist of three fields: an event identifier, a relationship type,

and a type or entity identifier. For example, the facts that Hall discovered Phobos

in 1877 using a refractor telescope at the US Naval Observatory can be encoded

with the triples above. The extra facts, in addition to the type, subject and object

of the event enable evaluation of queries containing PPs.

The triples in our triplestore can be accessed by following the link to our proto-

type NLQI. Our processor uses basic SPARQL retrieval commands to retrieve sets

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html
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of entities and events of a given type, and entities which are the actors/properties

of a given event. Our NLQI takes advantage of the optimized retrieval operators in

the SPARQL endpoint to our triplestore. The functions defined by sets of events

are computed in Haskell as needed during the evaluation of the queries.

The following queries illustrate that quantifier scoping is leftmost-outermost:

every telescope was used to discover a moon ⇒ True

a moon was discovered with every telescope ⇒ False (No single moon

was discovered using every telescope in our database)

a telescope was used by hall to discover two moons ⇒ True

which moons were discovered with two telescopes

⇒ halimede laomedeia sao themisto

hall discovered a moon with two telescopes ⇒ False

who discovered deimos with a telescope that was used to discover

every moon that orbits mars ⇒ hall;hall

who discovered a moon with two telescopes

⇒ nicholson science_team_18 science_team_2

how was sao discovered ⇒ blanco_telescope canada-france-hawaii_telescope

how many telescopes were used to discover sao ⇒ 2

who discovered sao ⇒ science_team_18

how did science_team_18 discover sao

⇒ blanco_telescope canada-france-hawaii_telescope

which planet is orbited by every moon that was discovered by two

people ⇒ saturn; none (multiple results are returned as the query is ambiguous)

which person discovered a moon in 1877 with every telescope that

was used to discover phobos ⇒ hall; none
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3.3 Our Modification to Montague Semantics

3.3.1 Modifying MS to a “set-based” MS

We use sets of entities rather than characteristic functions (unary-predicates) in

order to make the implementation of the semantics computationally tractable:

Original MS [29]:

‖every moon spins‖

=⇒ (‖every moon‖) ‖spins‖

=⇒ (λ pq.(∀x) (p x ⇒ q x) moonpred) spinspred

=⇒ (λq.(∀x) (moonpred x ⇒ q x)) spinspred

=⇒ (∀x) moonpred x ⇒ spinspred x

=⇒ True

Requiring moonpred to be applied to all entities in the universe of discourse. In

the set-based MS, the denotation of a noun, adjective or intransitive verb is a set

of entities of type denoted by es. Montague’s denotation of the word “every” is

modified to:

‖every moon spins‖

=⇒ (‖every moon‖) ‖spins‖

=⇒ (λ st.s ⊆ t) moonset spinset

=⇒ (λ t.moonset ⊆ t) spinset

=⇒ moonset ⊆ spinset

=⇒ True

Which is computationally tractable if the representations of sets of moons and things

that spin can be readily retrieved. Proper nouns denote functions of type es → Bool.

‖phobos‖= λ s.ephobos ∈ s
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Then:

‖phobos spins‖

=⇒ (λ s.ephobos ∈ s)

=⇒ ephobos ∈ spinset

=⇒ True (if Phobos spins.)

All denotations are modified from Montague’s approach to use sets rather than

characteristic functions.

3.3.2 Events

In order to accommodate n-ary verbs (n > 2) and PPs, we integrate event semantics

with MS using ideas from Davidson et al.[9], Rothstein [19] and Champollion [5].

Our basic idea is to modify the above to return sets of pairs (rather than sets of

entities) as intermediate results from evaluating the denotations of phrases. Each

pair contains an entity paired with a set of events. In some cases, the set of events

can be thought of as justifying why the entity is in the result. For example the result

of evaluating the phrase “discover phobos” contains the pair (ehall,{ev1030}).

3.3.3 An Explicit Denotation for Transitive Verbs

MS does not provide an explicit denotation for transitive verbs and deals with

them using a syntactic manipulation rule at the end of rewriting the expressions

containing them (see page 216 of [29]). The basic idea underlying our approach is

to regard each n-ary verb as defining n2 −n functions between the entities in the n

roles in the events associated with that verb.

A Denotation of transitive verbs without events in the semantics

In a simple version of our semantics, 2-place transitive verbs denote functions from

a possibly empty list of at most one termphrase to a set of pairs of type (e,es)

where e is an entity and es is a set of entities. The function computes the answer
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by using data that is retrieved from the datastore as needed. Consider the verb

“discover” which we use in our examples. In our triplestore, each discovery event

has 5 roles: “subject” (agent), “object” (theme), “implement”, “year” and “location”.

The triplestore defines 20 binary relations between these 5 roles: subject → object,

subject → implement, subject → year, subject → location, object → subject, etc. For

example, the facts that Hall discovered Phobos and Deimos and Kuiper discovered

Miranda and Nereid, are represented as follows:

discoverrel :subject→object =

{(ehall,ephobos),(ehall,edeimos),(ekuiper,emiranda),(ekuiper,enereid),etc . . .}

For every n-ary verb there are n2 − n binary relations represented by the events

associated with that verb. Each binary relation can be converted to a function,

by “collecting”, into a set, all values in the codomain that are associated with each

value in the domain of the relation, and creating a pair consisting of the value from

the domain paired with that set. In 2016, Peelar called this induced function the

Function Defined by a Binary Relation (FDBR) [4]:

FDBR(rel) = {(x, imagex) | (∃e) (x,e) ∈ rel & imagex = {y | (x,y) ∈ rel}}

For example, the function defined by the discoverrel :subject→object relation above is:

FDBR(discoverrel :subject→object) =

{(ehall,{ephobos,edeimos}),(ekuiper,{emiranda,enereid}),etc . . .}

In such functions, we shall refer to the first value in a pair as the “subject” and

the value in the second place as the “set of objects”. Consider the query ‘who

discovered phobos”: the function which is the denotation of “discovered” com-

putes FDBR(discoverrel :subject→object) and then applies the function which is the de-

notation of “phobos” to the set of objects in every pair (subj,objs) which is a mem-
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ber of FDBR(discoverrel :subject→object). For every pair which returns a value of True,

the subject of the pair is added to the result. The final result of “discovered

phobos” is a set of pairs, each consisting of every subject which was mapped by

FDBR(discoverrel :subject→object) to a set of objects which contains ephobos. That is,

every entity that discovered phobos paired with the set of events which justify that

entity being in the answer. The answer to this example query includes ehall. Sim-

ilarly, the query “who discovered a moon” is processed analogously to the above,

with the denotation of “a moon” being applied to the set of objects in every pair

in FDBR(discoverrel :subject→object), and if True, the associated subject is added to the

result. Every entity that discovered a moon is in the result.

If no termphrase follows the transitive verb, all subjects of pairs that are in

FDBR(discoverrel :subject→object) are returned as the answer. For example, the answer

to the query “who discovered” is the set of all entities who discovered anything.

Denotation of transitive verbs with events

In order to take advantage of the extra knowledge represented by events, we modify

the above so that the denotation of a transitive verb is a function from a list of

at most one termphrase and a possibly empty list of PPs to a set of pairs of type

(e,evs) where e is an entity and evs is a set of events. The function first computes

a discover relation from subjects of discover events to those events:

discoverrel :subject = {(ehall,ev1),(ehall,ev2),(ekuiper,ev3),(ekuiper,ev4),etc . . .}

The FDBR of this binary relation is then computed:

FDBR(discoverrel :subject) = {(ehall,{ev1,ev2}),(ekuiper,{ev3,ev4}),etc . . .}

Consider the query “who discovered phobos”: the function which is the denotation

of “discovered” computes discoverrel :subject and then applies the function which is

the denotation of “phobos” to the set of objects of the events in every pair (subj,evs)
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which is a member of discoverrel :subject. For every pair which returns True, the subject

and set of events is added to the resulting denotation. The final resulting denotation

of “discovered phobos” is a set of pairs consisting of subjects which were mapped

by discoverrel :subject to a set of events whose objects contains ephobos. The answer to

this example query includes (ehall,{ev1030}). Similarly, the query “who discovered

a moon” is processed analogously to the above, with the denotation of “a moon” being

applied to the set of objects from the set of events in every pair in discoverrel :subject,

and if True, the pair is added to the result. If no termphrase or PP follows the

transitive verb, all pairs in discoverrel :subject are returned as the answer . For example,

the answer to the query “who discovered” is the set of all entities who discovered

anything, paired with the set of events of type discovery in which they were the

subject.

Dealing with prepositional phrases

We begin by noting that we treat passive forms of verbs, such “discovered by

hall” similarly to “discovered with a telescope” [4]. Prepositional phrases such

as “with a telescope” are treated similarly to the method described in Section

3.3.3 except that the termphrase following the preposition is applied to the set of

entities that are extracted from the set of events in the FDBR function, according

to the role associated with the preposition. The result is a “filtered” FDBR which

is further filtered by subsequent PPs. For example, consider the query:

who discovered in 1948 and 1949 with a telescope ⇒ kuiper

The calculation here involves computing discoverrel :subject, then filtering it with

the denotation of “in 1948 and 1949”, then finally filtering it with the denotation

of “with a telescope”.

Choosing the FDBR to compute

The denotation of a verb, for example “discover”, needs to know which FDBR

to compute before PPs are applied. For example, the query “what was used to

discover two moons” needs discoverrel : implement, whereas “who discovered two



Chapter 3. An Extensible Natural-Language Query Interface to an Event-Based
Semantic Web Triplestore 27

moons” needs discoverrel :subject. In our approach, the choice is made depending

on the context in which the verb appears. The denotation of a transitive verb

contains the “active” and “passive” properties to be queried depending on the verb

voice, along with the event type that corresponds to the underlying relation. The

grammar determines whether a transitive verb is used in the active or passive voice

and selects the corresponding property in the denotation to form the domain of

the FDBR. In the above examples, when “used” is in the active voice, it selects

the “subject” property, but if it is in the passive voice, it selects the “implement”

property. In both cases, the “type” property of the events that the FDBR is built

from is “discover_ev”.

3.4 Quantifier Scope

We have integrated a Montague-like [29] compositional semantics with our own

version of event semantics. There has been much debate by linguists concerning

the viability of integrating compositional and event semantics, particularly with

respect to quantifier scope. For example, Champollion [5] argues that analysis of

quantifier scope does not pose any special problems in an event semantic framework

and presents an implementation of a quantificational event semantics that combines

with standard treatments of scope-taking expressions in a well-behaved way. The

following examples in subsection 3.4.1, which have been tested with our interface,

suggest that our approach returns appropriate results for scope-ambiguous queries.

In fact, the answer returned is exactly what is expected if the queries are treated

as having leftmost, outermost quantifier scope. Below each query-answer pair, we

briefly explain how our system computes the answer.

3.4.1 Example Queries Illustrating Quantifier Scoping

a. every moon that orbits mars and was discovered with a telescope was

discovered by a person ⇒ True

The evaluation begins by retrieving all of the “moon” entities and then inter-
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secting this set with the set returned by evaluating ‖orbits mars‖, which is
obtained by use of the function f_orbitsubject→object from subjects to the set
of objects which they orbit. The function that is the denotation of “mars” is
then applied by the function denoted by “orbit” to all sets of objects that
are in the range of the function f_orbitsubject→object. This returns the set of
subjects that orbit Mars. Then, This set is intersected with the set of all moons
that were discovered with a telescope (which is computed using the function
f_discoverobject→implements). The set resulting from this intersection is then passed
as the first argument to the denotation of “every”. The second argument to
‖every‖ is the set obtained by evaluating the phrase “discovered by a person”
which is computed by use of the function f_discoverobject→subject from objects
discovered to subjects who discovered them. The function that is the denotation
of “a person” is applied by the function denoted by “discover” to all sets of
subjects that are in the range of the function f_discoverobject→subject This returns
the set of objects that were discovered by a person. ‖every‖ applies the subset
operator to the two arguments and returns True if and only if the set of ob-
jects ‖moon that orbits mars and was discovered with a telescope‖ is a subset of
‖discovered by a person‖. In our triplestore, this is the case.

b. every moon that orbits mars and was discovered by a person was

discovered with a telescope ⇒ True

Similar explanation to that for query a.

c. every moon that orbits Neptune was discovered by a person or a team ⇒

True

Scoping does not require the person or the team to be the same for all discoveries of
the moons that orbit Neptune. ‖discovered by a person or a team‖ returns every-
thing that was discovered by any person or any team. This set is tested by ‖every‖
to see if it includes all of the entities returned by ‖moon that orbits neptune‖.

d. a telescope or voyager_2 was used to discover every moon that orbits

neptune ⇒ False
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No single telescope nor Voyager 2 was used to discover every moon that orbits
Neptune

e. every moon that orbits neptune was discovered with a telescope or

voyager_2 ⇒ True

Voyager 2 or at least one, not necessarily the same, telescope was used to discover
each of the moons that orbit Neptune.

f. every moon that was discovered with a telescope was discovered by hall

⇒ False

Some moons were discovered with a telescope but not discovered by Hall.

g. every moon that was discovered by hall was discovered with a telescope

⇒ True

Hall used a telescope in all of his discoveries of moons.

Our approach appears to be consistent with the “Scope Domain Principle” de-

scribed by Landman [27]. That is, all quantificational noun phrases must take scope

over the event argument. For example, in our semantics, the answer to the query

“hall discovered every moon” is computed by checking to see if, for every moon

m, there exists an event of type discovery, with subject Hall and object m. Our

approach does not compute the answer to “cumulative” readings of queries such as

“who discovered a moon with two telescopes (used simultaneously)”.

3.4.2 Example Queries Illustrating the Scoping of Chained

Prepositional Phrases

The following examples illustrate how queries with chained PPs are answered. It

should be noted that Halimede, Laomedeia, Sao and Themisto are the only moons

that were discovered using two telescopes separately (see queries a to e) and that

Nicholson used two telescopes to discover a total of 4 moons, but did not discover

any one moon with two telescopes (see queries g to i).
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a. which moons were discovered with two telescopes

⇒ halimede laomedeia sao themisto

b. who used two telescopes to discover a moon

⇒ nicholson science_team_18 science_team_2

c. who discovered sao ⇒ science_team_18

d. who discovered themisto ⇒ science_team_2

e. which moon was discovered by science_team_18 with two telescopes

⇒ halimede laomedeia sao

f. what was used to discover sao

⇒ blanco_telescope canada-france-hawaii_telescope

g. what did nicholson discover with two telescopes

⇒ sinope lysithea carme ananke

h. which moon was discovered by nicholson with two telescopes

⇒ none

i. which moon was discovered by nicholson with one telescope

⇒ ananke carme lysithea sinope

j. how was sinope discovered ⇒ refractor_telescope_2

k. how was carme discovered ⇒ hooker_telescope

l. how was ananke discovered ⇒ hooker_telescope

m. how was lysithea discovered ⇒ hooker_telescope

n. what did nicholson discover with one telescope ⇒ nothing

o. what did nicholson discover with a telescope

⇒ sinope lysithea carme ananke
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Note that in the above queries, “one” and “two” are taken to mean “exactly one”

and “exactly two”. Since Nicholson used multiple telescopes to discover multiple

objects, n) returns nothing (“discover with one telescope” returns an FDBR of

all discoverers that used exactly one telescope in all their discoveries, which excludes

Nicholson). On the other hand o) relaxes this restriction, yielding the expected

result (see Section 3.8). Note that i) differs from n) because “was discovered

with one telescope” returns an FDBR of all objects that were discovered each

with exactly one telescope.

3.5 Implementation

We built our query processor as an executable attribute grammar using the X-

SAIGA Haskell parser- combinator library package. The collect function which

converts a binary relation to an FDBR is one of the most compute intensive parts

of our implementation of the semantics [1]. However, in Haskell, once a value is

computed, it can be made available for future use. We have developed an algorithm

to compute FDBR(rel) in O(n lg n) time, where n is the number of pairs in rel.

Alternatively, the FDBR functions can be computed and stored in a cache when

the NLQI is offline. Our implementation is amenable to running on low power

devices, enabling it for use with the Internet of Things. A version of our query

processor exists that can run on a common consumer network router as a proof of

concept for this application. The use of Haskell for the implementation of our NLQI

has many advantages, including:

1. Haskell’s “lazy” evaluation strategy only computes values when they are re-

quired, enabling parser combinator libraries to be built that can handle highly

ambiguous left-recursive grammars in polynomial time. The accommodation

of left recursive grammars simplifies the integration of semantic and syntactic

rules in the EAGs, enabling the query processor to be highly modular and

extensible.

2. The higher-order functional capability of Haskell allows the direct definition
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of higher-order functions that are the denotations of some English words and

phrases. For example: termand s t = λv.s v & t v

3. The ability to partially apply functions of n arguments to 1 to n arguments

allows the definition and manipulation of denotation of phrases such as “every

moon”, and “discover phobos”.

4. The availability of the hsparql [17] Haskell package enables a simple interface

between our semantic processor and SPARQL endpoints to our triplestores.

3.6 Extensibility

A contribution of this paper is to raise awareness of the importance of extensibility

of NLQIs to the semantic web. We use the term “extensibility” in the sense that it

is used in Software Engineering, meaning the extent to which the implementation

takes future growth into consideration, and a measure of the ability to extend the

NLQI and the level of effort required to implement the extension.

3.6.1 Design for extensibility

A number of design decisions facilitate future extension of our NLQI:

1. Our query processor is implemented as a highly-modular executable specifi-

cation of an attribute grammar (AG). AGs were introduced by Knuth [30]

and are widely used to define both the syntax and semantics of program-

ming languages. Each syntax rule has one or more attribute rules associated

with it. The attribute rules define how the value of synthesized and inherited

attributes of the non-terminal defined by the associated syntax rule are com-

puted from attribute values of the terminals and non-terminals that appear

on the right-hand side of the syntax rule. There is a close similarity between

AGs and Montague Grammars (MGs), although they were developed inde-

pendently by a Computer Scientist and a linguist respectively. An executable
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attribute grammar (EAG) is an AG whose defined language processor is im-

plemented in a programming language such that the program code for the

language processor closely resembles the textbook notation for the AG defin-

ing the language to be processed. EAGs are ideally suited for implementation

of language interpreters for MGs.

2. Our semantics is based on a highly modular and compositional semantics.

The similarity of MGs and AGs suggested to us that it should be compara-

tively easy to implement a Montague-style natural-language query processor

as an executable attribute grammar. Frost and Hafiz [18] therefore began

by defining memoized functional combinators, corresponding to “orelse” and

“then” that enable language processors to be built as executable specifications

of attribute grammars.

3. The dictionary in the Haskell code to facilitate the addition of new words and

categories of words to the query language. Our NLQI Haskell code can be

accessed at:

http://speechweb2.cs.uwindsor.ca/solarman4/src/

The code contains a dictionary consisting of entries such as the following:

(``person'', Cnoun, [NOUNCLA_VAL $ get_members ``person''])

Which defines the word “person” to be a common noun (cnoun) whose meaning

is a list of attributes, comprising one attribute of type NOUNCLA_VAL

whose value is an FDBR extracted from the triplestore by the get_members

function which returns an FDBR of all entities that are subjects of events of

type “member” whose object is “person”. Our parser combinators include a

combinator that creates interpreters for different categories of terminals. For

example:

cnoun = memoize_terminals_from_dictionary Cnoun

http://speechweb2.cs.uwindsor.ca/solarman4/src/
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The combinator memoize_terminals_from_dictionary scans the dictionary

and creates the interpreter cnoun (for the terminal category of common nouns)

by “orelsing” all of the basic interpreters that it constructs for words in the

first field of every triple in the dictionary that has the “constructor” Cnoun

in the second field. The list of attributes in the third field is integrated into

each basic interpreter constructed. The resulting interpreter for the syntactic

category is memoized so that its results can be reused in any subsequent

pass over the query string by the same interpreter. The query language can

be easily extended with new words and new categories of words by simply

adding new entries to the dictionary. Note that only bare names need to be

used in the dictionary, as the first part of the URI is added by the combinator

that makes the basic interpreter for that word.

