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ABSTRACT

Identifying specific cell types is a significant step for studying diseases and po-

tentially leading to better diagnosis, drug discovery, and prognosis. High-throughput

single-cell RNA-Seq (scRNA-seq) technologies have advanced in recent years, enabling

researchers to investigate cells individually and understand their biological mecha-

nisms. Computational techniques such as clustering, which are categorized in the

form of unsupervised learning methods, are the most suitable approach in scRNA-seq

data analysis when the cell types have not been characterized. These techniques can

be used to identify a group of genes that belong to a specific cell type based on their

similar gene expression patterns. However, due to the sparsity and high-dimensional

nature of scRNA-seq data, classical clustering methods are not efficient. Therefore,

the use of non-linear dimensionality reduction techniques to improve clustering results

is crucial. We introduce a pipeline to identify representative clusters of different cell

types by combining non-linear dimensionality reduction techniques such as modified

locally linear embedding (MLLE) and clustering algorithms. We assess the impact of

different dimensionality reduction techniques combined with the clustering of thirteen

publicly available scRNA-seq datasets of different tissues, sizes, and technologies. We

evaluate the intra- and inter-cluster performance based on the Silhouette score before

performing a biological assessment. We further performed gene enrichment analysis

across biological databases to evaluate the proposed method’s performance. As such,

our results show that MLLE combined with independent component analysis yields

overall the best performance relative to the existing unsupervised methods across

different experiments.

Keywords: non-linear dimensionality reduction, clustering, single-cell RNA se-

quencing, cell type identification, unsupervised learning.
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CHAPTER 1

Introduction

1.1 Introduction to Molecular Biology

Molecular biology, a branch of biology, is the study of the molecular basis of biolog-

ical activities. A cell is the basic unit of all living organisms. There are two major

cell types: eukaryotic cells and prokaryotic cells. Cells with the real nucleus are eu-

karyotic, and cells with no real nucleus are prokaryotic cells. Hence, eukaryotes and

prokaryotes, respectively. Eukaryotic[14] cells consist of many biomolecules such as

proteins and nucleic acids. Molecular biologists conduct experiments to find informa-

tion about the structure, processing, function, regulation, and evolution of biological

molecules. Their interactions with one another provide more insights into how life

works.

Fig. 1.1.1: Structure of DNA [10]
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1. INTRODUCTION

DNA (Deoxy-Ribo-Nucleic acid), a key genetic material that stores crucial genetic

information in cells. It is shown in Fig. 1.1.1. Nucleotides (deoxyribonucleotides)

are the structural units of the DNA. Each nucleotide is composed of a pentose sugar

(20-deoxy-D-ribose); one of the four nitrogenous bases—adenine (A), thymine (T),

guanine (G), or cytosine (C); and a phosphate. Every base is attached to an atom

of the sugar, and this forms a nucleoside, whereas nucleoside plus phosphate makes

a nucleotide [14].

1.2 Central Dogma of Molecular Biology

The central dogma is the process of transforming genetic information from DNA to

RNA to synthesize proteins. This process consists of DNA replication, coding for the

RNA (mRNA- messenger RNA) through the transcription process, and then RNA

codes final product proteins by translation as displayed in Fig. 1.2.1. Transcription is

the process of passing the information from one strand of the DNA to RNA through

complementary base pairing between DNA and the transcribed RNA. That is, an A

in the DNA is transcribed to a U in the RNA, T to A, G to C.

Fig. 1.2.1: Central dogma of molecular biology [5].

Proteins are chains of amino acids. There are 20 different standard amino acids

that utilized in production of proteins. The translation process translates information

from the language of nucleotides to that of amino acids. Then, parts of the mRNA are

2



1. INTRODUCTION

exported to the cytoplasm outside the nucleus, converted into protein. Transcribing

genes to mRNAs, then converted into proteins, is called gene expression. And the

abundance of a gene’s mRNA molecules is typically called the expression value (level)

of that gene or the gene expression [14].

1.3 Gene Expression

The fundamental physical and functional unit of heredity is a gene. The genes consist

of DNA. Some genes serve as instructions for creating protein-called molecules. How-

ever, many genes do not code for proteins. Every person has two copies of each gene,

one from each parent. Most genes are the same in all humans, but a small number

of genes (less than 1 percent of the total) vary slightly between individuals [25]. Cell

functions are determined by proteins. Thus, the thousands of genes expressed in a

specific cell decide what the cell will do. Gene expression is the mechanism by which

a cell reads the genetic code written in DNA to generate the molecule it requires.

The cell interprets the genetic code to do this, and it adds one of the 20 different

amino acids that are the basic units required to create proteins for each group of

three letters [6].

The ability to monitor gene expression enables cells to have a functional protein

if their normal functioning or survival needs it and this monitoring involves larger

number of regulatory proteins. The regulation of gene expression conserves energy and

space. It would take a large amount of energy for an organism to express every gene at

all times, and so turning on the genes only when they are needed to save energy, and

more importantly the combination of different genes that exhibit different functions.

Each cell type in the body has a different set of active genes despite almost all body

cells containing the same DNA. These different gene expression patterns cause your

various cell types to have different sets of proteins, making each cell type uniquely

specialized in doing its job.
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1. INTRODUCTION

1.4 RNA Sequencing

Next-generation sequencing (NGS) technologies are rapidly emerging and capable of

processing large quantities of data at a lower cost and faster pace. When contrasted to

their first-generation ancestor, the Sanger system, these innovations radically change

researchers’ sequencing capabilities [19]. And there are different types of sequencing

methods as depicted such as DNA sequencing, RNA sequencing, and Methylation

sequencing.

Fig. 1.4.1: Overview of RNA-seq workflow [15].

RNA-seq is a high-throughput transcriptome profiling technology alternative to

the traditional RNA/cDNA cloning and sequencing strategies, and the brief overview

of RNA-seq is shown in Fig.1.4.1. RNA-Seq transcripts are reverse-transcribed into

cDNA and ligated to each end of the cDNA with adapters. Sequencing may be

4



1. INTRODUCTION

performed unidirectionally (single-end sequencing) or bidirectionally (paired-end se-

quencing). The findings can be matched to a reference genome database or assembled

to generate de-novo transcripts, resulting in a genome-wide expression profile [13].

As a result, RNA-Seq offers many advantages over microarray technology. Microar-

ray technology depends on already known genes, whereas RNA-Seq is not reliant

on established genome data. It can screen new transcripts and examine transcript

structure, including single base-pair resolution and exonic boundaries are extremely

useful when examining SNPs (Single-nucleotide polymorphism), making it useful for

genotyping and linkage analysis [13].

Through RNA-seq, many interesting biological experiments or discoveries are pos-

sible. Gene expression profiling between samples is one of the many scientific ques-

tions that RNA-seq can help with. The study of diseases linked to alternative splicing

events (differential inclusion/exclusion of exons in the processed RNA product after

splicing a precursor RNA segment).

1.5 Single-cell RNA sequencing (scRNA-seq)

Rapid advances in NGS technologies have provided many useful insights into complex

biological processes, ranging from cancer genomics to diverse microbial species, in

recent years. NGS-based genomics, transcriptomics, and epigenomics technologies

are increasingly focusing on the characterization of single cells. Single cell sequencing

analyses the sequence information from individual cells, allowing for a more thorough

study of cellular variations and a deeper understanding of a cell’s role in its micro-

environment. Examining cells at the single-cell level offers provides opportunities to

dissect the interplay between intrinsic cellular processes and extrinsic factors like the

local environment or neighboring cells in cell fate determination [8]. Clinicians are

also interested in single-cell studies because they can help them understand how an

outlier cell can affect the outcome of an infection, drug or antibiotic resistance, and

cancer relapse.

5



1. INTRODUCTION

Fig. 1.5.1: Overview of scRNA-seq workflow [11].

