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ABSTRACT 

Numerous Earth observations, communications, and scientific satellites have 

been developed in Canada or with significant Canadian participation over the last 

few decades, and many are currently being developed. To ensure mission success 

goals, space satellites in Earth orbit must be analyzed for their ability to survive 

hypervelocity impacts (HVI) by orbital debris, as collision of a functional satellite 

with even a millimeter-sized object traveling at typical orbital speed (7 km/s and 

higher) that can be detrimental for the Earth’s orbit environment generating new 

orbital debris which may damage other spacecraft. 

These collisions can also result in damage of components vital for satellite 

functioning (e.g., electronics units or connecting cables) or bursting of pressurized 

containers, such as satellite propellant tanks. In a typical unmanned satellite, this 

impact-sensitive equipment is usually situated in the enclosure of the honeycomb-

core sandwich panels. These panels form the satellite’s shape and are primarily 

designed to resist launching loads and provide attachment points for satellite 

subsystems. With low additional weight penalties, their intrinsic ballistic 

performance can often be upgraded to the level required for orbital debris protection. 

This study aims to develop and validate simulation models for HVI on 

honeycomb-core sandwich panels to enable accurate assessment of orbital debris 

impact survivability of space satellites. The developed and validated model will be 

then used to conduct parametric studies and investigate different impact conditions 

(spherical vs. non-spherical projectile impacts), and effects of panel design 

parameters, such as honeycomb core cell size and foil (wall) thickness, on ballistic 

performance of sandwich panels. 
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1: INTRODUCTION AND LITERATURE REVIEW 

1 . 1  I n t r o d u c t i o n  

The growth of human activity in space led over the years to the formation of a 

significant number of unusable man-made objects circling Earth. These objects are known 

as “space junk” or “orbital debris” as shown in Figure 1 and characterize dysfunctional 

spacecraft, mission-related debris, and fragmentation debris generated by collisions and 

explosions in Orbit. According to NASA [1], the current population of orbital debris 

consists of more than 21,000 unemployed objects with a size larger than 100 mm; about 

500,000 objects between 10 and 100 mm; and over 100,000,000 debris particles smaller 

than 10 mm. 

 

Figure 1 – Space debris in low Earth orbit (Image: Ref. [2]) 

Collisions with orbital debris happen at orbital speeds, usually exceeding 7 km/s, 

which corresponds to the hypervelocity impact (HVI) regime, when the impact speed is 

higher than the speed of sound in the colliding materials. A characteristic feature of HVI 
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is the fragmentation of the projectile and the target in the region of impact, which is caused 

by very high pressures, usually exceeding the strength of the colliding materials by orders 

of magnitude [3]. This scenario is exemplified in Figure 2 (left – just before collision; right 

– expanding fragment cloud after perforation of the front wall). 

 

Figure 2 – Fragmentation of a sub-centimeter particle colliding with a thin target at 7 

km/s [4] 

To ensure mission success, satellites must be analyzed for their ability to survive 

HVI by orbital debris, described as collision of a functional satellite with even a millimeter-

sized object traveling at distinctive orbital speed can be harmful to both the spacecraft and 

the Earth’s orbital environment [5]. Consequences of these impacts may include loss-of-

spacecraft failures owing to damage of components vital for the satellite operation (e.g., 

electronics units or connecting cables), as well as the explosion of pressurized containers 

such as satellite propellant tanks. In turn, this can cause multibillion-dollar financial losses 

for spacecraft owners and have a significant negative impact on the Earth’s orbital 

environment due to the generation of new orbital debris. To avoid such scenarios, adequate 

shielding of the spacecraft against orbital debris must be ensured [6]. 

1 . 2  L i t e r a t u r e  r e v i e w  

1.2.1 Shielding structures of unmanned spacecraft 

Spacecraft protective systems usually include spaced thin sheets (metallic or 

composite), such that the first sheet fragments a hypervelocity projectile, while the other 

layers provide additional fragmentation and/or collect the fragments (same as the rear wall 
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in Figure 2). Configurations of several commonly used spacecraft shielding systems are 

schematically illustrated in Figure 3. 

 

Figure 3 – Schematics of different spacecraft shields: a) Whipple shield; b) stuffed 

Whipple; c) honeycomb-core sandwich panel; d) foam-core sandwich panel [7] 

Single-purpose shields 

Efforts to design lightweight orbital debris shields have been mainly driven by the 

need to protect habitable modules of the International Space Station (e.g., [8, 9, 10, 11]), 

which were designed as pressurized thin-walled structures with limited ability to absorb 

and dissipate the energy of hypervelocity projectiles. Accordingly, they are equipped with 

single-purpose shielding. Protective properties of such single-purpose shields as the 

Whipple shield, [12, 13], stuffed Whipple [14, 15], and multiwall shield [13] were 

extensively investigated.  

Based on these studies, manufacturers have developed and adopted so-called 

ballistic limit equations (BLEs) – empirical response-surface models linking critical 

projectile diameter that can cause shield perforation with the impact conditions (projectile 

speed and material) and shield design parameters [15, 3, 16, 17]. Whipple shield and 
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Nextel/Kevlar Stuffed Whipple Shield BLEs are provided in Equations (1) and (2) 

respectively. 

dc= 3.918 tw
2/3

ρp
−1/3

ρb
−1/9

(Vcosθ)−2/3S1/3(σ/70)1/3 (1) 

where 

• dc is the critical projectile diameter at shield failure threshold [cm]; 

• tw is the rear wall thickness [cm]; 

• ρp is the projectile density [g/cm3]; 

• ρb is the bumper (facesheets) density [g/cm3]; 

• V is the projectile velocity [km/s]; 

• S is the standoff distance from the back of the bumper to the front of the rear wall [cm]; 

• θ is the impact angle from target normal [deg]; (note: impact at θ = 0 deg is normal to 

the target); 

• σ is the rear wall yield stress [ksi]; 

and 

           dc =  KH−SW(twρw)1/3ρP
−1/3(σ/40)1/6V−1/3(cosθ)−0.5S2/3 (2) 

where 

• dc is the critical projectile diameter at shield failure threshold [cm]; 

• KH−SW = 0.6 [km1/3S−1/3] when mNextel−Kevlar = 0.25mshield to 0.35mshield 

• KH−SW = 0.45 [km1/3S−1/3] when mNextel−Kevlar = 0.1mshield to 0.15mshield 

• mNextel−Kevlar = Nextel and Kevlar areal density [g/cm2] 

• mshield = overall shield areal density [g/cm2] 

• mshield = mbumper + mNextel−Kevlar + mrear−wall 

• tw is the rear wall thickness [cm]; 

• ρw is the rear wall density [g/cm3]; 

• ρp is the projectile density [g/cm3]; 

• σ is the rear wall yield stress [ksi]; 
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• V is the projectile velocity [km/s]; 

• θ is the impact angle from target normal [deg]; (note: impact at θ = 0 deg is normal to 

the target) 

• S is the overall spacing (gap distance) between the outer bumper and the rear wall [cm]. 

Multi-purpose shields 

Structures of unmanned (robotic) satellites are usually different from manned 

spacecraft, and it is often possible to use multifunctional design strategies for greater 

weight efficiency instead of the single-purpose shielding [18]. In a typical satellite bus 

design (e.g., Canadian CASSIOPEE and RADARSAT satellites), most impact-sensitive 

equipment is situated in the enclosure of the structural sandwich panels. Being the most 

commonly used elements of satellite structures, these panels form the satellite’s shape and 

are primarily designed to resist launching loads and provide attachment points for satellite 

subsystems [19]. With low additional weight penalties, their intrinsic ballistic performance 

can often be upgraded to the level required for orbital debris protection [7, 20, 21]. On the 

other hand, perforation of a structural panel sends high-speed debris into the satellite and 

can be considered as a failure criterion for most otherwise unprotected components (e.g., 

circuit boards, cables, etc.) and components that are highly vulnerable to orbital debris 

impacts (e.g. pressurized propellant tanks). Consequently, assessing the orbital debris 

impact survivability of robotic satellites requires the availability of predictive models for 

sandwich panels capable of accounting for various impact conditions and design 

parameters. 

Recent studies have aimed to characterize and compare the protective performance 

of two major types of sandwich panels (SP) used in spacecraft design: honeycomb-core 

(HC) and open-cell foam-core (FC) panels [22, 23; 10, 24]. Comparative evaluations 

conducted by researchers (e.g., [7], [25]), have revealed the superiority of open-cell foam-

core panels for ballistic protection. In HCSP, honeycomb cells constrain expansion of the 

cloud of high-speed projectile fragments (projectiles are fragmented as a result of 

interacting with the panel’s front face sheet) and focus fragments’ impact energy and 

momentum on a small area on the rear face sheet, which adversely affects the panel’s 

ballistic limit (so-called “channeling effect” of honeycomb; e.g., [26, 27]). This channeling 
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effect is illustrated in Fig. 4 (b) in comparison with the unconstrained fragment cloud 

resulting from HVI on a Whipple shield (Fig. 4 (a)). Conversely, the projectile fragments’ 

interaction with individual ligaments of an open-cell foam was found to result in 

significantly reducing the fragments’ damaging potential (so-called “multishock effect” of 

foam; e.g., [10, 24]). However, owing to the multiplicity of possible requirements for 

multifunctional panels, it can be expected that both HC and FC structures will find 

applications in future satellite design. 

  

(a) Dual wall (Whipple) shield (b) Honeycomb core sandwich panel 

Figure 4 – Impact of a 7 km/s projectile on (a) a Whipple shield (experiment), and (b) a 

honeycomb-core sandwich panel (simulation) [7] 

Several studies have been dedicated to developing BLEs for honeycomb-core 

sandwich panels [27, 28, 29]. In all of such studies, ballistic limit equations represented 

modifications of the BLE for double-wall Whipple shield (two separated thin sheets 

without intermediate core material). Comparison of HCSP BLEs is provided in [28]. Even 

most successful among them features limited goodness of fit, as outcomes of only about 

70% of experiments initially used for the BLE calibration could be then correctly predicted 

by it. This BLE is provided in Equation (3) (named after its developers: Schaefer-Ryan-

Lambert, SRL BLE). 

dc =
1.155. S1/3. tw

2/3
. (

σy

70)
1/3

K3D
2/3

 ρP
1/3

 ρb
1/9

 V2/3 (cosθ)δ
 (3) 

Here  
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• dc is the critical projectile diameter [cm]; 

• S is the spacing between the facesheets (honeycomb core thickness) [cm]; 

• tw is the rear wall thickness [cm]; 

• K3D is the BLE fit factor, which is equal to 0.4 in the case of aluminum-on-aluminum 

impacts 

• ρp is the projectile density [g/cm3]; 

• ρb is the bumper (front facesheet) density [g/cm3]; 

• V is the projectile velocity [km/s]; 

• σy is the yield stress of the front facesheet material [ksi]. 

1.2.2 The effect of projectile geometry on hypervelocity ballistic performance of spacecraft 

shielding structures 

Most of the existing BLEs have been developed based on the hypervelocity impact 

experiments conducted with spherical projectiles; however, orbital debris geometry is not 

constrained to spherical shape and may be significantly different. Researchers conducted 

experiments (less often due to their expensiveness) and/or employed numerical simulations 

and modeling (more often) in order to investigate these more sophisticated impact 

scenarios involving different projectile geometries. The summary of the findings of these 

studies is provided below. 