4. Our EAG implementation is such that individual parsers can be applied to

phrases of English rather than whole queries. This allows us to define new

words in terms of existing phrases for which we have defined an interpreter.

For example:

discoverer = meaning_of nouncla ``person who discovered

something''

5. Construction of the interpreter as an EAG accommodates ambiguous and left-

recursive grammars greatly facilitates the extension of the query language to

include new constructs. When grammars are converted to non-left-recursive

form (which is often the case when modular top-down parsers are used), this

can complicate the specification of semantic rules. For example, the specifi-

cation of the syntax and associated semantic rules for converting a bit string

to its decimal value is much easier if the grammar chosen is left recursive.
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3.6.2 Examples of extending the NLQI

We have given examples, in sub-section 6.1 of how we can add single words such

as “person” and “discoverer” to the query language by simply adding an entry to

the in-program dictionary. The query Language can also be easily extended with

new language constructs by adding new syntax rules to the EAG together with

their associated attribute rules. For example, suppose that we want to be able to

ask questions such as “tell me all that you know about hall discovering a

moon that orbits mars” The phrase “hall discovering a moon that orbits

mars” could be processed using the interpreter for questions which would return

the set of two events where Hall discovered Phobos and Deimos. The meaning

of the phrase “tell me all that you know about” could be designed so that,

for each event, a string could be generated: “hall discovered phobos with

refractor_telescope_1 in 1987 at the us_naval_observatory” and also any

other data that had been added about ev1030 Another type of question could be

“who discovered which moons”. The meaning of the word “which” could be

changed temporarily to that of “a” and the question “who discovered a moon”

answered. The resulting FDBR could be returned from the latter question and

then used to generate pairs of people and the list of moons they discovered as

answer to the original query.

Adding superlatives and graded quantifiers

The second contribution of this paper is to recognize that each FDBR contains

more information than we have taken advantage of so far. For example, in

computing the answer to the query “who discovered every moon”. We consider

each pair (subj,objs) in FDBR(discoverrel :subject→object) independently and apply the

meaning of “every moon” to the set objs in order to determine if the subj should

be in the answer. However, for a question such as “who discovered the most

moons that orbit mars” the whole of the FDBR needs to be processed so that

the result contains the subject with the most events representing that subject
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discovering a moon that orbits mars. This requires the addition of “the most”

to the set of quantifiers and the appropriate modification to the denotation of

transitive verbs to take advantage of the information available in the appropriate

FDBR. A similar modification could be made to accommodate queries containing

the words “earliest” “most recently”, using FDBR(discoverrel :object→year) etc.,

and queries such as “which telescope was used to discover most moons”

using FDBR(discoverrel : implement→object) , etc. Accommodating “the least” can be

similarly achieved by introducing complements into the semantics [2].

3.7 Related Work

Orakel [20] is a portable NLQI which uses a Montague-like grammar and a lambda-

calculus semantics to analyze queries. Our approach is similar to Orakel in this

respect. However, in Orakel, queries are translated to an expression of first-order

logic enriched with predicates for query and numerical operators. These expressions

are translated to SPARQL or F-Logic. Orakel supports negation, limited quantifica-

tion, and simple prepositional phrases. Portability is achieved by having the lexicon

customized by people with limited linguistic expertise. It is claimed that Orakel can

accommodate n-ary relations with n ≥ 2. However, no examples are given of such

queries being translated to SPARQL.

YAGO2 [7] is a semantic knowledge base containing reified triples extracted from

Wikipedia, WordNet and GeoNames, representing nearly 0.5 billion facts. Reifica-

tion is achieved by tagging each triple with an identifier. However, this is hidden

from the user who views the knowledge base as a set of “SPOTL” quintuples, where

T is for time and L for location. The SPOTLX query language is used to access

YAGO2. Although SPOTLX is a formal language, it is significantly easier to use

than is SPARQL for queries involving time and location (which in SPARQL would

require many joins for reified triplestores). SPOTLX does not accommodate quan-

tification or negation, but can handle queries with prepositional aspects involving

time and location. However, no mention is made of chained complex PPs.
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Alexandria [13] is an event-based triplestore, with 160 million triples (repre-

senting 13 million n-ary relationships), derived from FreeBase. Alexandria uses a

neo-Davidsonian [28] event-based semantics. In Alexandria, queries are parsed to a

syntactic dependency graph, mapped to a semantic description, and translated to

SPARQL queries containing named graphs. Queries with simple PPs are accommo-

dated. However, no mention is made of negation, nested quantification, or chained

complex PPs.

The systems referred to above have made substantial progress in handling am-

biguity and matching NL query words to URIs. However, they appear to have hit a

roadblock with respect to natural-language coverage. Most can handle simple PPs

such as in “who was born in 1918” but none can handle chained complex PPs, con-

taining quantifiers, such as “in us_naval_observatory in 1877 or 1860”. There

appear to be three reasons for this: 1) those NLQIs that were designed for non-

reified triplestores, such as DBpedia, do not appear to be easily extended to reified

triplestores that are necessary for complex PPs. 2) those NLQIs that were de-

signed for non-reified or reified triplestores, and which translate the NL queries to

SPARQL, suffer from the fact that SPARQL was originally designed for non-reified

triplestores. Although SPARQL was extended to handle “named graphs” [25] which

support a limited form of reification but appear to be suitable only for provenance

data. SPARQL was also extended to accommodate triple identifiers. 3) The YAGO2

system is the only system that has an NLQI for a reified triplestore that does not

translate to SPARQL. However, YAGO2 can only accommodate PPs related to time

and location and does not support quantification.

Blackburn and Bos [24] implemented lambda calculus with respect to natural

language, in Prolog, and [16] have extensively discussed such implementation in

Haskell. Implementation of the lambda calculus for open-domain question answer-

ing has been investigated by [23]. The SQUALL query language [6, 10] is a Con-

trolled Natural Language (CNL) for querying and updating triplestores represented

as Resource Description Framework (RDF) graphs. SQUALL can return answers

directly from remote triplestores, as we do, using simple SPARQL-endpoint triple
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retrieval commands. It can also be translated to SPARQL queries which can be pro-

cessed by SPARQL endpoints for faster computation of answers. SQUALL syntax

and semantics are defined as a Montague Grammar facilitating the translation to

SPARQL.SQUALL can handle quantification, aggregation, some forms of negation,

and chained complex prepositional phrases. It is also written in a functional lan-

guage. However, some queries in SQUALL require the use of variables and low-level

relational algebraic operators (see for example, the queries on page 118 of [6]).

3.8 Concluding Comments

We have presented a compositional event semantics for computing the answers to

English questions, and have shown how it can be used to query a remote event-

based triplestore. We are currently working on three enhancements: 1) scaling up

the NLQI to work with triplestores containing millions of events, and 2) increasing

the coverage of English to accommodate negation, fusion events where roles can

be assigned more than one value, and 3) modifying our approach of PPs to more

consistently handle chained PPs.

Extensible NLQIs are necessary if the potential of the semantic web is realized

and new data is added to existing triplestores by people who may not have been

involved in the creation of those triplestores. We hope that other researchers who

are familiar with Haskell will download and experiment with the software that we

have developed; all of which is available through the links that we have provided.

Our event-based triplestore is also available for remote access at the URL links that

we have given.

Our semantics could be easily extended to accommodate very simple negation as

in the query “no moon orbits two planets”. However, the query “which person

orbits no moons?” would not return the correct answer. The reason is that list

returned by evaluating the denotation corresponding to “orbits no moons” would

only contain entities that orbits something but not a moon. It would not contain

entities that orbit nothing. This problem is related to how the “closed world as-
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sumption” is implemented. To solve tis problem, we will begin by investigating the

methods used in the experimental NLQIs Orakel [20], PANTO [22], Pythia [14], and

TBSL [8]. We shall also consider theoretical computational linguistic approaches

for dealing with negation and quantification in event-based semantics, e.g. [15].

In this paper, we have not addressed the problems that result from the user’s

lack of knowledge of the URIs used in the triplestores. Significant progress has been

made by others, e.g. [12], in tackling this problem.

Also, we have not considered how our semantics can be automatically tailored for

a particular triplestore. We shall begin by considering how Aqualog [21], PowerAqua

[11] and Orakel [20] achieve portability with respect to the different ontologies used

in different triplestores.

It should be noted that our current treatment of PPs is linguistically naive and

suffers from problems with entailment (deriving logical consequences), as discussed

by Partee [26], when certain kinds of prepositional or adverbial phrases are chained

together. However, our proposed approach will accommodate many types of queries

correctly, and the problem with entailment, which is also problematic for all existing

triplestore NLQIs, will also be investigated in future work.
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4.1 Introduction

We begin by describing a Natural Language Query Interface (NLQI) that we have

built. We hope that the interface will motivate readers to look into our modifica-

tions to Montague Semantics (MS) [17]. In Section 4.2, we explain how our NL
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Query interface (NLQI) can be accessed through the Web. In Sub-section Sec-

tion 4.2.1, we describe the Semantic Web triplestore. In Section 4.3 we discuss

example queries and their results: in Section 4.3.2, we provide examples of what are

often referred to as “non-compositional” features of NL that our NLQI can handle,

and in Section 4.3.3 we give examples of NL structures that could be accommodated

by extensions to our approach. With each of the examples we provide an informal

explanation of how the answer is, or could be, computed.

In Section 4.4, we describe the new FDBR data structure which is central to

our approach, and which can be created from an event-based triplestore (as we do

in our online NLQI), or from a relational database.

Much of our semantics is based on MS. We differ in these ways:

1. We add events to the basic ontological concepts of entities and truth values.

2. Each event has a number of roles associated with it. Each role has an entity

as a value.

3. For efficiency, we use sets of entities rather than characteristic functions of

those sets as is the case in MS.

4. We define transitive n-ary verbs in terms of sets of events, each with n roles.

5. We compute FDBRs, the novel datastructure presented in this paper, from

sets of events (could be computed from relations), and use them in the de-

notations of transitive verbs, and in computing results of queries containing

prepositional phrases. Although not referred to as an FDBR, the use of rela-

tional images in denotations of verbs was first proposed by [16].

We hope that this paper reawakens an interest in Compositional Semantics, in

particular for NL query processing.

4.2 How to Access our NLQI

Our NL interface can be accessed at the following web site:
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http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

4.2.1 The Triplestore that is Queried

Our NLQI computes answers with respect to a triplestore containing data about the

planets, the moons that orbit them, and the people who discovered those moons,

and when, where and with what implement they were discovered. Note that each

set of triples associated with an event could be equally well be represented by a row

in a relational database.

The triplestore contains triples such as the following which represent the event

#1045 in which hall (in the role of “subject”) discovered phobos (in the role of

“object”) in 1877 (in the role of “year”) with the refractor_telescope_1 (in the

role of “implement”) at the us_naval_observatory (in the role of “location”).

Table 4.1: Events of type “Discover”. The full URIs of the events, properties, and
entities have been omitted here.

Event Property Entity

event1045 subject hall
event1045 object phobos
event1045 type discover_ev
event1045 year 1877
event1045 location us_naval_observatory
event1045 implement refractor_telescope_1

Events representing set membership are represented as follows:

Table 4.2: Events of type “Membership”.
Event Property Entity

event1128 subject galileo
event1128 object person
event1128 type membership

The complete triplestore, which contains tens of thousands of triples, is hosted

on a remote compute server using the Virtuoso software [7] and can be accessed by

following the link at the beginning of Section 4.2.

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html
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4.3 Example Queries

Our NLQI can answer millions of queries with respect to the triplestore discussed

above. The NLQI can accommodate queries containing common and proper nouns,

adjectives, conjunction and disjunction, intransitive and transitive verbs, nested

quantification, superlatives, chained prepositional phrases containing quantifiers,

comparatives and polysemantic words. In the following we provide an informal

explanation of how the answer is computed.

4.3.1 Queries Demonstrating the Range of NL Features that

our NLQI can Accommodate

phobos spins ⇒ True

phobos is a moon ⇒ True

The function denoted by “phobos” checks to see if phobos is a member of the spin

set, and secondly if phobos is a member of the moon set.

a moon spins ⇒ True

every moon spins ⇒ True

an atmospheric moon exists ⇒ True

The function denoted by “a” checks to see if the intersection of the moon set and

spin set is non-empty. The function denoted by “every” checks to see if the set of

the moon set is a subset of the spins set. The denotations of “a” and “every” that

we use are set-theoretic event-based versions of the denotations from MS which uses

characteristic functions. The answer to the third query is obtained by checking if

the intersection of the atmospheric set and the moon set is non-empty.

hall discovered ⇒ True

All of the events of type “discover” are collected together and are checked to see if

ehall is found as the subject role value of any of them. If so, True is returned.

when did hall discover ⇒ 1877



Chapter 4. A New Data Structure for Processing Natural Language Database
Queries 48

The “year” property of the events returned by “hall discover” (treated as “hall

discovered”) are returned.

phobos was discovered ⇒ True

All of the events of type “discover” are collected together and are checked to see if

ephobos is found as the object role value of any of them. If so True is returned.

earth was discovered ⇒ False

Earth was not discovered by anyone, according to our data.

did hall discover phobos ⇒ True

All of the events of type “discover” are collected together and are checked to create

a pair (s,evs) for each value of the subject attribute found in the set of events. evs

is the set of events to which the subject attribute is related through a discovery

event. Each pair is then examined to see if the function denoted by the object

termphrase (in this case phobos) returns a non-empty set when applied to a set

(called an FDBR, which is described later) generated from the set of evs in the

pair, and if so the subject of the pair is added to the set which is returned as the

denotation of the verbphrase part of the query. The denotation of the termphrase

at the beginning of the query is then applied to the denotation of the verbphrase to

obtain the answer to the query.

Owing to the fact that our semantics is compositional the subject and object

termphrases of the query above can be replaced by any termphrases. For example:

a person or a team discovered every moon that orbits mars ⇒ True

who discovered two moons that orbit mars ⇒ hall

“who”, “what”, “where”, “when” and “how” can be used in place of the subject

termphrase. Different role values are returned depending on which “wh..” word is

used in the query.

where discovered by galileo ⇒ padua

when discovered by galileo ⇒ 1610



Chapter 4. A New Data Structure for Processing Natural Language Database
Queries 49

every telescope was used to discover a moon ⇒ True (w.r.t.our data)

a moon was discovered by every telescope ⇒ False

a telescope was used by hall to discover two moons ⇒ True

which moons were discovered with two telescopes

⇒ halimede laomedeia sao themisto

who discovered deimos with a telescope that was used to discover

every moon that orbits mars ⇒ hall

who discovered a moon with two telescopes

⇒ nicholson science_team_18 science_team_2

how was sao discovered ⇒ blanco_telescope canada-france-hawaii_telescope

how discovered in 1877 ⇒ refractor_telescope_1

how many telescopes were used to discover sao ⇒ 2

who discovered sao ⇒ science_team_18

how did science_team_18 discover sao

⇒ blanco_telescope canada-france-hawaii_telescope

which planet is orbited by every moon that was discovered by two

people ⇒ saturn; none

which person discovered a moon in 1877 with every telescope that

was used to discover phobos ⇒ hall; none

who discovered in 1948 and 1949 with a telescope ⇒ kuiper

4.3.2 Queries with “Non-Compositional” Structures

We agree with many other researchers that natural language has non-compositional

features but believe that the non-compositionality is mostly problematic when the

objective is to give a meaning to an NL expression without a context. It is less

problematic when answering NL queries. As illustrated below, the person posing

the query, or the database or triplestore can provide contexts that help resolve much

of the ambiguity resulting from non-compositional features.

The advantages of a using a compositional semantics include 1) the answer to

a query is as correct as the data from which it is derived, 2) the meaning of sub
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phrases within a query can be discussed formally, 3) the query language can be

extended such that all existing phrases maintain their original meanings, 4) the

definition of syntax and semantics in the compositional semantics can be used as a

blueprint for the implementation of the query processor.

Some researchers have provided examples of what they claim to be non-

compositional structures in NL. For example, Hirst [14] gives the example of the

verb “depart” which he states is not compositional because its meaning changes

with the prepositional phrase(s) which follow it, and that the definition of composi-

tionality needs to be modified to include the requirement that the function used to

compose the meaning of parts must be systematic. We claim that our semantics for

verbs is systematic as the denotations of subject and object termphrases, and the

possibly empty list of prepositional phrases following the verb are treated equally

and are all used in the same way to filter the set of events of the type associated

with the verb, before that set is returned as the denotation of the verb phrase.

This is illustrated in the following queries:

who discovered⇒ bernard bond cassini cassini_imaging_science_team christy

dollfus galileo etc...

No subject, object or prepositional phrase is given in the query, and so all events of

type “discover” are returned by the verbphrase and the denotation of the word “who”

picks out the subjects from those events.

where discovered io ⇒ padua

No subject, or prepositional phrase is given in the query, and so all events of type

“discover” are considered and filtered by the denotation of the object termphrase “io”

and then, those that pass the filter are returned by the verbphrase and the word

“where” picks out the location from those events.

who discovered in 1610 ⇒ galileo

No subject or object is in the query so all events of type “discover” are considered and

only those with attribute “year” equal to 1610 pass the filter and then the denotation
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of the word “who” selects the subject which is returned.

In our semantics, the subject and object termphrases are treated as filters as are

all prepositional phrases, as shown in the following example:

who discovered every moon that orbits mars with one telescope or

a moon that orbits Jupiter with a telescope ⇒ one. ; none. ; none. ;

bernard galileo kowal melotte nicholson perrine science_team_1 science_team_2 ;

hall ; hall ; none.

Several results are returned because the query is syntactically ambiguous.

where discovered in 1610 ⇒ padua

how discovered in padua ⇒ galilean_telescope_1

These queries retrieve the location and implement properties of the events of

“discovered in 1610” and “discovered in padua” respectively.

4.3.3 Extensions to the Semantics

Some phrases containing nested quantifiers are given by some researchers, as ex-

amples of non-compositionality. For example: “a US diplomat was sent to every

capital” is often read as having two meanings which can only be disambiguated by

additional knowledge. We argue that the person posing a query can express the

query unambiguously if they are familiar with quantifier scoping conventions used

by our processor, as illustrated in the following:

christy or science_team_19 or science_team_20 or science_team_21

discovered every moon that orbits pluto ⇒ False

In our semantics, quantifier scoping is always leftmost/outermost, and an unam-

biguous query can be formulated as follows:

every moon that orbits pluto was discovered by christy or science_team_19

or science_team_20 or science_team_21 ⇒ True

Some examples of non-compositionality involve polysemantic superlative words such
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as “most” in, for example:

“Who discovered most moons that orbit P. Where P is a planet.”

If “most” is treated as “more than half” then:

who discovered most moons that orbit mars ⇒ hall

Because our semantics currently allows only this reading. However, the answer to

the alternate reading “who discovered the most moons that orbit P” – i.e. more

than anyone else who discovered a moon that orbits P. Could be obtained in our

semantics by comparing all of the (ent,evs) pairs returned by the verbphrase to see

which subject is paired with most objects. We are currently working on this and

other extensions to our semantics.

how was every moon that orbits saturn discovered ⇒ cassini reflec-

tor_telescope_1 aerial_telescope_1 refractor_telescope_4 etc...