Unknown organisms or regulatory processes of biotechnological or medical sig-

nificance may also be discovered using scRNA-seq, and the overview of scRNA-seq

library preparation is given in Fig.1.5.1. Global studies of single cells have been made

possible by a substantial increase in the sensitivity of scientific instruments and the

automation of all steps from sample preparation to data analysis. We can rapidly se-

quence the genomes of many single cells in parallel using next-generation sequencing

techniques, or we can profile expressed proteins using fluorescence and mass cytom-

etry. A variety of probe-dependent methods, such as reporter fusions to fluorescent

proteins, fluorescence in-situ hybridization (FISH), quantitative real-time Polymerase

chain reaction (RT-PCR), and microarrays, have pioneered mRNA profiling of sin-

gle cells. Some of these methods can record expression changes of multiple genes in

parallel. Trajectory inference, composition analysis, meta-stable states, cluster anal-

ysis, cluster annotation, gene expression dynamics, differential expression analysis,

gene set analysis, and gene regulatory networks are just some of the applications that

6



1. INTRODUCTION

scRNA-seq can be used for [16].

1.6 Machine Learning

One way to explain the data and make predictions is to construct mathematical

models. Another alternative is to use the data to build a prediction machine. This

approach is known as machine learning, and it is a hot topic in the field of intelligent

data processing. In bioinformatics, machine learning is commonly used [14]. In bioin-

formatics and genomics, for example, identifying genes and other functional elements

on the genome is a challenging topic. The use of microarray data or proteomics ex-

pression data to diagnose cancers is a typical example. The gene expressions retrieved

by microarrays form a vector for each patient. They can be thought of as the original

features used to categorize the samples. A smaller number of genes may be selected

to classify a particular type of cancer with normal cells or to classify subtypes of

cancer. Traditionally, machine learning methods have been divided into three broad

categories: supervised learning, in which the model is fed samples and predicted out-

comes, unsupervised learning, in which the model is given unlabeled input samples,

and reinforcement learning, in which the dynamic model where the agent takes the

actions and it receives response from the environment it is in [14].

1.6.1 Unsupervised Learning

Unsupervised learning is when a machine learning model is given unlabeled data and

asked to create some relationships between the data using various features. On the

other hand, supervised learning teaches the model with current samples and their

corresponding labels before predicting new samples. Cluster analysis is a standard

unsupervised learning approach that groups data with many similarities into one or

more groups.
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1. INTRODUCTION

1.6.2 Cluster Analysis

Cluster analysis is the job of grouping a collection of samples such that samples in

one group (called a cluster) are more similar (in some idea) to those in other groups

(clusters). For example, a person is sorting mixed grains from a bag and has no idea

what they are or what they are used for. He must sort them into groups based on

similarities such as shape, size, color, and so on. Here, mixed grains from the bag are

referred to as unsupervised data. A person who does not have any knowledge but has

to understand the data is unsupervised learning. Similarities in the machine learning

model could be distance measures such as Euclidean, Manhattan, and Minkowski.

Hard and soft clustering are the two forms of clustering. Hard clustering involves

placing any sample in the data into a cluster or not, while soft clustering involves

assigning the cluster based on the possibility or probability of that point being in

that cluster. Since clustering is a subjective process, there are various algorithms to

accomplish it. For defining similarity across data points, each method has its own set

of rules. In fact, there are over a hundred different clustering algorithms. Few widely

used clustering techniques are k-means, spectral, expectation-maximization, hierar-

chical clustering. Cluster analysis has one more critical function. This is how the

clustering efficiency is measured. The clusters’ compactness and the distance between

the clusters are two metrics to consider when evaluating clustering efficiency. Eval-

uating methods include the Silhoutte index [20], Calinski-Harabasz [3], and Davies

Bouldin [9].

1.6.3 k-Means Algorithm

k -means is iterative clustering algorithm groups the data into n separate groups by

minimizing the phenomenon within-cluster dispersion. The number of clusters/groups

to be formed from the data needs to be specified as an input to the algorithm. The

k -means algorithm is one of the widely used clustering algorithms since its inception.

SSE =
k∑
i=1

min
µ∈C

(|xi − xj|)2 (1)

8



1. INTRODUCTION

There are three major steps in k -means algorithm. The initial centroids are cho-

sen in the first step. The most straightforward method is to choose k samples from

the dataset X. k -means consists of looping between the two other steps after initial-

ization. The first step is to allocate each sample to the centroid that is closest to it.

The second step involves taking the mean value of all of the samples allocated to each

previous centroid and creating new centroids. The algorithm computes the difference

between the old and new centroids, then repeats the last two steps until the value

is less than a threshold. In other words, it keeps repeating until the centroids do

not move much (convergence). The points in the data choose such centroids where

the compactness of the cluster is high or minimum sum of squared error (SSE) as

given in (1) where n is number of samples in the data, C is cluster, µ is the mean

of the samples, and x is corresponding sample. This algorithm always converges to

local minimum, but not to the global minimum. There are many variants of k -means

algorithms are present like minibatch k -means, and fuzzy k -means.

1.6.4 Dimensionality Reduction

The majority of real-life data, as well as machine learning data, is multidimensional.

Furthermore, majority of the high-dimensional data is complex and sparse. Most

importantly, understanding the data in such dimensions is difficult, and visualization

is not possible. Data visualization is essential in a most of the machine learning tasks,

and data reduction from higher dimensions to lower dimensions is needed. Dimen-

sionality reduction is the process of transforming data from a high-dimensional space

to a low-dimensional space while retaining some of the original data’s meaningful

properties, preferably close to its intrinsic dimension. Working in high-dimensional

spaces may be inconvenient for various reasons: raw data is often sparse as a result of

the curse of dimensionality, and data analysis is typically computationally intractable.

Dimensionality reduction is divided into categories such as linear and non-linear. Few

of the mainly used techniques are listed below.

1. Principal Component Analysis (PCA): PCA is a popular linear technique for

9
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dimensionality reduction. Given a set of data with n dimensions, PCA aims to

find a linear subspace of dimension d lower than n such that the data points lie

mainly on this linear subspace. Such a reduced subspace attempts to maintain

variability of the data [12].

2. t-distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is non-linear di-

mensionality reduction technique used for visualizing high-dimensional datasets

and gives decent visualizations in lower spaces. t-SNE is not used for cluster

analysis or outlier detection since it does not preserve the data’s distances or

densities. It is extensively applied in image processing, Natural Language Pro-

cessing, genomic data and speech processing [23].

3. Autoencoders, a deep learning technique can also be used for dimensionality

reduction with an inverse function from the coding to the original representation

[24].

4. Uniform Manifold Approximation and Projection (UMAP): a strategy for re-

ducing dimensionality that is non-linear. It resembles t-SNE in appearance,

but it assumes that the data is uniformly distributed on a locally connected

Riemannian manifold and that the Riemannian metric is locally constant or

roughly locally constant [18].

There are a few other non-linear dimensionality reduction techniques referred to as

manifolding techniques and these techniques produce a compact low dimensional em-

beddings. Given, X = x1, x2, ..., xn ∈ RD and we want to reduce the data from higher

dimensions to lower dimensions. The data lies in d dimensions embedded into RD,

where d < D. The aim is to learn a manifold from a set of points. Oft-used and

straightforward examples in the manifold learning literature are the S-shape, Swiss

roll, and circular shape two-dimensional manifold embedded in R3. Figure 1.6.1 shows

the S-shape and a learned two-dimensional embedding of shapes found using mani-

folding techniques[4]. These methods begin by constructing a sparse graph in which

the nodes represent input patterns, and the edges represent neighborhood relations.

10
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Fig. 1.6.1: Dimensionality reduction from three dimensions to two dimensions using
manifold techniques [17].