Elliptical projectiles 

Carrasquilla and Miller used experimental results obtained at the Ernst-Mach 

Institute, in which rotationally symmetric ellipsoids were used as the impactors, to analyze 

validity of the conventional Whipple shield BLE for these projectile shapes. The 

projectile's shape effect was considered by changing just one parameter, namely the shape 

factor, f. It was defined as the ratio of the length of the projectile to its diameter (e.g., the 

shape factors of 1, < 1, and >1 would characterize a sphere, an oblate ellipsoid, and a prolate 

ellipsoid, respectively).  It was concluded that BLE for spheres reasonably predict failure 

of a Whipple shield at low impact velocities, but need to be adjusted for hypervelocity 

regime (velocities above 4 km/s) [30]. 
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Schaefer et al. proposed a modification of the Cour-Palais thick target penetration 

formula [13] to account for projectile shape effects by including in it the abovementioned 

shape factor. Their test and simulation results confirmed that the projectile shape influences 

severely the penetration depth in a semi-infinite target [31]. 

Conical projectiles 

Liu et al. investigated the effect of the conical projectiles with different length-to-

diameter ratios (L/D) and impact orientations on the ballistic performance of the spacecraft 

shields using the implementation of the smoothed particle hydrodynamics (SPH) method 

in AUTODYN software [32]. Their findings indicated that different L/D ratios and cone 

orientations result in a considerable change in the debris cloud shape, such that the clouds 

become significantly more focused with the increase of the ratio. This can be an indication 

of increasing “lethality” of the fragment cloud with elongation of the projectiles. 

Cubical projectiles 

Vignjevic et al. found that in the hypervelocity regime, the debris cloud produced 

by a cubical projectile has the highest normalized axial velocity, as compared with that of 

spherical and cylindrical projectile [33]. 

Based on their numerical study, Silnikov et al. deduced that the characteristics of 

the debris cloud in a “face-on” impact with cubical projectiles are different as compared 

with the “edge-on” impact. In particular, the fragments spread over a larger area between 

the bumper and the rear wall in face-on impact. However, the cloud is denser after edge-

on impact, and most of the initial mass of the projectile is focused on the impact axis. It 

can, therefore, be more penetrating to the rear wall of the Whipple shield [34]. 

Cylinders (L/D > 1) and disks (L/D < 1) 

Morrison et al. experimentally investigated the ballistic performance of a dual-wall 

Whipple shield in case of impacts of equal-mass spherical and cylindrical projectiles 

(different L/D ratios) with velocities near 7 km/sec. It was found that when only bulging 

and no perforation of the rear wall was observed in the case of spherical projectile, it was 

fully perforated by the cylinders. Higher L/D ratios (above unity) led to increased 
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concentration of the fragments and increase of hole diameter in the rear wall. In contrast, 

the L/D ratio of 1 resulted in minimal damage to the rear wall. Preventing perforation in 

the rear wall required a reduction in mass of the cylinder to a value much less than that of 

the sphere to avoid the penetration of the structure [35]. 

This was supported by Piekutowski, who demonstrated that the L/D ratio of 

cylindrical projectiles has a significant influence on the debris cloud ability to perforate the 

rear wall of the spacecraft's shield and also concluded that with the same impact velocity, 

the mass of cylindrical projectile that fully perforates a shield is less than of the spherical 

projectile. Disks striking the wall of a Whipple shield with their axis coinciding with the 

impact axis in a normal impact create fragments cloud not spreading widely (a “column-

shaped” fragment cloud). Therefore, they can be very damaging and penetrative to the rear 

wall [36]. 

Christiansen et al. conducted a study involving spherical and hollow cylindrical 

(thick-walled pipe) projectiles with the L/D ratio ranging from 1 to 3 for the latter. The 

considered shield structures were the regular and the stuffed Whipple shield. The authors 

concluded that a sphere with the same mass as the hollow cylinder projectile is less 

damaging [14]. 

Hu and Schonberg carried out a series of 2D axisymmetrical simulations comparing 

penetrating capability of spherical and cylindrical projectiles with L/D ratios ranging from 

0.2 (“disk”) to 5.0 (“long cylinder”) [37]. The sphere was found to be the least dangerous 

shape compared with the other considered projectiles. For impact velocities over 7.5 km/s, 

the longest cylinders and flattest (= “longest”) disks demonstrated highest perforating 

ability. This conclusion was supported by Schonberg and Williamsen [38] in a numerical 

study, which, in addition to cylindrical and spherical projectiles, considered such shapes as 

cones and cubes. High perforating ability of flat geometries was also noted by Chhabildas 

et al. [39], who found that thin plates can be more damaging to the rear wall of the Whipple 

shield as compared to spherical projectiles at impact velocities of about 10 km/s. 

Miller, in a recent study, conducted near six hundred simulations of 7 km/s disk-

shaped composite projectile impacts, investigating the effect of the projectile orientation 
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on ballistic performance of aluminum Whipple shield with a thermal blanket. It has been 

found that the flat disk-like penetrators with high pitch, when the disk axis is orthogonal to 

the velocity vector, are of the highest concern [40].  

1.2.3 The effect of honeycomb parameters on hypervelocity ballistic performance of 

sandwich panels 

The SRL BLE [see Equation (3)] does not include any parameters characterizing 

the geometry of honeycomb cells. 

However, Christiansen et al. [3] suggest evaluating the ballistic performance of 

HCSPs subjected to HVI using the Whipple shield BLE [see Equation (1)], in which the 

parameter S, representing the standoff distance in the original WS equation, is replaced by 

either the product of twice the honeycomb cell diameter (Dcell) or by the core thickness 

(tHC), whichever is less: 

S = min(2Dcell ;  tHC ) (4) 

This constraint reflects the fact that honeycomb panels are more easily penetrated 

as compared to the dual walls, because of channeling of the debris cloud after perforation 

of the first face-sheet, and suggests that the size of honeycomb cell may have a significant 

effect on the panel’s ballistic performance. They emphasize, however, this approach can 

only be used as a rough estimate. Simple calculations conducted using Equation (4) with 

different commercially available honeycomb cell sizes illustrate that a required projectile 

mass needed to perforate a 2” aluminum HCSP can vary significantly depending on the 

cell dimensions (see Figure 5). 

This is in line with the findings of Kang et al. who through a series of numerical 

simulations, concluded that that the HC core cell size is the most influential parameter on 

the damage of the rear face-sheet due to the channeling effect [41]. Same conclusions 

regarding the HC cell size effect have been made by Ilescu et al. in Ref. [42] and Schubert 

et al. in Ref. [43]. The latter concluded that cell size and foil thickness of the honeycomb 

core considerably influence HVI protective performance of HCSPs, but have not been 

properly accounted for yet in existing ballistic limit equations. Such HCSP-specific BLEs 
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that do not take into account the effect of honeycomb cell size on the ballistic performance 

of sandwich panels either completely or in certain conditions will be discussed below.  

 

Figure 5 – An estimate obtained using Equation (4) for a spherical Al2024 projectile 

mass required to perforate a 2” honeycomb-core panel with Al6061-T6 face-sheets, as a 

function of honeycomb cell size (normal 7 km/s impact) 

Sibeaud et al. [23] derived the following BLE for calculating critical projectile 

diameter in case of HVI with 𝑣𝑝 ≥ 7 km/s on HCSP: 

dC =  [   
0.286 ∙ (tHC + tRW)√S

(
σ

70) ρp
0.5Vp cos θ ρFW

0.167
]

2/3

 (5) 

where  

• subscripts “FW” and “RW” refer to the front and rear face-sheet of the panel, 

respectively; 

• tHC is the total thickness of honeycomb cell walls [cm]; 

• ρp is the projectile density [g/cm3]; 

• ρb is the bumper (facesheets) density [g/cm3]; 

• Vp is the projectile velocity [km/s]; 

• S is the spacing between the facesheets [cm]; 
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• 𝜃 is the impact angle from target normal [deg]; (note: impact at θ = 0 deg is normal to 

the target) 

• σ is the rear wall yield stress [ksi]. 

It should be noted that, unlike Equation (4), tHC in Equation (5) is the thickness of 

honeycomb cell walls which will be perforated by the projectile with incidence θ:  

tHC = [0.014 × r × Int (
S×tan θ

q
)]

0.293

 (6) 

where parameters q and r in Equation (6) characterize the geometry of the honeycomb cell, 

as shown in Figure 6. Importantly, parameter tHC is a function of the impact obliquity and 

will be zero for normal impacts. Therefore, Equation (5) does not take into account the 

effect of honeycomb cell size in case of normal impact. 

 

Figure 6 – Cell size parameters for the equation (6) 

1 . 3  S u m m a r y  o f  c h a p t e r  1  

The following conclusions can be made based on the conducted literature review: 

• Previous studies indicate that projectile shape can have a very significant effect on its 

penetrating ability in case of hypervelocity impact. While multiple projectile shapes 

have been studied, it can be concluded that long cylinders and flat disks with high 

pitch angles are among the most damaging shapes.  

• The existing studies considered such protective structures as thick plates, Whipple, and 

stuffed Whipple shield, while there is a lack of investigations of projectile shape effect 
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on the ballistic performance of another commonly used class of shields – sandwich 

panels.  

• Although it is generally recognized that the effect of honeycomb core cell size on HVI 

ballistic performance of HCSPs can be significant, it is not usually taken into account 

by the existing predictive models and requires additional investigation. 

Correspondingly, in order to fill the gap in the existing knowledge, the objectives 

of this study were formulated as follows: 

1. Develop and validate a high-fidelity simulation model for hypervelocity impact on 

spacecraft honeycomb-core sandwich panels. 

2. Investigate the effect of high-pitch-angle disk-like projectile impacts on protective 

properties of spacecraft sandwich structures with honeycomb cores. 

3. Investigate the effect of honeycomb cell size on the ballistic performance of HCSP 

subjected to impacts by high-pitch-angle disk-like projectiles. 
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 2: DEVELOPMENT OF THE SIMULATION MODEL 

2 . 1  H y d r o c o d e  s i m u l a t i o n s  

The combined use of finite element method (FEM) in the Lagrangian formulation 

and smoothed particles hydrodynamics (SPH) – a meshless solver – is utilized in HVI 

simulations throughout this study (Fig. 7). As SPH is a relatively new technique, it will be 

described in more details in this section. 

Although FEM, in general, provides a good balance between simulation accuracy 

and computational efficiency, it usually requires the use of a non-physical erosion 

algorithm to avoid mesh distortion and tangling at high deformation levels, and depends 

on the selected critical geometric strain that should be calibrated by comparison with 

experimental data and it is not known by default [44]. 

 

Figure 7 – Simulation of perforation using FEM and SPH [4] 

SPH is a meshless Lagrangian method developed for numerically solving problems 

formulated in terms of partial differential equations of field variables, such as density, 
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velocity, energy, etc. Unlike FEM, SPH method utilizes “particles” for continuum 

discretization. The particles are not simple interacting mass points. Instead, they are used 

for interpolation in order to estimate values of the field variables and their derivatives in 

discrete points of continuum. 

  

Figure 8 – Approximation of field variables at a point using SPH method (left – 1D; right 

– 2D) [4] 

The interpolation uses a weighting function (often referred to as "kernel") to 

approximate the field variables and their derivatives at any point of the domain. Equation 

(7) demonstrates that the density at a point i with coordinates xi can be estimated from the 

adjacent particles as 

ρi = ∑ mj

j

. Wij (|xi − xj| , h) (7) 

Where 

• mj is the mass of j-th particle; 

• Wij is a weighting kernel function (typically a cubic B-spline); and  

• h is so-called smoothing length, which determines a support domain for approximation, 

as it is exemplified in Fig. 8 for a one-dimensional and a two-dimensional case.  
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Another example can be given for the strain rate tensor 𝜀̇𝛼𝛽 =
1

2
 (

𝜕𝜈𝛼

𝜕𝑥𝛽 −
𝜕𝜈𝛽

𝜕𝑥𝛼) for 

which the SPH approximation can be written as follows [45]: 

ε̇αβ  =  
1

2
∑

mj

ρj
j

((νj
α − νi

α)
∂Wij

∂xi
β

+ (νj
β

− νi
β

)
∂Wij

∂xi
α ) (8) 

Figure 9 demonstrates the conservation equations of continuum mechanics and their 

SPH approximations. The derivation of these approximations can be found in [46]. 

