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ABSTRACT 

 

Camera model identification (CMI) and image manipulation detection are of paramount 

importance in image forensics as digitally altered images are becoming increasingly 

commonplace. In this thesis, we propose a novel convolutional neural network (CNN) 

architecture for performing these two crucial tasks. Our proposed Remnant Convolutional 

Neural Network (RemNet) is designed with emphasis given on the preprocessing task 

considered to be inevitable for removing the scene content that heavily obscures the 

camera model fingerprints and image manipulation artifacts. Unlike the conventional 

approaches where fixed filters are used for preprocessing, the proposed remnant blocks, 

when coupled with a classification block and trained end-to-end, learn to suppress the 

unnecessary image contents dynamically. This helps the classification block extract more 

robust images forensics features from the remnant of the image. We also propose a 

variant of the network titled L2-constrained Remnant Convolutional Neural Network 

(L2-constrained RemNet), where an L2 loss is applied to the output of the preprocessor 

block, and categorical crossentropy loss is calculated based on the output of the 

classification block. The whole network is trained in an end-to-end manner by 

minimizing the total loss, which is a combination of the L2 loss and the categorical 

crossentropy loss. The whole network, consisting of a preprocessing block and a shallow 

classification block, when trained on 18 models from the Dresden database, shows 100% 

accuracy for 16 camera models with an overall accuracy of 98.15% on test images from 

unseen devices and scenes, outperforming the state-of-the-art deep CNNs used in CMI. 

Furthermore, the proposed remnant blocks, when cascaded with the existing deep CNNs, 

e.g., ResNet, DenseNet, boost their performances by a large margin. The proposed 

approach proves to be very robust in identifying the source camera models, even if the 

original images are post-processed. It also achieves an overall accuracy of 95.49% on the 

IEEE Signal Processing Cup 2018 dataset, which indicates its generalizability. 

Furthermore, we attain an overall accuracy of 99.68% in image manipulation detection, 

which implies that it can be used as a general-purpose network for image forensic tasks.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 

Camera model identification (CMI) and image manipulation detection are crucial tasks in 

image forensics with applications in criminal investigations, authenticating evidence, 

detecting forgery, etc. Digital images go through various camera-internal processing 

before being saved in the device [1]. Moreover, they are often manipulated after they 

leave the device that has been used to capture them. Nowadays, professional image 

editing tools like Adobe Photoshop, ACDsee, and Hornil Stylepix are readily available, 

consequently making image manipulation a common phenomenon [2]. Also, images 

undergo different kinds of manipulations when they are shared online. We have observed 

a proliferation of digitally altered images with the advent of modern technologies. When 

the authenticity of such images is questioned, a forensic analyst has to answer two 

questions first, what is the source of the image under question and whether the image has 

been manipulated. The image metadata cannot be trusted as a reliable source, as this data 

can be forged. Therefore, a forensic analyst resorts to different image forensics 

techniques to answer these questions.  

1.2 Motivation 

 

 

Figure 1: General acquisition pipeline of available digital images. 
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Digital images go through multiple operations from being captured by a digital camera to  

being available in different online platforms [1]. We first describe the image acquisition 

pipeline of digital cameras, as depicted in Figure 1. In a typical digital camera, the light 

of a scene passes through a system of lenses and optical filters, which is then collected by 

an optical sensor. A color filter array (CFA) is used before the sensor to obtain RGB 

color images so that the individual sensor element records light of a certain color. The 

remaining color information is estimated from surrounding pixels through a process 

called CFA interpolation or demosaicing. After demosaicing, the image goes through a 

number of post-processing (e.g., color correction, edge enhancement, and compression) 

before it is saved on a storage device. As described in [1], most of these components 

leave certain `fingerprints' in the images, which can be utilized in different image forensic 

tasks. Manufacturers generally employ different lens systems in their different camera 

models, which causes lens distortion artifacts, such as radial lens distortion, chromatic 

aberration, and vignetting. The CFA layout and demosaicing process vary widely among 

different models and are generally considered as one of the most distinctive model-

specific signatures. The sensor pattern noise (SPN) is the most unique characteristic of a 

digital camera, and it is used excessively in the literature for source identification. In 

addition to the camera-internal processing operations, digital images face different 

manipulations when they are edited by different image editing softwares. Moreover, they 

are resized or re-compressed when uploaded to photo-sharing websites or social media 

applications [3]. Therefore, image forensics techniques should be made robust to these 

common manipulation operations. 

To explain the motivation of our proposed method, we first describe the image 

acquisition pipeline of digital cameras. In a typical digital camera, light from a scene 

passes through a system of lenses and optical filters, which is then collected by an optical 

sensor. A color filter array (CFA) is used before the sensor to obtain RGB color images 

so that an individual sensor element records light of a certain color. The remaining color 

information is estimated from surrounding pixels through a process called CFA 

interpolation or demosaicing. After demosaicing, the image goes through a number of 
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post-processing schemes (e.g., color correction, edge enhancement, and compression) 

before it is saved on a storage device. As described in [1], most of these components 

leave certain `fingerprints' in the image which can be utilized in different image forensic 

tasks. Manufacturers generally employ different lens systems in their different camera 

models, which causes lens distortion artifacts, such as radial lens distortion, chromatic 

aberration, and vignetting. The CFA layout and demosaicing process vary widely among 

different models and are generally considered as one of the most distinctive model-

specific signatures. The sensor pattern noise (SPN) is a unique characteristic of a digital 

camera, and it is often used in the literature for source identification. 

In designing CNNs for image forensic tasks, it has been therefore a common practice to 

use a pre-processing scheme to suppress the image contents and intensify the minute 

signatures induced by the image acquisition pipeline [5–7]. However, these methods 

suffer from their own drawbacks of using either fixed kernels or constraints as described 

earlier. Our main goal is, therefore, to introduce a preprocessing scheme that is 

completely data-driven but without any imposed constraints or fixed kernels. The weights 

of the preprocessor block are dynamically extracted from end-to-end training with the 

classifier by minimizing the loss function for the task. The benefit of designing such a 

preprocessing block is that it can dynamically adapt itself to different classification 

blocks in cascade with it. It can also adapt itself well on different datasets. This strategy 

proves to be crucial for extracting rich camera model-specific higher-level features for 

our classification task as evident from our experimental results (see Chapter 4). 

1.3 Challenges Addressed 

 

Despite the numerous researches conducted in this field, most researchers have explored 

CMI and image manipulation detection problems discretely. Bayar and Stamm [6] show 

that it is possible to use the same approach for both tasks. Therefore, research for coming 

up with a general-purpose neural network suitable for both CMI and image manipulation 

detection requires more attention. Also, strict measures should be followed while 

conducting experiments so that the proposed methods can be applied in real-life 

scenarios. Kirchner and Gloe suggest that the test set should always consist of images 
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captured by devices that have not been used during training or validation [1]. Also, the 

scenes in the test set should be different from those used during training and validation. 

Here, scene refers to a combination of a location and a specific viewpoint. Keeping 

separate devices and scenes in the test set is compulsory for replicating real-life 

conditions and making the result reliable for practical applications. These evaluation 

criteria will ensure that the neural network is free from  data leakage [7] during testing 

and cannot overperform by learning features specific to the device or scene. Besides, the 

performances of CMI and image manipulation detection should be measured using 

images manipulated at different intensities. We strictly follow the above-mentioned 

points in our experiments.  

1.4 Objective 

 

In this thesis, we propose a general-purpose novel CNN architecture, called Remnant 

Convolutional Neural Network (RemNet) for performing two crucial tasks in image 

forensics, CMI and image manipulation detection. Our proposed CNN has two parts, a 

preprocessor block and a classification block. The preprocessor architecture consists of 

several data-driven remnant blocks, and an L2 loss is applied to the output of the 

preprocessor block. A CNN based classification block follows the preprocessor block, 

and categorical crossentropy loss is calculated based on its output. The total loss function 

is a combination of the L2 loss and the categorical crossentropy loss. The whole network 

is trained end-to-end while minimizing the total loss. The L2-constrained preprocessor 

learns to suppress image contents making it easier for the classification block to extract 

image forensics features. Our experiments show that the proposed method can 

outperform other state-of-the-art networks in both image forensic tasks. 