It may be surprising that cassini is returned in the answer since it is not a telescope,

but is instead a spacecraft. However, since it was used to discover at least one moon

that orbits saturn, it is considered to have fulfilled the implement role and is encoded

as such in the triplestore.

4.4 The FDBR: A Novel Data Structure for Nat-

ural Language Queries

4.4.1 Montague Semantics

All quantifiers, such as “a”, “every” and “more than two” are treated in MS as

functions which take two characteristic functions of sets as arguments and return a

Boolean value as result. Our modifications to MS are to use sets of entities instead

of predicates/characteristic functions of those sets, and to pair sets of events with

each entity; the set of events paired with an entity justify the entity’s inclusion in
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the denotation. For example:

‖propernoun‖=

λ p.{(e,evs) | (e,evs) ∈ p & e = the entity associated with the proper noun}

‖spins‖= {(ephobos,{ev1360}),(edeimos,{ev1332}), etc . . .}

Therefore,

‖phobos spins‖= ‖phobos‖ ‖spins‖

= λ s.{(e,evs)|(e,evs) ∈ s & e = ephobos}{(ephobos,{ev1360}),(edeimos,{ev1332}), . . .}

= {(ephobos,{ev1360})}

‖a‖= λms.{(e1,evs2) | (e1,evs1)) ∈ m & (e2,evs2) ∈ s & e1 = e2}

‖a moon spins‖= {(ephobos,{ev1360}), (edeimos,{ev1332}), etc . . .}

Note that the events evs paired with the entities returned in the denotation

of “was every moon that orbits saturn discovered” are the events represent-

ing membership of those entities of type “moon” in the object value of events of

type “discover”. This enables additional data to be accessed from those events, as

illustrated in the last example query in the previous section.

4.4.2 The FDBR

In order to generate the answer to “hall discovered every moon that orbits

mars”, ‖every‖ is applied to ‖moon that orbits mars‖ (i.e. the set of moons that

orbit mars), as first argument, and the set of entities that were discovered by hall,

as the second argument. Our semantics generates this set from the set of events of

type “discover” where the subject role is the entity associated with hall, as discussed

below:

Every set of n-ary events (i.e. events with n roles) of a given type, e.g. discovery,

defines n2 −n binary relations. For example, for discovery events:
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discoverrel :subject→object discoverrel :subject→year discoverrel :subject→implement . . .

discoverrel :object→subject discoverrel :object→year discoverrel :object→implement . . .

discoverrel :year→subject discoverrel :year→object discoverrel :year→implement . . .

etc . . . to 20 binary relations for the set of discovery events or an 5-ary discovery

relation. For example:

discoverrel :subject→object = {(ev1045,ehall,ephobos),(ev1046,ehall,edeimos),etc . . .}

If we collect all of the values from the range of a relation that are mapped to by

each value v from the domain (i.e. the image of v under the relation r) and create

the set of all pairs (v, image_o f_v), we obtain a function defined by the relation r,

i.e. the FDBR. For example:

FDBR(discoverrel :subject→object) =

{(ehall,{(ephobos,{ev1045}), (edeimos,{ev1046})}),etc . . .}

It is these functions that are created, and used, by the denotation of the transitive

verb associated with the type of the events. For example in calculating the value of

‖who discovered every moon that orbits mars‖, ‖every‖ is applied to the set of en-

tities which is the denotation of “moon that orbits mars” (i.e {(ephobos,{ev1045}),

(edeimos,{ev1046})}) and all of the images that are in the second field of the pairs in

FDBR(discoverrel :subject→object).

For the pair (ehall,{(ephobos,{ev1045}),(edeimos,{ev1046})}), ‖every‖ returns the

non-empty set {(ephobos,{ev1045}),(edeimos,{ev1046})}, and the value in the first field,

i.e. ehall, is subsequently returned with the answer to the query.

The various FDBRs are used to answer different types of queries. For example:
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who discovered phobos and deimos ⇒ hall

uses FDBR(discoverrel :subject→object)

where discovered by galileo ⇒ padua

uses FDBR(discoverrel : location→subject)

how discovered in 1610 or 1855 ⇒ galilean_telescope_1

uses FDBR(discoverrel : implement→year)

4.5 Handling Prepositional Phrases

Prepositional phrases (PPs) such as “with a telescope” are treated similarly to

the method above, except that the termphrase following the preposition is applied

to the set of entities that are extracted from the set of events in the FDBR function,

according to the role associated with the preposition. The result is a “filtered” FDBR

which is further filtered by subsequent PPs.

4.6 Quantifiers and Events

In 2015, Champollion [2] stated that, at that time, it was generally thought by

linguists that integration of Montagovian-style compositional semantics and David-

sonian–style event semantics [15, 18] was problematic, particularly with respect to

quantifiers. Champollion did not agree with that analysis and presented an integra-

tion which he called “quantificational event semantics” which he claimed solved the

difficulties of integration by assuming that verbs and their projections denote exis-

tential quantifiers over events and that these quantifiers always take lowest possible

scope.

In this paper, we borrow much from Montague Semantics (MS), Davidsonian

Event Semantics, and Champollion’s Quantificational Event Semantics. However,

we provide definitions of our denotations in the notation of set theory, which im-

proves computational efficiency and, we believe, simplifies understanding of our

denotations. We also believe that our semantics is intuitive, systematic, and com-

positional.
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4.7 Our Approach with Relational Databases

Our NLQI could be easily adapted for use with conventional relational databases.

Each row in a relation Rel can be thought of as representing an event of type Rel,

and each column name can be thought of as a role name. The event itself would

serve as the primary key, and only the triple retrieval function would need to be

modified. This architecture allows the denotations to remain unchanged and yet

still work with different types of databases.

4.8 Implementation of our NLQI

We built our query processor as an executable attribute grammar using the X-

SAIGA Haskell parser-combinator library package [10]. The collect function which

converts a binary relation to an FDBR is one of the most compute intensive parts of

our implementation of the semantics. However, in Haskell, once a value is computed,

it can be made available for future use. We have developed an algorithm to compute

FDBR(rel) in O(n log n) time, where n is the number of pairs in rel. Alternatively,

the FDBR functions can be computed and stored in a cache when the NLQI is

offline. Our implementation is amenable to running on low power devices, enabling

it for use with the Internet of Things. A version of our query processor exists

that can run on a common consumer network router as a proof of concept for this

application. The use of Haskell for the implementation of our NLQI has many

advantages, including:

1. Haskell’s “lazy” evaluation strategy only computes values when they are re-

quired, enabling parser combinator libraries to be built that can handle highly

ambiguous left-recursive grammars in polynomial time.

2. The higher-order functional capability of Haskell allows the direct definition

of higher-order functions that are the denotations of some English words and

phrases.
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3. The ability to partially apply functions of n arguments to 1 to n arguments

allows the definition and manipulation of denotation of phrases such as “every

moon”, and “discover phobos”.

4. The availability of the hsparql [9] Haskell package enables a simple interface

between our semantic processor and SPARQL endpoints to our triplestores.

4.9 Related Work

Orakel [11] is a portable NLQI which uses a Montague-like grammar and a lambda

calculus semantics. Our approach is similar in this respect. Queries are translated

to an expression of first order logic enriched with predicates for query and numer-

ical operators. These expressions are translated to SPARQL or F-Logic. Orakel

supports negation, limited quantification, and simple prepositional phrases.

YAGO2 [4] is a semantic knowledge base containing reified triples extracted

from Wikipedia, WordNet and GeoNames, representing nearly 0.5 billion facts.

Reification is achieved by tagging each triple with an identifier. However, this is

hidden from the user who views the knowledge base as a set of “SPOTL” quintuples,

where T is for time and L for location. The SPOTLX query language is used to

access YAGO2. SPOTLX can handle queries with prepositional aspects involving

time and location. However, no mention is made of chained complex PPs.

Alexandria [6] is an event-based triplestore, with 160 million triples (represent-

ing 13 million n-ary relationships), derived from FreeBase. Alexandria uses a neo-

Davidsonian [15] event-based semantics. In Alexandria, queries are parsed to a

syntactic dependency graph, mapped to a semantic description, and translated to

SPARQL queries containing named graphs. Queries with simple PPs are accommo-

dated. However, no mention is made of negation, nested quantification, or chained

complex PPs.

The systems referred to above have made substantial progress in handling am-

biguity and matching NL query words to URIs. However, they appear to have hit a

roadblock with respect to natural-language coverage. Most can handle simple PPs
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such as in “who was born in 1918” but none can handle chained complex PPs,

containing quantifiers, such as “in us_naval_observatory in 1877 or 1860”.

Blackburn and Bos [13] implemented lambda calculus with respect to natu-

ral language, in Prolog, and [8] have extensively discussed such implementation in

Haskell. Implementation of the lambda calculus for open-domain question answer-

ing has been investigated by [12]. The SQUALL query language [3, 5] is a controlled

natural language (CNL) for querying and updating triplestores represented as RDF

graphs. SQUALL can return answers directly from remote triplestores, as we do,

using simple SPARQL-endpoint triple retrieval commands. It can also be trans-

lated to SPARQL queries which can be processed by SPARQL endpoints for faster

computation of answers. SQUALL can handle quantification, aggregation, some

forms of negation, and chained complex prepositional phrases. It is also written

in a functional language. However, some queries in SQUALL require the use of

variables and low-level relational algebraic operators (see for example, the queries

on page 118 of [3]).

4.10 Concluding Comments

We are confident that, after we accommodate negation, our compositional semantics

is appropriate for most queries that are likely to be asked of data stores containing

knowledge related to household artifacts or domain specific information. The FDBR

datastructure presented in this paper can be used to handle many kinds of complex

language features, including chained prepositional phrases and superlatives. The

way quantification is handled within the semantics is consistent with other work in

this area, as discussed in Section 4.6. The approach chosen is flexible enough that it

can accommodate queries to both relational and non-relational types of databases,

including Semantic Web triplestores. It is also suitable for use on low power devices,

which may be useful for applications on the Internet of Things (IoT).

In the future, we plan to scale up the capability of our NLQI further to access

massive data stores such as DBpedia. To achieve this goal, we plan to accelerate the
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FDBR generation process using specialized acceleration hardware, such as FPGAs

and GPUs.
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5.1 Introduction

Many Natural Language Query Interfaces to relational databases and semantic

web triplestores convert the NL query to a formal query language such as SQL

or SPARQL and then execute the formal query with respect to the relational

database or semantic web triplestore respectively. One problem with these ap-

proaches is that the interface is restricted by the difficulty of translating complex

NL phrases to the formal query language. In particular, queries with chained prepo-

sitional phrases containing quantifiers have been difficult to accommodate. Ex-

amples of such queries are: “who discovered two moons with a telescope in

1877 at us_naval_observatory”, and “where was a telescope used by hall

to discover phobos”

An alternative approach is to treat the NL query as an expression of the lambda

calculus, using an extended form of the denotational semantics of Richard Mon-

tague [25], and to calculate the answer directly by interpreting the lambda calculus

expression with respect to the data store. All that are required to be extracted from

the data store are unary relations corresponding to sets of entities associated with

the denotations of common nouns, adjectives and intransitive verbs, and the n2 −n

binary relations associated with n-ary transitive verbs.

Montague semantics can be easily implemented in a pure functional program-

ming language such as Haskell. The higher-order functional capability of Haskell

and the ability to partially apply higher-order functions enable Montague denota-

tions of words such as “every” to be directly defined in the language. Furthermore,

the availability of parser combinator libraries enables the construction of Executable

Attribute Grammars (EAGs) within the language. This lends itself to a direct im-

plementation of Montague-style integration of syntax rules with semantic rules.
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5.2 A Prototype System

The pure functional programming language Haskell was used to build a prototype

NL interface to a semantic web triplestore. It can be accessed at this URL:

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

Notably, our interface is able to accommodate highly complex chained preposi-

tional phrases in queries, including those with superlatives. For example, our sys-

tem can accommodate the query: “who discovered the most vacuumous moons

using the most telescopes in the most places.” A comprehensive list of ex-

amples can be found at the “More Examples” link at the URL above.

If a syntactically ambiguous query is entered, the results from each possible

interpretation are returned, along with their corresponding syntax trees. For exam-

ple, “who discovered the most vacuumous moons in 1877” could be treated as

“who (discovered (the most (vacuumous moons)) [in 1877])”. This style of

notation was chosen to closely mirror how the semantics are internally evaluated in

the Haskell language. Both parentheses and brackets denote scoping, and brackets

denote lists of prepositional phrases

5.3 Related Work

Orakel [17] is a portable NLQI which uses a Montague-like grammar and a lambda-

calculus semantics to analyze queries. The approach described in this paper is

similar to Orakel in this respect. However, in Orakel, queries are translated to

an expression of first-order logic enriched with predicates for query and numeri-

cal operators. These expressions are translated to SPARQL or F-Logic. Orakel

supports negation, limited quantification, and simple prepositional phrases. Porta-

bility is achieved by having the lexicon customized by people with limited linguistic

expertise. It is claimed that Orakel can accommodate n-ary relations with n ≥ 2.

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html
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However, no examples are given of such queries being translated to SPARQL.

YAGO2 [9] is a semantic knowledge base containing reified triples extracted from

Wikipedia, WordNet and GeoNames, representing nearly 0.5 billion facts. Reifica-

tion is achieved by tagging each triple with an identifier. However, this is hidden

from the user who views the knowledge base as a set of “SPOTL” quintuples, where

T is for time and L for location. The SPOTLX query language is used to access

YAGO2. Although SPOTLX is a formal language, it is significantly easier to use

than is SPARQL for queries involving time and location (which in SPARQL would

require many joins for reified triplestores). SPOTLX does not accommodate quan-

tification or negation, but can handle queries with prepositional aspects involving

time and location. However, no mention is made of chained complex PPs.

Alexandria [11] is an event-based triplestore, with 160 million triples (repre-

senting 13 million n-ary relationships), derived from FreeBase. Alexandria uses a

neo-Davidsonian [23] event-based semantics. In Alexandria, queries are parsed to a

syntactic dependency graph, mapped to a semantic description, and translated to

SPARQL queries containing named graphs. Queries with simple PPs are accommo-

dated. However, no mention is made of negation, nested quantification, or chained

complex PPs.

The systems referred to above have made substantial progress in handling am-

biguity and matching NL query words to URIs. However, they appear to have hit a

roadblock with respect to natural-language coverage. Most can handle simple PPs

such as in “who was born in 1918” but none can handle chained complex PPs, con-

taining quantifiers, such as “in us_naval_observatory in 1877 or 1860”. There

appear to be three reasons for this: 1) those NLQIs that were designed for non-

reified triplestores, such as DBpedia, do not appear to be easily extended to reified

triplestores that are necessary for complex PPs. 2) those NLQIs that were de-

signed for non-reified or reified triplestores, and which translate the NL queries to

SPARQL, suffer from the fact that SPARQL was originally designed for non-reified

triplestores. Although SPARQL was extended to handle “named graphs” [21] which

support a limited form of reification but appear to be suitable only for provenance
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data. SPARQL was also extended to accommodate triple identifiers. 3) The YAGO2

system is the only system that has an NLQI for a reified triplestore that does not

translate to SPARQL. However, YAGO2 can only accommodate PPs related to time

and location and does not support quantification.

Reference [20] implemented lambda calculus with repect to natural language, in

Prolog, and [14] have extensively discussed such implementation in Haskell. Imple-

mentation of the lamda calculus for open-domain question answering has been inves-

tigated by [19]. The SQUALL query language [7, 10] is a controlled natural language

(CNL) for querying and updating triplestores represented as RDF graphs. SQUALL

can return answers directly from remote triplestores, as the approach described in

this paper does, using simple SPARQL-endpoint triple retrieval commands. It can

also be translated to SPARQL queries which can be processed by SPARQL end-

points for faster computation of answers. SQUALL syntax and semantics are de-

fined as a Montague Grammar facilitating the translation to SPARQL.SQUALL can

handle quantification, aggregation, some forms of negation, and chained complex

prepositional phrases. It is also written in a functional language. However, some

queries in SQUALL require the use of variables and low-level relational algebraic

operators (see for example, the queries on page 118 of [7]).

5.4 The Extension to Montague Semantics

MS [25] defines the meaning of words, phrases, sentences and queries in terms of

a space of functions that is built over a set of entities (the universe of discourse)

and the Boolean values True and False. For example, the word “moon” denotes

the characteristic function (logical predicate) which maps entities to True or False.

The result is True if the entity is a moon, and False otherwise. One of Montague’s

many insights was his recognition that proper nouns such as “phobos” do not denote

entities; rather they denote functions that take characteristic functions as argument

and return Boolean values as result. For example “phobos” denotes the function

λ f . f ephobos where ephobos represents the entity associated with the name Phobos.
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For readers not familiar with the Lambda Calculus, the expression λ f .expr is the

name (and definition) of a function which, when applied to an argument g returns

as result the expression expr with all instances of f in expr replaced by g. According

to MS, the phrase “phobos spins” is interpreted as shown below, where a =⇒ b

indicates that b is the result of evaluating a, ‖a‖ represents the denotation (meaning)

of a, wpred is the logical predicate associated with the word w, and λ is the Lambda

symbol.

‖phobos spins‖

=⇒‖phobos‖ ‖spins‖

=⇒ λ f . f ephobos ‖spins‖

=⇒ λ f . f ephobos spinspred

=⇒ spinspred ephobos

=⇒ True

owing to the fact that Phobos does spin.

Montague’s treatment of quantifiers such as “a”, “every”, “some”, “one” etc. is

to treat their denotations as higher-order functions. For example, the word “every”

denotes the following function:

‖every‖=λ pq.(∀x) (p x ⇒ q x)

For example:

‖every moon spins‖

=⇒ (‖every moon‖) ‖spins‖ (from syntactic parsing)

=⇒ (λ pq.(∀x) (p x ⇒ q x) moonpred) spinspred

=⇒ (λq.(∀x) (moonpred x ⇒ q x)) spinspred

=⇒ (∀x) moonpred x ⇒ spinspred x

=⇒ True (every moon in the universe of discourse spins)



Chapter 5. A Compositional Semantics for a Wide-Coverage Natural-Language
Query Interface to a Semantic Web Triplestore 67

5.4.1 A Computationally Tractable Version of Montague

Semantics

The direct implementation of MS is not practical for applications with a large

universe of discourse owing to the use of characteristic functions. For example, the

denotation of “every” given above is computationally intractable in a query such

as “does every moon spin” as it would require the characteristic function that is

the denotation of “moon” to be applied to every entity in the universe of discourse.

A more efficient alternative approach is to use the sets defined by characteristic

functions directly in denotations [22, 24]. For example:

‖moon‖= {ephobos,edeimos, . . .}

All other denotations are modified accordingly. For example:

‖phobos‖= λ s.ephobos ∈ s (where ∈ is the set membership operator)

‖every‖= λ st.(s ⊆ t) (where s ⊆ t returns True if s is a subset of t)

‖spins‖= the set of entities that spin

Thus the phrase “every moon spins” is interpreted as follows:

‖every moon spins‖

=⇒ (λ st.(s ⊆ t)) ‖moon‖ ‖spins‖

=⇒‖moon‖ ⊆ ‖spins‖

=⇒ True (because all moons in the universe of

discourse are in the set of things that spin)
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The phrase “phobos spins” is interpreted as follows:

‖phobos spins‖

=⇒ (λ s.ephobos ∈ s) ‖spins‖

=⇒ ephobos ∈ ‖spins‖

=⇒ True (because Phobos, in the universe of

discourse, is in the set of entities that spin)

5.4.2 An Event-Based Version of Montague Semantics

An event-based version of MS is needed to accommodate queries executed with

respect to event-based reified triplestores [4]. Such a semantics has been developed

and is described in earlier papers [4, 5] and in Peelar’s Master’s thesis [3].