 
Continuum 

mechanics 
SPH approximation 

Conservation of 

mass 

dρ

dt
= −ρ ∙

∂νβ

∂xβ
 

dρi

dt
= −ρi ∑

mj

ρi
j

(νi
β

− νj
β

) ∙ Wij,β 

Conservation of 

momentum 

dνα

dt
= −

1

ρ
∙

∂σαβ

∂xβ
 

dνi
ε

dt
= − ∑ mj

j

(
σi

αβ

ρi
2 −

σi
αβ

ρj
2 ) ∙ Wij,β 

Conservation of 

energy 

de

dt
= −

σαβ

ρ
∙

∂να

∂xβ
 

dei

dt
= −

σi
αβ

ρi
2 ∑ mj

j

(νi
α − νj

α) ∙ Wij,β 

Figure 9 – Conservation equations 

In these equations, 𝜎𝛼𝛽 is the full stress tensor, which can be represented in terms 

of hydrostatic pressure p and deviatoric stress tensor 𝑆𝛼𝛽 , as 𝜎𝛼𝛽 = 𝑝𝛿𝛼𝛽 + 𝑆𝛼𝛽 . The 

hydrostatic pressure can be defined using an equation of state (EOS), such as Gruneisen 

EOS (see Section 2.2.2). 

The fundamental equations that specify the components of the deviatoric stress 

tensor, can be formulated in different ways, depending on materials being used and 

physical behavior assumptions for a specific problem. For instance, in case of small 

displacements, it can be written as follows [46]: 

Ṡαβ = G (ε̇αβ − 
1

3
 δαβ εγγ) (9) 
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where G is the shear modulus. For finite displacements, another expression can also be 

obtained for the frame independent stress rate including the rotation rate tensor, as can be 

found in [45] and [46]. 

The plastic flow regime can be determined by the Von-Mises criterion. When the 

second deviatoric stress tensor constant (J) surpasses the flow stress (Y), the individual 

deviators will be then brought back to the flow surface through the following adjustment: 

Sαβ = Sαβ√
Y2/3

J2
∙ (10) 

The yield stress can be constant as the case of elasto-plastic material model or it 

can be a function of various parameters. For instance, the Johnson-Cook strength model 

applied to the modeling of metallic materials in this study, considers the influences of strain 

rate, strain hardening, and thermal softening on the flow stress (see section 2.2.3). 

SPH is often more beneficial than FEM in physical simulations that undergo large 

deformations, high strain rates, fragmentation, and perforation owing to the lack of mesh 

tangling (since there is no mesh in SPH method) and no need to apply the artificial erosion 

mechanism. The SPH particles “naturally” create discontinuities in the continuum such as 

cracking, penetration, and fragmentation when particles are detached and fragmented 

during the penetration event. The principal drawback of SPH is tensile instability, i.e. 

numerical fractures may be generated in the high tensile stresses regions due to the lack of 

interaction between primarily adjacent particles [47,48]. 

The general computational cycle of SPH solver (at each timestep) is illustrated in 

Figure 10. 



 

18 
 

 

Figure 10 – Computational cycle of SPH solver [4] 

Previous studies utilized both FEM and SPH methods in modeling of HVI 

scenarios. For example, Pezzica et al. [49] used Lagrangian finite elements to model 

hypervelocity impact of an aluminum sphere on a 3-walled aluminum structure. The nodes 

of eroded elements created the debris cloud in their simulation. For specific (adjusted) 

values of critical geometric strain, the results closely correlated with experimental data.  

Other researchers successfully used SPH method in hypervelocity impacts 

simulations on different targets such as thin plate [50], stuffed Whipple shields [51], brittle 

targets [52], and laminated composite materials [53, 54]. 
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2 . 2  M a t e r i a l  m o d e l i n g  

2.2.1 General notes 

Three distinct aluminum alloys, namely Al2017-T4, Al6061-T6, and Al5052-H34, 

were used in this study to represent the material of projectiles, HCSP facesheets, and 

honeycomb cores, respectively. This is consistent with the design of sandwich panels and 

projectiles used by NASA in their HVI experimental program, some of which were used 

in this study for validation of the numerical model. 

A typical solid material model requires equations that relate stress to deformation 

and internal energy (or temperature). A stress tensor describes the “stress state” at a point 

in the body subjected to external loading: 

σ = [

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

] (11) 

Here σii – normal stresses, and σij – shear stresses.  

 In most cases, the stress tensor may be separated into a uniform hydrostatic pressure 

(p): 

p = −
1

3
∙ (σ11 + σ22 + σ33) (12) 

and a stress deviatoric tensor (σ′) associated with the resistance of the material to shear 

distortion: 

σ′ = [

σ11 − p σ12 σ13

σ21 σ22 − p σ23

σ31 σ32 σ33 − p
] (13) 

such that 

σ = σ′ − p ∙ δ (14) 

Here δ is a 3x3 identity (unit) matrix. 
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 Correspondingly, pressure is calculated using an equation of state (EOS) and 

deviatoric stresses are computed using a strength model.  

2.2.2 Equation of state 

 The relation between the hydrostatic pressure, the local density (or specific volume, 

or volumetric strain), and local specific energy (or temperature) is known as an equation 

of state. This relation can be obtained using the conservation equations (mass, momentum, 

and energy), which usually involves five unknowns:  

1. pressure itself (p);  

2. particle velocity (vp); 

3. shock velocity (vs); 

4. density (ρ); and  

5. energy (E).  

Therefore, in order to obtain the required relationship (p = f(ρ, E)), an additional 

equation is needed. Typically, this additional equation is represented in terms of shock-

velocity – particle-velocity relationship (vs = f (vp)), as both of these quantities can be 

conveniently measured experimentally. 

 A widely used EOS for solid materials subjected to high-speed impact loading is 

the Gruneisen EOS [55], in which the vs(vp) relationship is assumed to be cubic: 

vs = C + S1vp + S2vp
2 + S3vp

3 (15) 

The Gruneisen equation of state then defines pressure for compressed materials as 

p =
ρ0C2μ [1 + (1 −

γ0

2 ) μ −
a
2 μ2]

[1 − (S1 − 1)μ − S2
μ2

μ + 1 − S3
μ3

(μ + 1)2]
2 + (γ0 + aμ)E 

(16) 

and for expanded materials as 

p = ρ0C2μ + (γ0 + aμ)E (17) 
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Here 

• C is the intercept of the vs = f (vp) curve (in velocity units); 

• S1, S2, and S3 are the unitless coefficients of the slope of the vs = f (vp) curve; 

• γ0 is the unitless Gruneisen gamma; 

• a is the unitless, first order volume correction to γ0;  

• μ is the measure of compression (or expansion), μ =
ρ

ρ0
− 1; 

• E denotes the internal energy. 

 The Gruneisen EOS does not take into account phase changes that may happen with 

the material, however, a relatively small fraction of the fragment cloud usually undergoes 

phase transformations at 7 km/s impacts. An estimate based on information provided in 

Ref. [3] is shown in Fig. 11 for aluminum projectile-aluminum target impacts (vaporized 

fragments that are expected to appear in small quantities after 10 km/s are not accounted 

for in Fig. 11). As can be deduced from the figure, in the range between 6 and 7 km/s (the 

order of the orbital velocity), 85 – 95% of the cloud is represented by solid fragments, 

which justifies the use of Gruneisen EOS for that velocity range. 

 

Figure 11 – Percentage of solid and molten fragments in the debris cloud as a 

function of impact speed (aluminum-aluminum impacts) 
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 For many metals, including aluminum and its alloys, it has been observed that the 

vs(vp) relationship is linear [56], i.e. S2 = S3 = 0 in equation (15). The values for the rest 

of the EOS parameters used as input data to represent the aluminum alloys considered in 

this study, along with the corresponding references, are provided in Table 2. The first order 

volume correction factor (a) in equation (17) was assumed to be equal to zero.  

It should be noted that due to the lack of EOS parameters specific to Al2017-T4 

and owing to the metallurgical proximity of these two alloys (see Table 1), the 

corresponding parameters of this alloy have been substituted using the data available from 

the literature for Al2024-T3. Also, as will be discussed in the next section, thin honeycomb 

walls were modeled using shell elements and, thus, specification of EOS parameters for 

Al5052-H34 (honeycomb core material) was not required. 

Table 1 – Composition of Al2017-T4 and Al2024-T3 alloys 

Element Al, % Cr,% Cu, % Fe, % Mg, % Mn, % Si, % Ti, % Zn, % 
Other, 

% 

Al2017-

T4 

91.5-

95.5 
≤ 0.10 

3.5 - 

4.5 
≤ 0.70 

0.40-

0.80 

0.40-

1.00 

0.20-

0.80 
≤ 0.15 ≤ 0.25 ≤ 0.15 

Al2024-

T3 

90.7-

94.7 
≤ 0.10 

3.8 - 

4.9 
≤ 0.50 

1.20-

1.80 

0.30-

0.90 
≤ 0.50 ≤ 0.15 ≤ 0.25 ≤ 0.15 

2.2.3 Strength model 

The Johnson-Cook model (*MAT_015/*MAT_JOHNSON_COOK in LS-DYNA 

[56]) was used to represent the behavior of the Al2017-T4 and Al6061-T6 alloys. This 

material model is a typical choice for metals subjected to high strains, high strain rates, and 

high temperatures. The yield (flow) stress of a material in this model is represented as 

Y =  [A + B ∙ εp
n] ∙ [1 + C ∙ lnε̇p

∗ ] ∙ [1 − TH
m] (18) 

Here 

• εp is the effective plastic strain; 

• ε̇p
∗  is the normalized effective plastic strain rate; 

• TH is the homologous temperature (TH =
T−Troom

Tmelt−Troom
); 
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• A is the initial yield strength; 

• B is the hardening constant; 

• C is the strain rate constant; 

• n is the hardening exponent; and  

• m is the thermal softening exponent.  

In the Johnson-Cook plasticity model, the calculation of plastic strain is based on 

the von Mises yield surface and the associated flow rule. The expression in the first brackets 

of the equation (18) gives the yield stress as a function of plastic strain; the second set of 

brackets represents the effects of strain rate on stress; and the third set of brackets 

determines thermal softening of a material. It should be noted that as the temperature 

reaches the melting temperature of the material (Tmelt), its yield strength drops to zero.  

For modeling the high-rate response of the Al2017-T4 sphere, the Johnson-Cook 

model parameters readily available from the literature for Al2024-T3 [57] were adopted 

owing to its metallurgical proximity to Al2017-T4. For Al6061-T6, the Johnson-Cook 

model parameters specific to this alloy were adopted from [58]. The corresponding material 

properties are provided in Table 2. Materials of projectile and facesheets considered as 

failed (no tensile stresses allowed), if tensile pressure exceeded a limit of 2000 MPa, which 

is consistent with the findings reported [59]. 

Due to the computational efficiency reasons, meso-scale modeling of honeycomb 

core was conducted using shell elements. However, using shells, while making the model 

more robust, places limitations on the capability to account for certain physical phenomena. 