1.5 Structure of the Thesis 

 

We organize the rest of the thesis as follows. Chapter 2 contains a brief description about 

the relevant researches that has been conducted in the field. We describe our proposed 

network and loss function in Chapter 3. We discuss our training and evaluation criteria, 
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along with the experimental results in Chapter 4. We explore the significance of our 

proposed remnant blocks in Chapter 5. Finally, we conclude in Chapter 6. 
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CHAPTER 2 

BACKGROUND 

 

2.1 Related Work 

 

Image forensics is an active research area, and several methods exist in the literature for 

finding out the source camera model and detecting image-processing operations of a 

questioned image. But researches are conducted discretely for finding out the source and 

manipulation history of an image. In [8-9], we can find a brief overview of the 

approaches proposed over the last two decades. We see that initial research in CMI has 

focused on merging image-markers, such as watermarks, device-specific code, etc. [9]. 

However, using separate external features for each camera model is an unmanageable 

task [10]. Consequently, researchers have focused on utilizing the intrinsic features, such 

as the Color Filter Array (CFA) pattern [11], interpolation algorithms [12], and Image 

Quality Metrics (IQM) [13]. Utilizing Photo Response Non-Uniformity (PRNU) noise 

patterns have been proposed for device-level identification [14-15]. Although sensor 

noise carries device-specific noise artifacts, researchers have developed methods to 

perform CMI using sensor noise patterns [16-17].  

Most of these approaches attempt to extract camera model-specific features and compare 

the features with a pre-calculated reference for the corresponding camera model [18]. In 

the case of image manipulation, traces are found in the image according to the type of 

processing it has gone through [19]. Following this theory, researchers have used distinct 

forensic approaches for identifying different kinds of image manipulation, such as 

resizing [20-21], contrast enhancement [22-23], and multiple jpeg compression [24-25], 

etc. The drawback of using the above-mentioned statistical feature-based approaches is 

that the performance degrades sharply, when new cases arise that have not been 

considered during feature vector selection [26]. For that reason, more recent researches 

have focused on becoming data-driven, such as utilizing local pixel dependencies used in 

steganalysis [27-28] to perform CMI [4], [29] and detect image manipulation [30]. In 
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[31], the authors propose a Gaussian mixture model for image manipulation detection. 

Though these approaches provide good results, extracting features for different 

manipulations requires substantial computational resources, and the performance 

degrades severely depending on the size of the questioned image [2]. 

2.2 Recent Trend of Research  

 

Recently, researchers have started applying Convolutional Neural Networks (CNNs) for 

image forensic tasks [32]. It is expected as CNNs have performed extremely well in 

different image classification tasks [33]. Usually, CNNs tend to learn features related to 

the content of an image, whereas, for image forensics, we need to refrain CNNs from 

learning image contents [6]. As a result, a common practice while using CNNs in digital 

image forensics is adding a preprocessing layer at the beginning of the CNN architecture. 

Chen et al. [34] have proposed using a median filter, whereas Tuama et al. [5] have used 

a high-pass filter before feeding images in their respective CNNs. However, such crude 

filtering is not supported by the literature as the artifacts introduced by different camera-

internal processing and manipulations can lie in both low and high frequency domain 

[17]. Therefore, fixed filters as preprocessor may lose forensics-related features. Bayar 

and Stamm [6] have proposed a data-driven constrained convolutional layer which has 

performed better than the above-mentioned fixed filters. Bayar and Stamm [6] have also 

used their constrained CNN for image manipulation detection. However, some CNN 

based approaches do not use any preprocessing scheme. Yang et al. use the idea of multi-

scale receptive fields on an input image to perform CMI [35]. In [36], the authors use 

CNN and support vector machine (SVM) for CMI, where they use the CNN part as a 

feature extractor. In [37], explores the performance of DenseNet [38] in both CMI and 

image manipulation detection. In [2], the authors investigate the performance of densely 

connected CNNs in image manipulation detection. Owing to the performance of the data-

driven preprocessing schemes, it can be inferred that further researches need to be 

conducted to make the preprocessing operations more robust for image forensic tasks. 

Several researches exist in the literature that use auxiliary loss function to enhance the 
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discrimination between learned features [39-41]. There is a scope of utilizing such 

auxiliary loss functions in the modular CNN architectures for image forensics. 

2.3 Convolutional Neural Networks 

 

Convolutional neural networks are particular types of deep neural networks that have 

gained attention from research community and industry, achieving empirical successes in 

tasks such as object recognition, object detection, speech recognition, and natural 

language processing  [42]. They automatically extract discriminatory features from raw 

input information which are very difficult to obtain through traditional hand-crafted 

feature engineering [42]. 

In a typical CNN, the input information is passed through several convolution layers 

where they are convolved with the filters to generate output feature maps. If 𝑥𝑚
𝑙  is the 𝑚-

th input feature in the 𝑙-th layer and 𝑤{𝑛,𝑚}
𝑙  is the kernel weight parameter of the 𝑙-th 

layer, then the 𝑛-th output feature in that layer 𝑦𝑛
𝑙  is computed as 

𝑦𝑛
𝑙 = ∑  

𝑀𝑙−1

𝑚

𝑤𝑛,𝑚
𝑙 ∗ 𝑥𝑚

𝑙 + 𝑏𝑛
𝑙  

where 𝑀𝑙−1 is the number of input maps, ∗ denotes convolution operation, and 𝑏𝑛
𝑙  is the 

bias of the 𝑛-th output map in the 𝑙-th level. 

The convolution operations are usually followed by activation functions. The purpose of 

these functions are to introduce nonlinearity in the network. In computer vision tasks, 

ReLU [43] is the most popular choice for activation which is defined as 

𝑓(𝑦𝑖) = {
𝑦𝑖 ,      if 𝑦𝑖 > 0
0,      if 𝑦𝑖 ≤ 0

 

However, ReLU activation applies a constraint on feature generation by passing only 

positive values while all negative values are set to zero. As a result, a number of 

modifications of the ReLU function have been proposed in the literature of which 

Parametric ReLU (PReLU) [44] has gained popularity in image recognition tasks in 
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recent years. Instead of setting the negative values to zero, PReLU incorporates a 

learnable parameter 𝑎𝑖  as 

𝑓(𝑦𝑖) = {
𝑦𝑖 ,      if 𝑦𝑖 > 0
𝑎𝑖𝑦𝑖 ,      if 𝑦𝑖 ≤ 0

 

While training neural networks, internal covariance shift causes the distribution of each 

layer's inputs to change which subsequently slows down the training process. To mitigate 

this problem, researchers have proposed various normalizing schemes of which batch 

normalization (BN) [45] is used extensively in recent works. If 𝑥𝑖 is the 𝑖-th input feature 

in a mini-batch 𝐵 with 𝑚 input features, then the output 𝑦𝑖 with BN is calculated as 

𝜇ℬ =
1

𝑚
∑  

𝑚

𝑖=1

𝑥𝑖

𝜎ℬ
2 =

1

𝑚
∑  

𝑚

𝑖=1

(𝑥𝑖 − 𝜇ℬ)2

𝑥̂𝑖 =
𝑥𝑖 − 𝜇ℬ

√𝜎ℬ
2 + 𝜖

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽

 

where 𝜇𝐵  and 𝜎𝐵
2  are the mean and the variance of the mini-batch, respectively, and 𝛽 

and 𝛾 are two learnable parameters. The variable 𝜖 represents a very small value that is 

used to prevent possible division by zero cases. 

To reduce the dimensionality of the feature maps, various pooling operations are 

performed, such as, max-pooling, average-pooling, etc. The max-pooling operation takes 

a window of 𝑞 × 𝑞  and keeps only the maximum value of the selected window whereas 

average-pooling keeps only the average value. Pooling layers perform subsampling on 

the feature space in such a way that the most dominant features are retained.  

The input is passed through successive convolutional layers along with activation, BN 

and pooling layers. Eventually, the feature space is gradually reduced to the number of 

classes 𝑁 to get 𝑦 =  [𝑦1 , 𝑦2, . . . . , 𝑦𝑁], where 𝑦𝑖  represents the score of the 𝑖-th class. 

