
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-18-2021

A Secure Proof of Delivery Scheme for Crowdsourced Last Mile A Secure Proof of Delivery Scheme for Crowdsourced Last Mile

Delivery Using Blockchain Delivery Using Blockchain

Vipul Malhotra
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Malhotra, Vipul, "A Secure Proof of Delivery Scheme for Crowdsourced Last Mile Delivery Using
Blockchain" (2021). Electronic Theses and Dissertations. 8605.
https://scholar.uwindsor.ca/etd/8605

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8605?utm_source=scholar.uwindsor.ca%2Fetd%2F8605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Secure Proof of Delivery Scheme for
Crowdsourced Last Mile Delivery Using

Blockchain

By

Vipul Malhotra

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2021

©2021 Vipul Malhotra

A Secure Proof of Delivery Scheme for Crowdsourced Last Mile Delivery Using

Blockchain

by

Vipul Malhotra

APPROVED BY:

B. Anderson

Department of Political Science

A. Jaekel

School of Computer Science

S. Saad, Advisor

School of Computer Science

April 19, 2021

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Shipping a product from a warehouse shelf to a customer doorstep might look

simple initially, but it is a complicated and expensive operation in reality. Moving

the product from the last distribution hub in the distribution channel to the final

destination (residential or business address), also known as Last-Mile Delivery (LMD),

is the costliest and time-consuming phase. Studies show that LMD accounts for 53%

to 70% of the total cost of transportation.

One of the main challenges in the LMD operations is proof-of-delivery (PoD). It is

the responsibility of any LMD solution to provide Proof of Delivery (POD) to confirm

that the purchased item is delivered to the customer (buyer). It makes both sender

and receiver accountable because POD acts as proof that the sender sends the package

to the correct destination, and the buyer receives the product in good condition. Most

of today, PoD solutions uses paper and pen to collect customer’s signature as PoD and

even when handheld devices are used, it only to collect buyer signature. Developing

a secure and trusted PoD solution will increase logistics accuracy, improve customer

experience, enhance packages visibility and tracking and reduce operational cost.

Recently, digital signature and new technologies such as blockchain introduced an

opportunity to improve logistics and LMD operations. Several works in the literature

proposed PoD using blockchain and other cryptographic schemes. In our research, we

investigated existing work; we selected the most promising solutions in the literature

and implemented those solutions to test them against several scenarios. Based on

our analysis, we identified several limitations in the existing work; some of these

limitations are related to security, trust, and scalability. Finally, we propose a new

PoD scheme using blockchain, blind signatures and a reputation-based trust model

to overcome existing limitations in state-of-the-art PoD solutions.

IV

DEDICATION

I would like to dedicate this thesis to my mom for her incredible love and support.

Because I believe that she was the real backbone of our family, this is to appreciate

her selfless hard work and efforts towards the family.

Furthermore, I dedicate it to my dad to raise me like a son and give me wings to

fly. And to my entire family for their unconditional affection towards me.

V

AKNOWLEDGEMENTS

I would like to sincerely express my most profound gratitude towards my super-

visor Dr. Sherif Saad Ahmed, whose input helped me immensely. With his input, I

was able to look at my research with a different perspective and a more critical eye.

Secondly, I would like to express my gratitude to my thesis committee members

for their beneficial advice and suggestions for my thesis.I would also like to thank my

brother Rahul for always encouraging and supporting me.

This project was supported in part by collaborative research funding from the

National Research Council of Canada’s Artificial Intelligence for Logistics Program.

I humbly extend my thanks to the School of Computer Science and all concerned

people who helped me in this regard.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

AKNOWLEDGEMENTS VI

LIST OF TABLES IX

LIST OF FIGURES X

LIST OF ABBREVIATIONS XI

1 Introduction 1
1.1 Overview . 1
1.2 Last Mile Logistics Challenges . 2
1.3 Motivation . 5
1.4 Problem Statement . 5
1.5 Thesis Contribution . 6
1.6 Thesis Organization . 6