In particular, local softening of the honeycomb material due to adiabatic temperature 

increase cannot be computed properly, as calculated plastic work (converts into heat and 

determines the local temperature change) would not take into account through-the-

thickness deformations when shell elements are used. This is illustrated in Figure 12, which 

presents results of a 1 mm particle impact on a 0.1 mm-thick plate (thickness of the same 

order as honeycomb wall) modeled with *MAT_015 (Johnson-Cook). As can be deduced 

from the figure, at lower speed (100 m/s) predictions are consistent between the shell and 

the solid models; however, at higher velocity (1000 m/s), the difference in local 
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temperature predictions is dramatic. Considering the high-speed nature of the problem, 

using temperature-dependent material models – such as Johnson-Cook, – with shell 

elements, could result in over predicting of the flow stress of the material (due to under 

predicted thermal softening) and, thus, deemed to be impractical. Instead, the material of 

the core was assumed to be soft enough at yielding to be represented using an elastic-

perfectly plastic model (*MAT_003/*MAT_PLASTIC_KINEMATIC in LS-DYNA). As 

will be shown in the following sections, this approach, while being very simplistic, allowed 

to achieve a good correlation with experimental data. A specific set of material properties 

used for Al5052-H34 was as follows: E = 70.3 GPa, ν = 0.33, σY = 193 MPa, Etan = 0.0 

GPa. In addition, a simple effective plastic strain criterion was used to establish a failure 

limit and remove failed shell elements from the simulation, allowing fragments to penetrate 

into adjacent cells. 

Table 2 – Material model parameters used to represent Al2017-T4 and Al6061-T6 in 

simulations 

Material 
Model 

component 

Component 

name 
Material properties Reference 

Al2017-

T4 

Equation of 

state 
Gruneisen 

ρ, 

kg/m3 

C, 

mm/ms 
S1 ϒ0 a 

[55] 

2780 5328 1.338 2.00 0.0 

Strength 

model 

Johnson-

Cook 

A, 

MPa 

B, 

MPa 
n C m 

[57] 

265 426 0.340 0.0150 1.000 

Al6061-

T6 

Equation of 

state 
Gruneisen 

ρ, 

kg/m3 

C, 

mm/ms 
S1 ϒ0 a 

[60] 

2703 5240 1.400 1.97 0.0 

Strength 

model 

Johnson-

Cook 

A, 

MPa 

B, 

MPa 
n C m 

[58] 

324 114.0 0.420 0.0020 1.340 
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100 m/s impact 

 

1000 m/s impact 

Figure 12 – Temperature rise, as predicted by the Johnson-Cook model in simulations 

with shell and solid elements at two different impact velocities 
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2 . 3  N u m e r i c a l  m o d e l  

The impact conditions considered in this study involved normal angle collisions 

between a panel and a projectile, which are known to be the most conservative design 

scenarios for HCSPs due to the so-called channeling effect of honeycomb core, when 

honeycomb cells constrain expansion of the cloud of high-speed projectile fragments, 

focusing the fragments’ impact energy and momentum on a small area on the rear face 

sheet, as was exemplified in Fig. 4 (b). 

 The hypervelocity impact simulation model of a honeycomb-core sandwich panel 

developed by the authors in LS-DYNA simulation software is shown in Figure 13–16. The 

panel was represented by 1.3 mm-thick facesheets and 50.8 mm-thick core. In-plane size 

of the modeled piece was 70 mm × 70 mm. In the impact region, discretization of all parts 

involved 0.1 mm elements or SPH particles, which is consistent with the findings of the 

earlier study by Legaud et al. [59]. The particular setup illustrated in Figure 13–16 (with a 

spherical 2.5 mm projectile) replicates the conditions of the NASA experiment described 

in Ref. [61] and denoted as HITF 9005, which was used in this study to verify the developed 

numerical model. A detailed description of the different parts of the model, as well as the 

methods used to describe those parts, is provided below. 

 

Figure 13 – Isometric view of the developed HVI simulation model 
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Figure 14 – Top view of the developed simulation model 

 

Figure 15 – Front view of the developed simulation model 
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Figure 16 – Rear view of the developed simulation model 

 Projectile. Since a projectile, as a result of hypervelocity collision with a sandwich 

panel, was expected to experience a complete disintegration, fragmentation, and be 

subjected to extremely high deformations, a meshless method – smoothed particles 

hydrodynamics (SPH) – was employed to represent this part of the simulation model. 

Projectiles of different geometries have been modeled in this study, however, a common 

particle size of 0.1 mm has been used for the discretization of all considered projectile 

types. An Eulerian SPH formulation # 0 [62], which was found in [59] to provide the 

highest accuracy in HVI simulations, was used in all cases throughout this study. It was 

used with the quadratic spline kernel function, designed to relieve the compressive 

instability of SPH in HVI problems. 

 Front facesheet. The front facesheet representation employed both finite elements 

and SPH particles, as shown in Figure 15. In particular, 30 × 30 mm central region, where 

large deformations can be caused by the projectile impact, have been fine-discretized using 

0.1 mm SPH particles (13 particles through the thickness), while the rest of the front 
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facesheet has been discretized using 1.0 × 1.0 × 0.65 mm solid elements (2 elements 

through-the-thickness of the facesheet). This roughly meshed region around the SPH part 

was used to prevent the reflection of stress waves from the boundaries of the SPH region. 

Interaction of the two parts – solid and SPH – has been modeled through the 

*CONTACT_AUTOMATIC_NODES_TO_SURFACE algorithm in LS-DYNA [62]. 

With this contact algorithm, every “slave” node is checked for penetration through the 

“master” surface, as illustrated in Figure 17. The contact search algorithm employed by 

automatic contacts in LS-DYNA makes them well-suited to handling disjoint meshes and 

particles, which can be important in problems involving large deformations. Interaction 

between the front wall and the projectile SPH particles was implemented through the 

standard SPH interpolation. 

 

Figure 17 – Schematic picture of NODES_TO_SURFACE contact 

 Honeycomb core. The honeycomb cores of the sandwich panels were represented 

in the simulations explicitly, using fully integrated shell elements (formulation #16 in LS-

DYNA with Reissner-Mindlin kinematics, implying that cross-sections remain straight and 

unstretched, and shear deformations are possible), as exemplified in Figure 18. The explicit 

representation was employed in order to facilitate modeling of the channeling effect of the 

honeycomb core on the cloud of hypervelocity fragments. 
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Figure 18 – An explicit representation of a honeycomb core using shell elements 

(visualization shows the “assigned” thickness of the shell elements) 

 Dimensions of the honeycomb cells corresponded to the HexWeb CR III 

honeycomb grade by Hexcel [63] with the nominal foil thickness of 0.0762 mm (“single 

wall” in Figure 18). A foil thickness was assigned to the honeycomb parts (single- and 

dual-wall) as an attribute of the corresponding shell element section. While the original 

model replicating the conditions of the NASA HITF 9005 experiment involved a 

honeycomb with 1/8 inch cells, other cell dimensions were used in subsequent simulations 

as well, and are represented in Figure 19. Contact between SPH particles and the shell 

element-modeled honeycomb core was implemented using the 

*CONTACT_AUTOMATIC_NODES_TO_SURFACE algorithm in LS-DYNA. 
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Figure 19 – Comparison of different honeycomb cell sizes used in this study 

 Rear facesheet. It is well known that while the SPH technique is often advantageous 

in modeling scenarios involving extreme deformations and fragmentation, the finite 

element method (FEM) in its Lagrangian implementation is well-suited for tracking the 

materials' interfaces. To use the advantages of both techniques simultaneously, a hybrid 

FEM/SPH approach was implemented for the facesheets using the LS-DYNA’s 

*DEFINE_ADAPTIVE_SOLID_TO_SPH keyword, which allowed local and adaptive 

transformation of Lagrangian solid elements (formulation #1) to SPH particles when the 

solid elements became highly distorted and inefficient. Such conversion was triggered by 

the erosion of solid elements which happened when the effective plastic strain in the 

element reached the level of 30%. The SPH particles replacing the eroded solid elements 
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inherited all the nodal and integration point quantities of the original solids and initiated 

being attached to the neighboring solid elements. This approach makes it possible to 

accurately capture different levels of rear wall damage: from small deformations (using 

solid elements) to very large deformations, converting, if needed, distorted solid elements 

to SPH particles. The interaction between SPH-modeled projectile and front facesheet 

fragments and the solid elements of the rear facesheet was simulated using an eroding 

nodes-to-surface contact – the *CONTACT_ERODING_NODES_TO_SURFACE_MPP 

algorithm in LS-DYNA. Logic of this contact algorithm allows the contact surface to be 

updated as exterior elements are deleted. 

 

Figure 20 – Structure of the developed simulation model for HVI on HCSP 

For different functions, LS-DYNA utilizes “keywords” with pre-defined arguments 

organized into “cards”. For example, a keyword *NODE would create a node with 

coordinates defined by the arguments of the keyword listed within its card. LS-DYNA 

input file (“the model”) lists all keywords and cards used to create the model, saved as a 

“keyword file” that has an extension.k. To make the input file easy to maintain, the model 
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developed in this study was split into subfiles (“includes”), each containing keywords with 

a common function. For example, include Materials.k contains keywords, cards, and 

parameters of all materials used in the model. Finally, the “master file” lists and references 

all includes containing model data. The corresponding structure of the developed 

simulation model is shown in Figure 20. The content of the master and all include files is 

provided in the Appendix. It should be noted that separate includes were developed for 

different honeycomb grades (see Figure 19) and projectile topologies (sphere, disk, ring) 

and dimensions. This allowed to change projectile and honeycomb core in the model by 

simply changing the name of the corresponding include file in the master file. 

 All hypervelocity impact simulations were conducted using a massively parallel 

processing (MPP) solver of LS-DYNA on a computer with twelve Intel Core i7-8700 CPUs 

and 32 GB of RAM. With these computational resources and for simulations involving 40 

μs after impact initiation, an average simulation runtime was around 40 hours. Overall, it 

took around 600 hours of machine time to conduct all simulations reported in this study. 

2 . 4  S u m m a r y  o f  C h a p t e r  2  

A numerical model was developed for simulating hypervelocity impacts of orbital 

debris on a honeycomb-core sandwich panel with aluminum core and facesheets.  

In the model, behavior of aluminum alloys (except Al5052, the material of the 

honeycomb core) was represented using a combination of the Gruneisen equation of state 

and the Johnson-Cook strength model. For the honeycomb core, a simple elasto-perfectly 

plastic model and no EOS were utilized due to the limitations imposed by shell elements 

used to discretize the core. 

The following techniques were employed to represent the parts of the model: 

• Smoothed particles hydrodynamics (SPH) – for modeling of the projectile and the 

central part of the front facesheet; 

• Finite element method (FEM), solid elements – for representing the front and the rear 

facesheets in the regions away from the impact location; 
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• Finite element method (FEM), shell elements – for the computationally efficient 

representation of the honeycomb core; 

• Adaptive FEM-to-SPH method – for modeling of the rear facesheet in the area where 

impact damage was expected. 

The simulation model was implemented as a master file referencing multiple 

include files, each containing keywords and cards with a common logical function. The 

model was developed for the MPP version of LS-DYNA.  
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3: RESULTS AND DISCUSSION 

3 . 1  V a l i d a t i o n  o f  t h e  s i m u l a t i o n  m o d e l  

 Validation of the developed simulation model was achieved by comparison of its 

predictions with  

a) the results of the physical experiment (HITF 9005) conducted by NASA and reported 

in Ref. [61]; and 

b) predictions of a ballistic limit equation (BLE) – an empirical predictive model 

developed by Schaefer Ryan and Lambert and adjusted using approximately 200 

impact tests, including multiple HVI experiments with aluminum honeycomb-core 

sandwich panels (spherical projectiles only) [16]. 