Finally, a softmax activation is applied on the output layer mapping the 𝑁 class scores to 

𝑁 probability values 𝑝 =  [𝑝1 , 𝑝2, . . . . , 𝑝𝑁] for each class which sum up to 1: 
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𝑝𝑖 =
exp(𝑦𝑖)

∑  𝑁
𝑛=1 exp (𝑦𝑛)

 

The training of a neural network is conducted through successive forward and backward 

propagations of the data. During each forward pass, we get a probability output score for 

each input data. A loss is then calculated based on the predicted output and the ground 

truth. For multi-class classification problems, categorical crossentropy loss function is 

mostly used which is given by 

𝐿 = ∑  

𝑁

𝑘=1

𝑦𝑖
∗(𝑘)

log (𝑦𝑖
(𝑘)

) 

where 𝑦𝑖
∗(𝑘)

 and 𝑦𝑖
(𝑘)

  are, respectively, the true label and the network output of the 𝑖-th 

image at the 𝑘-th class among the 𝑁 classes. This loss is backpropagated to update the 

weights of the network parameters by using various optimization algorithms, such as, 

stochastic gradient descent (SGD) [46] and adaptive momentum (Adam) [47]. 
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CHAPTER 3 

PROPOSED NETWORK 

In this paper, we propose a CNN-based patch-level method for CMI and image 

manipulation detection. A block diagram of our proposed method is shown in Figure 2. 

 

Figure 2: Block diagram of our proposed method. 

As shown in Figure 3, we first extract high quality clusters of size 256 × 256 from an 

input image. From each cluster, patches of size 64 × 64 are taken and fed to the network. 

It then generates a class probability map for each patch. We assign a camera model or 

image manipulation type label to each cluster by averaging the class probability maps of 

its patches. The final prediction is made based on the majority voting on the labels of the 

clusters of an image. 

 

Figure 3: Schematic representation of the proposed method for CMI and image 

manipulation. 
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3.1 Network Architecture 

 

RemNet is comprised of two major building blocks-- a data-driven preprocessing block 

used at the beginning of the network which is followed by a classification block (see 

Figure 4). These blocks are trained end-to-end so that the preprocessing block acts as a 

data-driven custom preprocessing scheme on the input image that learns to suppress 

image contents to some extent as required for better minimization of the loss function and 

intensifies camera model-specific feature-rich portions of the image at its output. The 

details of our proposed network architecture are presented in the following. 

 

 

Figure 4: The architecture of our proposed RemNet. (a) Illustrates the overall architecture 

with three remnant blocks with one classification block. The architectures of the remnant 

and classification blocks are depicted in (b) and (c), respectively. In (b) and (c), AvgPool, 

BN, and Conv2D represent average pooling, batch normalization, and 2D convolution, 

respectively. The letters F, K, and S represent the number of filters, their kernel sizes, and 
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strides, respectively, in the corresponding convolution layers. The letter 𝑁𝑐𝑙𝑎𝑠𝑠  represents 

the number of camera models. 

3.1.1 Preprocessing Block 

 

The preprocessing block consists of several remnant blocks. The detailed architecture of 

the remnant block is shown in Figure 4(b) and Table 1. Each block consists of 3 

convolutional layers with kernel size 3 × 3  followed by BN. Inside each block, the 

feature space is widened from 64 ×  64 ×  3 to 64 ×  64 × 𝑓𝑖 in the first 2 convolutional 

layers and then reduced to 64 ×  64 ×  3  again in the last convolutional layer. The 

choices for 𝑓𝑖  in the consecutive remnant blocks are 64, 128, and 256, respectively. 

Finally, to generate the residue, the output of the final convolutional layer in a block is 

subtracted from the input in a pixel-wise manner. As the convolutional layers are 

followed by batch normalization (BN) layer, in spite of directly using the input, we use 

the batch normalized version of it. Our intuition behind such architectural choice is to 

enable a remnant block to learn the required transformation that would disintegrate the 

undesired contents so that the subsequent subtraction operation can suppress them and 

generate forensic feature enriched residue. But there is still a possibility of losing some 

important forensic information after such intermediate convolution operations. As the 

subsequent blocks operate on the residue generated by the previous block, such 

information loss would gradually build up, causing considerable degradation of the 

model's performance. The input information must be preserved as much as possible 

throughout the block to alleviate this problem. In order to ensure this, we include several 

skip connections so that the input to a remnant block is propagated to every convolutional 

layer inside that block. Even if some of the minute features are lost in a layer, it is 

regenerated through the skip connections (see Figure 4(b)). This also prevents the 

vanishing of gradient-flow during training. We do not use any activation function in our 

remnant blocks because we prefer to build the remnant blocks as linear filters that will act 

as optimal preprocessors for CMI. The contribution of the remnant blocks is 

experimentally verified in our experimental results chapter.  
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There are several hyperparameter choices in the final structure of our preprocessing 

scheme: the number of remnant blocks, the depth of a single block, the number of filters 

in each layer, and kernel size-- all of these are set using cross-validation. 

 

Table 1: Architecture of the 𝑖-th remnant block 

Layers Output Size Kernels* 

 

BN 64 × 64 × 3  

Conv 2D & BN 64 × 64 × 𝑓1 𝐹 = 𝑓1, 𝐾 = 3 × 3, 𝑆 = 1 

Concatenate 64 × 64 × (𝑓1 + 3)  

Conv 2D&BN 64 × 64 × 𝑓1 𝐹 = 𝑓1, 𝐾 = 3 × 3, 𝑆 = 1 

Concatenate 64 × 64 × (𝑓1 + 3)  

Conv 2D&BN 64 × 64 × 3 𝐹 = 3, 𝐾 = 3 × 3, 𝑆 = 1 

Subtract 64 × 64 × 3  

* The letters 𝐹, 𝐾, and 𝑆 represent the number of filters, their kernel size, and strides, 

respectively, in the corresponding convolution layers. 

 

The remnant blocks are somewhat influenced by the highway networks proposed by 

Srivastava et al. in [48]. A plain convolutional layer applies a linear transformation 

𝐻(parameterized by 𝑾𝑯) on its input 𝒙 to produce its output 𝒚: 

𝐲 = 𝐻(𝐱, 𝐖𝐇) 

where 𝐻 is usually an affine transformation followed by a nonlinear activation function, 

but it may take different forms for different tasks.  

For a highway network, two nonlinear transforms 𝑇(𝒙, 𝑾𝑻) and 𝐶(𝒙, 𝑾𝑪) are defined 

such that 
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𝐲 = 𝐻(𝐱, 𝐖𝐇) ⋅ 𝑇(𝐱, 𝐖𝐓) + 𝐱 ⋅ 𝐶(𝐱, 𝐖𝐂) 

where 𝑇  is the transform gate and 𝐶  is the carry gate. 𝑇  controls how much of the 

activation is passed through and 𝐶 controls how much of the unmodified input is passed 

through. Our remnant blocks are motivated by these two gating units. We make 

significant modifications in our transformation function 𝐻 because of the nature of the 

operation we want to perform. As the remnant blocks are intended to be designed as a 

linear preprocessor, as stated before, we avoid the use of nonlinear activation functions. 

Also, we make use of multiple intra-block skip connections in our remnant block to 

preserve input information throughout a block. We use a pixel-wise subtraction operation 

that regulates the flow of information and alleviates the loss of information through 

successive convolutional operations. For the above-mentioned reasons, our transform and 

carry gate are linear in nature and we set 𝑇 and 𝐶 as -1 and 1, respectively. As a result, 

the equation of highway network becomes 

𝐲 = 𝐱 − 𝐻(𝐱, 𝐖𝐇) 

The residual network (ResNet) [49] is also a variant of the highway network [50] where 

the choices for both 𝑇 and 𝐶 are 1 for the residual blocks. Besides, the transformation 𝐻 

used in [49] works as a nonlinear feature extractor whereas the 𝐻 of our remnant blocks 

performs linear filtering operation. Also, ResNet does not use any intra-block skip 

connections. Most importantly, the remnant blocks are used at the beginning part of the 

network. In Chapter 4, we provide a comparison of our proposed network with ResNet 

[49] in camera model identification and image manipulation detection tasks. In Chapter 5, 

we show how the performance of ResNet [49] can be improved by adding remnant blocks 

at the beginning of the network. 

3.1.2 Classification Block 

 

The output of the final remnant block, of size 64 × 64 × 3, is passed to a classification 

block which is outlined in Table 2. The aim of this module is to extract higher-level 

camera model-specific features, reduce the dimensions of the feature vectors, and 

eventually generate a class probability of the source camera model of the input image. 
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The classification block is trained end-to-end with the remnant blocks. Therefore, it 

forces the remnant blocks to suppress unnecessary contents, enhance the useful ones, and 

then generate a remnant of the image which contains rich camera model fingerprints for 

better minimization of the classification loss function. 