2 Related Works 8
2.1 Blockchain . 8

2.1.1 Blockchain Types & Consensus Algorithms 8
2.1.2 The Role of Blockchain in LMD 11

2.2 Supply Chain and Traceability . 12
2.3 Blockchain in Delivering Physical Assets 15
2.4 Crowdsourcing . 18

2.4.1 Crowd-Shipping effects on LMD 21
2.4.2 Reputation Based Systems . 23

2.4.2.1 Reputation System Design Patterns 24

3 Methodology 33
3.1 System Overview . 33
3.2 System Design . 35

3.2.1 System Initialization . 36
3.2.2 Reputation . 37
3.2.3 Carrier Selection Policy . 38

3.2.3.1 SCENARIO 1 . 38
3.2.3.2 SCENARIO 2 . 38
3.2.3.3 SCENARIO 3 . 39

3.2.4 Signature Verification of Agents 39

VII

3.2.5 Delivery Execution . 41
3.3 Operational Scenarios . 44

3.3.1 Carrier Assignment . 44
3.3.2 Verify Signatures . 44
3.3.3 Payment Settlement & Update Reputation Score 46
3.3.4 Dispute Handling . 47
3.3.5 Cancel Delivery and Refund 48
3.3.6 Exceeded Delivery Time . 50

3.4 Security Analysis . 50

4 Experiments and Results 55
4.1 Dataset Used For Experiments . 55
4.2 Experiments Conducted & Results 57

4.2.1 Experimentation Design . 57
4.2.2 Experiments Results . 58

4.2.2.1 Delivery Execution Results: 58
4.2.2.2 Proof of Delivery Transaction Logs: 61

4.3 Cost Analysis . 63
4.4 Tools Used for Implementation . 70

5 Conclusion and Future Work 71
5.1 Conclusion . 71
5.2 Future Work . 72

REFERENCES 73

APPENDIX A Smart Contracts 80

APPENDIX B Scripts 99

VITA AUCTORIS 108

VIII

LIST OF TABLES

2.1.1 Difference between various types of Blockchain 9

3.4.1 Security Features of various POD Systems 54

4.3.1 New POD System Cost . 65

4.3.2 Single Carrier POD System Cost . 66

4.3.3 Multiple Carrier POD System Cost 67

4.3.4 Gas Cost Comparison . 68

IX

LIST OF FIGURES

3.1.1 System Overview of the POD solution showing the main participating

entities participating in a successful transaction 35

3.2.1 Generation and verification of blind signatures in proposed system . 40

3.2.2 General Blind Signature Process . 41

3.2.3 Sequence diagram of the smart contract code that shows the flow for

a successful and un-successful delivery execution 42

4.1.1 Delivery Dataset Description . 56

4.2.1 Experimentation Design . 57

4.2.2 Reputation Scores Vs Number Of Deliveries where N (number of car-

riers) equals 5 . 59

4.2.3 Reputation Scores Vs Number Of Deliveries where N (number of car-

riers) equals 10 . 59

4.2.4 Reputation Scores Vs Number Of Deliveries where N (number of car-

riers) equals 15 . 60

4.2.5 Reputation Scores Vs Number Of Deliveries where N (number of car-

riers) equals 20 . 60

4.2.6 POD: Assign Carrier Transaction Logs 62

4.2.7 POD: Signature Verified Token Transaction Logs 62

4.2.8 POD: Settle Payment Transaction Logs 63

4.3.1 Cost comparison between various POD systems 69

4.3.2 Time comparison of between various POD systems 69

X

LIST OF ABBREVIATIONS

LMD Last Mile Delivery . 1

CDP Collection and Delivery Points . 2

POD Proof of Delivery . 3

AHD Attended Home Delivery . 3

RB Reception Boxes . 3

POW Proof Of Work . 10

BFT Byzantine Fault Tolerance . 10

PoS Proof of Stake . 10

PoB Proof of Burn . 10

POC Proof of Capacity . 11

BIDAS Blockchain and IoT Delivery Assurance on Supply-chain 12

XI

IoT Internet of Things . 13

P2P Peer to Peer . 14

B2C Business to Consumer . 14

IPFS Interplanetary File System . 16

SCAA Smart Contract Attestation Authority 16

BT Buyer Transporter Contract . 18

CS Courier Service contract . 18

OC Occasional Courier . 18

APL Automated Parcel Lockers . 19

SDD-CSF Same-Day Delivery with Crowd-shipping and Store Fulfilment . . 20

ISD Information Sharing Driver . 20

CSL Crowd-sourced Logistics . 23

XII

PDF Probability Density Functions . 26

ARV Attribute Reputation Value . 28

BRBC Blockchain Reputation-Based Consensus 28

ACL Access Control List . 31

POA Proof of Authority . 33

MITM Man-In-The-Middle . 51

XIII

CHAPTER 1

Introduction

1.1 Overview

Last Mile Delivery (LMD) as the term suggests is the movement of an item from

its last distribution hub to the final destination. It is considered to be the costliest