 

(a) (b) 

Figure 21 – Predicted shape of the fragment cloud in case of 6.91 km/s collision of a 2.5 

mm Al2017-T4 projectile with 1.3 mm-thick Al6061-T6 plate: (a) honeycomb is lacking; 

and (b) honeycomb is present 

 Prior to quantitative validation, the model was evaluated – qualitatively – for its 

ability to represent channeling of the fragment cloud by the honeycomb core. As described 

in the previous section, channeling represents a phenomenon in which honeycomb cells 

constrain the expansion of the cloud of high-speed projectile fragments, focusing the 

impact energy and momentum of the fragments onto a small area of the rear face sheet. 
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This effect is illustrated in Figure 21, where the results of two simulations – with and 

without the honeycomb and equivalent in all other aspects – are compared. As can be 

deduced from the figure, the shape of the fragment cloud in the second case (Fig. 21(b)) 

clearly demonstrates the presence of fragments confined within the honeycomb cells and 

is significantly different from the case when the expansion is not impeded by the core (Fig. 

21(a)). In addition, Figure 22 demonstrates the evolution of the channeled fragment cloud, 

depicting its shape at two different moments of time. 

 

 

Figure 22 – Channeling of hypervelocity fragments by honeycomb cells (sectioned view) 
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The physical experiment used for validation of the simulation model was conducted 

by NASA and reported in Ref. [61]. In this test, a 6.91 km/s 2.5 mm Al2017-T4 spherical 

projectile hit a honeycomb panel with 1.3 mm-thick Al6061-T6 facesheets separated by a 

50.8 mm-thick 1/8-5052-0.003 honeycomb core. Comparison of the simulation results with 

the physical HVI experiment conducted by NASA is represented in Figure 23 – 25 for the 

front facesheet, core, and rear facesheet damage, respectively. It can be seen that the 6.91 

km/s sphere of the above-critical diameter induced full perforation of the sandwich panel, 

creating a near-circular entrance hole in the front facesheet and an irregular-shaped exit 

hole in the rear facesheet. The specific validation metrics included the following 

parameters: a) size (diameter) of the hole in the front facesheet; and b) size (effective 

diameter) of the hole in the rear facesheet. Comparison of the numerical values for the 

validation metrics is provided in Table 3. In addition, Table 3 includes an estimate of the 

entrance hole diameter obtained for the same impact conditions using an analytical model 

by Jolly and Schonberg [64]. As can be deduced from the table, predictions of the 

developed simulation model agree very well with the experimental and analytical results. 

Table 3 – Predictions of the developed simulation model, compared with the available 

experimental and analytical data 

Part # Data source 
Hole diameter, 

mm 
Error, % Reference 

F
ro

n
t 

fa
ce

sh
ee

t 1 NASA Experiment 

HITF 9005 
6.9 (7.0 x 6.8) -- [61] 

2 Analytical model by 

Jolly & Schonberg 
6.8 -1.5 [64] 

3 UWindsor simulation 7.1 +2.9 UWindsor data 

R
ea

r 

fa
ce

sh
ee

t 1 NASA Experiment 

HITF 9005 
4.4* (4.7 x 4.2) -- [61] 

2 UWindsor simulation 4.1* (4.0 x 4.2) -6.8 UWindsor data 

 Effective hole diameter calculated as Dhole = 2√Ahole/π, where Ahole is the exit 

hole area  
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Figure 23 – Front wall damage: simulation (red grid cell is 1×1 mm) vs. NASA 

experiment (HITF 9005, [61]) 

 

Figure 24 – Honeycomb damage: simulation vs. NASA experiment (HITF 9005, [61]) 

 

Figure 25 – Rear wall damage: simulation (red grid cell is 1×1 mm) vs. NASA 

experiment (HITF 9005, [61]) 
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 Capabilities of the developed simulation model to predict ballistic limits of the 

honeycomb-core sandwich panels was evaluated by comparison of its predictions with 

those of the well-verified ballistic limit equation proposed by Schaefer Ryan and Lambert, 

which was adjusted by its authors using approximately 200 spherical projectile HVI tests, 

including multiple experiments with aluminum HCSPs [16]. In case of normal impact of 

an aluminum projectile with the speed equal to or exceeding 7 km/s on all-aluminum 

HCSP, the SRL BLE can be represented by the equation (19): 

Dcr =  1.155 ∙ √
tHC ∙ tRW

2

K3D
2 ∙ ρp ∙ ρFW

1/3
∙ vp

2
∙ (

σY,FW

70
)

3

 (19) 

In this expression:  

• tHC and tRW are the honeycomb core and the rear facesheet (“rear wall”) thicknesses, 

respectively [cm]; 

• ρp and ρFW are the projectile and the front facesheet (“front wall”) densities, 

respectively [g/cm3]; 

• vp is the projectile speed [km/s]; 

• σY,FW is the yield stress of the front facesheet material [ksi]; and 

• K3D is the BLE fit factor, which is equal to 0.4 in the case of aluminum-on-aluminum 

impacts. 

 Substituting the parameters of the panel (ρFW = 2.70 g/cm3, tHC =

5.08 cm, tRW = 0.13 cm, σY,FW = 40 ksi)  and the projectile (ρp = 2.78 g/cm3, vp =

7.0 km/s) in (9), the critical projectile diameter was estimated as Dcr = 0.136 cm = 1.36 

mm. 
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Dp  = 1.2 mm (Dp  < Dcr ,  BLE)  

 

(a) 

Dp  = 1.5 mm (Dp  > Dcr ,  BLE) 

 

(b) 

Dp  = 2.5 mm (Dp  >>Dcr ,  BLE) 

 

(c) 

Figure 26 – Predicted rear facesheet damage as a function of projectile diameter 
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In order to validate the simulation model against the prediction of the BLE, two 

simulations were run: one with slightly (approx. 10%) smaller projectile diameter than the 

BLE-predicted Dcr , and another – with slightly (approx. 10%) larger projectile diameter 

than the BLE-predicted Dcr. The validation metrics in this case was the capability of the 

model to detect no-perforation of the rear facesheet in the former case (Dp < Dcr), and to 

show the clear perforation in the latter case (Dp > Dcr) . Results of these simulations are 

shown in Figure 26, which, for comparison, also illustrates the case of ~2xDcr (2.5 mm) 

projectile impact. 

 As can be deduced from Fig. 26 (a) and (b), the predictions of the numerical model 

are consistent with the SRL BLE calculations: the sub-critical projectile does not perforate 

the rear facesheet even long after the impact (analysis progressed up to 38 μs), while with 

the slightly above-critical projectile diameter, the perforation is noticeable after about 25 

μs. For comparison (Fig. 26 (c)), in case of Dp >> Dcr, the full perforation of the front 

facesheet happens as early as at 15-17 μs after impact initiation. 

3 . 2  P r o j e c t i l e  s h a p e  e f f e c t s  

 As discussed in the introduction section, disk-like penetrators with high pitch have 

been found to be among the most dangerous projectile shapes for the single-purpose dual-

wall (Whipple) shields. In this study, the verified HVI simulation model was used to extend 

this analysis for the case of high-pitch disk-like projectile impacts on the multi-purpose 

shields – the honeycomb-core sandwich panels (analyses employed the panel with ballistic 

limit established in Section 3.1). In addition to the computations with spherical projectiles, 

used as a reference, simulations were conducted with such shapes as simple disk-like 

impactors and projectiles with the shape represented by a disk with the central hole. The 

latter will be referred to as “ring-shaped” impactors. The three projectile shapes considered 

in this study, along with their characteristic parameters, are illustrated in Figure 27.  
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Sphere Disk Ring 

Figure 27 – Equal-volume sphere, disk and ring projectiles 

Spherical projectiles were characterized by diameter (D), disk projectiles – by 

diameter (D) and thickness (t), and ring projectiles – by thickness (t), outer diameter (D), 

and the ratio of the inner and the outer diameters (K). The latter was kept constant and 

equal to 0.5 for all ring projectile shapes used. The investigation considered disk and ring 

impactors with different aspect ratios, defined as a ratio of the outer diameter to the 

thickness of a projectile AR = D/t. Dimensions of all projectiles are listed in Table 4. 

Table 4 – Parameters of the projectiles used in this study 

Type Aspect ratio D, mm K = d/D t, mm V, mm3 

Sphere –– 1.50 –– –– 1.77 

Sphere –– 1.20 –– –– 0.90 

Disk 1.50 1.20 –– 0.80 0.90 

Disk 3.00 1.51 –– 0.50 0.90 

Disk 4.50 1.73 –– 0.38 0.90 

Ring 1.50 1.32 0.5 0.88 0.90 

Ring 3.00 1.66 0.5 0.55 0.90 

Ring 4.50 1.90 0.5 0.42 0.90 

Ring 3.00 1.53 0.5 0.51 0.70 

 The test matrix contained 12 numerical experiments, including the two simulations 

with the sub-critical (1.2 mm) and above-critical (1.5 mm) spherical projectiles that were 

described in the previous section and were used to verify the model and establish ballistic 
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limit of the sandwich panel. Specific objectives of the calculations included the following 

three goals: 

1. Understand the perforating ability of disk and ring-shaped projectiles as compared to 

spherical impactors of the same mass; 

2. Evaluate the effect of aspect ratio on the perforating ability of disk and ring shapes; 

3. Investigate the effects of projectile-honeycomb cell alignment and honeycomb cell size 

on ballistic performance of honeycomb core sandwich panels, when hit with non-

spherical projectiles. 

  

Projectile aligned with the cell center Projectile aligned with the cell wall 

Figure 28 – Projectile-honeycomb cell alignment 

To achieve the first and the second goal, simulations were conducted with disk and 

ring projectiles of different aspect ratios, varying from 1.5 to 4.5. These projectiles had the 

same volume (and mass) as the sub-critical spherical projectile with D = 1.2 mm that could 

not perforate the HCSP with the 1/8 inch-cell honeycomb core (see Section 3.1). For the 

third goal, HVI simulations were conducted for panels with different honeycomb cores (see 

Figure 19) and different alignments between the projectiles and the honeycomb cells. This 

included projectiles roughly centered at the cell center and those aligned with a wall of the 

honeycomb before impact, as illustrated in Figure 28. The corresponding virtual test matrix 

is provided in Table 5 and, in addition to the projectile and honeycomb parameters, 

includes the information about the projectile-honeycomb cell alignment, and the outcome 

of each test. The latter is defined via a binary pass/fail output, where “fail” corresponds to 
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full perforation of the panel’s rear facesheet. Termination time for all simulations was set 

to 40 μs. 

Table 5 – Test matrix and outcomes of the numerical experiments 

Simulation 

# 
Projectile 

Volume, 

mm3 

Aspect 

ratio 

HC cell 

size, inch 

Projectile-cell 

alignment 
Outcome 

1 Sphere 1.77 –– 1/8 center Fail 

2 Sphere 0.90 –– 1/8 center Pass 

3 Disk 0.90 1.50 1/8 center Pass 

4 Disk 0.90 3.00 1/8 center Pass 

5 Disk 0.90 4.50 1/8 center Pass 

6 Ring 0.90 1.50 1/8 center Fail 

7 Ring 0.90 3.00 1/8 center Fail 

8 Ring 0.90 4.50 1/8 center Fail 

9 Ring 0.90 3.00 5/32 wall Pass 

10 Ring 0.90 3.00 3/16 center Pass 

11 Ring 0.90 3.00 1/4 wall Pass 

12 Ring 0.70 3.00 1/8 center Pass 

13 Ring 0.90 3.00 
1/8 

(thinner foil) 
center Pass 

 Figure 29 shows the setup and the results of simulations 3 – 8 (as denoted in Table 

5). As can be deduced from the figure, all simulations with disk impactors resulted in the 

same outcome as the simulation conducted with the equal-volume (and mass) 1.2 mm 

spherical projectile: no perforation of the rear facesheet was detected. Changing the aspect 

ratio of the disk projectiles in the range of 1.5 – 4.5 did not have any noticeable effect on 

their penetrating ability. The opposite is true for the ring-shaped impactors. All three HVI 

simulations conducted with the ring projectiles under identical impact conditions resulted 

in the perforation of the honeycomb-core panel, as depicted in Figure 29. This, for the first 

time, reveals that ring-shaped impactors may be of higher concern than the simple disk 

projectiles. This may be a consequence of higher elongation of ring projectiles (for the 

same volume, Dring > Ddisk), as well as a complex interaction of the shock waves with the 
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internal free boundaries of the ring – altogether leading to lower degree of fragmentation 

of a ring impactor upon collision with the front facesheet, as compared to the disk-shaped 

counterpart. The effect of aspect ratio – varied from 1.5 to 4.5 in this study – was moderate. 