Table 2: Architecture of our Proposed RemNet 

Layers Output Size Kernels 

Remnant Block 1 64 × 64 × 3 𝑓1 = 64 

Remnant Block 2 64 × 64 × 3 𝑓2 = 128 

Remnant Block 3 64 × 64 × 3 𝑓3 = 256 

Classification Block 

Conv 2D, BN, & PReLU 32 × 32 × 64 𝐹 = 64, 𝐾 = 7 × 7, 𝑆 = 2 

Conv 2D, BN, & PReLU 16 × 16 × 128 𝐹 = 128, 𝐾 = 5 × 5, 𝑆 = 2 

Conv 2D, BN, & PReLU 8 × 8 × 256 𝐹 = 256, 𝐾 = 3 × 3, 𝑆 = 2 

Conv 2D, BN, & PReLU 4 × 4 × 512 𝐹 = 512, 𝐾 = 2 × 2, 𝑆 = 2 

Average Pool 1 × 1 × 512 𝐾 = 4 × 4 

Conv 2D 1 × 1 × 18 𝐹 = 𝑁, 𝐾 = 1 × 1, 𝑆 = 1 

Softmax 𝑁 − 

* The letters 𝐹, 𝐾, and 𝑆 represent the number of filters, their kernel size, and strides, 

respectively, in the corresponding convolution layers. 

 

The classification block has four consecutive convolution layers at the beginning. Each of 

the convolutional layers is followed by a BN layer and a PReLU activation. The output of 

the fourth convolutional layer, of size 4 × 4 × 512,  is followed by an average-pooling 

operation, which reduces the feature vector to a size of 1 × 1 × 512. Finally, we pass the 

average-pooled feature vector to a final convolution layer with softmax activation to 

generate probabilities for the 𝑁𝑐𝑙𝑎𝑠𝑠 number of camera models. 

Instead of using max-pool operation, we use strided convolution to reduce the feature 

space in the first four convolution layers. This makes the feature reduction process 
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learnable and much less aggressive compared to max-pool [51]. As per the design 

principles introduced in [6], we gradually decrease the kernel size in the first convolution 

layers. The BN layer is included for regularization and faster convergence.  

Previously CNNs used the ReLU as the activation function [52]. But here we want to 

emphasize on extracting camera model fingerprints which are statistical in nature. They 

do not necessarily have to be positive. As we do not want to put any constraint on the 

feature generation, we use the PReLU activation function in our classification block. 

Also, when CNNs used with a PReLU activation function, it has experimentally 

demonstrated higher accuracy [53]. We have also experimentally verified this in our 

experimental results section. 

The average-pool operation is used as per the conventional design structure of CNNs 

[38], [49], [54] to reduce the dimensionality of the feature space before making the final 

decision. We do not use fully connected layers in the classification block to keep the 

number of parameters lower, which in turn makes the network less prone to overfitting. 

This also helps the network to train faster. 

3.2 Loss Function 

 

The preprocessing block contains 𝑀 remnant blocks. The 𝑖-th remnant block applies a 

transformation 𝐻𝑖  on its input 𝒙𝒊  (which is also the output of the (𝑖 − 1)-th remnant 

block) and subtracts it from its input to produce the output 𝑦𝑝𝑖
: 

yPi = 𝐱𝐢 − 𝐻(𝐱𝐢, 𝐖𝐏𝐢) 

The output of the last remnant block is 𝒚𝒑𝑴
. A loss is calculated based on a flattened 

version of this output: 

𝐿2 = ∑  

𝑁param 

𝑙=1

𝒚𝒑𝑴𝒍

𝟐  
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Here, 𝒚𝒑𝑴𝒍
 is the 𝑙-th element of 𝒚𝒑𝑴

 and 𝑁𝑝𝑎𝑟𝑎𝑚  is the total number of elements in 

𝒚𝒑𝑴
. Afterwards, 𝒚𝒑𝑴

 is fed the classifier block that applies a transformation 𝐺  to 

generate the final output 𝑦𝑐: 

yc = 𝐺(ypM, 𝐖𝐜) 

We calculate categorical crossentropy loss between this output and the ground truth 

using: 

 

𝐿𝑥𝑒𝑛𝑡 = ∑  

𝑁𝑐𝑙𝑎𝑠𝑠

𝑘=1

𝑦𝑐𝑖

∗(𝑘)
log (𝑦𝑐𝑖

(𝑘)
) 

where 𝑦𝑐𝑖

∗(𝑘)
 and 𝑦𝑐𝑖

(𝑘)
 are the true label and the network output of the 𝑖-th image at the 𝑘-

th class among the 𝑁𝑐𝑙𝑎𝑠𝑠  classes, respectively,. The total loss 𝐿  is defined using the 

following equation: 

𝐿 = 𝛼 ∗ 𝐿2 + 𝐿𝑥𝑒𝑛𝑡 

Here, 𝛼 indicates how much weight we want to put in the suppression of the residue from 

the preprocessor block. A larger choice for 𝛼 may cause the vanishing gradient problem 

for the classifier [55]. We empirically set the value of 𝛼 as 0.5. During backpropagation, 

the gradient of 𝐿2 is used to update the weights of the preprocessing block. The gradient 

of 𝐿𝑥𝑒𝑛𝑡 is used to update the weights of both the preprocessing block and the classifier 

block. The whole network is trained in an end-to-end manner. The preprocessing block 

outputs a residue of the input, and 𝐿2 attempts to minimize this output, which results in 

suppression of image contents. Simultaneously, the classifier tries to extract useful 

features from this residue for accurate predictions to minimize 𝐿𝑥𝑒𝑛𝑡. Minimization of 𝐿 

results in rich image forensics features in the residue for the classifier block. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 

All of the experiments regarding training and implementation of the model are performed 

in a hardware environment which includes Intel Core-i7 8700K, 3.70 GHz CPUs and 

Nvidia GeForce GTX 1080 Ti (11 GB Memory) GPU. The necessary codes are written in 

Python and the neural network models are implemented using the Keras API (version 

2.1.6) with TensorFlow-GPU (version 1.8.0) in the backend. 

 

4.1 Camera Model Identification 

4.1.1 Results on Dresden Dataset 

 

We comprehensively evaluate our overall approach on the Dresden dataset [56]. These 

images are captured with 73 devices of 27 different camera models. Multiple shots have 

been taken from several locations (e.g., office, public square, etc.) for each device. 

Different pictures are acquired from different viewpoints (e.g., looking on the right, on 

the left, etc.) for each location. We refer to different combinations of locations and 

viewpoints as different scenes. The acquisition process is explained in detail in [56]. In 

our work, we choose only those camera models which have more than one device so that 

we can keep one device separate for testing purpose. This results in discarding 8 camera 

models. Of the rest 19 devices, we consider two camera models, Nikon D70 and Nikon 

D70s, as a single model based on the work of Kirchner and Gloe [1]. Consequently, we 

train and test our models using the images of these 18 camera models. A brief description 

of the dataset used is presented in Table 3. 

4.1.1.1 Training and testing strategy 
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Training a CMI network is challenging because of the existence of device-specific 

features such as PRNU noise [15], [17] along with model-specific features in the image. 

Therefore, a network that can detect the model-specific features needs to be trained in 

such a way that it excludes the device-specific features as much as possible and is able to 

focus on the model-specific features. We solve this problem by using images from 

multiple devices to train our network for most camera models. 

We first split the dataset into train, validation, and test sets in such a way that the camera 

device and scenes used during testing are never used for training or validation. This 

results in 7938, 1353 and 540 images in the train, validation and test set, respectively (see 

Table 3). We refer to these sets as unaltered train, validation, and test sets. This splitting 

policy, proposed in [36], is of paramount importance so that we can be sure that the 

neural network does not overfit on the training data and the testing accuracy is not biased 

by device-specific features or the natural content of the scenes. 