and time-consuming phase in the whole delivery scenario. The rapid growth of e-

commerce and online retailer’s and customer’s expectations of same-day-delivery and

on-demand delivery made LMD an urgent logistic challenge. Several factors increase

the operational cost of last-mile delivery, such as limited delivery services in urban

and rural areas, lack of visibility which result in failed delivery, lack of secure proof-

of-delivery to prevent common last-mile scams and fraudulent activities.

The global cost of LMD in 2018 was $1.99 billion and is expected to reach $7.69

billion by 2027 [52]. As an example, Canada offers online retailers significant growth

opportunities with a population of over 35 million. However, with a landmass that

exceeds 9.98 million square kilometres, many find it challenging to get their products

into their customers’ hands. Hackers commit different types of frauds during the last-

mile journey of a product, including reshipping fraud, stolen or compromised shipping

accounts and interception fraud [51]. Based on Transunion findings [51] , shipping

fraud were among the most significant fraud trends in 2019 which saw 391% increase

year over year.

There are many stakeholders in LMD, and it is important to design an operational

last-mile delivery scheme that satisfies the expectations of those stakeholders. The

common LMD stockholders are well described [50] by Taniguchi et al. Those key

1

1. INTRODUCTION

stakeholders are:

• Shippers: responsible to maximize their profit while optimizing the level of

service under the time window constraint.

• Freight carriers: aim to minimize the transportation costs while optimizing

the level of service under the time window constraint.

• Residents or consumers: responsible to maximize their gain by the timely

purchase of necessary goods.

• Administrator : responsible to maximize the economic prosperity of the city

and to align all conflicting interests together to achieve a sustainable transport

system.

Our research focuses on developing a decentralized last-mile delivery scheme that

improves delivery time, visibility, and reduces potential scams and fraudulent activi-

ties.

1.2 Last Mile Logistics Challenges

Challenges associated with last-mile logistics are many, like the number of failed

delivery attempts, insecure proof of delivery, choice of the last-mile delivery mode,

how delivery attributes affecting consumer participation in buying the product and

effects of the delivery window etc. In this thesis, we will focus on a subset of the LMD

challenges. In particular, we focus on security, visibility, delivery mode and delivery

time. We do not focus on optimization challenges, such as optimizing the number of

carriers or vehicle routing.

The impact of failed first-time home deliveries on other carrier journeys, i.e. re-

peat deliveries and customer trips to retrieve their carrier depots’ assets, increases

concern to e-retailers. Liying Song et al. [49] try to address this last-mile problem (de-

livering a package from the last distribution hub to the customer’s house) through a

concept of collection and delivery points Collection and Delivery Points (CDP). With

2

1. INTRODUCTION

a large proportion of failed deliveries, many different delivery solutions emerged, al-

lowing carriers to drop off consignments without the actual need of obtaining the

signatures Proof of Delivery (POD). These solutions limit several desirable delivery

modes, such as same-day delivery, and on-demand delivery, and other custom delivery

modes. Moreover, they have security concerns and skip the most important part in

LMD i.e. obtaining proof of delivery which later resulted in the correct customer

delivery problem, hence incurring unnecessary refund costs for sellers. Despite major

limitations, their proposed solution results show that carrier processing costs associ-

ated with home delivery failures are reduced significantly by diverting failed deliveries

to CDP.

In [56] Xuping Wang et al. compare the competitiveness of three commonly used

last-mile delivery modes, namely, Attended Home Delivery (AHD) or in-person de-

livery, Reception Boxes (RB) and CDP under different scenarios exceptionally high

population density areas. AHD couriers send goods to customers’ doorsteps, receive

their signatures via hand-held devices and leave for the next order - this is the most

widespread last-mile delivery model. Though AHD provides the opportunity to inter-

act face-to-face with customers, its low operation efficiency makes it undesirable for

massive orders, and insecure POD aggravates the concerns. There are various kinds of

reception boxes such as independent reception boxes installed at the garage or home

yard, delivery boxes equipped with docking mechanisms retrieved after goods inside

taken away and shared reception boxes installed near customers for shared usage.