Size of the exit hole in the rear facesheet (the effective hole diameter of an irregular-shaped 

hole, measured on a 0.1 mm × 0.1 mm grid) was: 

• 0.7 mm in case of the projectile with AR = 1.5; 

• 0.4 mm for the projectile with AR = 3.0; and  

• 0.7 mm, when the projectile with AR = 4.5 was used. 

 Such nonlinear variation of the hole size may suggest the presence of several 

competitive mechanisms, which affect penetrating ability of ring projectiles when their 

aspect ratio is changed. 
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DISK RING 

 

 

Aspect ratio = 1.5 Aspect ratio = 1.5 

 

 

Aspect ratio = 3.0 Aspect ratio = 3.0 

 

 

Aspect ratio = 4.5 Aspect ratio = 4.5 

Figure 29 – Effects of projectile shape and aspect ratio on damage to the rear facesheet 

(all projectiles have the same volume of 0.9 mm3) 
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 In order to evaluate the ballistic limit of the reference honeycomb-core sandwich 

panel (1/8-5052-0.03 50.8 mm-thick honeycomb bonded to 1.3 mm-thick Al6061-T6 

facesheets), additional simulation (denoted as simulation # 12 in Table 5) was conducted. 

In this case, a ring projectile with a reduced volume (0.7 mm3) was used. Its outcome – in 

comparison with a simulation that involved a 0.9 mm3 projectile – is shown in Figure 30. 

As can be deduced from the figure, the former simulation predicted no perforation of the 

rear facesheet. This allowed to bound the ballistic limit of the honeycomb-core sandwich 

panel, such that a “critical volume” of a ring projectile must be between 0.7 mm3 and 0.9 

mm3, i.e. around 0.8 mm3. At the same time, the critical spherical projectile diameter 

calculated in Section 3.1 was 1.36 mm, which corresponds to a sphere with a volume of 

1.32 mm3. In other words, the maximum volume of a ring projectile that can be tolerated 

by the reference honeycomb-core sandwich panel without failure in case of 7 km/s impact 

is 1.65 times smaller (0.8 mm3) than that of a spherical projectile (1.32 mm3). 

 

 

  

 

 

         Projectile volume V = 0.9 mm3                         Projectile volume V = 0.7 mm3 

Figure 30 – Ballistic limit of the HCSP in case of the ring projectile impact (AR = 3.0) 

3 . 3  H o n e y c o m b  c o r e  e f f e c t s  

The effect of honeycomb cell size and projectile/cell alignment on ballistic limit of 

HCSP was evaluated using a series of simulations with ring projectiles (AR = 3.0) that 

involved, in addition to 1/8 inch cells, honeycomb cores with other cell dimensions, namely 

5/32, 3/16 and 1/4 inch (simulations # 7, 9 - 11 in Table 5). The results of these analyses 

are shown in Figure 31. As can be deduced from this figure, both the cell size and the 

alignment can influence an outcome of analysis. Cell size effect can be seen through the 
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comparison of simulations that involved 1/8 and 3/16 honeycomb cores, all other 

conditions being equal. As a result of 7 km/s impact, the panel with 1/8 inch cells was 

perforated, while the panel with 3/16 inch cells did not exhibit perforation of the rear 

facesheet, being able to contain all fragments of the projectile and the front facesheet.  

 

 

Cell size: 1/8 inch 

projectile alignment: center 

Cell size: 5/32 inch 

projectile alignment: wall 

 
 

Cell size: 3/16 inch 

projectile alignment: center 

Cell size: 1/4 inch 

projectile alignment: wall 

Figure 31 – Effect of honeycomb cell size on rear facesheet damage (all projectiles have 

the same aspect ratio of 3.0 and volume of 0.9 mm3) 

 This effect can be simply explained by the additional space provided by larger 

honeycomb cells for expansion of the cloud of fragments, enhancing distribution of their 

momentum over a larger area on the rear facesheet (less channeling), thus reducing damage 

to it. Similar reasoning applies to explain the influence of projectile and honeycomb 

alignment (“cell center” vs. “wall”) on the rear facesheet damage that is seen in Figure 31. 

In case of wall-centered impact, projectile fragments are channeled through two 



 

49 
 

honeycomb cells instead of just one in the case of cell centering. Notably, alignment with 

the wall not only reduces the severity of damage, but changes its mode as well (two spaced 

small bulges on the rear facesheet instead of one tall bulge). Apparently, design 

calculations should consider alignment of a projectile with cell center as a more 

conservative scenario. 

To further illustrate these effects, Figure 32 depicts two extremes in terms of cloud 

expansion – fragment cloud formed as a result of impact of a cell-centered ring projectile 

on a 1/8-inch honeycomb core panel (simulation # 7) and the cloud resulting from HVI on 

HCSP with 1/4 inch cells of the same ring projectile, but aligned with the wall of the 

honeycomb (simulation # 11). As can be deduced from the figure, the difference in radial 

expansion of the clouds of fragments varies dramatically between these two cases. 

  

Cell size: 1/8 inch 

projectile alignment: center 

Cell size: 1/4 inch 

projectile alignment: wall 

Figure 32 – Cell size and projectile/honeycomb alignment effect on fragment cloud 

expansion 
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The effect of honeycomb foil thickness can be seen comparing simulations 

conducted with 1/8-inch honeycomb cores that had 0.076 mm and 0.025 mm thickness, all 

other sandwich panel parameters and impact conditions the same (7 km/s “ring” projectile 

with AR = 3.0). The results of these simulations are shown in Figure 33. Using a 

honeycomb with thicker foil makes channeling of the fragment cloud more severe, 

constraining its expansion to a higher degree than with the thinner foil honeycomb. In order 

to provide a quantitative estimate for the influence of honeycomb core foil thickness on 

dispersion of hypervelocity fragments, volumes occupied by the fragments at 10 μs after 

impact initiation were roughly measured, as depicted in Figure 33. In simulation with the 

thicker foil, fragments occupied a volume of 1283 mm3, while when the thinner foil was 

used, the corresponding volume was twice as large (2541 mm3; see Figure 33). This 

confirms a significant influence of the honeycomb foil thickness on the channeling of 

debris cloud in HVI at normal incidence. As a result, panel with the thicker foil experienced 

full perforation, while no perforation was noted for the panel with the thinner honeycomb 

foil under the same impact conditions.  
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Figure 33  – Foil thickness effect on fragment cloud expansion and damage to the rear wall 
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3 . 4  S u m m a r y  o f  C h a p t e r  3  

The developed simulation model was validated against the available experimental 

data (NASA HITF 9005 experiment) and against the predictions of the well-verified SRL 

ballistic limit equation. 

After the validation, the model was used to investigate the effects of projectile 

shape in hypervelocity impact of honeycomb-core sandwich panels. The considered 

projectile topologies included spherical, disk-shaped, and ring-shaped impactors, with the 

latter two shapes represented by the projectiles with the aspect ratios of 1.5, 3.0, and 4.5. 

Additional simulations were conducted and reported in this chapter to explore the 

effects of the honeycomb core. This included the effect of the honeycomb cell size 

(honeycombs with 1/8, 5/32, 3/16, and 1/4 inch cells were considered), the effect of 

projectile-honeycomb cell alignment (the “cell-center” alignment vs. the “wall” 

alignment), and the effect of the foil thickness (honeycombs with 0.076 mm and 0.025 mm-

thick walls were considered). 

Results of thirteen hypervelocity impact simulations with an overall computational 

time of around 600 hours have been reported in this chapter. 
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4: CONCLUSIONS AND FUTURE WORK 

4 . 1  C o n c l u s i o n s  

This study investigated projectile shape effects in hypervelocity impact of 

honeycomb-core sandwich structures. A model for hypervelocity projectile impact on a 

sandwich panel with a 50.8 mm-thick aluminum honeycomb and 1.3 mm-thick aluminum 

facesheets was developed and verified against available experimental data for the case of 

above-critical projectile, and using a well-validated ballistic limit equation – for near-

critical spherical projectile impacts. The model then was used to simulate collisions with 7 

km/s disk and ring-shaped impactors. The following conclusions can be drawn from the 

results of these analyses: 

• When hit by disk-shaped projectiles with the aspect ratio from 1.5 to 4.5, no change to 

the ballistic limit of the panel was noted as compared to spherical projectile impacts. 

• Simulated collisions with ring-shaped projectiles demonstrated a significant reduction 

of the panel’s ballistic limit as compared to disk and spherical projectile impacts, which 

is an important finding of this study. It was estimated that a volume of a ring-shaped 

impactor needed to perforate the sandwich panel was 1.65 times smaller than that of a 

spherical projectile. Presently available predictive models for sandwich panels, such as 

the empirical BLE given by equation (19), do not account for projectile shape effects 

and, thus, may result in non-conservative predictions of ballistic limit. 

• Aspect ratio of a ring projectile, varied from 1.5 to 4.5, affected the size of the exit hole 

in the panel’s rear facesheet in a way that larger holes were predicted for smaller (1.5) 

and larger (4.5) aspect ratios, while smaller perforation size was predicted for the 

medium aspect ratio (3.0), suggesting the presence of several competitive mechanisms, 

which affect penetrating ability of ring projectiles when their aspect ratio is changed. 

• Cell size was found to significantly affect the ballistic limit of honeycomb panels 

subjected by HVI at normal incidence. The increase of ballistic limit (simulation 

outcome changed from “perforation” to “no perforation”) was achieved by simple 

replacement of 1/8 cell honeycomb by a honeycomb with the cell size of 3/16 inch, all 

other conditions being equal. It should be noted that presently existing ballistic limit 
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equations do not account for the cell size effect in hypervelocity impacts at normal 

incidence, which identifies the direction for their further improvement. 

• Projectile/honeycomb cell alignment was found to affect the damage of the rear 

facesheet in case of HVI at normal incidence. Based on the results of this study, it is 

recommended to align a projectile with the honeycomb center in simulations that are 

conducted for design purposes in order to ensure that the most conservative scenario 

was explored. Similarly, in HVI experiments with honeycomb-core sandwich panels, 

when possible, it can be recommended to mark the position of honeycomb on internal 

side of the front facesheet prior to bonding the rear facesheet, and identify and report 

the position of projectile entry (e.g. “cell center”, “near wall”) after the post-mortem 

examination of the tested samples. 

• Thickness of the honeycomb foil was found to have a noticeable influence on ballistic 

performance of HCSPs. It was found that severity of the channeling effect will reduce 

with the reduction of thickness of the foil, however, as certain amount of energy is 

absorbed through deformation of the honeycomb, there may exist a threshold after 

which further reduction of honeycomb thickness may not result in improvement of 

ballistic performance.  