 

Table 3: Camera Models of the Dresden Database Used in our Experiments 

Serial No. Camera Model No. of Images No. of Devices 

Train and Val. Test 

1 Canon IXUS 70 363 2 1 

2 Casio EX-Z150 692 4 1 

3 FujiFilm 

FinePix J50 

385 2 1 

4 Kodak M1063 1698 4 1 

5 Nikon Coolpix 

S710 

695 4 1 

6 Nikon D200 373 1 1 

7 Nikon D70 

Nikon D70S 

373 1 

1 

1 

1 

8 Olympus 

𝜇1050SW 

782 4 1 
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9 Panasonic 

DMC-FZ50 

564 2 1 

10 Pentax Optio 

A40 

405 3 1 

11 Praktica DCZ 

5.9 

766 4 1 

12 Ricoh Capilo 

GX100 

559 4 1 

13 Rollei RCP-

7325XS 

377 2 1 

14 Samsung 

L74wide 

441 2 1 

15 Samsung NV15 412 2 1 

16 Sony DSC-H50 253 1 1 

17 Sony DSC-T77 492 3 1 

18 Sony DSC-

W170 

201 1 1 

 Total 9831   

 

 After splitting the dataset, we extract 256 ×  256 sized clusters of pixels from the 

original images. However, it is to be noted that all clusters of pixels from an image are 

not rich in camera model-specific features. In particular, saturated and flat regions are not 

likely to contain enough statistical information about the camera model [36]. Therefore, 

different authors have used different cluster selection strategies in the literature. In [35], 

the authors propose a new metric to classify the image clusters into three categories: i) 

Smooth, ii) Saturated and iii) Others. After that, they train their network on these three 

categories separately and get three different networks (same architecture but different 

weights) on which they report the performance results for the respective categories of 

image clusters. On the other hand, in [36], the authors propose a metric that gives a 

higher score to the image cluster with more texture, and train and test their network with 
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these high-scoring clusters only. Since our target is to propose a single CMI network for 

solving the task, we need to train and test it with clusters that contain enough statistical 

information about the camera model. That is why we compute the quality value of a 

cluster as outlined in [36]. For each cluster 𝑃 in an image, its quality 𝑄(𝑃) is computed 

as 

𝑄(𝒫) =
1

3
∑  

𝑐∈[𝑅,𝐺,𝐵]

[𝛼 ⋅ 𝛽 ⋅ (𝜇𝑐 − 𝜇𝑐
2) + (1 − 𝛼) ⋅ (1 − 𝑒𝛾𝜎𝑐)] 

where 𝛼, 𝛽, and 𝛾 are empirically set constants (set to 0.7, 4 and 𝑙𝑛(0.01), respectively), 

𝜇𝑐 and 𝜎𝑐, 𝑐 ∈  [𝑅, 𝐺, 𝐵] are the mean and standard deviation of the red, green, and blue 

components of cluster 𝑃, respectively. For a cluster of pixels with texture, this quality 

measure tends to be higher than for the overly saturated or flat clusters (see Figure 5).  

 

 

Figure 5: Examples of clusters of different qualities with their quality indices. 

 

We found that this quality assessment is consistent with the others category mentioned in 

[35]. According to the definition in [35], 99.32% of our high-quality clusters fall into 

others category while 0.63% are smooth, and the rest 0.03% are saturated. Therefore, we 

can consider that our cluster selection strategy is almost identical to choosing the others 

category patches of Yang et al. [35]. 

    .  

    .  

    .  

    .      .      .  

    .      .  



 

23 
 

  

Although we extract 256 × 256 sized rich quality clusters from the main image, the input 

patch size that we opt to use for our network is 64 × 64, as suggested in [35], [36], [57]. 

During training, we select a patch of size 64 × 64 randomly from a cluster of 256 × 256 

in each epoch. The idea of small input patch of 64 × 64  is motivated by three reasons: 

(i) it results in more data to train our proposed network; (ii) during the test, it enables us 

to generate multiple predictions for a given image and averaging over all of those 

predictions may ensure a more accurate classification; (iii) training our network with 

patches of smaller size relative to the image prevents our network from learning 

dominant spatial features of the image affixed directly to its contents, subsequently 

enabling the network to learn inherent model-specific statistical features. Also, training a 

network with bigger input patch size poses hardware constraints and requires more 

training time.   

Our cluster and patch selection strategy introduce statistical variations during training. 

The network cannot rely on seeing the same patch of size 64 × 64 more than once since 

they are randomly extracted from the 256 × 256  clusters in each epoch. This has a 

regularizing effect and forces the network to learn more robust features that generalize 

better across multiple samples of the input data. Our proposed cluster selection method 

also ensures that the input patches of 64 × 64 to the network are a mix of good and bad 

patches where good patches are dominant in number. Some of the rich quality clusters of 

256 × 256  may contain a few bad patches of 64 × 64  as illustrated in Figure 5. 

Therefore, during training, the network learns to extract features from saturated regions 

as well. This, in turn, helps our network perform well in poor quality clusters extracted 

from the main image, which is demonstrated in the experimental results.  

During training, we extract 20 rich quality clusters of size 256 × 256 from each image 

which results in 158760 and 27060 clusters for the unaltered train and validation set, 

respectively. We then randomly crop a 64 × 64 size patch from each cluster in each 

epoch and feed it to the network. Since we are experimenting with 18 camera models, we 

set 𝑁𝑐𝑙𝑎𝑠𝑠 = 18  for our classification block. The weights of the network kernels are 
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initialized randomly with the uniform distribution proposed by Glorot and Bengio [58]. 

We use categorical cross-entropy as the loss function and Adam [47] as the optimizer 

with the exponential decay rate factors 𝛽1  =  0.9 and 𝛽2 =  0.999. The batch size we opt 

to use is 64. The initial learning rate is set to 10−3 and is decreased by a factor of 0.5 if 

the softmax classification loss (𝐿𝑥𝑒𝑛𝑡 ) does not decrease in three successive epochs. 

When the learning rate is reduced to 10−7, the training is stopped. In this way, we train 

our network for a maximum of 70 epochs and save the weight with the least validation 

loss for evaluation. 

After training, we test our network on the unaltered test set comprised of 540 images 

from unseen devices of 18 different camera models of the Dresden database. During 

testing, we select 𝑁 number of rich quality clusters of size 256 × 256 from each test 

image according to our quality assessment. To make a prediction for each cluster, we take 

the average of the predictions on all non-overlapping patches of size 64 × 64 it contains 

and assigns a camera model label 𝑙𝑗 to it. The final prediction for the image is obtained 

through majority voting on 𝑙𝑛  for 𝑛 ∈ [1, 𝑁]. In all the subsequent experiments, we use 

𝑁 =  20 unless otherwise stated. Finally, the accuracy of the network is obtained using 

the following equation: 

Accuracy =
𝑁corr

𝑁tot

× 100% 

Where 𝑁𝑐𝑜𝑟𝑟 is the number of images correctly predicted and 𝑁𝑡𝑜𝑡 is the total number of 

images, which in this case, is 540. 

4.1.1.2 Comparison of Design Choices 

 

We experiment with several architectural design choices of our proposed RemNet. We 

train and test these various designs on the unaltered dataset. The results of these 

experiments are presented in Table 4. It is evident from the table that our proposed 

RemNet with 3 remnant blocks followed by a classification block with PReLU activation 

results in a better accuracy. The detection accuracy it achieves is 97.03%. 
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Table 4: Accuracy of different design choices of RemNet trained and tested on the 

unaltered train and test sets of the Dresden database 

Design choice Accuracy (%) 

Remnant Blocks + Classifier (ReLU) 96.48 

Remnant Blocks with Activation (PReLU) 

+ Classifier (PReLU) 

96.67 

Remnant Blocks + Classifier (PReLU) 97.03 

 

4.1.1.3 Comparison with state-of-the-art networks on unaltered images 

 

We compare our results with the established methods in CMI-- constrained-convolutional 

network [6], fusion residual network [35] and first steps toward the camera model 

identification with convolutional neural networks [36]. The reason behind choosing [6] 

and [35] is that both of these works incorporate their own preprocessing scheme that 

agrees to our main intuition in this work. Since our rich quality clusters commensurate 

with the others category of [35], we implement the fusion residual network for the others 

category only, instead of each of the three different categories mentioned in [35]. We also 

include [36] in our comparison as we adopt their cluster selection strategy. Recently, 

several works such as [59–61] confirm the superior performance of very deep neural 

networks in different camera forensic applications. As a result, we also compare the 

performance of the RemNet with two CNN based deeper architectures namely ResNet 

[49] and DenseNet [38].  For a fair comparison, we use the same input patch size, 

64 × 64, for all the networks and the implementation of each method is made under 

careful scrutiny.  