It should be noted that binary relations can be obtained from event-based triple-

stores by first retrieving all triples of the type associated with the transitive verb,

then extracting all event identifiers from those triples, followed by retrieving all sub-

jects and objects associated with those events. The binary relation is obtained by

pairing each subject with each object with which it is associated through an event.

In the event-based approach, rather than returning sets of entities as results of

evaluating denotational expressions, sets of pairs are returned. Each pair (ent,evs)

consists of an entity ent paired with a set of events evs which justify the entity being

in the answer. For example:

‖phobos spins‖ =⇒ {(ephobos,{ev1360})}

where ev1360 is the event identifier for the event in which ephobos became a member

of the set of entities which spin.
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5.5 Denotations of Transitive Verbs

The main contribution of this paper and the associated demo program beyond

the results described in [5, 13] is that Montague’s treatment of transitive verbs is

extended by using the (n2−n) functions that are defined by the n-ary relation asso-

ciated with each of the more complex transitive verbs. First Montague’s treatment

of transitive verbs will be introduced.

5.5.1 Montague’s Treatment of Transitive Verbs

Transitive verbs in MS are handled using syntactic manipulation rather than with

an explicit semantic denotation (see page 216 of [25]).

5.5.2 An Alternative Treatment of Transitive Verbs I

In earlier work [18], an explicit denotation for transitive verbs was developed that

gives the same result as MS for some queries when their translations to lambda

expressions are rewritten to their canonical forms. However, this approach does

not work for queries such as “hall discovered a moon”, since the denotation of

the term-phrase “a moon” is more complex than the denotation of the term-phrase

“phobos”.

5.5.3 An Alternative Treatment of Transitive Verbs II

One solution to the problem above is to use sets rather than characteristic func-

tions (predicates) of those sets (as discussed in Section 5.4.1) in the denotations of

transitive verbs. The basic idea [24] which is adopted in this paper is to consider

transitive verbs as relations from the subjects or objects of those verbs to the events

they participate in. Specifically, transitive verbs are denoted using the function de-

fined by the binary relation (FDBR) [3] induced by the relation rel that underlies
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the verb:

FDBR(rel) = {(x, imagex) | (∃e) (x,e) ∈ rel & imagex = {y | (x,y) ∈ rel}}

Briefly, FDBR(rel) converts rel into a function without any loss of information by

grouping together elements in the codomain that are related under the same element

in the domain. For example, consider the relation underlying the active voice of

“discover”, discoverrel:

FDBR(discoverrel) = {(ehall,{ev1045,ev1046}), etc . . .}

If the transitive verb is followed by a term-phrase such as “phobos” or “a moon”,

then the function denoted by that term-phrase is used to “filter” the denotation of

the transitive verb for relevant actors. For example:

‖discovered‖ ‖phobos‖ =⇒ {(ehall,{ev1045})}

Similarly,

‖discovered‖ ‖a moon‖ =⇒ {(ehall,{ev1045,ev1046}), . . .}

The denotation of the transitive verb “discover” follows from the above:

‖discover‖= λ t.{(s, relevs) | (s,evs) ∈ FDBR(discoverrel)

& (t obj_fdbr(evs) 6= /0)& relevs = gather(obj_fdbr(evs))}

where obj_fdbr(evs) is the FDBR from the objects in the events of the set evs to

the events they participate in within evs. In the examples above,

obj_fdbr({ev1045,ev1046}) = {(ephobos,{ev1045}),(edeimos,{ev1046})}
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When ‖phobos‖ is applied to obj_fdbr({ev1045,ev1046}), it filters the FDBR to only

contain relevant pairs1. If the FDBR is empty after filtering, then the pair corre-

sponding to that FDBR is discarded. The function gather(fdbr) returns the set of

all events in the second column of fdbr:

gather(fdbr) = {ev | (∃e)(∃evs) (e,evs) ∈ fdbr & ev ∈ evs}

As another example, consider ‖discover every moon‖:

‖discover every moon‖

=⇒‖discover‖ (‖every moon‖)

=⇒ (λ t.{(s,relevs) | (s,evs) ∈ FDBR(discoverrel)

& t obj_fdbr(evs) 6= /0

& relevs = gather(obj_fdbr(evs))})

(‖every moon‖)

=⇒{(s,relevs) | (s,evs) ∈ FDBR(discoverrel)

& ‖every moon‖ obj_fdbr(evs) 6= /0

& relevs = gather(obj_fdbr(evs))}

=⇒ /0 (owing to the fact that no entity in the

universe of discourse discovered every moon)

Specifically, observe how the pair (ehall,{ev1045,ev1046}) ∈ FDBR(discoverrel) is

treated above:

‖every moon‖ obj_fdbr({ev1045,ev1046})

=⇒‖every moon‖ {(ephobos,{ev1045}),(edeimos,{ev1046})}

=⇒ /0 (owing to the fact that there exist entities

other than ephobos and edeimos in moonFDBR)

1The notion of event relevance is discussed in more detail in [3]
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In this event-based approach, the result of a verb-phrase such as “discovered

phobos” is a list of pairs, each pair consisting of an entity which discovered phobos,

paired with the set of events of type discover in which that entity was the subject

and ephobos was the object. In other words, the set of events in each pair can be

thought of as a form of justification for the subject entity in the first field of that

pair belonging in the result.

5.5.4 Accommodating Chained Prepositional Phrases

The above approach can be extended to support prepositional phrases in queries

with only minor changes [3, 8]. Briefly, the denotations of the prepositions act

as filters to the denotation of the transitive verb they apply to. Consider, for

example, the query “discovered in 1877 with a telescope”. In this query, the

prepositions are “in 1877” and “with a telescope”. Performing this filtering is

identical to the term-phrase filtering shown above, with some added logic to select

columns other than the subject and object from the relation.

The denotation for a preposition applied to a term-phrase is a pair (props, tmph)

where props is a set of properties that an FDBR should be constructed from (for

example “implement”, “year”, or “location”), and tmph is the term-phrase that will be

applied to that resulting FDBR.

‖at‖= λ t.({location}, t)

‖in‖= λ t.({location,year}, t)

‖with‖= λ t.({implement}, t)

‖using‖= λ t.({implement}, t)

‖to‖= λ t.({subject}, t)

Under this approach, a prepositional phrase is treated in the same way as the term-

phrase following the verb [3]. This approach is powerful enough that the word “by”,

as in “discovered by”, can be treated in the same way as a preposition, enabling

active and passive voices of transitive verbs to be treated in a uniform way. This
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was one of the key contributions described in Peelar’s Master’s thesis [3].

‖by‖= λ t.({subject}, t)

The denotation of the transitive verb is filtered in the order that the prepositions

appear. To achieve this, the previous denotation for “discover” is modified such

that obj_fdbr(evs) is replaced with the more general prop_fdbr(prop,evs), and the

filtered FDBR from each applied termphrase is fed into the next preposition. If the

passive form of the transitive verb is used, then the relation is flipped and the same

logic applies.

5.5.5 Formal Denotations of Transitive Verbs

While a denotation for transitive verbs that allows for chained prepositional phrases

and a unified treatment of active and passive voices improves expressibility, there

are still a number of queries with transitive verbs that are not possible with the

above approach. For example, consider the transitive verb “used”, as in the query

“refractor_telescope_1 was used to discover phobos”. Here, the subject of

the query is a refractor telescope, however it is neither the subject nor object of

the relation underlying the denotation of “used”, which here is the same relation

underlying the denotation of “discover” – it is an implement in that relation. A

relation would need to be constructed from the “implement” property of the relation

rather than the “subject” or “object” property as in the denotations in Section 5.5.3

in order to compute this.

This can be addressed with minor modifications to those denotations. Namely,

the underlying relation is generalized to be n-ary. The columns of the n-ary relation

are the properties of the event type of the transitive verb, with one column corre-

sponding to the event identifier itself as in the denotation in Section 5.5.3. A new

function make_binrel is introduced which converts an n-ary relation r into a binary
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relation by selecting two columns c1 and c2 from it:

make_binrel(r,c1,c2) = . . .

The FDBR is constructed from the underlying relation by using a new function that

works on n-ary relations:

FDBRprop(r) = FDBR(make_binrel(r,prop,eventid))

Here, eventid refers to the column of the relation that contains the event. The

denotation for transitive verbs is augmented with the property prop used to form the

binary relation from the n-ary relation, for example “subject”, “object”, or “implement”,

replacing FDBR(r) with FDBRprop(r). With these revisions, it is possible to express

a denotation for the passive voice of the verb “used” (as in “what was used by

hall”):

‖used by‖= λ t.
{
(s, relevs) | (s,evs) ∈ FDBRimplement(discoverrel)

& t prop_fdbr(subject,evs) 6= /0

& relevs = gather(obj_fdbr(evs))
}

Now, denotations for transitive verbs can be provided from any property to any

other property, for example from implements to years, or from years to objects.

This could be useful for constructing NL interfaces for other languages, such as

French.

5.6 The n2−n Functions Defined By An n-ary Re-

lation

The major contribution of this paper is to use the approach described above to con-

siderably broaden the coverage of English compared to other systems and earlier [3,

4] query interfaces developed in this direct line of research. First, notice that the
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Table 5.1: The “Discover” Relation
subject object date implement location

… … … … …
hall phobos 1877 refractor_telescope_1 us_naval_observatory
… … … … …

phrase “discover x” often appears in contexts where the result expected is the set of

subjects who discovered “x”. However the words “discover” and “discovered” also

appear in other contexts. For example, “discover with a telescope” (subjects

expected), “discovered by hall” (objects expected), “how was x discovered” (im-

plements expected), “who used a telescope to discover something in 1877”

(subjects expected), and “when was a telescope used to discover” (years ex-

pected).

It has been observed that different functions can be defined for a set of events.

Suppose that the event is thought of as a row in an n-ary relation, such as the 5-ary

discover relation (Table 5.1).

The example in Section 5.5.1 used the FDBR from subjects to objects. However,

there are n2−n=(25−5) functions that can be defined from the 5-ary relation above

if the function from a column to itself is excluded: subject to object, object to

subject, subject to date, date to subject, date to subject, date to object etc. These

functions can be used to answer any query about the discover relation, including

those containing chained complex prepositional phrases.

5.7 Applicability to Relational Databases

An event-based triplestore can be thought of as a set of tables in a relational

database where each event corresponds to a row in a table. Each table corresponds

to a relation in the event-based triplestore (e.g, the “discover” relation). The event

identifier, which is unique, becomes the row index. The only interface that the

semantics has with the underlying database is through simple retrieval functions.

Currently, they are implemented using Triple Pattern Fragments [6], but they could
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also be implemented using simple SQL queries. Therefore, it is possible to use our

approach with any relational database platform.

5.8 Implementation

NLQIs using Montague-type semantics are ideally suited for implementation in

syntax-directed interpreters. One form of syntax-directed interpreter is an EAG

in which the executable code of the interpreter has a close similarity to textbook

attribute grammar notation. Accordingly, the Solarman NLQI is built as an exe-

cutable specification of an attribute grammar using the Haskell X-SAIGA context-

free parser combinator library [13, 15]. The source code for Solarman, including the

X-SAIGA parser combinator library, is available on the Hackage package archive

[1].

5.9 Future Work

5.9.1 Non-event based triplestores

Our approach requires an event-based triplestore to handle chained prepositional

phrases. There is a clear need to support non-event-based Semantic Web triplestores

as well. It may be possible to build an adapter from conventional triplestores to

event-based triplestores using Semantic Web OWL schemas or a Machine Learning

(ML) approach.

5.9.2 Very large triplestores

This approach currently is only viable for databases with tens of thousands of facts,

whereas Semantic Web triplestores such as DBPedia [16] could contain millions.

It is possible to memoize the semantics to avoid FDBRs from being re-computed

throughout an expression, greatly improving the evaluation speed. The demonstra-

tion in Section 5.2 features an early version of this functionality enabling queries
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with deeply nested transitive verbs to be efficiently evaluated (e.g, “who discovered

a moon that orbits a planet that is orbited by a thing”). Our approach,

which we will expand on in the future, lifts the semantics into a memoized form

while maintaining their underlying compositionality. Furthermore, the FDBRs can

be generated and cached offline instead of generating them on the fly.

5.9.3 Negation

Negation in general only holds if the Closed World Assumption can be satisfied.

Informally, the Closed World Assumption can be characterized by the statement:

“The absence of evidence can be assumed as being evidence of absence”.

The Open World Assumption on the other hand assumes the converse of the state-

ment above. For example, if a particular entity p is not explicitly stated as being

a member of the “person” set, then under the Closed World Assumption it can be

assumed that p is not a member of that set. On the other hand, under the Open

World Assumption, the only way to conclude p is not a member of the “person” set

is if it is explicitly stated in the database.

The semantics described in this paper use the Open World Assumption and

hence do not support negation. Work has been done on event-based semantics that

support negation [12] in environments where the Closed World Assumption holds.

It may be possible to use similar techniques to provide a drop-in denotation for

“not” and “no”, supporting negation in our semantics as well.

5.10 Conclusion

The approach described in this paper extends previous work on building natural-

language query interfaces to online data stores by providing an explicit Montague-

style efficient denotation for transitive verbs; and an approach for accommodating

queries containing chained complex prepositional phrases. The viability of this

approach was demonstrated by building an NL query interface to an event-based

semantic-web triplestore containing thousands of facts. The approach could be used
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with relational databases by considering the n2n functions defined by each n-ary

relation associated with n-ary transitive verbs. Research on scaling this approach is

ongoing, with the goal being to create an interface to query data stores containing

millions of facts.
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S. M. Peelar and R. A. Frost. “A New Approach for Processing Natural-

Language Queries to Semantic Web Triplestores”. In: Web Information Systems

and Technologies - 15th International Conference, WEBIST 2019, Vienna, Aus-

tria, September 18-20, 2019, Revised Selected Papers. Ed. by A. Bozzon, F. J. D.

Mayo, and J. Filipe. Vol. 399. Lecture Notes in Business Information Processing.

Springer, 2019, pp. 168–194. URL: https://doi.org/10.1007/978-3-030-61750-

9%5C_8

This paper has been published in the WEBIST 2019 Springer Book. We were

invited to submit this extended paper following our presentation at the WEBIST

2019 conference.

6.1 Introduction

This is an extended version of the paper by Frost and Peelar [2] that was presented

at WEBIST 2019 in Vienna, Austria. That paper was selected as one of the best
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papers at WEBIST 2019 and the authors were invited to submit an extended ver-

sion for publication. In this paper we expand upon the compositionality of our

NLQI, including the parsing framework and semantic implementations, we intro-

duce a novel method to accommodate superlatives using compositional semantics,

and we discuss a novel approach to memoization and triplestore retrieval. We also

significantly expand upon how our NLQI is implemented.

We begin by describing a Natural Language Query Interface (NLQI) that we have

built. We hope that the interface will motivate readers to look into our modifi-

cations to MS. In Section 6.2, we explain how our NLQI can be accessed through

the Web. In Section 6.3, we describe the compositional aspects of our NLQI. In

Section 6.4, we describe the Semantic Web triplestore. In Section 6.5 we discuss

example queries and their results, including examples of what are often referred to

as “non-compositional” features of NL that our NLQI can handle. With each of

the examples we provide an informal explanation of how the answer is, or could

be, computed. In Section 6.6, we describe the new FDBR data structure which is

central to our approach. In Section 6.7 and Section 6.8, we describe how our system

accommodates chained prepositional phrases with superlatives. In Section 6.9, we

describe how to use our approach with relational databases. In Section 6.10, we

provide a system overview and implementation details on how our semantics are

realized. Section 6.11 discusses how our work fits into the framework of existing

work in this area. We close with Section 6.12 and Section 6.13 where we discuss

future research directions and our conclusions.

Much of our semantics is based on MS. We differ in these ways:

1. We add events to the basic ontological concepts of entities and truth values.

2. Each event has a number of roles associated with it. Each role has an entity

as a value.

3. For efficiency, we use sets of entities rather than characteristic functions of

those sets as is the case in MS.
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4. We define transitive n-ary verbs in terms of sets of events, each with n roles.

5. We compute FDBRs, the novel data structure presented in this paper, from

sets of events and use them in the denotations of transitive verbs and in

computing results of queries containing prepositional phrases. Although not

referred to as an FDBR, the use of relational images in denotations of verbs

was first proposed by Frost and Launchbury in 1989 [23].

We hope that this paper reawakens an interest in Compositional Semantics, in

particular for NL query processing.

6.2 How to Access our NLQI

Our NL interface is accessible via the following URL, and is speech enabled for both

voice-in and voice-out in browsers that support the Web Speech API:

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

6.3 Compositionality

Compositionality is a useful property of any system as it facilitates understanding,

construction, modification, extension, proof of properties, and reuse in different sit-

uations. When building our system, we tried to make it as compositional as possible:

a compositional syntax processor is systematically combined with a compositional

semantics.

6.3.1 The Compositionality of our Syntactic Processor

Our parser is designed and built using the Haskell programming language, us-

ing parser combinators [16]. The approach enables parsers to be constructed as

executable specifications of context-free grammars with explicit and implicit left-

recursive productions, which is useful for defining grammars for NL. The result of

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html
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applying our parser is the set of all parse trees for ambiguous grammars. The trees

are represented efficiently using a Tomita-style [24] compact graph in which trees

share common components.

In 2008, Frost and Hafiz [16] demonstrated that it is possible to efficiently im-

plement context-free parsing using combinators, with their approach having O(n4)

complexity in the worst case and O(n3) complexity in the average case.

The following example was featured in Frost and Hafiz [16]. To demonstrate use

of our combinators, consider the following ambiguous grammar from Tomita [24]:

s ::= np vp | s pp np ::= noun | det noun | np pp

pp ::= prep np vp ::= verb np

det ::= "a" | "the" noun ::= "i" | "man" | "park" | "bat"

verb ::= "saw" prep ::= "in" | "with"

In this grammar, the non-terminal s stands for sentence, np for nounphrase, vp for

verbphrase, det for determiner, pp for prepositional phrase, and prep for preposi-

tion. It is left recursive in the rules for s and np. The Haskell code below defines

a parser for the above grammar using our combinators term (terminal), <+> (alter-

native), and *> (sequence) [16]:

data Label = S | ... | PREP

s = memoize S $ np *> vp <+> s *> pp

np = memoize NP $ noun <+> det *> noun <+> np *> pp

pp = memoize PP $ prep *> np

vp = memoize VP $ verb *> np

det = memoize DET $ term "a" <+> term "the"

noun = memoize NOUN

$ term "i" <+> term "man" <+> term "park" <+> term "bat"

verb = memoize VERB $ term "saw"

prep = memoize PREP $ term "in" <+> term "with"

Parsers written in this fashion are highly compositional, and can be easily extended

with new rules if needed. Parsers constructed with our combinators have O(n3)



Chapter 6. A New Approach for Processing Natural-Language Queries to
Semantic Web Triplestores 86

worst case time complexity for non-left-recursive ambiguous grammars (where n is

the length of the input), and O(n4) for left recursive ambiguous grammars. This

compares well with O(n3) limits on standard algorithms for CFGs such as Earley-

style parsers [25]. The increase to n4 is due to expansion of the left recursive

non-terminals in the grammar. The potentially exponential number of parse trees

for highly-ambiguous input are represented in polynomial space as in Tomita’s al-

gorithm.