4 . 2  F u t u r e  w o r k  

The validated numerical model of HVI on HCSP developed in this study represents 

an economical and cost-efficient alternative to physical hypervelocity impact testing and 

is ready to be used in the design and analysis of orbital debris shielding of space satellites. 

Also, with minimal modifications, the developed model can be employed to investigate 

different previously unexplored or insufficiently studied impact scenarios and panel design 

configurations, including, but not limited to the following: 

1. other projectile shapes and dimensions; 

2. other projectile materials (e.g. plastic or steel projectiles); 

3. other facesheet materials (e.g. titanium); 

4. other panel configurations (e.g., double-core panels). 
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Another important area for future studies includes extending the applicability of the 

model to higher impact velocities (10 – 20 km/s). This would require the development and 

implementation of an equation of state that would account for phase transformations of the 

projectile and facesheet materials, as a significant portion of fragments can undergo 

melting and even vaporization at speeds exceeding 10 km/s. 

With extensive use of composite materials in space structures, it can be expected 

that HCSP facesheets, honeycombs, as well as orbital debris itself, can be made of 

reinforced plastics (e.g., carbon fiber-reinforced epoxy). Modeling of such impact 

scenarios would require dedicated material models that can adequately represent the 

behavior of composites in collisions at orbital speeds, being another important direction 

for future studies. 
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APPENDIX 

LS-DYNA MASTER FILE AND INCLUDES 

HCSP_HVI_MODEL.k: 

*KEYWORD MEMORY=800000000 MEMORY2=800000000 NCPU=8 

*TITLE 

$#                                                                         

title 

HCSP_HVI_MODEL 

*INCLUDE_PATH 

D:\SPECIFY A PATH TO THE FOLDER WITH THE “INCLUDES” HERE 

*INCLUDE 

$#                                                                      

filename 

Controls.k 

*INCLUDE 

$#                                                                      

filename 

Database.k 

*INCLUDE 

$#                                                                      

filename 

Parts.k 

*INCLUDE 

$#                                                                      

filename 

Sections.k 

*INCLUDE 

$#                                                                      

filename 

Contacts.k 

*INCLUDE 

$#                                                                      

filename 

Materials.k 

*INCLUDE 
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$#                                                                      

filename 

PRJ_mesh_RING_1p9mm_0p95mm_0p42mm.k 

*INCLUDE 

$#                                                                      

filename 

FW_mesh_SPH.k 

*INCLUDE 

$#                                                                      

filename 

FW_mesh_Coarse_FEM.k 

*INCLUDE 

$#                                                                      

filename 

HC_mesh_01_3.18 mm_cell.k 

$# HC_mesh_02_3.97 mm_cell.k 

$# HC_mesh_03_4.76 mm_cell.k 

$# HC_mesh_04_6.35 mm_cell.k 

*INCLUDE 

$#                                                                      

filename 

RW_mesh.k 

*INCLUDE 

$#                                                                      

filename 

Sets.k 

*INCLUDE 

$#                                                                      

filename 

Velocity.k 

*END 

 

Controls.k:  

*CONTROL_ACCURACY 

$#     osu       inn    pidosu      iacc     

         0         1         0         0 

*CONTROL_BULK_VISCOSITY 
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$#      q1        q2      type     btype    tstype       

       1.5      0.06         1         0         0 

*CONTROL_CONTACT 

$#  slsfac    rwpnal    islchk    shlthk    penopt    thkchg     orien    enmass 

       0.1       0.0         2         2         1         0         1         0 

$#  usrstr    usrfrc     nsbcs    interm     xpene     ssthk      ecdt   tiedprj 

         0         0         0         0       4.0         0         0         0 

$#   sfric     dfric       edc       vfc        th     th_sf    pen_sf       

       0.0       0.0       0.0       0.0       0.0       0.0       0.0 

$#  ignore    frceng   skiprwg    outseg   spotstp   spotdel   spothin        

         0         0         0         0         0         0       0.0 

$#    isym    nserod    rwgaps    rwgdth     rwksf      icov    swradf    ithoff 

         0         0         1       0.0       1.0         0       0.0         1 

$#  shledg    pstiff    ithcnt    tdcnof     ftall    unused    shltrw    igactc 

         0         0         0         0         0                 0.0         1 

*CONTROL_ENERGY 

$#    hgen      rwen    slnten     rylen     irgen      

         2         2         1         2         2 

*CONTROL_SHELL 

$#  wrpang     esort     irnxx    istupd    theory       bwc     miter      proj 

      20.0         0        -1         0        16         1         1         0 

$# rotascl    intgrd    lamsht    cstyp6    thshel       

       1.0         0         1         1         0 

$# psstupd   sidt4tu     cntco    itsflg    irquad    w-mode   stretch      icrq 

         0         0         0         0         2       0.0       0.0         0 

$#  nfail1    nfail4   psnfail    keepcs     delfr   drcpsid    drcprm   intperr 

         1         1         0         0         0         0       1.0         0 

*CONTROL_SOLID 

$#   esort   fmatrix   niptets    swlocl    psfail   t10jtol    icohed    tet13k 

         0         1         4         1         0       0.0         0         0 

$#   pm1     pm2     pm3     pm4     pm5     pm6     pm7     pm8     pm9    pm10 

       0       0       0       0       0       0       0       0       0       0 

*CONTROL_SPH 

$#    ncbs     boxid        dt      idim   nmneigh      form     start      maxv 

         1         01.00000E20         3       -85         0       0.0   10000.0 
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$#    cont     deriv       ini     ishow     ierod     icont     iavis     isymp 

         0         0         0         0         0         0         0       100 

$#    ithk     

         0 

*CONTROL_TERMINATION 

$#  endtim    endcyc     dtmin    endeng    endmas     nosol      

     0.040         0     0.001       0.01.000000E8         0 

*CONTROL_TIMESTEP 

$#  dtinit    tssfac      isdo    tslimt     dt2ms      lctm     erode     ms1st 

       0.0      0.20         0       0.0       0.0         0         1         0 

$#  dt2msf   dt2mslc     imscl    unused    unused     rmscl    unused      ihdo 

       0.0         0         0                           0.0                   0 

*END 

 

Database.k: 

*DATABASE_ELOUT 

$#      dt    binary      lcur     ioopt   option1   option2   option3   option4 

       0.1         3         0         1         0         0         0         0 

*DATABASE_GCEOUT 

$#      dt    binary      lcur     ioopt      

       0.1         3         0         1 

*DATABASE_GLSTAT 

$#      dt    binary      lcur     ioopt      

       0.1         3         0         1 

*DATABASE_MATSUM 

$#      dt    binary      lcur     ioopt      

       0.1         3         0         1 

*DATABASE_NODFOR 

$#      dt    binary      lcur     ioopt      

       0.1         3         0         1 

*DATABASE_RCFORC 

$#      dt    binary      lcur     ioopt      

       0.1         3         0         1 

*DATABASE_SPCFORC 

$#      dt    binary      lcur     ioopt      
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       0.1         3         0         1 

*DATABASE_BINARY_D3PLOT 

$#      dt      lcdt      beam     npltc    psetid       

2.50000E-4         0         0         0         0 

$#   ioopt      rate    cutoff    window      type      pset     

         0       0.0       0.0       0.0         0         0 

*DATABASE_BINARY_RUNRSF 

$#    cycl        nr      beam     npltc    psetid       

 1000000.0         0         0         0         0 

*DATABASE_EXTENT_BINARY 

$#   neiph     neips    maxint    strflg    sigflg    epsflg    rltflg    engflg 

         0        16        16         1         1         1         1         1 

$#  cmpflg    ieverp    beamip     dcomp      shge     stssz    n3thdt   ialemat 

         1         0         0         1         1         1         2         1 

$# nintsld   pkp_sen      sclp     hydro     msscl     therm    intout    nodout 

         0         0       1.0         0         0         0ALL       ALL 

$#    dtdt    resplt     neipb     quadr     cubic      

         0         0         0         0         0 

*DATABASE_EXTENT_INTFOR 

$#   nglbv     nvelo    npresu    nshear    nforce     ngapc     nfail    ieverf 

         1         1         1         1         1         1         0         0 

*END 

 

Parts.k: 

*PART 

$#                                                                         title 

FW_Fine_SPHHHH 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         3         2         2         2         0         0         0         0 

*PART 

$#                                                                         title 

SPH_PROJECTILE 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         5         2         1         1         0         0         0         0 

*PART 
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$#                                                                         title 

FW_Coarse_FEM                                                                                 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         7         1         2         2         0         0         0         0 

*PART 

$#                                                                         title 

Singles 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         9         3         5         0         0         0         0         0 

*PART 

$#                                                                         title 

Doublers 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

        10         4         5         0         0         0         0         0 

*PART 

$#                                                                         title 

RW_Coarse_FEM                                                                                 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

        11         1         6         2         0         0         0         0 

*PART 

$#                                                                         title 

RW_Fine_FEM                                                                                 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

        13         1         6         2         0         0         0         0 

*DEFINE_ADAPTIVE_SOLID_TO_SPH_ID 

$#     did                                                               heading 

         1RW_SOLID_TO_SPH 

$#    ipid     itype        nq     ipsph     issph      icpl      iopt      cpcd 

        13         0         1        14         2         1         1       0.0 

*PART 

$#                                                                         title 

SPH_TO_CONVERT_SOLIDS_TO 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

        14         2         2         2         0         0         0         0 

*END 
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Sections.k: 

*SECTION_SOLID_TITLE 

SOLID_SECTION 

$#   secid    elform       aet    

         1         1         0 

*SECTION_SPH_TITLE 

SPH_SECTION 

$#   secid      cslh      hmin      hmax    sphini     death     start   sphkern 

         2       1.2       0.2       2.0       0.01.00000E20       0.0         2 

*SECTION_SHELL_TITLE 

Singles_HC 

$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 

         3        16       1.0         3       1.0         0         0         1 

$#      t1        t2        t3        t4      nloc     marea      idof    edgset 

    0.0762    0.0762    0.0762    0.0762       0.0       0.0       0.0         0 

*SECTION_SHELL_TITLE 

Doubles_HC 

$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 

         4        16       1.0         3       1.0         0         0         1 

$#      t1        t2        t3        t4      nloc     marea      idof    edgset 

    0.1524    0.1524    0.1524    0.1524       0.0       0.0       0.0         0 

*END 

 

Contacts.k: 

*CONTACT_AUTOMATIC_NODES_TO_SURFACE_ID 

$#     cid                                                                 title 

         1FW_SPH__FW_FEM 

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

         2         1         4         0         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

       0.0       0.0       0.0       0.0       0.0         0       0.01.00000E20 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
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$#    soft    sofscl    lcidab    maxpar     sbopt     depth     bsort    frcfrq 

         1       0.1         0     1.025       2.0         2         0         1 

*CONTACT_AUTOMATIC_NODES_TO_SURFACE_ID 

$#     cid                                                                 title 

         2SPH_HONEYCOMB 

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

         4         5         2         2         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

       0.9       0.0       0.0       0.0       0.0         0       0.01.00000E20 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 

$#    soft    sofscl    lcidab    maxpar     sbopt     depth     bsort    frcfrq 

         1       0.1         0       1.2       2.0         2         0         1 

*CONTACT_ERODING_NODES_TO_SURFACE_ID 

$#     cid                                                                 title 

         3SPH_TO_RW_Fine 

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

         4        13         2         3         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

       0.9       0.0       0.0       0.0       0.0         0      9E-31.00000E20 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