Table 5: Accuracy of different methods trained and tested on the unaltered train and test 

sets of the Dresden database 

Method Accuracy (%) 
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Bayar and Stamm [6] 95.56 

Yang et al. [35] 94.81 

Bondi et al. [36] 90.55 

ResNet [49] 92.40 

ResNeXt [62] 93.33 

DenseNet [38] 93.33 

RemNet 97.03 

L2-Constrained RemNet 97.59 

 

The results presented in Table 5 show that networks with preprocessing schemes perform 

substantially better than the other networks and our proposed RemNet outperforms all the 

networks with a significant margin. This observation, therefore, establishes our claim that 

a preprocessor is indeed necessary in CMI even for deeper architectures. 

4.1.1.4 Effects of Data Augmentation 

 

Deep neural networks have a tendency to overfit due to their large number of learnable 

parameters. Since these methods require a large amount of data to avoid overfitting, data 

augmentation is a commonly used method in training CNNs [63]. Also, our goal is to 

design a robust network that can perform CMI even if the image is post-processed. To 

address these challenges, we use different types of post-processing methods as a form of 

data augmentation to increase the volume of training data. The types of augmentation that 

we use in this work are: 

• JPEG-Compression with quality factor of 70%, 80%, and 90% 

• Rescaling by a factor of 0.5, 0.8, 1.5, and 2.0 

• Gamma-Correction using 𝛾 = 0.8 and 1.2 

We perform the aforementioned post-processing methods on the train and validation sets 

which increase the volume of data by 9 folds. We refer to these increased datasets as 
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augmented train and validation sets. The augmented datasets contain both unaltered and 

manipulated images. 

Table 6: Accuracy of different methods trained on the augmented train set and tested on 

the unaltered test set of the Dresden database 

Method Accuracy (%) 

Bayar and Stamm [6] 93.89 

Yang et al. [35] 95.19 

Bondi et al. [36] 92.59 

ResNet [49] 95.19 

ResNeXt [62] 95.55 

DenseNet [38] 95.05 

RemNet 97.59 

L2-Constrained RemNet 98.15 

 

After training on the augmented train set, evaluation is carried out on the unaltered test 

set. The results are presented in Table 6. If we compare the results of Table 6 with that of 

Table 5, we observe that these post-processing schemes, as a form of data-augmentation, 

indeed improve the performance of all the networks except that in [6]. Our proposed 

RemNet achieves the best accuracy of 97.59% among all the models. It is worthwhile to 

mention that RemNet attains 100% accuracy on identifying 16 camera models, as shown 

in the corresponding confusion  
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Figure 6: Confusion Matrix of our proposed RemNet trained on the augmented train set 

and tested on the unaltered test set of the Dresden database. The input and predicted label 

correspond to the Serial No. used in Table 3. 

matrix in Figure 6. For the rest of the two camera models, Sony DSC-H50 and Sony 

DSC-W170, RemNet attains accuracy of 90% and 75%, respectively. The decrease in the 

identification accuracy for these two exact models has also been observed in [5]. As 

mentioned in [1], images captured with camera models of the same manufacturer are 

likely to share some components which makes it harder to separate them. 

To further ensure that the networks are not biased toward the augmented train set, we 

perform post-processing on test images with such factors that are not necessarily used in 

the augmented train and validation set. We process the test images using gamma 

correction with 𝛾 = 0.5, 0.75, 1.25, and 1.5; JPEG compression quality factors (QFs) 

95%, 90%, 85%, and 80%; and rescaling factor of 0.8, 0.9, 1.1, 1.2. The results of this 

study are presented in Table 7. The highest result for each manipulation factor is made 
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bold (see Table 7). We can see that our proposed method has substantial improvement 

over other methods for Gamma Correction. In the case of JPEG Compression, our 

network achieves better performance for two factors, and RemNet [36] achieves better 

performance in two. For Resize manipulation, we see that ResNeXt [47] gains higher 

accuracy for two manipulation factors, whereas our proposed method gains higher 

accuracy in the other two factors. We can conclude that our proposed method proves to 

be most robust to external manipulation. Also, deep CNNs perform better than shallow 

networks in the face of manipulated images.  

 

Table 7: Comparative results of our proposed network with different methods, trained on 

the augmented train set, in identifying camera models from manipulated test images of 

the Dresden database (Accuracy in %) 

Manipu

lation 

Gamma Correction JPEG Compression Rescale 

Factor 0.5 0.75 1.25 1.5 95 90 85 80 0.8 0.9 1.1 1.2 

Bayar 

and 

Stamm 

[6] 

93.52 94.44 94.44 94.63 92.59 94.81 88.15 85.74 88.15 87.04 64.44 59.07 

Yang et 

al. [35] 

94.26 95.37 95.00 92.78 94.07 94.07 92.59 92.59 94.26 92.59 90.93 90.56 

Bondi 

et al. 

[36] 

85.92 91.85 89.07 92.03 84.07 85.92 91.48 90.74 92.56 92.77 91.48 89.44 

DenseN

et [38] 

91.66 95.18 92.03 94.62 92.77 92.96 94.26 94.81 95.00 94.81 94.44 94.26 

ResNet 

[49] 

91.85 95.18 92.77 94.81 93.88 94.82 95.55 95.00 95.18 95.18 95.00 95.18 
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ResNe

Xt [62] 

94.25 95.55 93.88 95.18 95.18 94.82 94.25 94.07 95.00 95.00 96.11 95.55 

RemNe

t 

96.11 97.22 96.11 95.56 97.59 94.82 92.59 92.78 95.00 93.33 92.04 92.41 

L2-

Constra

ined 

RemNe

t 

96.29 98.14 97.59 97.96 92.96 93.33 96.11 97.03 96.67 96.67 90.74 91.66 

 

 

                                                                             

4.1.1.5 Justification of Using the L2 Loss 

 

L2-constrained RemNet achieves an overall accuracy of 98.15%, which is better than all 

other approaches we compare with (see Table 6). It should be noted that we set the value 

for in our custom loss function (5) empirically. We have achieved accuracy of 97.77%, 

98.15%, and 97.77%, when 𝛼 is chosen as 0.1, 0.5, and 1, respectively. Therefore, we 

propose using 𝛼 = 0.5. 

We perform several experiments to justify the use of the L2-constrained pre-processing 

block in our network. First, we train the RemNet without any pre-processing block at the 

beginning of the network, that is, we only train the classification block. Then, we train 

the RemNet without any auxiliary L2 loss at the output of the preprocessing block. 

Afterward, we experiment with replacing the L2 loss with the L1 loss. The lower 

accuracy of the RemNet without the pre-processing block justifies the use of the 

preprocessing step (see Chapter 5). Similarly, the lower accuracy of RemNet without any 

additional loss justifies the use of the auxiliary loss (see Table 6). When we use the L1 

loss in our custom loss function, the total loss oscillates throughout the training and does 

not converge. After a complete run, the L1-constrained RemNet attains an accuracy of 
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58.88%. The L1 loss enforces sparsity on the output of the preprocessing block, whereas 

the image forensics features, in this case, are non-sparse and present throughout the 

image. The L2 loss forces the output of the preprocessing block to be small and provides 

a non-sparse solution. 

4.1.2 Results on the SP Cup 2018 Dataset 

 

To test the generalizability of our approach, we have also trained and tested the 

aforementioned networks on the CMI Dataset provided for the IEEE Signal Processing 

(SP) Cup 2018 [64]. The training dataset provided by the IEEE Signal Processing Society 

consists of images captured by 10 different camera models having 275 images for each 

model. Since only one device is used to capture these images for each camera model, we 

collect external data from multiple devices from Flickr under the creative commons 

license. All these images are used for training and validation purposes only. A brief 

summary of the dataset is given in Table 8. 

 

Table 8: IEEE SP Cup 2018 data and Flickr data 

Camera Model No. of images 

SP Cup Data Flickr Data 

HTC-1-M7  275 746 

iPhone-4s  275 499 

iPhone-6  275 548 

LG-Nexus-5x  275 405 

Motorola-Droid-Maxx 275 549 

Motorola-Nexus-6  275 650 

Motorola-X  275 344 

Samsung-Note3  275 274 

Samsung-Galaxy-S4  275 1137 
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Sony-NEX-7  275 557 

Sub-Total 2750 5709 

Grand-Total 8459 

 

  

The dataset described in Table 8 is split into train and validation data by a 3:1 ratio. The 

test dataset is provided separately, which includes 2640 images of size 512 × 512 , 

among which 1320 are unaltered, and the rest are augmented, i.e., resized, gamma-

corrected, or JPEG compressed. All the test images are acquired with a separate device 

other than the ones used for capturing training and validation images. 