6.3.2 The Compositionality of our Semantics

The semantics on which our system is based is similar to Montague Semantics. All

phrases of the same syntactic category have meanings of the same semantic type.

The meaning of all words and phrases are functions defined over sets of base terms

which are entities, events and Boolean values. The meaning of a complex phrase is

obtained by applying the functions which are the meanings of its parts, to each other

in an order determined by the syntactic structure of the whole. Our system was easy

to construct, and is easy to extend. Additional language features are accommodated

by adding their syntactic structure and then defining their semantics by viewing the

semantics of words and phrases of the same syntactic category.

6.3.3 The Compositionality of the Whole NL Processor

Our processor is built as an executable specification of a fully general attribute

grammar. Compositional semantic rules are added to each syntactic production

using the technique of Frost, Hafiz and Callaghan [16]. The attribute grammar is

fully general as it can accommodate left recursive context-free grammars and fully-

general dependencies between inherited and synthesized attributes. Haskell allows

any computational dependency between attributes to be defined. Also, Haskell’s

lazy evaluation strategy enables our language processor to be efficient. For ex-

ample, no attribute computation is carried out until a successful parse has been

obtained. We have also developed a variation of memoization using monads [16]
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in order to reduce the complexity of syntactic and semantic evaluation. In the

paper by Frost and Peelar [2] we discuss how we accommodate, using our com-

positional approach, various English phrases that are often given as examples of

non-compositional constructs.

6.4 The Triplestore that is Queried

Our NLQI computes answers with respect to an event-based Semantic Web triple-

store containing data about the planets, the moons that orbit them, and the people

who discovered those moons, and when, where and with what implement they were

discovered. Briefly, a triplestore is a database of 3-tuples, called triples, that have

the form (subject, predicate, object), where subject, predicate and object are Uniform

Resource Identifiers (URIs).

An event-based triple has a subject that identifies an event rather than an en-

tity [5]. In these triples, the predicate identifies a role through which the object

participates in the event. That is, an event-based triple (e,r,o) expresses that o

participates in e through role r. We call o the event e’s “r property”. For example,

in Table 4.1, “hall” is event “event1045” ’s subject property. Triplestores consisting

of event-based triples are called event-based triplestores.

The advantage of event-based triplestores is that additional information about

the events and entities participating in those events is immediately available. This

is not the case in an entity-based triplestore, where some form of reification is nec-

essary to obtain additional information about a fact expressed in a triple. For ex-

ample, obtaining the location where “hall discovered phobos” in an entity-based

triplestore, described by (hall,discovered,phobos), is not possible without reification.

We assume that each event will at minimum contain a role ev_type that identifies

the type of the event, with the general expectation that events of the same type

will contain similar roles. This implies the existence of a schema that describes the

types of roles that an event may contain. As a consequence of this, each event could

be equally well be represented by a row in a relational database. We discuss this
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further in Section 6.9.

Going forward, when we refer to the type of an event or set of events, we are

referring to their ev_type property. Likewise, when we refer to events of a particular

type, we are referring to events whose ev_type property corresponds to that type.

As a shorthand, we use t-type events to refer to events with type t. For example,

“discover” events refers to events that have ev_type property “discover”.

The triplestore contains triples such as those in Table 4.1 which represent the

event in which hall (in the role of “subject”) discovered phobos (in the role of “object”)

in 1877 (in the role of “year”) with the refractor_telescope_1 (in the role of

“implement”) at the us_naval_observatory (in the role of “location”). Events rep-

resenting set membership are represented as shown in Table 4.2.

The complete triplestore, which contains tens of thousands of triples, is hosted

on a remote server using the Virtuoso software [12] and can be accessed by following

the link at the beginning of Section 6.2.

6.5 Example Queries

Our NLQI can answer millions of queries with respect to the triplestore discussed

above. The NLQI can accommodate queries containing common and proper nouns,

adjectives, conjunction and disjunction, intransitive and transitive verbs, nested

quantification, superlatives, chained prepositional phrases containing quantifiers,

comparatives and polysemantic words. In the following sections, we provide an

informal explanation of how the answer is computed. If a query is syntactically

ambiguous, the results from each possible interpretation of the query are separated

with a semicolon.

6.5.1 Queries Demonstrating the Range of NL Features that

our NLQI can Accommodate

phobos spins ⇒ True
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phobos is a moon ⇒ True

The function denoted by “phobos” checks to see if ephobos is a member of the spin

set, and secondly if ephobos is a member of the moon set.

a moon spins ⇒ True

every moon spins ⇒ True

an atmospheric moon exists ⇒ True

The function denoted by “a” checks to see if the intersection of the moon set and

the spin set is non-empty. The function denoted by “every” checks to see if the

moon set is a subset of the spin set. The denotations of “a” and “every” that we

use are set-theoretic event-based versions of the denotations from MS which use

characteristic functions. The answer to the third query is obtained by checking if

the intersection of the atmospheric set and the moon set is non-empty.

hall discovered ⇒ True

All of the events of type “discover” are collected together and are checked to see if

ehall is found as the subject role value of any of them. If so, True is returned.

when did hall discover ⇒ 1877

The year property of the events returned by “hall discover” (treated as “hall

discovered”) are returned.

phobos was discovered ⇒ True

All of the events of type “discover” are collected together and are checked to see if

ephobos is found as the object role value of any of them. If so True is returned.

earth was discovered ⇒ False

Earth was not discovered by anyone, according to our data.

did hall discover phobos ⇒ True

All of the events of type “discover” are collected together and are checked to create

a pair (s,evs) for each value of the subject property found in the set of events. evs
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is the set of events to which the subject property is related through a discovery

event. Each pair is then examined to see if the function denoted by the object

termphrase (in this case “phobos”) returns a non-empty set when applied to a set

(called an FDBR, which is described in Section 6.6) generated from the set of evs in

the pair, and if so the subject of the pair is added to the set which is returned as the

denotation of the verbphrase part of the query. The denotation of the termphrase

at the beginning of the query is then applied to the denotation of the verbphrase to

obtain the answer to the query.

Owing to the fact that our semantics is compositional, the subject and object

termphrases of the query above can be replaced by any termphrases, e.g.:

a person or a team discovered every moon that orbits mars ⇒ True

who discovered 2 moons that orbit mars ⇒ hall

“who”, “what”, “where”, “when” and “how” can be used in place of the subject

termphrase. Different role values are returned depending on which “wh”-word is

used in the query:

where discovered by galileo ⇒ padua

when discovered by galileo ⇒ 1610

every telescope was used to discover a moon ⇒ True (w.r.t.our data)

a moon was discovered by every telescope ⇒ False

a telescope was used by hall to discover two moons ⇒ True

which moons were discovered with two telescopes

⇒ halimede laomedeia sao themisto

who discovered deimos with a telescope that was used to discover

every moon that orbits mars ⇒ hall

who discovered a moon with two telescopes

⇒ nicholson science_team_18 science_team_2

how was sao discovered ⇒ blanco_telescope canada-france-hawaii_telescope

how discovered in 1877 ⇒ refractor_telescope_1

how many telescopes were used to discover sao ⇒ 2



Chapter 6. A New Approach for Processing Natural-Language Queries to
Semantic Web Triplestores 91

who discovered sao ⇒ science_team_18

how did science_team_18 discover sao

⇒ blanco_telescope canada-france-hawaii_telescope

which planet is orbited by every moon that was discovered by two

people ⇒ saturn; none (ambiguous because “by two people” could apply to

“discovered” or “orbited”)

which person discovered a moon in 1877 with every telescope that

was used to discover phobos ⇒ hall; none (ambiguous because “to discover

phobos” could apply to “used” or “discovered”)

who discovered in 1948 and 1949 with a telescope ⇒ kuiper

6.5.2 Queries with “Non-Compositional” Structures

We agree that natural language has non-compositional features but believe that the

non-compositionality is mostly problematic when the objective is to give a meaning

to an arbitrary NL expression (i.e. an NL expression without a context). It is less

problematic when answering NL queries. As illustrated below, the person posing

the query, or the database or triplestore can provide contexts that help resolve much

of the ambiguity resulting from non-compositional features. The advantages of a

using a compositional semantics include:

1. The answer to a query is as correct as the data from which it is derived,

2. The meaning of sub phrases within a query can be discussed formally,

3. The query language can be extended such that all existing phrases maintain

their original meanings,

4. The definition of syntax and semantics in the compositional semantics can be

used as a blueprint for the implementation of the query processor.

Some researchers have provided examples of what they claim to be non-com-

positional structures in NL. For example, Hirst [21] gives the example of the verb

“depart” which he states is not compositional because its meaning changes with the
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prepositional phrase(s) which follow it, and that the definition of compositionality

needs to be modified to include the requirement that the function used to compose

the meaning of parts must be systematic. We claim that our semantics for verbs is

systematic as the denotations of subject and object termphrases, and the possibly

empty list of prepositional phrases following the verb, are treated equally and are

all used in the same way to filter the set of events of the type associated with

the verb, before that set is returned as the denotation of the verb phrase. This is

illustrated in the following queries:

who discovered⇒ bernard bond cassini cassini_imaging_science_team christy

dollfus galileo etc...

No subject, object or prepositional phrase is given in the query, and so all events of

type “discover” are returned by the verbphrase and the denotation of the word “who”

picks out the subjects from those events.

where discovered io ⇒ padua

No subject, or prepositional phrase is given in the query, and so all events of type

“discover” are considered and filtered by the denotation of the object termphrase

“io” and then, those that pass the filter are returned by the verbphrase and the

denotation of the word “where” picks out the location from those events.

who discovered in 1610 ⇒ galileo

No subject or object is in the query so all events of type “discover” are considered

and only those with the year property equal to 1610 pass the filter and then the

denotation of the word “who” selects the subject which is returned.

who discovered every moon that orbits mars with one telescope or

a moon that orbits jupiter with a telescope ⇒ one. ; none. ; none. ;

bernard galileo kowal melotte nicholson perrine science_team_1 science_team_2 ;

hall ; hall ; none.

As shown above, in our semantics, the subject and object termphrases are treated as

filters, as are all prepositional phrases. Note that several results are returned here
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because the query is syntactically ambiguous. We discuss solutions on how to best

present the results of ambiguous queries to the user in Section 6.10.3.

where discovered in 1610 ⇒ padua

how discovered in padua ⇒ galilean_telescope_1

These queries retrieve the location and implement properties of the events of

“discovered in 1610” and “discovered in padua” respectively.

6.5.3 Extensions to the Semantics

Some phrases containing nested quantifiers are given by some researchers as ex-

amples of non-compositionality. For example: “a US diplomat was sent to every

capital” is often read as having two meanings which can only be disambiguated by

additional knowledge. We argue that the person posing a query can express the

query unambiguously if they are familiar with quantifier scoping conventions used

by our processor, as illustrated in the following:

christy or science_team_19 or science_team_20 or science_team_21

discovered every moon that orbits pluto ⇒ False

In our semantics, quantifier scoping is always leftmost/outermost, and an unam-

biguous query can be formulated as follows:

every moon that orbits pluto was discovered by christy or science_team_19

or science_team_20 or science_team_21 ⇒ True

Some examples of non-compositionality involve polysemantic superlative words such

as “most” in, for example:

“Who discovered most moons that orbit P. Where P is a planet.”

If “most” is treated as “more than half” then:

who discovered most moons that orbit mars ⇒ hall

However, consider the answer to the alternate reading “who discovered the most

moons that orbit P” – i.e. more than anyone else who discovered a moon that orbits

P.:
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what discovered the most moons that orbit jupiter⇒ science_team_4

Here, the subjects of the “discover” events are sorted based on the cardinality of

the number of things they discovered after filtering the events for objects which

are moons that orbit jupiter. Of the 50 moons that orbit jupiter, science_team_4

discovered 12 of them.

how was every moon that orbits saturn discovered ⇒ cassini reflec-

tor_telescope_1 aerial_telescope_1 refractor_telescope_4 etc...

It may be surprising that cassini is returned in the answer since it is not a telescope,

but is instead a spacecraft. However, since it was used to discover at least one moon

that orbits saturn, it is considered to have fulfilled the implement role and is encoded

as such in the triplestore.

6.6 The FDBR: A Novel Data Structure for Nat-

ural Language Queries

6.6.1 Quantifiers and Events

In 2015, Champollion [6] stated that, at that time, it was generally thought by

linguists that integration of Montagovian-style compositional semantics and David-

sonian–style event semantics [22, 26] was problematic, particularly with respect to

quantifiers. Champollion did not agree with that analysis and presented an integra-

tion which he called “quantificational event semantics” which he claimed solved the

difficulties of integration by assuming that verbs and their projections denote exis-

tential quantifiers over events and that these quantifiers always take lowest possible

scope.

In this paper, we borrow much from Montague Semantics (MS), Davidsonian

Event Semantics, and Champollion’s Quantificational Event Semantics. However,

we provide definitions of our denotations in the notation of set theory, which im-

proves computational efficiency and, we believe, simplifies understanding of our
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denotations. We also believe that our semantics is intuitive, systematic, and com-

positional.

6.6.2 Montague Semantics

All quantifiers, such as “a”, “every” and “more than two” are treated in MS as

functions which take two characteristic functions of sets as arguments and return a

Boolean value as result. Our modifications to MS are to use sets of entities instead

of predicates/characteristic functions of those sets, and to pair sets of events with

each entity; the set of events paired with an entity justify the entity’s inclusion in

the denotation. For example:

‖propernoun‖= λ p.{(e,evs) | (e,evs) ∈ p & e = the entity associated

with the proper noun}

‖spins‖= {(ephobos,{ev1360}),(edeimos,{ev1332}),etc . . .}

Therefore,

‖phobos spins‖

=⇒‖phobos‖ ‖spins‖

=⇒ λ s.{(e,evs) | (e,evs) ∈ s & e = ephobos} ‖spins‖

=⇒{(e,evs | (e,evs) ∈ ‖spins‖ & e = ephobos}

=⇒{(ephobos,{ev1360})}

We call this set of pairs of entities and events an FDBR, and describe it in more

detail in Section 6.6.3. In the following example, we show how the FDBR can be

used to denote the quantifier “a”. The function intersect computes the intersection

of two FDBRs based on their entities, keeping the events of the second FDBR and



Chapter 6. A New Approach for Processing Natural-Language Queries to
Semantic Web Triplestores 96

discarding those of the first in the result.

intersect = λms.{(e1,evs2) | (e1,evs1) ∈ m & (e2,evs2) ∈ s & e1 = e2}

‖a‖= intersect

Therefore,

‖a moon spins‖

=⇒‖a‖ ‖moon‖ ‖spins‖

=⇒{(e1,evs2) | (e1,evs1) ∈ ‖moon‖ & (e2,evs2) ∈ ‖spins‖ & e1 = e2}

=⇒{(ephobos,{ev1360}),(edeimos,{ev1332}), etc . . .}

We can define the denotations of other quantifiers in terms of intersect as well. For

example, consider the denotation of “every”, where ents m denotes the set of entities

that appear in the first column of the FDBR m:

ents = λm.{ent | (∃evs) (ent,evs) ∈ m}

‖every‖= λms.

intersect m s, ents m ⊆ ents s

/0, otherwise

Therefore,

‖every moon spins‖

=⇒‖every‖ ‖moon‖ ‖spins‖

=⇒ intersect m s (since ents ‖moon‖ ⊆ ents ‖spins‖)

=⇒{(ephobos,{ev1360}),(edeimos,{ev1332}), etc . . .}

Note that the events evs paired with the entities returned in the denotation of “was

every moon that orbits saturn discovered” are a subset of the events of type

“discover” where the object property of those events are moons, since the result of

intersect_fdbr takes the events of from its second argument. This enables additional
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data to be accessed from those events, as illustrated in the last example query in the

previous section, where “how” retrieves the implement property from those events.

This allows all “wh”-style questions to be handled compositionally, selecting the

desired properties from the events as needed.

6.6.3 The FDBR

In order to generate the answer to “hall discovered every moon that orbits

mars”, ‖every‖ is applied to ‖moon that orbits mars‖ (i.e. the set of moons that

orbit mars), as first argument, and the set of entities that were discovered by hall,

as the second argument. Our semantics generates this set from the set of events of

type “discover” whose the subject property is “hall”, as discussed below:

Every set of n-ary events (i.e. events with n roles) of a given type, e.g. discovery,

defines n2 −n binary relations. For example, for discovery events:

discoverrel :subject→object discoverrel :subject→year discoverrel :subject→implement . . .

discoverrel :object→subject discoverrel :object→year discoverrel :object→implement . . .

discoverrel :year→subject discoverrel :year→object discoverrel :year→implement . . .

etc . . . to 20 binary relations for the set of discovery events or an 5-ary discovery

relation. For example:

discoverrel :subject→object = {(ev1045,ehall,ephobos),(ev1046,ehall,edeimos),etc . . .}

If we collect all of the values from the range of a relation that are mapped to by

each value v from the domain (i.e. the image of v under the relation r) and create

the set of all pairs (v, image_o f_v), we obtain a Function Defined by the Binary
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Relation r, i.e. the FDBR. For example:

FDBR(discoverrel :subject→object)

=
{
(ehall,

{
(ephobos,{ev1045

}
),(edeimos,

{
ev1046})

}
),etc . . .

}
It is these functions that are created, and used, by the denotation of the transitive

verb associated with the type of the events. For example in calculating the value of

‖who discovered every moon that orbits mars‖, ‖every‖ is applied to the set of en-

tities which is the denotation of “moon that orbits mars” (i.e
{
(ephobos,{ev1045}),

(edeimos,{ev1046})
}
) and all of the images that are in the second field of the pairs in

FDBR(discoverrel :subject→object).

For the pair (ehall,
{
(ephobos,{ev1045}),(edeimos,{ev1046})

}
), ‖every‖ returns the

non-empty set
{
(ephobos,{ev1045}),(edeimos,{ev1046})

}
, and the value in the first field,

i.e. ehall, is subsequently returned with the answer to the query.

The various FDBRs are used to answer different types of queries. For example:

who discovered phobos and deimos ⇒ hall

uses FDBR(discoverrel :subject→object)

where discovered by galileo ⇒ padua

uses FDBR(discoverrel : location→subject)

how discovered in 1610 or 1855 ⇒ galilean_telescope_1

uses FDBR(discoverrel : implement→year)

6.7 Handling Prepositional Phrases

Prepositional phrases (PPs) such as “with a telescope” are treated similarly to

the method above, except that the termphrase following the preposition is applied

to the set of entities that are extracted from the set of events in the FDBR function,

according to the role associated with the preposition. The result is a “filtered” FDBR

which is further filtered by subsequent PPs.
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6.8 Handling Superlative Phrases

A novel feature of our semantics is that we can directly accommodate superlative

phrases such as “most” and “the most” inside chained prepositional phrases. Here,

we take “most” to mean “more than half” and “the most” to mean “more than

anything else”. This makes it possible to answer queries such as “who discovered

a moon using the most telescopes” and “most planets are orbited by a

moon” with our NLQI.

Superlatives can be placed nearly anywhere a determiner can exist. This makes it

possible to nest superlatives inside chained prepositional phrases, a property we be-

lieve to be novel in our semantics. For example, consider “what discovered at the

most places using the most telescopes”, where “the most” occurs inside both

prepositional phrases “at the most places” and “using the most telescopes”.