1.0000E-121.0000E-12       0.0       0.0       1.0       1.0       1.0       1.0 

$#    isym    erosop      iadj     

         0         1         0 

$#    soft    sofscl    lcidab    maxpar     sbopt     depth     bsort    frcfrq 

         1       0.1         0     1.025       2.0         2         0         1 

*CONTACT_TIED_NODES_TO_SURFACE_OFFSET_ID 

$#     cid                                                                 title 

         4RW_Coarse_to_Fine 

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

        13        11         4         0         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

       0.0       0.0       0.0       0.0       0.0         0       0.01.00000E20 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
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$#    soft    sofscl    lcidab    maxpar     sbopt     depth     bsort    frcfrq 

         1       0.1         0     1.025       2.0         2         0         1 

*END 

 

Materials.k: 

*KEYWORD 

$#------------------------------------------------------------------------------ 

$#------------------------------------------------------------------------------ 

*EOS_GRUNEISEN_TITLE 

AL2017-T4 

$#   eosid         c        s1        s2        s3     gamao         a        e0 

         1    5328.0     1.338       0.0       0.0      2.00      0.00       0.0 

$#      v0         -      lcid     

       1.0       0.0         0 

*MAT_JOHNSON_COOK_TITLE 

AL2017-T4 

$#     mid        ro         g         e        pr       dtf        vp    rateop 

         1  0.002780   27480.0   73100.0      0.33       0.0       0.0       0.0 

$#       a         b         n         c         m        tm        tr      epso 

     369.0     684.0      0.73    0.0083      1.70     925.0     293.0     0.001 

$#      cp        pc     spall        it        d1        d2        d3        d4 

     885.0   -2000.0       1.0       0.0      9.00      0.00      0.00       0.0 

$#      d5      c2/p      erod     efmin    numint       

       0.0       0.0         11.00000E-6       0.0 

$#------------------------------------------------------------------------------ 

$#------------------------------------------------------------------------------ 

*EOS_GRUNEISEN_TITLE 

EOS_AL6061-T6 

$#   eosid         c        s1        s2        s3     gamao         a        e0 

         2    5240.0       1.4       0.0       0.0      1.97      0.00       0.0 

$#      v0         -      lcid     

       1.0       0.0         0 

*MAT_JOHNSON_COOK_TITLE 

STRENGTH_AL6061-T6 

$#     mid        ro         g         e        pr       dtf        vp    rateop 
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         2  0.002703   26000.0   70000.0       0.3       0.0       0.0       0.0 

$#       a         b         n         c         m        tm        tr      epso 

     324.0     114.0      0.42     0.002      1.34     925.0     293.0     0.001 

$#      cp        pc     spall        it        d1        d2        d3        d4 

     885.0   -2000.0       1.0       0.0      9.00      0.00      0.00       0.0 

$#      d5      c2/p      erod     efmin    numint       

       0.0       0.0         11.00000E-6       0.0 

$#------------------------------------------------------------------------------ 

$#------------------------------------------------------------------------------ 

*MAT_PLASTIC_KINEMATIC_TITLE 

Al5052-HC_Shells 

$#     mid        ro         e        pr      sigy      etan      beta     

         5   0.00268   70300.0      0.33     193.0       0.0       0.0 

$#     src       srp        fs        vp   

       0.0       0.0      0.25       0.0 

$#------------------------------------------------------------------------------ 

$#------------------------------------------------------------------------------ 

*MAT_JOHNSON_COOK_TITLE 

AL6061-T6_RW 

$#     mid        ro         g         e        pr       dtf        vp    rateop 

         6  0.002703   26000.0   70000.0       0.3       0.0       0.0       0.0 

$#       a         b         n         c         m        tm        tr      epso 

     324.0     114.0      0.42     0.002      1.34     925.0     293.0     0.001 

$#      cp        pc     spall        it        d1        d2        d3        d4 

     885.0   -2000.0       1.0       0.0      9.00      0.00      0.00       0.0 

$#      d5      c2/p      erod     efmin    numint       

       0.0       0.0         11.00000E-6       0.0 

*MAT_ADD_EROSION 

$#     mid      excl    mxpres     mneps    effeps    voleps    numfip       ncs 

         6       0.0       0.0       0.0     0.250       0.0       1.0       1.0 

$#  mnpres     sigp1     sigvm     mxeps     epssh     sigth   impulse    failtm 

       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 

$#    idam         -         -         -         -         -         -    lcregd 

         0         0         0         0         0         0         0         0 

$#   lcfld      nsff   epsthin    engcrt    radcrt   lceps12   lceps13   lcepsmx 
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         0        10       0.0       0.0       0.0         0         0         0 

$#  dteflt    unused     mxtmp     dtmin      

       0.0                 0.0       0.0 

*END 

 

PRJ_mesh_1p2mm.k: 

*ELEMENT_SPH 

$#   nid     pid            mass     

 1299135       5   -9.920819e-04 

 1299136       5   -9.920819e-04 

……………… 

1300046       5   -9.920819e-04 

*NODE 

$#   nid               x               y               z      tc      rc   

 1299135           -0.55           -0.15            2.05       0       0 

 1299136           -0.55           -0.15            2.15       0       0 

……………… 

 1300046            0.55            0.15            2.35       0       0 

*END 

 

FW_mesh_SPH.k: 

*ELEMENT_SPH 

$#   nid     pid            mass     

   30721       3    2.703000e-06 

   30722       3    2.703000e-06 

………… 

 1200720       3    2.703000e-06 

*NODE 

$#   nid               x               y               z      tc      rc   

   30721          -14.95          -14.95            0.15       0       0 

   30722          -14.95          -14.95            0.25       0       0 

…………… 

 1200720        14.95004        14.95004            1.35       0       0 

*END 



 

67 
 

 

FW_mesh_Coarse_FEM.k: 

*ELEMENT_SOLID 

$#   eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 

    4901       7 1310848 1310849 1310920 1310919 1315889 1315890 1315891 1315892 

    4902       7 1315889 1315890 1315891 1315892 1315893 1315894 1315895 1315896 

…………… 

   12900       7 1324143 1324145 1324287 1324285 1324144 1324146 1324288 1324286 

*NODE 

$#   nid               x               y               z      tc      rc   

 1310848            35.0            35.0             0.1       0       0 

 1310849            34.0            35.0             0.1       0       0 

…………… 

 1324288           -35.0           -35.0             1.4       0       0 

*END 

 

HC_mesh_01_3.18 mm_cell.k: 

*ELEMENT_SHELL 

$#   eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 

 3000000      10 3057614 3000002 3000006 3057616       0       0       0       0 

 3000001      10 3000005 3057615 3057716 3000007       0       0       0       0 

……………… 

 3737663      10 3686851 3686735 3686737 3686852       0       0       0       0 

*NODE 

$#   nid               x               y               z      tc      rc   

 3000000        -6.14464           23.83           -50.8       0       0 

 3000001        -5.68714           23.83           -50.8       0       0 

…………… 

 3686900        24.53741            3.16       -42.83137       0       0 

*END 

 

RW_mesh.k: 

*ELEMENT_SOLID 



 

68 
 

$#   eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 

 6000000      11 6003816 6003817 6003818 6003819 6000000 6000001 6000072 6000071 

 6000001      11 6003820 6003821 6003822 6003823 6003816 6003817 6003818 6003819 

…………… 

 7692007      13 7831235 7831248 7835941 7835928 7831234 7831247 7835940 7835927 

*NODE 

$#   nid               x               y               z      tc      rc   

 6000000            35.0            35.0           -50.9       0       0 

 6000001            34.0            35.0           -50.9       0       0 

……………… 

 7835941           -18.0           -18.0           -52.2       0       0 

*END 

 

Sets.k: 

*SET_PART_LIST_TITLE 

PS_FOR_ERODING_CONTACT_sphFW_sphPRJ 

$#     sid       da1       da2       da3       da4    solver       

         4       0.0       0.0       0.0       2.0MECH 

$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8 

         3         5         0         0         0         0         0         0 

*SET_PART_LIST_TITLE 

PS_FOR_ERODING_CONTACT_HCsingles_HCdoublers 

$#     sid       da1       da2       da3       da4    solver       

         5       0.0       0.0       0.0       2.0MECH 

$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8 

         9        10         0         0         0         0         0         0 

*SET_SEGMENT_TITLE 

FW_Coarse_FEM_Perimeter 

$#     sid       da1       da2       da3       da4    solver       

         1       0.0       0.0       0.0       0.0MECH 

$#      n1        n2        n3        n4        a1        a2        a3        a4 

   1321537   1321539   1321535   1321533       0.0       0.0       0.0       0.0 

   1320342   1320258   1320260   1320344       0.0       0.0       0.0       0.0 

   1319751   1319835   1319836   1319752       0.0       0.0       0.0       0.0 

   1320090   1320006   1320008   1320092       0.0       0.0       0.0       0.0 
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   1321541   1321543   1321539   1321537       0.0       0.0       0.0       0.0 

   …………………… 

   1320594   1320510   1320512   1320596       0.0       0.0       0.0       0.0 

   1320003   1320087   1320088   1320004       0.0       0.0       0.0       0.0 

*SET_NODE_LIST_TITLE 

FW_Fine_SPH_Perimeter 

$#     sid       da1       da2       da3       da4    solver       

         2       0.0       0.0       0.0       0.0MECH 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 

     34608     34609     34610     34611     34612     34613     34614     34615 

     34616     34617     34618     34619     34620     38508     38509     38510 

     38511     38512     38513     38514     38515     38516     38517     38518 

     38519     38520     42408     42409     42410     42411     42412     42413 

     42414     42415     42416     42417     42418     42419     42420     46308 

    ……………………… 

    1200696   1200697   1200698   1200699   1200700   1200701   1200702   1200703 

    1200704   1200705   1200706   1200707         0         0         0         0 

*SET_NODE_LIST_TITLE 

RW_Fine_Perimeter_Nodes 

$#     sid       da1       da2       da3       da4    solver       

        13       0.0       0.0       0.0       0.0MECH 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 

   6011448   6011449   6011450   6011451   6011452   6011453   6011454   6011455 

   6011456   6011457   6011458   6011459   6011460   6011461   6011462   6011463 

   6011464   6011465   6011466   6011467   6011468   6011469   6011470   6011471 

   6011472   6011473   6011474   6011475   6011476   6011477   6011478   6011479 

   6011480   6011481   6011482   6011483   6011484   6011485   6011486   6011487 

   ………………………. 

   6967758   6967760   6967762   6972431   6972433   6972435   6972437   6972439 

   6972441   6972443   6972445   6972447   6972449   6972451   6972453   6972455 

*SET_SEGMENT_TITLE 

RW_Coarse_Perimeter_Nodes 

$#     sid       da1       da2       da3       da4    solver       

        11       0.0       0.0       0.0       0.0MECH 

$#      n1        n2        n3        n4        a1        a2        a3        a4 
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   6009002   6009000   6008926   6008927       0.0       0.0       0.0       0.0 

   6008854   6008926   6002555   6002519       0.0       0.0       0.0       0.0 

   6008931   6008929   6009136   6009138       0.0       0.0       0.0       0.0 

   6009000   6002556   6002555   6008926       0.0       0.0       0.0       0.0 

   6009004   6002557   6002556   6009000       0.0       0.0       0.0       0.0 

   …………………….. 

   6006623   6006695   6006694   6006622       0.0       0.0       0.0       0.0 

   6006699   6006627   6006625   6006697       0.0       0.0       0.0       0.0 

*END 

 

Velocity.k: 

*INITIAL_VELOCITY_GENERATION 

$#nsid/pid      styp     omega        vx        vy        vz     ivatn      icid 

         5         2       0.0       0.0       0.0   -6910.0         0         0 

$#      xc        yc        zc        nx        ny        nz     phase    irigid 

       0.0       0.0       0.0       0.0       0.0       0.0         0         1 

*END 
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