Suppose that the resulting graph is connected and can be viewed as an approxima-

tion of the submanifold sampled by the input patterns. From these graphs, one can

then construct matrices whose spectral decomposition reveal the submanifold’s low

dimensional structure (and sometimes even the dimensionality itself). Also, these

techniques preserve the relationships of the samples from high dimensions to lower

dimensions through geodesic distances among the samples. The shortest path calcu-

lates the geodesic distance to the nearest neighbor from a given sample[22].

1. Isomap [1] works by computing the low-dimensional representation of a high-

dimensional data set that preserves the pairwise distances between input pat-

terns measured along the geodesic submanifold from which they were sampled.

11
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2. Locally Linear Embedding (LLE): LLE [21] is focused on finding the lowest-

dimensional representation of high-dimensional data set that preserves the local

linear structure of neighbouring input patterns the most accurately. The out-

puts of the algorithm are extracted from the smallest eigenvectors of a sparse

matrix, rather than the largest eigenvectors of a (dense) Gram matrix, which

distinguishes it from Isomap and maximum variance unfolding.

3. Laplacian Eigenmaps: The structure of this algorithm is close to that of LLE.

Laplacian eigenmaps map nearby input patterns to nearby outputs by comput-

ing the low-dimensional representation of a high-dimensional data set that most

faithfully preserves proximity relations [2].

4. Multi-dimensional Scaling (MDS): MDS [7] is another traditional method for

mapping high-dimensional data onto a lower-dimensional space when attempt-

ing to preserve pairwise distances among data points. That is, MDS uses

knowledge about the distances between the patterns to solve the problem of

constructing a configuration of points in the Euclidean space.

Dimensionality reduction can be used for data visualization, noise reduction, cluster

analysis, or intermediate steps to assist other steps in data analysis.

1.7 Motivation

scRNA-seq data occurs in high dimensions and it is usually sparse. Barcodes with a

low count depth, a few detectable genes, and a high fraction of mitochondrial counts

indicate that cytoplasmic mRNA has leaked out via a broken membrane, leaving only

mitochondrial mRNA to be conserved. Cells with unusually high counts and many

detectable genes, on the other hand, could be doublets. In total, the data has a

significant amount of unwanted information such as low-quality cells, ERCC spike-

ins, and mitochondrial genes that do not contribute to the downstream analysis. As

a result, pre-processing the data is very important. Cells, on the other hand, use

morphological properties, position, and form to describe themselves. None of these

12
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properties carry enough information to result, in every case, in a accurate cell type

identification. Identifying relevant components, such as target cells, is a critical step

in characterizing diseases, leading to enhanced diagnosis, treatment, and prognosis.

In particular, analyzing the variety and evolution of single cancer cells can help in

early cancer detection and, eventually, select the best cancer treatment plan. As a

result, the problem of recognizing cell types, cell groups, or cell sub-populations in

single-cell data becomes very interesting.

1.8 Problem Statement

Given the complex, high-dimensional scRNA-seq data, the problem is made more

complicated because some of the data is heterogeneous. Unsupervised learning is the

method of choice when researchers have no prior knowledge of the results. Given

single-cell RNA data, the aim is to identify potential marker genes, create a pipeline

that analyzes single-cell data, and cell types by grouping the genes into different clus-

ters using machine learning techniques such as dimensionality reduction, clustering,

and statistical ranking.

1.9 Proposed Method

This thesis proposes a new pipeline for identifying cell types in single-cell data that

uses a hybrid model of non-linear dimensionality reduction techniques, linear combi-

nation methods for visualization, and clustering using k -means. Higher-dimensional

data is reduced to a smaller number of dimensions. The goal is to identify cell types

from single-cell RNA-Seq data, which could be used to understand diseases and help

identify drugs and study types of treatments needed for a specific disease.

Before applying machine learning techniques, the primary step is to format the

data for downstream analysis. The pre-processing step includes filtering out low-

quality cells and removing unwanted genes. Normalization is used to transform the

data without altering its context since the data is genomic and presented at various

13
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expression levels. As part of the feature selection process, highly variable genes are

extracted, and then those genes are passed to further steps. For dimensionality reduc-

tion, combining non-linear and linear approaches results in better lower embeddings

and visualizations that can be clustered efficiently. Clusters are evaluated using va-

lidity indices, obtaining the highest possible score. Once the clusters are formed, the

top marker genes from each cluster are extracted, and those marker genes are used

to search biological databases for cell types. The cell type with the largest number

of overlapping genes is selected and annotated to the cluster that corresponds to it.

1.9.1 Contributions

This thesis introduces a new pipeline that can be applied to any scRNA-seq data to

discover cell types, identify marker genes and provide enhanced visualization. This

pipeline employs machine learning algorithms such as MLLE and ICA for dimen-

sionality reduction (to escape from the curse of dimensionality) and visualization,

respectively. The data is clustered, top marker genes are extracted using Wilcoxon

method, a gene ranking technique, and cell types are discovered; these results can be

used to study diseases. The contributions of this thesis can be summarized as follows:

• Proposed a new validated pipeline to identify cell types in single-cell RNA-seq

data.

• Proposed a new combination and a hybrid model for dimensionality reduction

using linear and non-linear methods, which is powerful in exploring the data in

lower dimensions.

• Proposed a mechanism to choose the optimized combination of the number of

nearest neighbors and the number of clusters k for clustering and dimensionality

reduction using validity indices.

• Developed an open-source software tool for identifying cell types in single-cell

data, available at GitHub project.

14
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CHAPTER 2

Discovering Cell Types Using

Manifold Learning and Enhanced

Visualization of Single-cell

RNA-Seq Data

2.1 Introduction

Single-cell sequencing is an emerging technology used to capture cell information at a

single-nucleotide resolution and by which individual cells can be analyzed separately

[13]. As of now, single-cell RNA-seq (scRNA-seq) datasets have been generated for dif-

ferent purposes [15]. However, these high-dimensional and sparse data lead to some

analytical challenges. While many computational methods have been successfully

proposed for analyzing scRNA-seq data, there are still some open problems in this

research area. One of the main challenges is sparsity of data and the curse of dimen-

sionality presented in scRNA-seq data. Also, performing well-defined pre-processing

steps leads to enhance the quality of data and new biological insights. Analyzing

scRNA-seq data can be divided into two main categories: at the cell level and gene

level. Finding cell sub-types or highly differentially expressed tissue-specific gene set

is one of the common challenges at the cell level [27]. Arranging cells into clusters to

find the data’s heterogeneity is arguably the most significant step of any scRNA-seq

data downstream analysis. This step could be used to distinguish tissue-specific sub-
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types based on identified gene sets. Indeed, cell clustering aims to identify cell types

based on the patterns embedded in gene expression without prior knowledge at the

cell level. Since the number of genes that are profiled in scRNA-seq data is typically

large, cells tend to be located close to each other via non-metric distances, but rather

complex relationships in high-dimensional spaces [20]. Therefore, traditional dimen-

sionality reduction and clustering algorithms are unsuitable for these scenarios, and

hence, they cannot efficiently separate individual cell types. Several algorithms have

been proposed to lower the dimension of the data and cluster cells from scRNA-seq

profiles to alleviate the problem of curse of dimensionality.

Dimensionality reduction techniques have been widely used in several studies of

large-scale scRNA-seq data processing [7]. Most of the previous studies use principal

component analysis (PCA). However, one of the main drawbacks of PCA is that it can-

not deal with sparse matrices and non-metric relationships among high-dimensional

data points. Also, there was no advantage in keeping the clustering performance after

the changes in the data in lower dimensions [9]. Other works have also employed PCA

as a pre-processing step to remove cell outliers for performing dimensionality reduc-

tion and visualization. Other methods proposed nonlinear dimensionality reduction

methods such as t- distributed Stochastic Neighborhood Embedding (t-SNE) [33] and

UMAP [23]. However, UMAP and t-SNE is not useful for high-dimensional cytom-

etry. Moreover, several studies have used unsupervised clustering models to identify

rare novel cell types. For instance, the hierarchical clustering algorithm divides large

clusters into smaller ones or merge each data points into larger clusters progressively.