The training and testing is done by following the same procedures as mentioned in the 

earlier experiments. This time, we train our network for 10 classes. The testing is done on 

the test set which contains images from completely separate devices that are used for 

training. Since the size of the test images is 512 × 512, we extract the best clusters of 

size 256 × 256  and generate result following the testing procedure mentioned 

previously. According to the competition rules of IEEE SP Cup 2018, the score on the 

test-results are calculated based on the following formula: 

 Accuracy = 0.7 ×  (Accuracy of Unaltered Images) +
0.3 ×  (Akcuracy of Manipulated Images).

 

Table 9 summarizes the result of our model on the SP cup dataset along with comparing 

it with different networks. From the table, it is clear that our proposed RemNet 

outperforms the other networks. This satisfactory performance is evidence of the 

generalizability of our approach. Among the other networks, wider [35] and deeper ([38], 

[49]) networks perform comparatively better than the shallower ones.  

Table 9: Accuracy of different methods on the IEEE SP Cup 2018 testing dataset 

Method Accuracy (%) 

Bayar and Stamm [6] 90.97 
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Yang et al. [35] 94.83 

Bondi et al. [36] 90.07 

ResNet [49] 93.92 

DenseNet [38] 93.70 

RemNet  95.11 

L2-Constrained RemNet 95.49 

4.1.3 Data Imbalance Problem 

 

If the data used to train a network is not evenly distributed into different classes, then 

supervised machine learning algorithms can become biased or skewed to specific classes. 

A machine learning algorithm should be trained with a somewhat equal number of 

images in each category in an ideal situation. Data imbalance can lead to poor 

performance, particularly for the classes with fewer samples available during training. 

We can see in Table 3 that the number of images available for different camera models is 

quite imbalanced. Therefore, we have the possibility of facing a data imbalance problem 

in our experiments. However, we can see in Figure 6 that it is not the case in our 

experiments. In CMI, RemNet achieves 100% accuracy for 16 camera models of the 18 

camera models in the Dresden database. Despite having an unequal number of training 

images for different camera models, it does not affect the network's performance. The 

alleviation of the data imbalance problem can be attributed to our patch selection 

strategy, the data augmentation methods, and the proposed network's better performance. 

4.2 Image Manipulation Detection 

 

Now, we show the use of our network in a completely different image forensic task. We 

use it to identify the kind of image-manipulation done on an image. The same network is 

used here except the number of output classes, which is four-- unaltered, rescale, JPEG 

compression, and gamma correction. The input size for all the networks is also 

maintained at (64 ×  64). We use the same train and validation set from our experiments 
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with CMI and sub-divide it into the four manipulation classes. The L2-constrained 

RemNet is then trained to detect the type of manipulation applied to an image. It is to be 

mentioned that, during training, our dataset consisting of 1587600 train and 270600 

validation clusters has been reduced in order to make the training data evenly distributed 

among four classes. Since the number of unaltered train and validation clusters are 

158760 and 27060, respectively, we select 158760 train and 27060 validation clusters 

randomly for each type of manipulation. 

Table 10: Accuracy (in %) of different methods in image manipulation detection 

Method Accuracy (%) 

Yang et al. [35] 91.74 

Bayar and Stamm [6] 87.28 

RemNet  98.27 

L2-Constrained RemNet 99.68 

 

Table 11: Accuracy (in %) of image manipulation detection for different manipulation 

factors 

Method Gamma Correction JPEG Compression Rescale 

 0.5 0.75 1.25 1.5 95 90 85 80 0.8 0.9 1.1 1.2 

Yang et al. 

[35] 

99.07 98.52 97.04 98.70 49.44 100 100 100 100 97.40 60.74 100 

Bayar and 

Stamm [6] 

94.44 83.33 77.22 90.56 11.30 100 100 100 100 100 90.93 99.63 

RemNet 100 99.81 99.63 100 81.48 98.33 100 100 100 100 100 100 

L2-

Constrained 

RemNet 

100 99.63 99.26 98.70 100 98.7 100 100 100 100 100 100 
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In testing, we have used the test images from the Dresden dataset and generated a total of 

540 × 12 =  6480 test images, which include 540 unaltered images; 540 × 4 =  2160 

gamma-corrected images with 𝛾  = 0.5, 0.75, 1.25, and 1.5; 540 × 3 =  1620  JPEG 

compressed images compressed with factors of 85%, 90%, and 95%; and 540 × 4 =

 2160 resized images images with scaling factor of 0.8, 0.9, 1.1, and 1.2. Details of the 

results are given in Table 10. We achieve an overall accuracy of 99.68% in this task 

whereas RemNet, Bayar and Stamm [6], and Yang et al. [35] achieve 98.27%, 87.28% 

and 91.74%, respectively. We demonstrate the detection accuracy for different factors of 

manipulation in Table 11. For gamma-corrected images, the performances of [35], 

RemNet  and L2-Constrained RemNet are substantially better than that of [6]. In the case 

of JPEG compression, all four networks perform almost the same except at the 

compression factor of 95, where [6] and [35] fail miserably by misclassifying most of the 

compressed images as unaltered images. There is a significant drop in the detection 

accuracy for RemNet as well. This is expected since there is very little difference 

between the original image and JPEG compressed image with factor 95. However, our 

proposed method achieves 100% accuracy even at this factor, which indicates that the 

network can detect even minute manipulation artifacts introduced during manipulation 

operation. When detecting rescaled images, our network and RemNet performs the same 

by attaining a 100% accuracy. Of the other two networks, [6] performs better than [35]. 
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CHAPTER 5 

SIGNIFICANCE OF THE REMNANT BLOCKS 

To demonstrate the effectiveness of the RemNet and the remnant blocks separately, we 

conduct a number of experiments. In this section, we discuss those experimental results 

in detail. 

5.1 With and Without the Remnant Blocks 

 

In order to validate the significance of our proposed preprocessor, we train and test our 

proposed classifier network without the remnant blocks. We also train and test the 

network proposed in [36], ResNet [49], and DenseNet [38] together with the remnant 

blocks to demonstrate its generalizability to any classification network and its positive 

impact on their performances. All these networks are trained end-to-end on the Dresden  

 

Figure 7: Training history of (a) Bondi et al., (b) DenseNet, (c) ResNet, and (d) Our 

Proposed Classifier, with and without remnant blocks, for training with the augmented 

train set of the Dresden database. 
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database. It is to be mentioned that we do not perform similar experiments on [35] and 

[6] since these networks already consist of their own preprocessing schemes. 

The training histories of the models are presented in Figure 7. As we can see, the addition 

of the remnant blocks not only improve the performances but also helps the models 

converge faster. The credit for these improvements can be attributed to the remnant 

blocks. When raw input images are fed directly to these classification networks, they are 

required to perform two tasks at the same time that is, to suppress the image content and 

to extract the required camera model fingerprints. Our proposed preprocessing scheme 

makes the later task easier as it suppresses the unnecessary content of the image and 

provides the classification block with inputs which are rich in camera model-specific 

features. Therefore, it becomes easier for these classification networks to identify camera 

models and update their weights faster during training compared to when they are trained 

with raw input images. 

  

Table 12: Results of different models, with and without remnant blocks, tested on the 

unaltered test set of the Dresden dataset (Accuracy in %) 

Method Trained on unaltered train set Trained on augmented train set 

Without 

remnant blocks 

With remnant 

blocks 

Without 

remnant blocks 

With remnant 

blocks 

Bondi et al. 90.55 95.92 92.59 96.29 

ResNet 92.40 96.85 95.18 98.33 

DenseNet 93.33 96.29 95.01 98.14 

RemNet 93.31 97.03 95.74 97.59 
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From the experimental results presented in Table 12, it is clearly evident that our 

proposed preprocessing scheme improves the performance of all the aforementioned 

methods with a significant margin. The addition of our remnant blocks in cascade with 

these models helps them achieve substantially better performance even when they are 

trained with unaltered images only. Their performances further improve when they are 

trained with augmented data. 

Table 13: Comparative results of different models with and without remnant blocks, 

trained on the augmented train set, in identifying camera models from manipulated test 

images of the Dresden database (Accuracy in %) 

Manipulati

on 

Gamma Correction JPEG Compression Rescale 

Factor 0.5 0.75 1.25 1.5 95 90 85 80 0.8 0.9 1.1 1.2 

Bondi et 

al. 

85.92 91.85 89.07 92.03 84.07 85.92 91.48 90.74 92.56 92.77 91.48 89.44 

Remnant-

Bondi et 

al. 