However, the reception boxes investment is costly, and there is no available evidence

of the product received to correct hands. CDP refer to convenience stores and other

institutions belonging to cooperates with express companies where customers pick

up their goods. Customer satisfaction will not be affected as CDP are the places

they commonly visit, i.e. grocery stores, but the verifiability of the correct customer

receiving the product POD is always a concern.

To overcome these challenges of obtaining proof of delivery either by hand-held

devices or via insecure mechanisms and eliminating the need for buyer to be present

at the time of delivery, the concept of blind signatures and proof of delivery via

3

1. INTRODUCTION

immutable blockchain ledger are investigated in this thesis. A secure POD scheme

should provide flexibility to the buyer to nominate another person on his behalf to

receive the product, makes each party accountable and builds transparency in the

system.

Customer satisfaction in the last-mile delivery always a critical factor from the

seller’s perspective. Dung H Nguyen et al. [38] conducted a study on consumer

preferences for online retailing delivery options. Their study identified five main

factors related to product delivery that affect the customers’ buying decisions. These

factors are the accuracy of estimated delivery time, delivery speed, delivery cost,

the flexibility of delivery day (e.g. weekday, weekend), and delivery time slot (e.g.

morning, evening, or night). Of course, some of those factors are more important in

some online shopping cases, for example, Chen et al. [9] showed that the speed of

delivery is a crucial concern to consumers shopping online for specialty foods, where

short delivery time directly contributes to the quality of food quality. In addition,

Dung H Nguyen et al. [38] analysis showed significant differences between gender

and income group. Certain customer segments indicate distinct preference structures

they name it as a price-oriented community, time-and-convenience-oriented value-for-

money-oriented community. In addition to the previously mentioned factors, visibility

in LMD is another essential factor; visibility refers to tracking and tracking delivery

items in real-time [11] .

To achieve high customer satisfaction and accommodate the above-mentioned de-

livery attributes in my proposed last-mile delivery scheme, I provided buyers flexibility

in changing location and superior product handling instructions even after the order

is placed. This flexibility is provided via the concept of crowd-sourcing, which em-

powers sellers to assign carriers from the available pool according to the customer’s

customized delivery attributes. Furthermore, to eliminate the need for buyers present

at home at the time of the delivery concept of blind signatures introduced that pro-

vides the ability to sign on the document on behalf of the buyer as well. To ensure

each party in a last-mile delivery get their share of data visible, we propose a new

method to obtain POD using an immutable permission-ed blockchain network. It

4

1. INTRODUCTION

empowers the party to see their share of data and builds visibility to the system.

1.3 Motivation

One potential solution to the ever-growing cost of last-mile delivery to help online

retailers fulfill customers’ requirements and successfully meet their expectations is

crowdsourcing or crowd-shipping. The use of crowd-shipping will reduce LMD de-

livery costs and enable small and middle-size online retailers to compete with large

retailers that use expensive commercials carriers or have their fleets.

Using crowdsourcing for LMD requires a new LMD scheme that enables trust

between the key stakeholders. The requirements of this new LMD delivery scheme

are decentralization, security, trust, and flexibility. In the literature, very few works

proposed LMD schemes that could satisfy these requirements. The majority of the

literature’s work focuses on optimizing LMD for fixed-size fleet and mainly on routing

and minimizing carriers’ number.

1.4 Problem Statement

There is an urgent need for designing a flexible LMD scheme that leverages crowd-

sourcing. We need to investigate the use of blockchain and smart contracts to develop

a secure LMD scheme. The scheme should provide a secure approach to obtain a

trusted and verifiable POD and encourage fairness between the LMD stakeholders.

The requirements of such scheme based on current LMD challenges are:

1. Build immutable proof of a delivery system that brings visibility for each party

involved in a delivery.