This algorithm has been employed to analyze scRNA-seq data by BackSPIN [40] and

pcaReduce [39], through dimension reduction after each division or combination in an

iterative manner. k-means, which is one of the most common clustering algorithms

has been employed in the Monocle, specifically for analyzing scRNA-seq data [25].

Also, the authors of [36] used the Louvain algorithm, which is based on community

detection techniques to analyze complex networks [14].

However, to achieve acceptable clustering performance on scRNA-seq data, other

comprehensive studies indicated that hybrid models, designed as a combination of
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clustering and dimensionality reduction techniques, tend to improve the clustering

results [9]. They learned 20 different models using four dimensionality reduction

methods, including PCA, non-negative matrix factorization (NMF), filter-based fea-

ture selection (FBFS), and Independent Component Analysis (ICA). They also used

five clustering algorithms as k-means, density-based spatial clustering of applications

with noise (DBSCAN), fuzzy c-means, Louvain, and hierarchical clustering. Their

experiments highlighted the positive effect of hybrid models and showed that using

feature-extraction methods could be a decent way to improve clustering performance.

Their experimental results indicate that Louvain combined with ICA performed well

in small feature spaces.

In this paper, we proposed a model to obtain efficient and meaningful clusters of

cells from large-scale scRNA-seq data. We focus on the combination of unsupervised

dimensionality reduction followed by conventional clustering. We discovered a hybrid

model of non-linear dimensionality reduction technique (MLLE) and linear combina-

tion method (ICA) for visualization and compared it to PCA, t-SNE, Isomap, regular

Locally Linear Embedding (LLE), and Laplacian eigenmaps. ICA is employed to en-

hance visualization and clustering of the data. Parameter tuning or choosing the

best parameters for dimensionality reduction and clustering has been one of the main

challenges in the field that is well addressed in our work. Experimental results on

thirteen different benchmark scRNA-seq datasets show the power of modified LLE

and ICA on clustering data and representation quality, providing very high accuracy

and enhanced visualization. Confirmatory biological annotations were observed in

the clusters using corresponding marker genes found by our method.

2.2 Materials and Methods

The block diagram of the proposed pipeline is depicted in Fig. 2.3.1. The scRNA-seq

data is first pre-processed based on the number of cells and the number of genes

obtained in the first step. Highly variable genes are extracted as part of the feature

selection step after normalization and scaling of the filtered data. Linear regression
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is one of the most widely-used methods to correct potential technical batch effect

present in the data based on the total counts per cell and mitochondrial percentage

as discussed in [36] [22]. The data obtained at this point is then processed to reduce

the dimensions of the feature space into two or three dimensions; afterward, k-means

clustering is applied. In addition, we performed ICA on the lower-dimensional data

followed by k-means clustering to achieve meaningful clusters and enhanced visual-

ization.

2.3 Materials and Methods

The block diagram of the proposed pipeline is depicted in Fig. 2.3.1. The scRNA-seq

data is first pre-processed based on the number of cells and the number of genes

obtained in the first step. Highly variable genes are extracted as part of the feature

selection step after normalization and scaling of the filtered data. Linear regression

is one of the most widely-used methods to correct potential technical batch effect

present in the data based on the total counts per cell and mitochondrial percentage

as discussed in [36] [22]. The data obtained at this point is then processed to reduce

the dimensions of the feature space into two or three dimensions; afterward, k-means

clustering is applied. In addition, we performed ICA on the lower-dimensional data

followed by k-means clustering to achieve meaningful clusters and enhanced visual-

ization.

2.3.1 Datasets

To evaluate the performance of the proposed method, a total of thirteen benchmark

scRNA-seq datasets were used, which include single-cell gene expression profiles. The

details of all datasets used in this work are given in Table 2.3.1. They vary across size,

tissue (pancreas, lung, peripheral blood), sequencing protocol (three different proto-

cols), and species (Human and Mouse). Datasets Xin[38], H1299 scRNAseq[37], and

Calu3 scRNAseq[37] datasets are unlabeled and do not have any background knowl-

edge of the data. In this case, we analyzed the data and provided useful information
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Table 2.3.1: Datasets used in this work.

Dataset No. of cells No. of genes Accession number Description Sequencing technology

Baron human1 16,381 1,937 GSE84133 Human pancreas llumina HiSeq 2500 (inDrop)

Baron human2 16,381 1,724 GSE84133 Human pancreas llumina HiSeq 2500(inDrop)

Baron human3 16,381 3,605 GSE84133 Human pancreas llumina HiSeq 2500(inDrop)

Baron human4 16,381 1,303 GSE84133 Human pancreas llumina HiSeq 2500(inDrop)

Baron mouse1 14,878 822 GSE84133 Mouse pancreas llumina HiSeq 2500(inDrop)

Baron mouse2 14,878 1,064 GSE84133 Mouse pancreas llumina HiSeq 2500(inDrop)

Muraro 17,140 3,071 GSE85241 Human Pancreas Illumina NextSeq 500 (CEL-Seq2)

Segerstolpe 26,271 7,028 E MTAB 5061 Human Pancreas Smart-Seq2

Xin 39,851 1,601 GSE81608 Human Pancreas Illumina HiSeq 2500(SMARTer)

Wang 19,950 635 GSE83139 Human Pancreas Illumina HiSeq 2000(SMARTer)

H1299 scRNAseq 48,890 27,072 GSE148729 Human lung (SARS-CoV-2) Illumina NextSeq 500

Calu3 scRNAseq 24,754 27,072 GSE148729 Human lung (SARS-CoV-2) Illumina NextSeq 500

PBMC 32,738 2,700 10X Genomics (pbmc3k) 3k PBMCs from a Healthy Donor Cell Ranger

about the unknown data. On the other hand, pancreas datasets including Baron [1]

, Muraro [24], Segerstolpe [29], Xin [38], and Wang[35]. Moreover, peripheral blood

dataset, 3k PBMC from a healthy donor, were downloaded from the 10XGenomics

portal[10]. H1299 scRNAseq and Calu3 scRNAseq datasets (GSE148729) were ex-

tracted from NCBI’s Gene Expression Omnibus [32].

2.3.2 Data Pre-processing and Quality Control

A common practice for generating RNA-seq raw data is to use next-generation se-

quencing technologies to create read count matrices. The read count data matrix

contains gene names and their expression levels across individual cells. Before an-

alyzing scRNA-seq data, one needs to ensure that gene expressions and cells are of

standard quality. We follow a typical scRNA-seq analysis workflow including quality

control, as described in [22][18]. Based on the expression levels, we filtered out weakly

expressed genes and low-quality cells in which fewer reads are mapped, as shown in

Fig. 2.3.1, the first step of pre-processing. Low-quality cells that are dyed, degraded,

or damaged during sequencing are represented by a low number of expressed genes.

Genes expressed in less than three cells and cells with less than 200 expressed genes

are removed. This step is performed to remove low quality cells and poorly expressed

22



2. MANIFOLD LEARNING AND ENHANCED VISUALIZATION OF SCRNA-SEQ DATA

Clustering
Dimensionality 

Reduction
Preprocessing

Biological

Analysis

1st Stage 

Clustering

2nd Stage 

Clustering & 

Visualization

Single-cell Data

ICA on 3D Data
Normalize &

scale data
Filtering low

Quality cells

Extracting

HVGs

Reducing noise 

through 

regression

C
e

ll
s

Genes

Fig. 2.3.1: Block diagram of the proposed approach for discovering cell types in
scRNA-seq data.

Fig. 2.3.2: Investigating the distribution of the data to filtered out weakly expressed
genes and low-quality cells from dataset; (a) number of expressed genes, (b) total
counts per cell, and (c) the percentage of mitochondrial genes for H1299 scRNAseq.

genes.