94.07 95.74 95.37 95.92 88.88 89.07 93.52 92.22 91.66 91.85 90.00 88.14 

ResNet 91.85 95.18 92.77 94.81 93.88 94.82 95.55 95.00 95.18 95.18 95.00 95.18 

Remnant-

ResNet 

98.33 98.33 97.59 97.59 93.33 93.33 95.18 95.92 95.37 95.18 92.40 95.00 

DenseNet 91.66 95.18 92.03 94.62 92.77 92.96 94.26 94.81 95.00 94.81 94.44 94.26 

Remnant-

DenseNet 

96.85 97.59 97.96 97.59 93.70 93.88 94.81 95.92 95.37 94.81 93.52 95.18 

 

Also, in order to verify the effect of remnant blocks on the robustness of the networks 

trained with the augmented dataset, we further evaluate the performance of [36], ResNet 

[49], and DenseNet [38] with remnant blocks on the manipulated test dataset. The 

experimental results shown in Table 13 demonstrate that with the addition of the remnant 
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blocks, all three models have a performance gain in most of the cases and also in totality. 

Also, due to the adaptive nature of our preprocessing scheme and end-to-end training, the 

remnant blocks can learn to produce the optimum output as required by the subsequent 

classifier block. Such adaptive nature of our preprocessing scheme makes it a promising 

approach to further improve the CMI performance of the existing DNN based approaches 

without changing their configuration.  

To verify the effect of remnant blocks on different networks for the IEEE SP Cup 2018 

dataset, we train the networks [36], [49], [59] in cascade with remnant blocks. The 

experimental results are presented in Table 14. It is clear from the table that the addition 

of the remnant blocks improves the performances of the aforementioned networks. 

Therefore, our presumption that the remnant blocks can improve the performance of any 

classification network in CMI is further verified in different datasets.   

Table 14: Comparative results of different models, in cascade with remnant blocks, tested 

on the IEEE SP Cup 2018 testing dataset 

Method Accuracy (%) 

Remnant-Bondi et al. 92.15 

Remnant-ResNet 93.98 

Remnant-DenseNet 94.68 

 

5.2 Frequency Analysis 

 

To demonstrate that the dynamically designed remnant blocks truly performs the desired 

pre-processing task, we show in Figure 8 the outputs of the final remnant block along 

with their frequency characteristics for a randomly selected image. We also make a 

spatial and frequency domain comparison of the conventional filters, e.g., median and 

high-pass filters used in [5], [34], respectively. Figure 8(a)  shows the RGB image, Figure 

8(b)- Figure 8(d) show the median filtered residue, high-pass filtered output, and the 

output of the last remnant block, respectively. If we observe the frequency domain 
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representation of the outputs, we notice that conventional fixed filters are constrained in 

the frequency domain as compared to our remnant blocks since the conventional filters 

apply the same frequency domain transformation on all the channels equally. However, it 

is well known that the sensor pattern noise is not uniformly distributed throughout all 

three channels [65], and Lukas et al. [17] have explicitly stated that both low and high 

 

Figure 8: Comparison of outputs of various pre-processing schemes. (a) Input image, (b) 

median filter residue, (c) high-pass filter output, and (d) output of the third remnant block 

of our proposed RemNet. Columns (i), (ii), and (iii) correspond to different output 

channels, whereas columns (iv), (v), and (vi) depict their frequency responses, 

respectively. 

frequency information are required for CMI. We, therefore, claim that our data-adaptive 

preprocessing performs better filtering operation, preserving the camera signature from a 

wide range of frequencies. 
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5.3 Advantage of Data-Adaptive Filters 

 

The advantage of using data-adaptive dynamic filters of different frequency bands for 

different image channels is demonstrated in Table 15. Here, we first train our proposed 

classification block without the remnant blocks. Then we constrain the last remnant block 

of our proposed RemNet to look at the same frequencies in all three channels. Lastly, we 

replace the remnant blocks with the fixed highpass filter proposed in [5]. The high-pass 

filter is followed by our proposed classification block. All the networks are trained on the 

augmented training set and tested on the unaltered test set. As evident, the performance of 

the proposed RemNet is better than using only the classification block or the constrained 

RemNet. It can be also observed that using a fixed high-pass filter with the classification 

block significantly deteriorates the performance of the network as compared to any other 

configuration as demonstrated in Table 15. These results suggest that the dynamic filters 

are superior to the constrained or fixed filters. 

 

Table 15: Accuracy of different constrained models and our proposed model trained on 

the augmented train set and tested on the unaltered test set of the Dresden database 

 

Method Accuracy (%) 

Proposed classification block 95.74 

Constrained RemNet 96.48 

High-pass filter [5] followed by our 

proposed classification block 

92.14 

Proposed RemNet 97.59 
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Figure 9: Results of varying voting number for (a) rich quality clusters and (b) poor 

quality clusters of different methods, trained on the augmented train set, for testing with 

the unaltered test set of the Dresden database. 

5.4 Performance on Good and Bad Patches 

 

In Figure 9, we observe the effect of the voting number, the number of clusters on which 

the prediction is made during testing, on the performance of different networks. For the 

rich quality clusters (see Figure 5), our network shows a somewhat steady trend, whereas 

the other networks show oscillatory behavior. This indicates that the performance of our 

network is nearly independent of the voting number of clusters, whereas an optimum 

voting number has to be selected for other networks. On the other hand, for prediction on 
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poor quality clusters of an image, the accuracy gradually increases with the increment of 

voting number for all of the networks, as is evident from Figure 9(b). In both of these two 

cases, our proposed RemNet outperforms the other networks in comparison. 

 

5.5 Visualizing the Models Class Activation 

 

 

Figure 10: Visualization of input activation of (a) Canon IXUS 70, (b) CanonEX-Z150, 

and (c) FujiFilm FinePix J50 for different networks trained on the Dresden database. 

 

Due to a large number of parameters, the CNNs can easily get biased to the image 

content, rather than the intrinsic camera fingerprint. It has been, therefore, a topic of great 

interest among the camera-forensic experts about what type of forensic features such 

deep models learn for CMI. To explore this, we adopt the class activation maximization 

method proposed by Erhan et al. [66] at the highest level of feature representation of the 
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networks, i.e., on the output neuron to understand what type of input patterns activate the 

final class. The main goal of such an experiment is to observe and explore the hidden 

patterns present in the image that the networks have learned to extract for CMI. Due to 

the paper size limit, we show the generated patterns for 3 different camera models for 

ResNet [49], DenseNet [38], and our proposed network in Figure 10. From this figure, it 

is evident that deep networks trained for CMI do not focus on the visible image content. 

The noticeable difference among the patterns of different networks can be explained by 

the fact that different network architecture can be thought of different transformation 

function to be applied to the same input, which on the other hand, may result in such a 

difference. 
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CHAPTER 6 

CONCLUSION 

 

In this thesis, a novel CNN model has been proposed for performing two important image 

forensics tasks, namely, CMI and image manipulation detection. To address the problem 

effectively, a dynamic CNN-based preprocessing block has been placed in cascade with 

the shallow CNN-based classifier for enhancing the intrinsic image forensics fingerprints 

at its output by suppressing the undesired contents of the input image. Unlike the 

conventional fixed filter-based approaches for preprocessing in image forensics, the 

remnant blocks of the proposed preprocessing unit are completely data-driven. The 

experimental results on the Dresden and the IEEE SP Cup 2018 Camera Model 

Identification datasets, focusing on the unseen devices of closed set camera models and 

post-processed images, have demonstrated improved performance and generalizability of 

the proposed modular RemNet for real-world CMI application. Furthermore, the 

demonstrated ability of the remnant blocks to improve the CMI performance along with 

the speed of convergence of the well-known CNN based approaches indicate that they are 

suitable as a general-purpose preprocessing scheme for varieties of CMI networks. 

Additionally, we have used our proposed method for image manipulation detection. The 

satisfactory performances of our network on both classification tasks prove that it can be 

used for a general-purpose network for image forensics.  

 

In future works, we wish to explore the possibility of coming up with an improved loss 

function to facilitate the training of the RemNet better. We can further study the image 

acquisition pipeline to investigate appropriate loss functions, which will help suppress the 

image's image contents at the preprocessing step. It should be noted that the 

accompanying design choices of the RemNet may also change for different loss 

functions. We wish to explore the potential of such a preprocessing scheme in other 

image forensic tasks as well. 
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