The query is always evaluated in left-to-right order, and results are sorted by each

superlative phrase in the order they appear. In this case, the results are first sorted

by the number of places, followed by the number of telescopes, both in descending

order. First, the denotation for “most” (as in “more than half”) is defined as follows:

‖most‖= λms.

intersect m s, |intersect m s|> |s|/2

/0, otherwise

Providing a denotation for superlative phrases such as “the most” is more challeng-

ing. To achieve this and maintain compositionality, the superlatives are handled in

the denotation for the transitive verbs. First, we introduce the denotation for “the

most”:

‖the most‖= λm.(GT, intersect m)

“the most” takes a nounphrase as an argument and returns a pair consisting of the

orderingGT (i.e. “greater than”), and a termphrase created using partial application

of the intersect function. This ordering describes how the results should be sorted
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– in this case, in descending order.

The denotation for prepositional phrases is modified to include an ordering as

third parameter, which may take on the special value None if the prepositional

phrase does not contain a superlative phrase within it. However, if it does contain

a superlative phrase, the ordering of the prepositional phrase is set to the ordering

specified in the denotation of the superlative phrase.

The denotation for transitive verbs is modified such that, at the end of the

prepositional phrase evaluation performed previously, where the filtered FDBR is

obtained (containing only relevant events [5]), the resulting FDBR is passed to a

new function, filter_super, which handles superlative evaluation. The behavior

of this function is as follows. First, if no superlatives are present (i.e. the ordering

in the denotation of each prepositional phrase is None), nothing more is done, and

the behavior of the new denotation is identical to the previous one.

If superlatives are present, however, they are evaluated in the order they appear.

For each superlative phrase present in the chain of prepositional phrases, the FDBR

is expanded to a new data structure called a Generalized FDBR (or GFDBR) which

is similar to an FDBR, except that instead of having a set of events in its second

column, it has an FDBR instead. The GFDBR is formed by taking the set of events

in each row of the original FDBR, and expanding them into an FDBR using the

role attached in the prepositional phrase. This is used to obtain the cardinality of

the number of entities that the subject is related to in that role under the FDBR

(called the object cardinality). Now, these object cardinalities are used to partition

the GFDBR into a set of GFDBRs, where the set with the highest (or lowest) object

cardinality is chosen to replace the original GFDBR, depending on the ordering

in the denotation of the prepositional phrase (i.e. the ordering denoted by the

superlative phrase). For “the most”, it would be the set with the highest object

cardinality (since the ordering is GT). In the future, for “the least”, it would be

the set with the lowest object cardinality. The GFDBR is then converted back into

an FDBR by keeping only the events in each row, and the process repeats until no

more superlative phrases are remaining. The final FDBR is returned as the result.
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This allows superlative phrases to still be handled in left-to-right evaluation

order, and it also allows results to be sorted by multiple columns. For example “who

discovered the most moons in the most places” would first sort by “the most

moons”, and following that, would sort by “the most places”. Currently, we are

not able to accommodate “the least”, as the semantics filters out rows with empty

sets of events in FDBRs before superlatives work on them. For example, if a user

were to ask “which planet has the least moons”, the answer currently would

be “earth”, as it has only one moon, and our system filters out both “venus” and

“mercury” (which have no moons) before they have a chance to affect the result.

This seems to be related to our original Open World Assumption, where we only

include results in the result set if there is at least one accompanying event in the

FDBR to justify its inclusion. It is possible that if negation could be accommodated

in the semantics, then “the least” could be handled as well, since they seem to be

related problems.

6.9 Our Approach with Relational Databases

Our NLQI can be easily adapted for use with conventional relational databases.

First, note that each event at minimum contains a role ev_type that identifies the

type of event, and as noted in Section 6.4, there is a general expectation that events

of the same type should contain similar roles. Second, note that the event identifier

in each triple is a URI and is therefore unique by definition.

Assume the roles that events of a particular type t are fixed, including optional

roles. Let N be the number of roles, including optional roles, that an event of type

t contains. Then an event of type t can be described as a row in a relation with

N columns, each role occupying one column respectively, with optional roles taking

on a special value NULL if they are not present in that particular event. Let this

relation be called ev_type.

Store this relation in a relational database as a table using the event identifier

as the primary key. Now, only the triple retrieval functions in Section 6.10.2 need
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to be modified to use this database in place of a triplestore. This architecture

allows the denotations to remain unchanged and yet still work with different types

of databases. Note that triplestores do have an advantage in that they need not be

rebuilt if a new role is added to the event. The decision to choose one approach

over the other needs to be weighed based on application specific factors.

6.10 Implementation of our NLQI

We built our query processor as an executable attribute grammar using the X-

SAIGA Haskell parser-combinator library package [1]. The collect function which

converts a binary relation to an FDBR is one of the most compute intensive parts of

our implementation of the semantics. However, in Haskell, once a value is computed,

it can be made available for future use. We have developed an algorithm to compute

FDBR(rel) in O(n lg n) time, where n is the number of pairs in rel. Alternatively, the

FDBR functions can be computed and stored in a cache when the NLQI is offline.

Our implementation is amenable to running on low power devices, enabling it for use

with the Internet of Things. A version of our query processor exists that can run on

a common consumer network router as a proof of concept for this application. The

use of Haskell for the implementation of our NLQI has many advantages, including:

1. Haskell’s “lazy” evaluation strategy only computes values when they are re-

quired, enabling parser combinator libraries to be built that can handle highly

ambiguous left-recursive grammars in polynomial time.

2. The higher-order functional capability of Haskell allows the direct definition

of higher-order functions that are the denotations of some English words and

phrases.

3. The ability to partially apply functions of n arguments to 1 to n arguments

allows the definition and manipulation of denotation of phrases such as “every

moon”, and “discover phobos”.

4. The availability of the hsparql [15] Haskell package enables a simple interface
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between our semantic processor and SPARQL endpoints to our triplestores.

6.10.1 System Architecture

A flowchart of our system architecture is presented in Section 6.10.1.

Parser

Flatten Optimize

Triplestore

Reduced
Triplestore

Query Triplestore

Query Tree

Merge
Triples

Display Results

Query

Semantics

Figure 6.1: Application architecture.

The query begins as a string of text as sent to the semantics, which is then sent

directly to the parser, as described in Section 6.3.1. This produces two results:

(1) A function that, given a set of triples, will evaluate the query with respect to

that set of triples and return the result

(2) A “Memo Tree” that roughly follows the syntax tree resulting from the parse

of the input string. In addition to providing a unique name to each sub-



Chapter 6. A New Approach for Processing Natural-Language Queries to
Semantic Web Triplestores 104

expression of the parsed input, it is also used to determine which queries need

to be evaluated against the remote triplestore.

The function produced in (1) requires a set of triples to produce a result. While it is

possible, given sufficient time and resources, to directly retrieve all triples from the

remote triplestore and pass them directly into this function to evaluate the input,

in practice it is cost prohibitive to do so.

Instead, we retrieve only relevant triples [5] from the remote triplestore and we

create a reduced triplestore from them which is then passed into (1). The Memo

Tree obtained in (2) is traversed to obtain the set of all triplestore queries that

are required to evaluate each sub-expression of the parsed input. These queries

correspond to the getts family of functions described in Section 6.10.2. The results

of these queries may overlap, i.e. share triples in common with those of other queries

in the set. An optimization step is performed to eliminate these redundant queries.

Domain specific knowledge could be used to improve this process where appropriate.

Finally, these optimized queries are evaluated against the remote triplestore and the

results are merged and stored locally in the reduced triplestore. These triples are

then passed to the function produced in (1), yielding the final result. This is one

area where our NLQI differs from other NLQIs to the Semantic Web – notice that

nowhere do we attempt to directly translate the NL query into SPARQL or any other

querying language. Instead, we rely on simple triple querying primitives which are

embedded in the semantics to perform this task for us.

The architecture presented in this section lends itself to a very clean implemen-

tation in Haskell, where the semantics themselves can be written as pure functions,

with the only impure parts of the NLQI being those that directly deal with query-

ing the triplestore and with presenting these results to the user. We expand on the

individual sub-components of the NLQI in the following sections.
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6.10.2 Triple Retrieval

Remote Triplestore

Our semantics does not directly depend upon any particular query language. When

querying remote triplestores, the NLQI requires only two conceptually simple func-

tions. The first is:

getts_triples_entevprop_type ev_data prop_names ev_type

This function is used to retrieve triples belonging to the relation ev_type.

prop_names is a list of columns of the relation to retrieve. Only the names of

the columns of the relation that are actually required are listed here. Finally,

ev_data is the URL used to access the remote triplestore or database. For example,

in the query “what discovered”, it may be invoked as follows:

getts_triples_entevprop_type url ["subject"] "discover_ev"

This would retrieve the triples of all “discover” events that contain a subject property,

including the triples describing the type of those events. The second function is:

getts_triples_members ev_data set

Here, ev_data performs the same function as it did previously, and “set” indicates

the name of a set, for example the moons or the set of things that spin. This

retrieves the triples of all “membership” events whose object property corresponds

to that set, including the triples describing the type of those events.

Together, these two primitives can be used to retrieve triples from event-based

triplestores, provided the names of the roles to be queried are known. This would

typically be described in a schema, but in simple cases may be feasible to hard-

code into a program. To see how these two primitives work in action, consider the

following complex query, featuring chained prepositional phrases:

which person discovered a moon in 1877 with a telescope

This would invoke the following queries to the database:

getts_triples_entevprop_type url ["subject", "object", "year",
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"implement"] "discover_ev"

getts_triples_members url "moon"

getts_triples_members url "telescope"

getts_triples_members url "person"

These four queries to the remote triplestore, taken together, will retrieve enough

information to answer the user’s query. Transitive and intransitive verbs are im-

plemented in terms of getts_triples_entevprop_type. Common nouns and ad-

jectives are implemented in terms of getts_triples_members. These conceptually

simple functions are easy to implement in SPARQL, SQL, and as Triple Pattern

Fragments [7]. An example implementation is provided in our source code, available

on Hackage [1] for both Triple Pattern Fragments and SPARQL.

After all “getts” queries are evaluated, their results are merged together into a

local reduced triplestore. The idea behind this triplestore is that it contains enough

triples to evaluate the correct result, but no more than that. In other words, the

results from passing in the entire triplestore to the semantic function in (1) and the

results from passing in the reduced triplestore should be equivalent.

Reduced Triplestore

Once the reduced triplestore is passed into the semantics, however, it still needs to

be queried by the semantic functions in the denotations. This is where the boundary

of the impure code of the NLQI meets the pure code of the semantics. At this higher

level, there are three primitives that are used to query the reduced triplestore:

• pure_getts_triples_entevprop_type ev_data prop_names ev_type

• pure_getts_triples_entevprop ev_data prop_names evs

• pure_getts_members ev_data set

These are very similar functions to those described previously, however they are im-

plemented as pure functions in Haskell. The actual implementation of the reduced

triplestore is opaque to the semantics, which rely strictly on these three functions
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to retrieve triples from the reduced triplestore. Implementing these as pure func-

tions allows them to be embedded in the semantics, which are implemented as pure

functions themselves. This provides a number of benefits, including allowing the se-

mantics and queries to be lazily evaluated. pure_getts_triples_entevprop_type

performs a similar role as it did previously. pure_getts_triples_entevprop is a

new function that, instead of specifying an event type parameter, specifies a set of

events instead. This is used to implement chained prepositional phrases, where sets

of events are honed down in the order that the phrases occur in (from left to right).

Finally, pure_getts_members performs a similar function as it did previously, ex-

cept this time it directly returns an FDBR from the members of the set given to

the events in which the set membership is recorded.

6.10.3 Handling Ambiguity in the Query Interface

Syntactic ambiguity

As queries may be ambiguous, it’s important that users see how their queries were

parsed to understand the result given. Our system displays the parse tree along

with the query result to assist with this. The parse tree is presented in a familiar

Haskell syntax to indicate scoping. As an example, consider the scoping of the

simple query “who discovered a moon that orbits mars”:

who (discovered (a (moon `that` (orbits mars))))

Here, we see that scoping of denotations is shown with parentheses. Prepositional

phrases are enclosed inside square brackets, with commas to delimit chained prepo-

sitional phrases:

who discovered a moon in 1877 with a telescope

⇒ who (discovered (a moon) [in 1877, with (a telescope)])

This mirrors the familiar list syntax that Haskell offers and suggests to the user that

the prepositional phrases will be evaluated in the order presented (left to right),

allowing users to understand exactly how their query is evaluated by the system.
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Now, consider the following ambiguous query:

who discovered a moon that orbits in 1877

There are two possible parses of this query, depending on which transitive verb the

prepositional phrase “in 1877” is applied to:

who (discovered (a (moon `that` (orbits [in 1877])))) ⇒ none

who (discovered (a (moon `that` orbits)) [in 1877]) ⇒ hall

In the first case, the prepositional phrase “in 1877” is treated as though it applies to

“orbits”. However, the result is “none” because orbit events do not have a concept

of time in our database. If we were to add a year role to the “orbit” relation, then

all planets and moons in the solar system would be returned. In the second case,

“in 1877” applies to “discovered”, a relation which has the concept of a time of

discovery (the year role). As hall is the only person that discovered anything in

1877, only they are included in the result.

Our system permits highly ambiguous input, providing a result for each possible

parse of that input. However, it may be the case that a user has a clear understand-

ing of how they want their query to be parsed and would gain no benefit from seeing

other possible parses of their query. Fortunately, this use case is easily accommo-

dated with a simple extension to our NLQI: allowing the scoping syntax as presented

above directly in the query interface itself. For example, a user could directly query

“what (discovered (a (moon `that` orbits)) [in 1877])”, which would ex-

clude the other parse as mentioned in the example above. In fact, the query need

not even be fully explicitly scoped to benefit from this. A partial scoping such

as “what discovered (a moon that orbits) in 1877” would be sufficient to ex-

clude the other undesirable parses from the result. We intend to implement this

functionality in our NLQI in the very near future.

It may also be worthwhile to implement a simple dialogue-based approach to

disambiguation, where the system could simply provide the possible parses to the

user and allow them to choose which one they intended. This approach may be

beneficial when using speech to interact with the system, as providing scoping with
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the above method directly with speech would be very inconvenient. An example

dialogue could be:

User:

what discovered a moon that orbits mars in 1877 with a telescope

Interface:

There are three possible ways I can interpret this query.

Which one do you mean?

1) what (discovered (a (moon `that` (orbits mars [in 1877,

with (a telescope)]))))

2) what (discovered (a (moon `that` (orbits mars))) [in 1877,

with (a telescope)])

3) what (discovered (a (moon `that` (orbits mars [in 1877])))

[with (a telescope)])

User:

2

Interface:

OK -- the result of the second interpretation is ``hall''

If the modality of the interface is by voice, reading the scoping directly as presented

above may be inconvenient to users. Fortunately, it is possible to verbally state the

scoping in an intuitive way:

User:

what discovered a moon that orbits mars in 1877 with a telescope

Interface:

I can interpret this three different ways. In the first interpretation,

the prepositions ``in 1877'' and ``with a telescope'' apply to the

verb ``orbit''. Is that what you meant?

User:

no

Interface:
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In the second interpretation, the prepositions ``in 1877'' and

``with a telescope'' apply to the verb ``discovered''. Is that

what you meant?

User:

yes, that's what i meant

Interface:

OK -- the result of that interpretation is ``hall''

Given the different nature of the user’s responses compared to the queries them-

selves, they may be subject to a different grammar or may be handled by a different

system entirely that permits more free-form responses to be given. This could be a

good opportunity to integrate Machine Learning-based Natural Language Process-

ing (NLP) approaches in the NLQI in the future, as they are ideally suited to use

cases involving loosely structured input.

Semantic Ambiguity

Semantic ambiguity may also be accommodated by permitting multiple definitions

of the same terminal in the grammar, augmenting it with a human readable descrip-

tion of what the terminal means. Each definition would be evaluated as though it

were a different parse of the query, although each parse would have the same syn-

tax tree. To avoid confusion, the human readable definition of the word could be

printed below the tree.

6.10.4 Semantic Implementation

The semantics themselves are completely unaware of the structure of the underlying

triplestore and the methods and query languages used to retrieve triples from it.

Recall from Section 6.10.1 that the result of a parse of user input produces two

items: a pure function that, given a triplestore as input will produce the result of a

query and a tree that represents the query itself, including the types of queries that

are required from a remote triplestore.



Chapter 6. A New Approach for Processing Natural-Language Queries to
Semantic Web Triplestores 111

Applying Multiple Semantics in Parallel

The Biapplicative Bifunctor in Haskell, which is inspired from its counterpart in

category theory, can serve as a generalization of function application. One possible

use for it is to apply pairs of values to pairs of functions. Briefly, given two arbitrary

functions f and g and two values a and b we can use the biapplicative operator

<<*>> to apply a and b both functions in parallel: ( f ,g) <<*>> (a,b) = ( f a,g b).

The functions themselves need not be related. First, we introduce an operator, >|<,

that allows us to bridge together two semantics such that they can be applied using

<<*>>:

a >|< b = (a,b)

This allows these two independent functions to be applied in parallel while parsing

the input string using the exact same grammar and no code duplication, provided

the <<*>> is used in place of function application. For example, “a moon spins”

is evaluated as though it were written as “a <<*>> moon <<*>> spins” under this

approach. Our NLQI uses this to construct the Memo Tree in parallel while applying

the denotations of the words in the query. Consider the following example, where

GIntersect and GMembers are constructors of the Memo Tree:

a' = a >|< GIntersect

moon' = moon >|< GMembers "moon"

spins' = spins >|< GMembers "spins"

Therefore,

a' <<*>> moon' <<*>> spins'

=⇒ (a moon spins, GIntersect (GMembers "moon") (GMembers "spin"))

However, this is somewhat inconvenient and unfamiliar syntax to work with. For-

tunately, it is trivial to define a set of “wrapper” functions to restore the original
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function application syntax:

wrapN ( f ,g) (a1,b1) (a2,b2) . . . (aN ,bN) = ( f a1 a2 . . .aN , g b1 b2 . . .bN)

Here, the function wrapN takes a pair of functions ( f ,g) with arity N and then

N pairs of arguments to be applied in order to f and g respectively. This allows

“a' <<*>> moon' <<*>> spins'” above to be written as “a′ moon spins”, where

a′′ = wrap2 a′. Therefore, we can retain the familiar function application syntax

in the semantics while taking advantage of parallel function application. By itself,

this is a convenience, but let us revisit the Memo Tree once more. It has two uses.

The first is as stated previously, in determining which queries need to be performed

against the remote triplestore. The second is that this allows us to assign a unique

identifier to each sub-expression of the parsed input.

Memoized Compositional Semantics

Consider the query “what is orbited by a thing that was discovered by a

person that discovered phobos”, containing three nested transitive verbs. One

possible parse of this query yields:

what (is orbited [by (a (thing `that` (was discovered [by (a (person

`that` (discovered phobos)))])))])

A query’s sub-expressions may be evaluated multiple times during the prepositional

filtering of a transitive verb (i.e one evaluation for each row of the FDBR denoted

in that transitive verb). This has a compounding effect when transitive verbs are

nested as sub-expressions in prepositional phrases of other transitive verbs. In

general, if there are m nested transitive verbs in a query, each having an FDBR

with n rows. then the complexity for evaluation is O(nm).

As it turns out, we can use the Memo Tree to memoize the results of the sub-

expressions of a query, drastically reducing the number of re-evaluations performed.

The memoization occurs in a more sophisticated version of the wrapN functions

described previously, which use the unique identifier provided by the Memo Tree
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to memoize the results of the semantic functions as they are evaluated. This is

completely transparent to the user, and the familiar function application syntax

used in all previous examples still remains. This reduces the complexity to O(mn),

where m is the number of nested transitive verbs, each having an FDBR with n

rows. All sub-expressions in the query are memoized, including the final result of

the query expression itself.