We also investigated the distribution of the data (Fig.2.3.2) as a data-specific

quality-control step and filtered out low-quality cells and genes. Also, we remove a

percentage of mitochondrial genes that do not contribute significant information to

the downstream analysis [19], [18].

Since the scRNA-seq data expressed at different levels, normalization is a must.

Normalization is the method of translating numeric columns’ values in a dataset to a

standard scale without distorting the ranges of values. Visualization of top genes in

the dataset are shown in Figures 2.3.3 and 2.3.4 before and after normalization, re-

spectively. We normalize the data using the Counts Per Million (CPM) normalization
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Fig. 2.3.3: Top 20 highly-variable genes before normalization.

combined with logarithmic scaling on the data:

CPM = readsMappedToGene× 1

totalReads
× 106 (1)

where totalReads is the total number of mapped reads of a sample, and readsMappedToGene

is the number of reads mapped to a selected gene.

At this point, we extracted highly variable genes (HVGs) as a part of the feature

selection step, aiming at minimizing the search space, and only these genes are exam-

ined in further evaluation. We then removed any random noise and held genes that

highlight relevant biological information. HVGs are those genes that are expressed

significantly more or less in some cells compared to other ones. This step in quality

control makes sure that the differences occur because of biological differences and not

technical noise. The simplest approach to compute such a variation is to quantify the

variance of the expression values for each gene across all samples. A good trade-off
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Fig. 2.3.4: Top 20 highly-variable genes after normalization.

between mean and variance would help select the subset of genes that keep useful

biological knowledge, while removing noise. We use log-normalized data because we

want to ensure having the same log-values in the clustering and dimensionality re-

duction follow a consistent analysis through all steps. There are several widely-used

approaches to find the best threshold. The normalized dispersion is obtained by scal-

ing the mean and standard deviation of the dispersion for genes falling into a given

bin for the mean expression of genes (Fig. 2.3.7). This means that for each bin of

mean expression, HVGs are selected. A Python package, Scanpy, is used to perform

pre-processing and quality control steps.

2.3.3 Dimensionality Reduction

The majority of real-life data is multidimensional. Furthermore, the majority of the

high-dimensional data is complex and sparse. Most importantly, understanding the
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Fig. 2.3.5: Dispersion of genes before normalization.

Fig. 2.3.6: Dispersion of genes after normalization.

Fig. 2.3.7: Comparison of dispersion of normalized and not normalized genes to ex-
tract highly variable genes.
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data in such dimensions is tricky, and visualization is not possible. Dimensionality

reduction is the process of transforming data from a high-dimensional space to a low-

dimensional space while retaining some of the original data’s meaningful properties,

preferably close to its intrinsic dimension. Working in high-dimensional spaces may

be inconvenient for various reasons: raw data is often sparse as a result of the curse

of dimensionality, and data analysis is typically computationally intractable. On the

other hand, high-dimensional gene expression data is complex and should be well-

explored. Each gene is characterized as a data dimension in a single-cell expression

profile in a single-cell expression profile. As such, dimensionality reduction is very

productive in summarizing biological attributes in fewer dimensions. Dimensionality

reduction is divided into linear and non-linear techniques.

2.3.3.1 Modified Locally Linear Embedding

MLLE is the enhanced version of LLE and hence the authors named it as Modi-

fied LLE. To understand the working of MLLE, we need to understand LLE. LLE

tries to reveal the manifold’s underlying structure based on simple geometric intu-

itions when used for dimensionality reduction. LLE preserves the data’s locality in

lower dimensions because it reconstructs each sample point from its neighbors. In the

simplest formulation of LLE, one identifies nearest neighbors per data point, as mea-

sured by Euclidean distance[28]. One can choose number of neighbors based on some

rules or using some metrics or some random number. Consider the sample points

X = {x1,x2, ...,xn} in high dimensional space, where {xj, j ∈ N} and W ={wij}

is the weight matrix. A directed graph G = (X,E,W) is constructed considering

the neighborhood relations of the sample points X, in high dimensional space, and

E = {eij} represents the edges of the graph. Later, weights are assigned to the edge

of the graph. To compute the weights Wkn, minimize the cost function with respect

to two constraints: 1) each data points xi, is reconstructed only from its neighbors

imposing Wkn = 0 if xi does not belong to that set, 2) sum of the weights matrix

rows equal to one, that is Wkn = 1. Optimal weights are calculated by solving (2)
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the constrained squared distances problem shown below [28].

min xi −
∑
k∈Kn

wknxk s.t.
∑
k∈Kn

wkn = 1 . (2)

The computed weights are then allocated to each edge of the graph, with each

data point viewed as a small linear patch of the sub-manifold.

Finally, each high-dimensional input sample xi mapped to a low dimensional point

set Y = {y1,y2, ...,yn} representing the manifold’s global internal coordinates. The

reconstruction weights for each data point are calculated independently of the weights

for other data points from its local neighborhood. The embedding coordinates are

computed by an NXN eigen solver, a global operation that combines all data points

in connected components of the graph identified by the weight matrix. While re-

constructing the structure from the higher dimension to the lower dimension, some

information could be lost. This lost information is noted as a reconstruction error

and computed using (3).

εr =
n∑
i=1

|yi −
∑
k∈Ki

wikyk|2 (3)

The regularization problem is a well-known issue with LLE. The matrix represent-

ing each local neighborhood is rank-deficient when the number of neighbors exceeds

the number of input dimensions. To deal with this, standard LLE uses an arbitrary

regularisation parameter in relation to the weight matrix’s local trace[mlle]. This

problem manifests itself in embedding which distort the underlying geometry of the

manifold. MLLE is one such technique, which overcomes this regularization prob-

lem using multiple weights in each neighborhood. MLLE modifies or adjusts the

reconstruction weights [8] shown in (2) and this modifies the objective function (3).

εr =
n∑
i=1

si∑
l=1

|yi −
w∑

k∈Ki

ikyk|2

where, si = smallest right singular vectors of G .

(4)
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MLLE aims to take advantage of the dense relations that exist in the embedding

space. It is closely related to the other version of the LLE, that is Local Tangent

Space Alignment (LTSA) [34].

2.3.3.2 Independent Component Analysis

ICA is an independent and linear dimensionality reduction method. By using simple

statistical properties assumptions, ICA learns an efficient linear transformation of the

data and attempts to find the underlying components and sources present in the data

[16]. Unlike other approaches, the transformation’s underlying vectors are presumed

to be independent of one another. It employs a non-Gaussian data structure, which

is crucial for retrieving the transformed underlying data components. Consider, r is a

random vector whose elements are {r1, r2, ..., rn}, and similarly, random vector s with

its elements {s1, s2, ..., sn}, and A is the matrix with elements aij. The ICA model

is a generative model, and it explains how the observed data are generated (5) by

mixing the components si. The independent components are latent variables, which

means they are unknown. Also, the mixing matrix is assumed to be unknown.

r = As

Y = AX
(5)

Rows of these vectors and the matrix are orthogonal to each other. As such, it

leads to more informative components than PCA. ICA does not require knowing the

system’s output to break the data into some measurements. Hence it is referred to

as blind source separation[17]. Here, a source means the original data, independent

components. Blind means that it knows nothing but very little, if anything, on the

mixing matrix and makes modest assumptions on the source data.

2.3.3.3 Other Dimensionality Reduction Methods

We used other dimensionality reduction techniques to compare our proposed method

such as Standard LLE, Isomap, Laplacian eigenmap, PCA, and t-SNE. Isomap stands
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for isometric mapping. Isomap is a non-linear dimensionality reduction method based

on the spectral theory that tries to preserve the lower dimension’s geodesic distances.

Isomap starts by creating a neighborhood network. After that, it uses graph distance

to estimate the geodesic distance between all pairs of points. The eigenvalue decom-

position of the geodesic distance matrix finds the low-dimensional embedding of the

data[11]. The Laplacian eigenmaps is a computationally effective and map nearby

input patterns to nearby outputs by computing the low-dimensional representation of

a high-dimensional data set that most faithfully preserves proximity relations and it

has a natural connection with clustering[2]. PCA is a popular linear technique used

for feature extraction or dimensionality reduction. Given a set of data with n dimen-

sions, PCA maps the data linearly to find a subspace in lower-dimensional space so

that variance of the data is maximized. It does so by calculating the eigenvectors

from the covariance matrix. The principal components (eigenvectors that correspond

to the largest eigenvalues) are used to recreate a substantial portion of the original

data’s variance[12]. t-SNE is a non-linear dimensionality reduction technique. t-SNE

is not used for cluster analysis or outlier detection since it does not preserve the data’s

distances or densities. But, it is particularly well suited for the visualization of high-

dimensional datasets and extensively applied in image processing, Natural language

processing, genomic data, and speech processing [33].

2.3.4 Clustering

Performing clustering is one of the critical tasks in single-cell analysis. Clusters are

formed by grouping cells based on their similarity of the gene expression profiles.

Distance metrics are used to describe expression profile similarity, which employs

dimensionality-reduced representations as data as input. We used popular clustering

technique k-means. k -means is iterative clustering algorithm groups the data into

n separate groups by minimizing the phenomenon within-cluster dispersion. The

number of clusters C = {c1, c2, ..., cn} to be formed from the data needs to be specified
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as an input to the algorithm.

SSE =
k∑
i=1

min
µ∈C

(|xi − xj|)2 (6)

k -means algorithm works in three key steps. The first step is to choose the

initial centroids and the simple method is to choose k samples from the dataset

X = {x1,x2, ...,xn}. Then, each point in the dataset is allocated to its nearest cen-

troid. The next step involves taking the mean value of all of the samples allocated

to each previous centroid and creating new centroids. The algorithm calculates the

difference between the old and new centroids, then repeats the last two steps until

the value falls below a certain threshold. In other words, it keeps repeating until the

centroids are converged. The points in the data choose centroids with a high degree

of cluster compactness or a minimum sum of squared error (SSE) as shown in (6)

where n is the number of samples in the data, C is the cluster, µ is the mean of the

samples, and x is the corresponding sample.

2.3.5 Cluster Annotation

Gene Set Enrichment Analysis (GSEA) [31] is a computational tool that determines

whether a predefined set of genes shows a statistically significant level of expression

in a specific cell type, biological process, cellular component, molecular function, or

biological pathway. The GSEA uses MSigDB, the Molecular Signature Database, to

provides different gene sets for the analysis with the gene set enrichment analysis. To

annotate the cell clusters, we first extracted the top 20 differentially expressed genes

as markers in each cluster per dataset. Then, we found the corresponding cell types

of each group of marker genes in each cluster. Gene ontology (GO) analysis is also

used as part of enrichment analysis.

2.3.6 Parameter Optimization

With the aim of preserving locality, the number of nearest neighbors (t-NN) to con-

struct the neighborhood graph is a crucial parameter in manifold learning techniques.
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Another critical step in any clustering algorithm is determining the number of clus-

ters, k. We used the nearest neighbor check and validity indices check, which runs

through different t and a distinct number of clusters to find the best dimensionality

reduction and clustering parameters. We further systematically evaluated more ap-

propriate parameters for MLLE after finding the best t. The nearest neighbors are

examined between the range of 8 and 26. The number of clusters k for each value of

t is also assessed, where k ranges from 4 to 15, and the validity of indices are calcu-

lated for each cluster. We select a combination of t and the number of clusters with

the highest number of clustering scores considering all the three validity of indices

explained in the performance evaluation section.

2.3.7 Performance Evaluation

Generally speaking, the best clustering is the one that maintains high intra-cluster

distance and gives the most compact clusters. In this work, we use the Silhouette

coefficient [26], an evaluation metric that measures either the mean distance between

a sample point and all other points in the same cluster or all other points in the next

nearest neighbor cluster. Consider a set of clusters C = {C1,C2, . . . ,Ck}, output by

a clustering algorithm, k-means in our case. The Silhouette coefficient, SH, for the

ith sample point in cluster Cj, where j = 1, ..., k, can be defined as follows:

SH(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
, (7)

where a is the mean distance between point xi and all other points inside the cluster

(intra-cluster distance) and b is the minimum mean value of the distance between a
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sample point xi and the nearest neighbor cluster, and are calculated as:

a(xi) =
1

|Ck| − 1

∑
xj∈Ck,i 6=j

d(xi,xj)

b(xi) = min
k 6=i

1

|Ck|

k∑
j=1

d(xi,xj) .

(8)

We also used Calinski-Harabasz (CH) and Davies-Bouldin (DB) validity of indices

to assess the clustering performance. Calinski-Harabasz score [3], is a score used to

evaluate the model where a higher score tells better-defined clusters. CH score is the

ratio of the sum of between-clusters dispersion and of inter-cluster dispersion for all

clusters that is as follows:

CH =
tr(SB)

tr(SW )
× n− k
k − 1

(9)

in which n is size of input samples, tr(SB) is the trace of the between-group dispersion

matrix and tr(SW ) is the within-cluster dispersion.

Davies-Bouldin (DB) index [5] is another validity index defined as the average of

the similarity measure of each cluster. DB is computed as follows:

DB =
1

k

k∑
i=1

maxi 6=jsij , (10)

where sij is the ratio between within-cluster distances and between cluster distances,

and is calculated as sij =
wi+wj

dij
. The smaller DB value the better clustering, and as

such, we aim to minimize Equation (10). Here, dij is the Euclidean distance between

cluster centroids µi and µj, and wi is the within-cluster distance of cluster Ck.

Overall, we used the Silhouette score to evaluate the clustering performance,

whereas CH and DB indices were used to verify and find the optimal parameters,

namely the best number of clusters.
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2.4 Results and Discussion

We developed a well-constructed pipeline that can be applied to single-cell data to

discover individual cell types. Considering dimensionality reduction and clustering

as two significant steps in the pipeline, we conducted many experiments on different

dimensionality reduction techniques and explored many ways of untangling the data

in two and three dimensions. We found optimum parameters for both dimensionality

reduction and clustering to achieve the best clustering results. To demonstrate the

applicability of our pipeline, we tested it on thirteen datasets of different sizes. We

evaluated our method in terms of both computationally and biologically perspectives

to achieve the meaningful separation of cell types.

2.4.1 Clustering and Cell Type Discovery

To achieve the best results, we experimented with all possible combinations of pa-

rameters as discussed in the Material and Methods section. As a result, the best

parameters chosen for each dataset are depicted in Table 2.4.1. In a few datasets,

to achieve the best clustering score in the proposed approach, the data is reduced

to lower dimensions such as 5, 6, and 7. Then, the data is reduced to three dimen-

sions to visualize and obtain better results. When applying MLLE, a neighborhood

graph is created by connecting points that are close to each other. Different measures

are used for this purpose, including number of neighbors, distance from each point

to its neighbors, and others. A common measure to determine the sparsity of the

neighbor graph is the tolerance factor, which makes the graph sparser or denser. In

this regard, we tested different tolerance values on each dataset and selected those

values that yielded the best validity index scores. The results of k-means clustering

combined with each dimensionality reduction method using the best parameters are

listed in Table 2.4.2. The last column shows the result after applying ICA on the

result of clustering combined with MLLE. The clustering score ranges from 0 to 1.

A score close to 1 represents good quality clustering, with 1 being the best, while a

score near zero indicates that the clusters are not well defined.
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Table 2.4.1: Parameters used for experiments. These are generated considering both
dimensionality reduction and clustering together.