The State monad in Haskell is used to thread the memoized state throughout

the execution of the semantics. This mirrors the memoization technique used in

the parser itself to provide efficient parsing using combinators [16]. We believe this

two-pronged approach to triplestore retrieval and memoization is novel and has

not been used in any other Compositional Semantics-based systems. We intend to

expand more on our approach in a future publication, as we believe it to be useful

for creating modular and efficient compositional NLQIs that can scale to the needs

of the Semantic Web. For example, this approach could be used for developing

NLQIs for low-power embedded devices that are suitable for IoT applications.

6.11 Related Work

Orakel [18] is a portable NLQI which uses a Montague-like grammar and a lambda

calculus semantics. Our approach is similar in this respect. Queries are translated

to an expression of first order logic enriched with predicates for query and numer-

ical operators. These expressions are translated to SPARQL or F-Logic. Orakel

supports negation, limited quantification, and simple prepositional phrases.

YAGO2 [9] is a semantic knowledge base containing reified triples extracted

from Wikipedia, WordNet and GeoNames, representing nearly 0.5 billion facts.

Reification is achieved by tagging each triple with an identifier. However, this is

hidden from the user who views the knowledge base as a set of “SPOTL” quintuples,

where T is for time and L for location. The SPOTLX query language is used to

access YAGO2. SPOTLX can handle queries with prepositional aspects involving

time and location. However, no mention is made of chained complex PPs.
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Alexandria [11] is an event-based triplestore, with 160 million triples (repre-

senting 13 million n-ary relationships), derived from FreeBase. Alexandria uses a

neo-Davidsonian [22] event-based semantics. In Alexandria, queries are parsed to a

syntactic dependency graph, mapped to a semantic description, and translated to

SPARQL queries containing named graphs. Queries with simple PPs are accommo-

dated. However, no mention is made of negation, nested quantification, or chained

complex PPs.

The systems referred to above have made substantial progress in handling am-

biguity and matching NL query words to URIs. However, they appear to have hit a

roadblock with respect to natural-language coverage. Most can handle simple PPs

such as in “who was born in 1918” but none can handle chained complex PPs,

containing quantifiers, such as “in us_naval_observatory in 1877 or 1860”.

Blackburn and Bos [20] implemented lambda calculus with respect to natural

language, in Prolog, and Van Eijck and Unger [13] have extensively and clearly dis-

cussed such implementation in Haskell. Implementation of the lambda calculus for

open-domain question answering has been investigated by [19]. The SQUALL query

language [8, 10] is a controlled natural language (CNL) for querying and updating

triplestores represented as RDF graphs. SQUALL can return answers directly from

remote triplestores, as we do, using simple SPARQL-endpoint triple retrieval com-

mands. It can also be translated to SPARQL queries which can be processed by

SPARQL endpoints for faster computation of answers. SQUALL can handle quan-

tification, aggregation, some forms of negation, and simple unchained prepositional

phrases containing the word “at” and “in”. It can also handle superlative phrases

as long as they are not nested under a prepositional phrase. Notably, the scope of

prepositional phrases in SQUALL are the entire sentence they reside in. It is also

written in a functional language. However, some queries in SQUALL require the

use of variables and low-level relational algebraic operators (see for example, the

queries on page 118 of [8]).
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6.12 Future Work

Negation

Our system currently relies on the Open World Assumption, where the absence of

evidence cannot be treated as having evidence of absence. As a consequence of this,

the system currently is unable to handle negation, and does not have a denotation

for the words “no” and “not”.

However, there is a clear need for handling negation in our semantics where

the Closed World Assumption holds. For example, it should be possible to answer

queries such as “who did not discover a moon” or “what discovered no moon”.

Work has been done on event-based semantics that can handle negation [6]. We

believe it should be possible to accommodate negation in our semantics as well using

a similar approach, and in turn provide a denotation for “the least” as well, as

noted in Section 6.8.

DBPedia

With the addition of memoization in our semantics, we feel our approach is now

scalable enough to work directly with DBPedia. We intend to expand on how our

semantics can handle large triplestores such as DBPedia in a future publication. In

particular, an interface to DBPedia will allow our approach to be directly evaluated

with existing systems in use, such as YAGO [9].

Hardware Acceleration

Consider that the reduced triplestore described in Section 6.10.2 is stored locally in

the query interface and is queried with the pure “getts” functions. These could make

good candidates for offloading to FPGA fabric or a GPU for hardware acceleration.

Work has been done in developing on FPGAs using Haskell [14]. This could allow

for both low latency and low power consumption in embedded consumer devices,

such as those that operate on the Internet of Things.
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Non-Event-Based Triplestores

We also believe it should be possible to handle non-event based triplestores as well

using our approach using a translation layer. It may be possible to use ontological

information to provide an event-based view to many kinds of non-event based data.

Machine Learning approaches could provide a way forward in the absence of or

lacking sufficient ontological information about a triplestore.

6.13 Conclusions

This work comes at an appropriate time when massive triplestores, such as DBpedia

[17] are being created containing billions of verified facts. We are currently looking

at how such facts can be converted to event-based triples which can be queried by our

interface. We are confident that, after we accommodate negation, our compositional

semantics is appropriate for answering most queries that are likely to be asked of

data stores containing domain-specific knowledge. We have shown how the FDBR

data structure presented in this paper can be used to handle many kinds of complex

language features, including chained prepositional phrases and superlatives. The

way quantification is handled within the semantics is consistent with other work in

this area, as discussed in Section 6.6.1. Our approach is extensible enough that it

can accommodate queries to both relational and non-relational types of database,

including Semantic Web triplestores. Our approach is also suitable for use on low

power devices, which may be useful for applications on the Internet of Things (IoT).

We have shown how our system is tolerant of highly ambiguous user input and

we discussed possible ways to present this in Section 6.10.3. In particular, we

discussed how both semantic and syntactic ambiguity could be handled. We also

presented a novel approach to memoizing compositional semantics using unique

identifiers attached to sub-expressions in a query, substantially improving the time

complexity of evaluation. We also showed how those unique identifiers are also

useful to determine the set of queries that need to be made to the remote database.

Our next goal is to provide an NLQI to DBPedia using our approach with the
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techniques described here, and then evaluate the effectiveness of our system relative

to other NLQIs using established benchmarks, such as QALD [4].
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7.1 Introduction

The Semantic Web consists of a collection of triplestores accessible via endpoints

that process queries using various query languages. Widely used methods for query-

ing triplestores include using SPARQL [18] and Linked Data Fragments (LDF) [15].
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These query languages, while powerful, are not designed with end-users in mind,

with their primary use cases aimed towards databases rather than user-facing ap-

plications. An alternative approach to using a database querying language directly

is to use a Natural Language Query Interface (NLQI). NLQIs have a number of

benefits including being accessible through both text and speech modalities.

There are two main approaches used by NLQIs: Machine Learning (ML) can be

used to attempt to determine the user’s intent and retrieve corresponding relevant

information. This has the advantage of being able to support a wide variety of

queries, with the risk that returned information may not truly satisfy the user’s

intent. The second type of approach is to use a Compositional Semantics (CS) to

directly answer the query with respect to a knowledge base. CS is predicated on

the notion that the meaning of a sentence can be derived from the meaning of its

parts [25]. This has the advantage that the answer to a query is as correct as the

information in the knowledge base itself. As a result, CS-based NLQIs are able

to express highly sophisticated “narrow” queries using complex linguistic constructs

including superlatives and chained prepositional phrases. For example, it is possible

for the NLQI presented in this paper to evaluate, with respect to a knowledge base

consisting of facts about the solar system, the query:

which vacuumous moon that orbits the planet that is orbited by the

most moons was discovered by nicholson or pickering with a telescope

in 1898 at not mt_wilson or not mt_hopkins

However, CS approaches have drawn a lot of criticism. They have been characterized

as being rigid, and therefore not sufficiently able to handle complex queries in real

world applications. Recent work has addressed a number of these issues, including

accommodating chained complex prepositional phrases [10], n-ary transitive verbs

[2] and superlative phrases [5]. It has also been shown that CS can be memoized for

efficient evaluation [6], which also enables offline pre-computation of query results.

One criticism of our previous approaches was that they relied on the Open World

Assumption (OWA) and hence could not support negation in queries. While the
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Resource Description Framework (RDF) [11] underlying the Semantic Web itself is

predicated on the OWA, there exist triplestores where the Closed World Assumption

(CWA) holds, particularly in knowledge bases for expert systems. It would be ideal

to support negation in queries to these triplestores.

In this paper, we show that it is possible to accommodate negation in an English

NLQI to an event-based triplestore where the CWA holds. In particular, we describe

an English NLQI to an event-based triplestore using a CS that supports arbitrary

quantification including negation, complex linguistic constructs including chained

prepositional phrases with superlatives and n-ary transitive verbs. The approach is

an extension of Montague’s approach [25]. Readers are directed to [5] and [6] for

an introduction to the work that this paper builds on

In Section 7.2 we describe previous work on NLQIs to the Semantic Web that

support negation. In Section 7.3 we describe how to access a live demonstration

of our NLQI that can accommodate the queries presented in this paper along with

some other example queries. In Section 7.4 we describe our event-based semantics

and in Section 7.5 we describe how to accommodate negation where the CWA

holds. In Section 7.6 we provide a list of examples queries and explain how they are

processed. Finally, we conclude in Section 7.7 and Section 7.8.

7.2 Previous work

In 2002, Frost and Boulos introduced the notion of “complementary sets” as a way of

accommodating negation in FLMS, a set-theoretic version of Montague Semantics

[23]. Their approach has two drawbacks: first, that a separate denotation for tran-

sitive verbs had to be created for handling queries such as “discover no moon”. In

practice, this meant that 4 denotations of transitive verbs were required: for active

and passive tense verbs, and corresponding “no” queries (as in “discover no moon”

or “discovered by no person”). The approach presented in this paper requires

only one denotation for transitive verbs for all cases, including with the presence

of chained prepositional phrases and superlatives. Second, their approach required
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that the cardinality of the set of entities in the database be a known constant.

The denotations presented in this paper receive the cardinality of the set of entities

as an argument instead. A query is made to the triplestore itself to retrieve the

cardinality of the set of entities, removing the need for computing it locally.

Champollion showed that that negation in event-based CS can be accommodated

using “negative events” [20]. These appear to be similar to the ideas expressed in [23],

although both approaches were developed independently. Where Frost and Boulos

discuss representing the result of a “negative” query by implicitly enumerating the

complement of a set of entities, Champollion describes events that preclude other

events from occurring. This gives some confidence about the nature of the approach

taken towards accommodating negation in CS. Our own approach to negation in

this paper is based in part on [23], but is event-based rather than entity-based and

therefore suitable for event-based triplestores.

SQUALL [19] has limited support for negation in queries, mapping negation onto

the “NOT EXISTS” construct of SPARQL. In particular, SQUALL has a denotation

for the adverb “not”, where its presence removes triples from the result set. This

implies closed-world semantics for the query [12], although this is not discussed by

the authors. SQUALL is unable to accommodate negation in noun-phrases (such

as “which non-moon spins”). SQUALL is also unable to negate termphrases (for

example “not Hall or not Galileo”). The reading of SQUALL queries is also not as

natural as our semantics. The example given in [13], “Which author of Paper42

has not affiliation Salford_University?” could be expressed in the semantics of this

paper as “Which author of Paper42 is not affiliated with Salford_University?”. Also,

where SQUALL depends strictly on translation to SPARQL, the approach described

in this paper is not tied to any particular database query language or interface and

could readily be adapted to relational databases.

7.3 How to Access our NLQI

A live demonstration of our NLQI is accessible via the following URL:
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https://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

In addition to accepting textual input, it also can be interacted with speech on

browsers that support the WebSpeech API [9]. Currently, this includes Google

Chrome-based browsers and Firefox.

7.3.1 System overview

The approach presented in this paper is based on Richard Montague’s denotational

semantics [25]. In particular, our system derives the meaning of a query from the

meaning of its parts. A query is evaluated with respect to a triplestore as though

it were a formal mathematical expression using an Executable Attribute Grammar

[21]. For example, the query “ganymede discovered no moons” is evaluated as the

expression:

‖phobos‖ (‖discovered‖ (‖no‖ ‖moons‖))

where ‖x‖ represents the denotation (meaning) of x.

7.3.2 Supported Features

The following are a list of example queries that demonstrate features supported by

the interface.

n-ary Transitive verbs:

who used a telescope to discover a moon

Quantification:

who used two telescopes to discover one moon ⇒ science_team_2

Chained prepositional phrases:

which telescope was used by a person in 1877 ⇒ refractor_telescope_1

Superlatives:

https://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html
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hall discovered the most moons that orbit mars ⇒ True

Negated noun-phrases:

a non-planet was discovered ⇒ True

Negated verb-phrases:

allen did not discover anything ⇒ True

Negated term-phrases, including conjunction:

not hall and galileo discovered phobos ⇒ False

Adjectives:

enceladus is a vacuumous moon ⇒ True

The above features can be combined arbitrarily to form rich queries. For example,

adjectives can be combined with negation:

mars is a non-blue planet ⇒ True

In all cases, the query processor returns the syntax tree of the query to help the

user understand how the query was evaluated [2]. A list of example queries and a

discussion of how they are evaluated can be found in Section 7.6.

7.4 Event-Based Denotational Semantics

The approach described in this paper builds upon FLMS [24], EV-FLMS [14], UEV-

FLMS [10], and most recently Memoized UEV-FLMS [6]. Notably, our semantics are

event-based rather than entity-based. The fundamental data structure underlying

our semantics is called the Function defined by a Relation, or FDBR, described in

Section 7.4.2. This data structure has been shown to be useful in answering a wide

variety of Natural Language queries [5]. In this paper, we show how the FDBR can

be used to answer queries involving negation in event-based databases where the

CWA holds.
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7.4.1 Event-based Triplestores

A conventional triplestore is a database of triples that have the form (Subject,

Predicate, Object). An event-based triplestore is a triplestore where the Subject of a

triple denotes an event [17][14]. The main advantage event-based triplestores offer is

that it is straightforward to add additional information to an event by simply adding

more triples referencing that event. It is less straightforward to do the same in a

triplestore where the Subject denotes an entity. Such an approach in a conventional

triplestore requires reification and involves using ontological information to link

multiple triples together.

As an example, consider a triple that describes the statement “Jane bought a

pencil”:

<ent:Jane><act:purchase><ent:pencil_1> .

Without reification, there is no way to add other information about the purchase to

the triplestore, such as the price, or the time or location that the transaction took

place. In an event-based triplestore, this is straightforward:

<event:1><type><type:purchase_ev> .

<event:1><subject><ent:Jane> .

<event:1><object><ent:pencil_1> .

Since the triples directly reference the event itself, adding more information about

the event simply involves adding more triples to the triplestore with the Subject

matching the event.

7.4.2 The Function Defined by a Binary Relation (FDBR)

The notion of a Function Defined by a Binary Relation (FDBR) was first described

in [10] as useful datastructure for accommodating chained prepositional phrases in

Natural Language Queries. It was shown that the word “by”, as in “discovered

by”, could be treated as a “virtual preposition” under this approach. In [5] it was

shown that the FDBR can be used to answer many kinds of Natural Language (NL)
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queries including superlatives (including those that occur in a prepositional phrase),

and as a useful datastructure for memoizing the results of queries performed in the

denotations. This vastly improved query execution time and opened the door for

offline computation of results. The definition of the FDBR is as follows:

FDBR(rel) = {(x, imagex) | (∃e) (x,e) ∈ rel & imagex = {y | (x,y) ∈ rel}}

Where rel is the name of a binary relation. The FDBR has been shown to be useful

for the denotation of transitive verbs. Consider the denotation for the active voice

of “discover” given in [2], for example:

‖discover‖= λ t.{(s, relevs) | (s,evs) ∈ FDBR(discoverrel)

& (t obj_fdbr(evs) 6= /0) & relevs = gather(obj_fdbr(evs))}

where obj_fdbr(evs) is the FDBR from the objects in the events of the set evs to

the events they participate in within evs. “discover phobos”, where “phobos” is a

proper noun, results in the FDBR:

{(ehall,{ev1045,ev1046})}

The FDBR can be readily extended to n-ary relations (and hence n-ary transitive

verbs) [2]. In this paper we show that with some small modifications, the FDBR

can be used to answer NL queries with negation as well, in cases where the CWA

holds.

7.5 Accommodating Negation

Negation in NL queries is only possible if the CWA holds for a database. We modify

the semantics presented in [5], [7] and [2] such that the results of denotations may

return the complement of an FDBR in addition to an FDBR, adopting a similar

approach to [23]. We define this type as follows:
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type Result = FDBR fdbr | ComplementFDBR fdbr

We then define the intersection of two Result types as follows:

intersect_result (FDBR a) (FDBR b)

= FDBR $ intersect_fdbr a b

intersect_result (FDBR a) (ComplementFDBR b)

= FDBR $ difference_fdbr a b

intersect_result (ComplementFDBR a) (FDBR b)

= FDBR $ difference_fdbr b a

intersect_result (ComplementFDBR a) (ComplementFDBR b)

= ComplementFDBR $ union_fdbr a b

Where intersect_fdbr operates as it did previously, and a new function

difference_fdbr is introduced as follows:

difference_fdbr =

λms.{(e1,evs2) | (e1,evs1) ∈ m & (∀(e2,evs2)) ((e2,evs2) ∈ s ⇒ e1 6= e2)}

That is, difference_fdbr removes all entities found in the left column of the sec-

ond FDBR from the first FDBR. This is a key function for performing negation,

and plays a similar role to the “NOT EXISTS” operator in SPARQL. A function is

introduced for computing the union of Results as well:

union_result (FDBR a) (FDBR b)

= FDBR $ union_fdbr a b

union_result (FDBR a) (ComplementFDBR b)

= ComplementFDBR $ b `difference_fdbr` a

union_result (ComplementFDBR a) (FDBR b)

= ComplementFDBR $ a `difference_fdbr` b

union_result (ComplementFDBR a) (ComplementFDBR b)

= ComplementFDBR $ a `intersect_fdbr` b
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This is used in the denotation of “and” and “or” as used with termphrases. Next,

we introduce a function to obtain the cardinality of a Result:

cardinality _ (FDBR np) = List.length np

cardinality (Just num_ents) (ComplementFDBR np)

= num_ents - length np

The first argument to this function is passed in from the query pipeline described

in [6], and is either Nothing or Just num_ents, where num_ents is the cardinality

of the set of entities in the triplestore. It will only be retrieved if the query has any

denotations involving negation in it.

Our approach maintains leftmost-outermost scoping of quantifiers including

negation, which enables a natural reading of the query.