Dataset name No. of Neighbors No. of Dimensions Tolerance No. of Clusters

Baron human1
10 6 1e-12 14

23 3 1e-10

Baron human2 8 3 1e-12 14

Baron human3
16 7 1e-12 14

8 3 1e-8

Baron human4
9 6 1e-12 14

22 3 1e-12

Baron mouse1 17 3 1e-12 13

Baron mouse2
11 6 1e-12 13

20 3 1e-8

Muraro
10 5 1e-3 6

11 3 1e-7

Segerstolpe
10 5 1e-3 6

9 3 1e-8

Xin
15 6 1e-12 6

25 3 1e-3

Wang 8 3 1e-12 6

H1299 scRNAseq 11 3 1e-8 7

Calu3 scRNAseq
12 7 1e-3 7

11 3 1e-5

PBMC
8 5 1e-12 8

25 3 1e-12
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Table 2.4.2: Silhoutte scores comparison of proposed method with other dimension-
ality reduction techniques.

Dataset name t-SNE PCA Isomap SLLE Eigenmaps MLLE MLLE+ICA

Baron human1 0.244 0.364 0.498 0.524 0.839 0.908 0.904

Baron human2 0.231 0.428 0.543 0.614 0.823 0.906 0.905

Baron human3 0.243 0.377 0.522 0.467 0.826 0.990 0.976

Baron human4 0.239 0.424 0.614 0.538 0.896 0.910 0.912

Baron mouse1 0.231 0.400 0.422 0.448 0.472 0.881 0.917

Baron mouse2 0.221 0.414 0.530 0.684 0.779 0.941 0.943

Muraro 0.258 0.494 0.532 0.738 0.913 0.933 0.944

Segerstolpe 0.231 0.410 0.399 0.400 0.537 0.960 0.956

Xin 0.242 0.445 0.481 0.494 0.751 0.899 0.888

Wang 0.230 0484 0.442 0.745 0.608 0.993 0.996

H1299 scRNAseq 0.245 0.269 0.701 0.683 0.782 0.938 0.943

Calu3 scRNAseq 0.361 0.232 0.494 0.452 0.798 0.889 0.924

PBMC 0.244 0.401 0.622 0.621 0.632 0.867 0.876

Fig. 2.4.1: Visualization of t-SNE on Muraro dataset
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Fig. 2.4.2: Visualization of PCA on Wang dataset

Fig. 2.4.3: Visualization of Laplacian eigenmaps on H1299 scRNAseq; outliers have
been removed to enhance visualization.
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Fig. 2.4.4: Two-dimensional ICA projection of cells colored by k-means clustering
applied on high-dimensional original data (H1299 scRNAseq).

Fig. 2.4.5: Two-dimensional ICA projection of cells colored by k-means clustering
applied to the three-dimensional points output by MLLE on the H1299 scRNAseq
dataset.

38



2. MANIFOLD LEARNING AND ENHANCED VISUALIZATION OF SCRNA-SEQ DATA

Fig. 2.4.6: Cluster annotation for H1299 scRNAseq.

When trying widely-used techniques such as t-SNE and PCA, we noticed that

both methods were not as efficient in separating the data into well-defined clusters.

To show the clustering results graphically, we visualize the result of PCA and t-

SNE for Wang and Muraro datasets, respectively, in Figures 2.4.1 and 2.4.2. On

the other hand, the results of Isomap and Standard LLE show slightly better perfor-

mance comparatively. Moreover, Laplacian Eigenmaps performed better than these

two methods, though they could not accomplish competitive clustering. As a good

example, we visualize samples from H1299 scRNAseq using Laplacian Eigenmaps

(Fig.2.4.3) in which different clusters are overlapping. Finally, we investigated MLLE

and found the most insightful cluster separation in most of the datasets. This out-

come demonstrates the power of MLLE in exploring the data’s dense and complex

relations, creating better lower embeddings. We performed an additional dimension-

ality reduction step that uses ICA to enhance the visualization of clusters. The last

column of Table 2.4.2 represent that MLLE combined with ICA improves the overall

results except for some datasets that we can not see much difference; very negligible

difference of 0.004 (Baron human1), 0.001 (Baron human2), 0.014 (Baron human3),

0.004 (Segerstolpe), and 0.011 (Xin) can ignore them. To achieve a better view of the
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impact of ICA on the MLLE transformation, we show a visual comparison of clusters

in Figures 2.4.4 and 2.4.5. Two-dimensional ICA projection of the cells applied to the

three-dimensional MLLE data shows the best visualization and clustering scores (Fig.

2.4.5). When applied alone, ICA performed very poorly with significantly inseparable

clusters (Fig. 2.4.4). This is because ICA is limited to linear transformations.

On the other hand, manifold learning techniques consider data locally. As such, it can

reveal complex relationships among the data points in higher-dimensional spaces. We

instead applied ICA on the lower-dimensional data because we observed well-marked

”lines” or ”axes” in the three-dimensional data, which led us to think that we could

apply ICA to learn the linearly independent components, not necessarily orthogo-

nal. Applying ICA reveals some hidden, complex relationships among the cells in the

clusters, which are not noticeable in three dimensions.

2.4.2 Biological Assessment

To validate the obtained clusters, we first identified the top 20 genes in each cluster

based on the Wilcoxon test. Starting from these top 20 genes, we retrieved a subset

of genes from the largest number of overlapping genes across the different clusters.

Marker genes are up- or down-regulated in different individual cells, pathways or

GO terms. We used GSEA and ToppCluster multi-gene list functional enrichment

analysis online tools to identify GO terms and pathways associated with the top 20

gene lists extracted from each cluster. Pathways were extracted from the MSigDB

C2 BIOCARTA (V7.3) database [21]. Cytoscape [30] was used to visualize the net-

works.We decreased the minimum number of genes present in annotations to achieve

a better visualization.

As presented in Table 2.4.5, some of the pancreatic cell types are found for pan-

creas datasets such as the Baron human dataset within well-defined gene sets in

MSigDB namely ’MURARO PANCREAS ALPHA CELL’, ’MURARO PANCREAS

ENDOTHELIAL CELL’, ’MURARO PANCREAS MESENCHYMAL STROMAL

CELL’, ’MURARO PANCREAS DUCTAL CELL’, and ’MURARO PANCREAS

ACINAR CELL’. Other cell types including CD34, Jurkat, and macrophage are cell
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Table 2.4.3: Identified cell types for H1299 scRNAseq.

Cell Types Cluster Number

H1299 cells 0

T cells 1

A549 cells 2

Jurkat cells 3

CL1-5 cells 4

Influenza-specific CD8+ 5

NCI-H2170 cells 6

subtypes of T-Cells. HB2 is also a cell line originated by epithelial cells. Regarding

H1299 scRNAseq and Calu3 scRNAseq datasets, Tables 2.4.3 and 2.4.4 list associ-

ated cell types mostly involved in the immune system. It is well-known that one

of the main SARS-CoV-2 targets is the immune system function. We observed co-

expressed gene sets down- or up-regulated in the lung and immune systems specific

cell (sub)types. T-cell is a type of immune cell that is found in blood. Jurkat cells are

a line of human T cells that are used to study the expression of various chemokine

receptors susceptible to viral entry, particularly HIV. CD8+ T cells are found on the

surface of immune cells and are key cells in response to viral infection [4]. Moreover,

H1299 cells, NCI-H2170 cells, A549 cells, and CL1-5 cells are human lung associated

cell lines. These findings show the effectiveness of the proposed method to identify as-

sociated cell types using cell type specific marker genes. A projection of the identified

cells in H1299 scRNAseq colored by clusters is shown in Fig. 2.4.6.

Additionally, visualization of GO terms and pathways associated with the corre-

sponding marker genes are depicted in Figs. 2.4.7 and 2.4.8, respectively. For each

cluster, we identified a set of biological process or pathway terms. Each edge in the

plot shows a link between a cluster and a term that is significantly associated with

the 20 top gene list in that cluster.By observing Fig. 2.4.8, some significant pathways
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Table 2.4.4: Identified cell types for Calu3 scRNAseq.

Cell Types Cluster

H1299 cells 0

293 cells (embryonic kidney) 1

MCF7 cells 2

ANBL-6 cell 3

T-ALL 4

H460 cells 5

H1975 cells 6

Table 2.4.5: Identified cell types for Baron human1 dataset.

Cell Types Cluster

Alpha 0

CD34 1

Mesenchyme stem cells 2

Jurkat cells (T lymphocyte) 3

Endothelial 4

Mesenchyme stromal cells 5

Ductal 6

Endothelial 7

Acinar 8

Myeloid cells 9

Intestine cells 10

Macrophage 11

HB2 cells 12

T-cells 13

42



2. MANIFOLD LEARNING AND ENHANCED VISUALIZATION OF SCRNA-SEQ DATA

Fig. 2.4.7: A set of biological process that are enriched by marker genes in
H1299 scRNAseq dataset. The numbers show the clusters and edges shows the link
between a cluster and a biological process term.

Fig. 2.4.8: Pathway that are enriched by marker genes in H1299 scRNAseq dataset.
The numbers show the clusters and edges shows the link between a cluster and a
pathway. Node that is highlighted yellow show the SARS-CoV-2 cell-specific path-
way. Most of the other green nodes reveal the shared and cluster-specific functional
pathways in the immune system.
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are found to be enriched in immunity functions, and signaling identified, including

SARS-CoV-2 innate Immunity Evasion, Host-pathogen interaction of human corona

viruses, SARS coronavirus and innate immunity, Type II interferon signaling (IFNG),

and the human immune response to tuberculosis. Also, the gene set enrichment of

Fig. 2.4.7 shows that most biological processes are associated with immunity func-

tions, including response to interferon-alpha, protection from a natural killer cell,

type III interferon production, regulation by virus of viral protein levels in a host

cell, and detection of virus, among others. In addition, we obtained a list of overlap-

ping marker genes that are involved in Herpes simplex virus 1 (HSV-1) infection and

the Influenza A pathway. These findings suggest potential markers for subsequent

medical treatment or drug discovery by comparing to similar diseases in terms of

functionality. Moreover, although numerous findings suggest potential links between

HSV-1 and Alzheimer’s disease, a causal relationship has not been demonstrated yet

[6].

The outcomes of this work can be summarized as follows. Performing ICA on

transformed data after applying manifold learning techniques provides improved the

clustering output and meaningful organization of cell clusters. Moreover, modified

LLE combined with k-means leads to an enhanced view of the data and the cor-

responding clusters by ”untangling” the complex, hidden relationship in a higher-

dimensional space. Such non-linear dimensionality reduction methods have been

shown to be very powerful as they preserve the locality of the data from higher

to lower dimensions. Evaluating the incidence of ICA as a visualization scheme and

further reduction step shows better clustering and enhanced visualization simultane-

ously. This trend leads to a research avenue that involves a combination of non-linear

manifold learning techniques followed by linear methods, which has shown to be more

powerful than conventional methods such as PCA or ICA applied alone.

44



2. MANIFOLD LEARNING AND ENHANCED VISUALIZATION OF SCRNA-SEQ DATA

References

[1] Maayan Baron et al. “A single-cell transcriptomic map of the human and mouse

pancreas reveals inter-and intra-cell population structure”. In: Cell systems 3.4

(2016), pp. 346–360.

[2] Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps for dimensionality re-

duction and data representation”. In: Neural computation 15.6 (2003), pp. 1373–

1396.
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CHAPTER 3

Conclusion and Future Work

3.1 Conclusion

We have proposed a method that focuses on identifying different cell types using pow-

erful manifold learning for dimensionality reduction combined with independent com-

ponent analysis and clustering techniques on scRNA-seq data. This pipeline accom-

modates all the requirements according to standard scRNA-seq protocols to perform

downstream analysis such as quality metrics evaluation, dimensionality reduction,

and clustering. We have conducted extensive experiments to find the optimized pa-

rameters for dimensionality reduction and clustering by finding the number of nearest

neighbors and the number of clusters, respectively. Efficient nonlinear dimensional-

ity reduction and manifold learning techniques significantly improve the clustering

results, and the linear ICA method enhances visualization in a reduced space. Us-

ing multiple benchmark datasets shows our proposed method’s general accuracy and

turns out to be a promising approach for discovering cell types. Performing gene set

enrichment analysis to annotate a set of highly-variable genes obtained from each

cluster reveals biomarker genes involved in different gene ontology terms.

Overall, we delineated a pipeline to highlight the power of a combination of linear

methods such as ICA and manifold learning techniques to find cell types and validated

it using various benchmark datasets.

3.1.1 Contributions

The main contributions of this thesis can be summarized as follows:
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• Proposed a new validated pipeline used to identify cell types in single-cell data.

• Proposed a new combination and a hybrid model for dimensionality reduction

using linear and non-linear methods, which is powerful in exploring the data

from higher to lower dimensions.

• Proposed a mechanism to choose the optimized combination of number of near-

est neighbors and the number of clusters k for clustering and dimensionality

reduction using validity of indices.

• Developed a software tool for identifying cell types in single-cell data and a

GitHub project.

3.2 Future Work

Currently, the proposed method identifies cell types by performing efficient dimen-

sionality reduction and clustering. This is achieved through manual investigation of

top maker genes in biological databases, which is tedious and might not obtain ac-

curate results sometimes. This work can be extended in several ways, some of which

being listed as follows:

• Automatic identification of cell types reduces a great deal of time and effort

because, in the manual investigation, the user has to take all sets of genes and

query in databases to get the results, and evaluating those results is tedious.

• More genes can be selected for the downstream analysis, which contributes more

information using different strategies for selecting genes or employing feature

selection methods.

• Autoencoders is one of the neural networks that can be employed to learn

the representation of the data in lower dimensions. It can be used for further

analysis, which might create more clear representations of the data and improve

clustering results.
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• t-SNE performs well in visualizing the data, and future research can be per-

formed to improve visualization and clustering with hybrid models considering

other dimensionality reduction techniques such as Laplacian eigenmaps and

LLE.

• Self Organizing Maps (SOMs) can be applied for both dimensionality reduction

and clustering, which creates more meaningful neighborhood relations even in

lower-dimensions.

• As a further analysis in the future, one can perform other epigenetics challenges

and emerging directions in single-cell analysis, such as trajectory and pathway

analyses.
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APPENDIX A

Marker Genes

A marker gene is a DNA sequence that has been identified on a chromosome. Marker

genes also help in the identification of the gene responsible for an inherited disease.

On a chromosome, DNA segments similar to each other are more likely to be inherited.

Marker genes are used to trace the inheritance of a nearby gene that has yet to be

discovered but is considered close. The marker genes obtained from our research

are found in few diseases. These marker genes shown in table A.0.1 are helpful in

studying the diseases. Our marker genes list is overlapped in Herpes simplex virus 1

(HSV-1) infection and Influenza A pathway.

Table A.0.1: Marker genes found in similar diseases.

Disease Marker Genes

Influenza

RSAD2, IFIH1, MX1, STAT1, MX2, IRF7,

TNFSF10, OAS1, DDX58, NFKBIA, OAS2,

CXCL10, EIF2AK2, PML, ICAM1,

CXCL8, OAS3, STAT2

Herpes Simplex Virus 1

IFIH1,HLA-B,STAT1,IRF7 TAP1,OAS1,

DDX58,NFKBIA, OAS2,STAT2,EIF2AK2,

SP100, PML,HLA-E,B2M,OAS3,HLA-F

These results can be used for subsequent medical treatment or drug discovery
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by finding similar diseases in functionality. Moreover, although numerous findings

suggested potential links between HSV-1 and Alzheimer’s disease (AD), a causal

relationship has not been demonstrated yet.
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