7.5.1 Quantifiers

We modify the denotations of all quantifiers to be characterized in terms of the

cardinality:

a' = intersect_result

every'' cardinality nph vbph =

if cardinality result == cardinality nph

then result else FDBR []

one'' cardinality nph vbph =

if cardinality result == 1 then result else FDBR []

two'' cardinality nph vbph =

if cardinality result == 2 then result else FDBR []

most'' cardinality nph vbph =

if n_nph /= 0 && (n_nph_v / n_nph) > 0.5

then result else FDBR []

where

n_nph = fromIntegral $ cardinality nph

n_nph_v = fromIntegral $ cardinality res
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where in the above denotations, result = intersect_result'' nph vbph. Curi-

ously, the function cardinality appears as the first argument to these quantifiers,

giving them three arguments in total. This function is passed in from the caller

as a function that can be used to obtain the cardinality of a FDBR. A function,

“apply_card” is used to automatically apply the cardinality function to the deno-

tations. For example:

every' = applyCard every'' >|< GettsIntersect GI_Every

every = wrapS2 every'

The >|< operator is described in more detail in [6]. It is used to assign a unique

name to the denotations according to the syntax tree of the query. This is useful

for memoization and query optimization. “no” is denoted as follows:

no'' cardinality nph (FDBR []) = ComplementFDBR []

no'' cardinality nph vbph = if cardinality result == 0 then vbph

else FDBR []

This is a departure from the denotation of “no” given in [23]. Namely, the com-

plement of the empty FDBR (denoting “everything”) is returned when an empty

FDBR is passed as the second argument to “no”. This is critical in handling “no” in

the denotation of transitive verbs as discussed later in Section 7.5.4.

7.5.2 Negating Noun- and Verb-phrases

We denote “not”, when applied to a verb-phrase (such as “not spins”) as follows:

not (FDBR vbph) = ComplementFDBR vbph

not (ComplementFDBR vbph) = FDBR vbph

“non” plays a similar role as a prefix to a noun-phrase, and can be denoted as:

non = not
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7.5.3 Negating Term-phrases

One aspect missing from both [13] and [23] is the notion of a negated termphrase,

for example “not hall”, “not a moon”, “not one moon” and “not no moon”, which

exhibits double negation. Negating termphrases provides more flexibility to the

query interface, making it possible to express the query:

who discovered in 1877 not one moon that orbits mars

Where “one” denotes “exactly one”. This query explicitly is excluding any discoverers

that discovered exactly one moon that orbits mars. It results in hall, because hall

discovered two moons that orbit mars in 1877. “not” when applied to a term-phrase,

such as “hall” or “a moon” is denoted as follows:

termnot tmph vbph = intersect_result (not (tmph vbph)) vbph

Therefore not hall spins is evaluated as follows:

(not hall) spins

=⇒ intersect_result (not (hall spins)) spins

=⇒ intersect_result (not (FDBR [])) spins

=⇒ intersect_result (ComplementFDBR []) spins

=⇒ spins

=⇒ True (because spins is not empty)

Negating term-phrases was not discussed in [23], and it offers more flexibility in the

nature of queries that can be performed (see Section 7.6)

7.5.4 A Denotation for Transitive Verbs that Accommo-

dates Superlatives, Prepositional Phrases, and Nega-

tion

Transitive verbs are less straightforward to accommodate with negation. Consider

the following query:

ganymede discovered no moons
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This query should evaluate to True, as ganymede, a moon, was not the subject

of any discovery events – however, ganymede is not the subject of any events

of type “discover”. Therefore, it is missing from FDBR(discoverrel :subject), where

discoverrel :subject is the relation from the subjects of the discover events to the events

of type “discover” that they participate in.

A denotation is given in [23] that accommodates this usage of transitive verbs;

however it requires syntactic disambiguation at the grammar level to apply cor-

rectly. The approach also does not scale well when other linguistic constructs are

introduced, such as chained prepositional phrases and superlatives, requiring a new

denotation to support each usage. The examples given in [23] required 4 denotations

for transitive verb depending on the context.

The denotation we introduce expands on the denotation introduced in [5], where

we described how superlative phrases can also be accommodated. This new denota-

tion evaluates the list of prepositional phrases (including superlatives) in leftmost-

outermost order, which is consistent with other work in the area [22], [13]. For

example, the query “discovered a moon in 1877 with a telescope” would be

evaluated with scoping as though it were as follows: “discovered (a moon (in

1877 (with a telescope)))” – that is, “with a telescope” takes precedence over

“in 1877”, which in turn takes precedence over “a moon”.

Only one denotation for transitive verbs is required for all cases (rather than 4

as in [23]). In particular, the word “no” can be handled compositionally rather than

syntactically in the query.

We modify the denotation for transitive verbs given in [6] to evaluate the list

of prepositional phrases in leftmost-outermost order. The filter_ev function, de-

scribed in [10], is modified to operate on one prepositional phrase at a time: a new

FDBR is computed for each prepositional phrase applied. This allows superlatives

to be neatly evaluated in the order they appear rather than in a separate stage after

the prepositions are evaluated as denoted in [5]. filter_ev also is modified to ac-

count for negation in the query: first, the current prepositional phrase is evaluated

against the empty FDBR (FDBR []). If the result is not an FDBR, then it is a “no”
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termphrase:

in no place (FDBR [])=⇒ ComplementFDBR []

This is owing to the denotation of “no” used in Section 7.5.1. Indeed, the only way

to obtain a non-empty FDBR from applying an empty FDBR is through negation.

When this is the case, filter_ev returns a complement in the same fashion as [23].

Since filter_ev can also receive the complement of an FDBR, as in the case

when negation is present in the query, applying term-phrases can be difficult. The

complement operation is reversed by taking the FDBR of the transitive verb itself

and performing the intersection of it with the complement passed into filter_ev.

Whether negation is present in the current prepositional phrase or not, this FDBR

is passed in to the termphrase of that preposition. If no negation is present in the

current preposition, the result is returned as-is, unless it contains a superlative.

Otherwise, if negation is present, then if a complement of an FDBR was passed into

filter_ev, the FDBR used in the denotation of the transitive verb itself is used

to compute the complement, otherwise the FDBR passed into filter_ev is used

directly. This allows for “discover no moon in 1948” to work as expected. This

can neatly handle the following cases:

discover no moons in no places with no telescopes

The result is the complement of the FDBR of those that discovered a moon in a

place with a telescope

discover no moons in 1877

The result is the complement of the FDBR of those that discovered a moon in 1877

discover a moon in 1877

The result is the FDBR of the people that discovered a moon in 1877.
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7.5.5 Obtaining the cardinality of the entities of the triple-

store

In systems where the Open World Assumption holds, obtaining the cardinality of

the set of entities may not be possible, as the cardinality of that set may be infinite.

Attempting to obtain that set at all may not be practical. Even in systems where

the CWA holds, obtaining the set of all entities in the database may not be feasible.

Fortunately, only the cardinality is required to start answering queries.

A new querying primitive is introduced from [6] that queries the remote triple-

store itself for the cardinality of the set of entities in the triplestore:

getts_cardinality_allents ev_data props

Here, ev_data represents the URL of the triplestore itself (in the case of SPARQL, a

SPARQL endpoint URL), and props is the set of properties of the events contained

in the triplestore whose entities should be counted towards the cardinality. In the

example queries given in this paper, the properties listed for cardinality are “subject”,

“object”, “location”, and “implement”. We exclude the “year” property as all entities

must exist both physically and temporally [11]. This function, like the other getts*

family functions described in [5], can be specialized for different types of databases,

including relational triplestores.

This alleviates having to send the full set of entities to the semantics in order to

answer a query that uses negation. Note that the cardinality of the set of entities

of the triplestore is only ever required in queries that have negation present. Using

the memoization and triplestore querying framework described in [6], a guarantee

is made that if no negation is present in the query, the cardinality query will never

be performed. Therefore, our denotations for negation in queries, including “not”,

“non”, “no” and “the least”, are drop-in enhancements to NLQIs built using our

framework: if the CWA holds for the application, all one needs to do is add these

denotations in. Otherwise, the NLQI will operate with the open world semantics

described in [5].

In some cases, the user may want to force evaluation of the complement, for
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example when they know the result set will be small. It is possible to introduce a

special denotation, “force_eval”, will obtain all triples and force retrieval of all en-

tities. This may be cached on the interface to alleviate the load against the remote

triplestore using the memoization framework in [5]. It may be appropriate to evalu-

ate the complement if its cardinality is under a certain threshold as well, triggering

“force_eval” automatically – this could be customized on a per-application basis.

7.5.6 Accommodating “the least”

In [5] we described how to accommodate superlative phrases compositionally by

delegating their evaluation to the transitive verb they are arguments of. This allows

them to appear in chained prepositional phrases.

One problem described with that approach was answering queries with superla-

tives such as “the least” or “the lowest number of”. The main reason for this was

owing to the OWA underlying the semantics. Under that approach, “which planets

are orbited by the least number of moons” would return earth, despite both

venus and mercury having a lower number of moons than Earth. The semantics

had no concept of zero and could only report about what was observable. Since

there were no events explicitly stating that venus and mercury had no moons, it

could not assume that it was not the case.

We propose an alternative approach in this paper, where “the least” is handled

similarly to the word “no”. The denotation for “the least” first checks that the

complement of the FDBR is non-empty. If so, “the least” returns the complement

of that FDBR – this allows for “venus” and “mercury” to appear in the result set while

removing all non-candidates. If the complement of the FDBR is empty, however,

then it performs the same cardinality partitioning that the “the most” does [5],

except it chooses the lowest object cardinality entities to form the result rather than

the greatest.
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7.6 Example Queries

The following are some example queries that can be handled by our NLQI. With

each query we explain the result and how it was evaluated.

no people spin ⇒ True

The intersection of peopleFDBR and spinsFDBR is empty, therefore no returns spin,

which is non-empty and therefore True.

a non person exists ⇒ True

“non person” is the complement of personFDBR, and the intersection of this comple-

ment with existsFDBR (which is the complement of the empty FDBR) is the same as

the complement of the union of personFDBR with the empty FDBR. The answer is

characterized in terms of the cardinality, which for the complement of an FDBR is

defined as the cardinality of the number of set of entities in the triplestore minus

the cardinality of the FDBR itself. This is greater than 0, and therefore there is at

least one entity that is both a non-person and exists.

a person does not exist ⇒ False

This computes the intersection of personFDBR with the complement of existsFDBR,

which is just the empty FDBR. Therefore, the result is empty, and the answer is

False.

what discovered no moon in 1877 ⇒ everything except: hall

This sentence is treated similarly to “what did not discover a moon in 1877”.

The result is the complement of the set of entities that discovered a moon in 1877,

in this case, hall.

what discovered a non moon ⇒ nothing.

This query is specifically asking about entities that discovered non-moons – the

entities that did not discover anything are not included in this set and therefore an

FDBR is returned. Since that FDBR is empty, the result is that nothing in our

triplestore discovered any non-moons.
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allen discovered no moon at no places ⇒ True

The result of “discovered no moon at no places” is the complement of the

FDBR returned from “discovered a moon at a place”. This includes entities

that either discovered a moon at no known location, or discovered a non-moon

at a known location. Since allen does not appear in the FDBR returned by

“discovered a moon at a place”, the result is True.

what discovered the most moons using no telescopes

⇒ voyager_science_team

This query combines both a superlative phrase with negation. The query is asking

“out of the events where entities discovered something without using a telescope,

which ones discovered the most moons”. Since voyager_science_team used no

telescopes at all to discover 22 moons, more than any other entities that discovered

using no telescopes, they are in the result set.

what was discovered by no team in 1877 ⇒ everything.

This query is handled the same as “what was not discovered by a team

in 1877”, which returns the complement of the empty FDBR, since no teams

discovered anything in 1877.

how was something discovered using no telescope ⇒ I can’t perform this

query because I would need to enumerate the entire triplestore.

This query is asking about which implements that are not telescopes were used in a

discovery event. However, “something” is defined as the complement of the empty

FDBR, and “discovered using no telescope” is the complement of the FDBR of

“discovered using a telescope”. Since the intersection of the two complements

is itself a complement, “how” receives the complement of an FDBR and is unable to

enumerate the events to retrieve implements from directly. Although it is possible

to answer the query by fully evaluating the complement, we have not implemented

this behaviour in our NLQI at this time. However, a similar query, “which non

telescope was used to discover something” is able to yield the result “cassini,
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voyager_1, voyager_2”.

not hall discovered ganymede ⇒ True

“not hall” is a negated term-phrase. The result is True because galileo discovered

ganymede, not hall.

which person that does not spin discovered no planet in 1877

using a telescope and is a discoverer ⇒ bernard, bond, cassini, christy,

dollfus, galileo, hall, herschel, holman, huygens, karkoschka, kowal, kuiper, lassell,

melotte, nicholson, perrine, pickering, sheppard, showalter

The result is all of the people that are discoverers, since none of the members of

person spin, and none of them discovered a planet in 1877 using a telescope. It may

be helpful to examine the scoping of this query:

which (person `that` (does not spin)) ((discovered (no planet) [in

1877, using (a telescope)]) and (is a discoverer))

nothing exists ⇒ False

This is False because the intersection of thing and exists is non-empty.

everything exists ⇒ True

This is True because thing and exists are both the complement of the empty FDBR,

and the intersection of those results in the same. Therefore thing is a subset of exists.

what was not discovered by hall ⇒ everything except: deimos, phobos

This is the complement of the FDBR “discovered by hall”. The answer is the

set of all things excluding those that hall discovered.

phobos and deimos were not discovered by not hall ⇒ True

This query features double negation and is equivalent to asking “phobos and

deimos were discovered by hall”. The result is True.

not not kuiper discovered not not nereid ⇒ True
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This query also features double negation on the termphrases kuiper and nereid.

This is equivalent to the query kuiper discovered nereid.

which non vacuumous moon that orbits most planets that spin was

not discovered by kuiper at two places using the most telescopes in

1942 ⇒ none.

This query features a variety of complex linguistic constructs, including nested n-ary

transitive verbs, adjectives, negation, chained prepositional phrases, quantification

and superlative phrases. The result is “none” because “non vacuumous moon that

orbits most planets that spin” returns the empty FDBR, and the intersection

of the empty FDBR with any FDBR is also the empty FDBR.

not no moon orbits mars ⇒ True

This query features a negated termphrase, which itself consists of the word “no”

(entailing negation itself). “orbits mars” is the FDBR from the entities phobos

and deimos to their orbit events, and “not no moon orbits mars” evaluates to

“orbits mars” with the entities of “no moon orbits mars” removed. Since “no

moon orbits mars” is False, it returns the empty FDBR, which is then removed

from “orbits mars”, giving a non-empty result. Therefore, the query returns True.

This provides evidence that our NLQI correctly handles negation as a compositional

construct.

who discovered no moons at no places ⇒ allen, baum, buie, burns ...(full

results omitted here)... weaver, young_e_f, young_l_a

The result is everyone that is not known to have discovered a moon at a place. This

includes the discoverers that discovered a moon at no known location, or whose

location property is not listed in the event, or discoverers that discovered a non

moon at a known location.
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7.7 Future Work

Our next efforts will be focused on creating an NLQI to DBPedia using the ap-

proaches described here and in [6]. Specifically, we plan to use Timbr.ai [4] to

provide a relational view of DBPedia, targeting SQL as the query language. Once

this is done, we plan to test our NLQI using well-known benchmarks such as QALD

[8].

We also plan to explore interfacing with non-event based triplestores in gen-

eral. ML approaches may be useful in contexts where ontological information is not

available for reification.

7.8 Conclusions

We have shown that it is possible to accommodate negation in our event-based CS

efficiently. We have shown that our approach to negation is powerful, able to be ap-

plied to noun-phrases, verb-phrases, and term-phrases. We presented a denotation

for “no” that enables it to be treated as a quantifier that can be compositionally

used in conjunction with transitive verbs, either as an argument to the verb or as a

preposition. We improved on [23] by maintaining only one denotation for transitive

verbs throughout the semantics rather than requiring different denotations depend-

ing on the context. Notably, our approach to negation seems to be consistent with

other work in event semantics [20]. We improved on [16] by enabling the negation

of term-phrases, and also enabling our approach to be used with other query lan-

guages than SPARQL. We discussed the necessity of the Closed World Assumption

for queries involving negation and described how to extend the CS given by Frost

and Peelar in [5] to accommodate negation in queries.

Where the CWA is not appropriate, leaving out the denotations for “not”, “non”,

and “the least” is sufficient to restore the Open World Assumption in the seman-

tics. Our approach also fits within the memoization framework in [5]. We also

discussed example queries that are supported with our NLQI and explained how
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the results are formed. We believe now that our semantics is ready to be bench-

marked directly against other systems on large knowledge bases using, for example,

QALD-9 [8].
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Supplementary Material

The complete source code for the demonstration, including the semantics and pars-

ing framework, can be found online at the Hackage Haskell package repository under

the XSaiga project [1]:

https://hackage.haskell.org/package/XSaiga
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Chapter 8

Conclusions

8.1 Future Work

In the future we aim to support non event-based triplestores in addition to event-

based triplestores and relational databases. In particular, we are interested in build-

ing a NLQI to DBPedia to directly evaluate our approach against other NLQIs to

the Semantic Web. We intend to conduct a formal user study to meet this goal,

including using established benchmarks such as QALD-9 [9] to conduct quantitative

comparisons.

8.2 Conclusions

We have shown that a scalable, efficient, expressive and precise method for pro-

cessing natural-language queries to the Semantic Web can be built using a Com-

positional Semantics (CS). We have shown many features of English that are non-

compositional can in fact be handled compositionally within a NLQI, addressing

the Expressiveness and Precision aspects of the thesis statement. This is owing

to the use of a datastructure called the Function Defined by a Binary Relation

(FDBR). We have shown how it can be used to answer queries with traditionally

“non-compositional” features in a CS such as those including superlatives, compar-

atives, n-ary transitive verbs and chained prepositional phrases. Our approach is

147
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highly tolerant of both syntactic and semantic ambiguity. We have also addressed

how to accommodate negation in queries to triplestores where the Closed World

Assumption holds. As these features of our query processor are implemented com-

positionally, they can be combined in queries arbitrarily.

We have described a framework for evaluating CS efficiently through the use

of memoization, drastically improving query evaluation computational complexity.

This same framework provides a means to efficiently form a minimal set of queries

of information needed from a triplestore to answer a query, critically keeping the

event semantics distinct from the triplestore querying process itself. This allows

the event semantics to be used with a wide variety of database query languages

and paradigms such as SPARQL, Triple Pattern Fragments, and even SQL with

relational databases. This satisfies the Scalability and Efficiency aspects of the

thesis statement.

We have shown our approach can be used in highly power constrained environ-

ments. One area where our approach could be useful is in constructing NLQIs to

the Internet of Things. This could substantially benefit users with certain disabili-

ties, providing modalities such as speech and text to common household items that

otherwise may not be very accessible. We have also shown that our approach is

able to be used directly in the web browser, where there are no intermediate servers

required to process a Semantic Web NL query. This could be seen as a first step

towards treating the Semantic Web as an accessible extension of the World Wide

Web.
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Appendix A - Source code

The source code for Solarman and the XSaiga parser can be obtained online via

this URL:

https://hackage.haskell.org/package/XSaiga-1.7.0.0/XSaiga-1.7.0.0.tar.gz
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In: ESWC. Springer LNCS Volume 8798. 2014, pp. 343–348
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work. The reason that I am not listed as an author is that the paper was submitted

after I officially joined the research team and I was an undergraduate student at

the time. I developed the Haskell program after the paper was submitted. The

online program was the one used by Dr. Frost in the demonstration he gave at the

conference this paper was presented at.

My contributions to the research project included:

• Improving the efficiency of the programs which implement the event-based

semantics

• Integrating the event-based semantics with the parser combinators to build

the query processor

• Enhancing the existing module to access the external triplestore with effi-

cient methods to do so, including a basic form of query fusion in the form of

memoization

• Demonstrating a novel method of handling the word “by” in prepositional

phrases, and extending prepositional phrases to span multiple property names

• Building a web interface to the query processor which includes both an English
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• Maintaining the XSaiga package on Hackage[1], an online repository of Haskell

libraries and programs, which contains the semantics, parser, and triplestore

described in this Thesis
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