2. Verification of agents via secure cryptographic methods.

3. Leverage benefits of crowd-sourcing to build trust in the last-mile system.

4. Solution must be auditable to handle disputes.

5

1. INTRODUCTION

5. Ensure each participating entity in delivering a product have enough incentive

and equal opportunity to participate without reserving collateral.

6. Penalized mechanism to discourage malicious activities.

7. Eliminate the need for receiving entity to be present at the time of delivery.

1.5 Thesis Contribution

The contribution of this thesis is summarized in the following points:

• Reviewed literature on last-mile delivery challenges, studied various design pat-

terns used by the previous researchers in building a proof of delivery systems to

overcome these challenges and the limitations involved in their research work.

• Reverse engineering the state-of-the-art proof of delivery scheme for delivering

physical assets.

• Further investigated how using blockchain one can enable different delivery

modes such as crowd-sourcing with secure POD. Accommodated crowdscouring

benefits in our designed solution, especially in selecting the carrier from the

available pool based on their reputation metric.

• Design a new scheme for LMD using blockchain and smart contract that sup-

ports secure and trusted POD using the blind-signature in the crowdsourcing

environment.

1.6 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 discussed how using blockchain contributes to last-mile delivery and

various proof of delivery solutions that use blockchain as a means of traceability

6

1. INTRODUCTION

and delivering physical assets. Additionally, it presents an analysis and limi-

tations of these works and discussed how crowdsourcing platforms along with

blockchain’s immutability contribute to last-mile delivery operations.

• Chapter 3, present the design of a new crowdsourcing scheme for LMD by

levering blockchain and smart contracts. The proposed scheme uses a blind sig-

nature, a lightweight reputation system. Provide algorithmic details of different

smart-contract modules which are used to execute the whole last-mile delivery

process.

• Chapter 4, we evaluate the proposed scheme using a real-life delivery orders

dataset. We provide an implementation of the proposed scheme using Ethereum

[13] as a proof-of-concept. In addition, we compare the performance and the

cost of the proposed scheme with existing work in the literature.

• Finally, Chapter 5 concludes the thesis and discusses the potential future work.

7

CHAPTER 2

Related Works

This chapter focus on the existing literature that uses blockchain for obtaining POD,

blockchain for crowd-sourcing and last-mile delivery in general. The primary focus is

on literature that contributes towards using blockchain as means of delivering physical

assets and crowd-sourcing via reputation-based systems.

2.1 Blockchain

Blockchain refers to a distributed ledger of records that act as proof of transactions

between various entities. A typical blockchain transaction road-map involves the fol-

lowing stages. First, a transaction is requested (sending money from one person to

another). Second, the transaction is broadcasted over a peer-to-peer network. Third,

the nodes in the peer-to-peer validates the transaction. Fourth, the transaction is

represented online as a block. Fifth, blocks are chained using cryptographic tech-

niques. Sixth, blocks are added to the existing chain and seventh, the transaction is

said to complete.

2.1.1 Blockchain Types & Consensus Algorithms

A consensus algorithm referred to a protocol through which all peers in the blockchain

network reach out on a standard agreement about the distributed ledger’s state.

Thus, the consensus protocol builds data consistency and establishes a coordination

pathway among the peers. The blockchain consensus protocol comprises some specific

objectives, such as building an agreement, cooperation, co-activity, equivalent rights

8

2. RELATED WORKS

Table 2.1.1: Difference between various types of Blockchain

Public (Permission-less) Blockchain

1. Zero trust network of peers who competes
against each other to confirm a transac-
tion, arrange the transaction into blocks
and get rewarded.

2. The main working principles are a com-
plicated mathematical puzzle and a possi-
bility to easily prove the solution.

3. Open to any party who is ready to join
the network.

4. High Transaction cost.

5. Examples: Proof of Work(POW)

Private (Permission-ed) Blockchain

1. Only certain parties are allowed to con-
trol the transaction that is written to the
block. On top of the blockchain, a control
layer runs which governs action performed
by allowed parties.

2. Super peers are trusted to some degree.

3. Low Transaction cost.

4. Examples: Hyperledger Fabric

Hybrid Blockchain

1. Blend of the private and public
blockchain. It utilizes the features
of both types of blockchains that is one
can have a private authorization based
framework as well as public consent less
framework.

2. Opt to incentivize users if they want to.

3. Low Transaction cost.

9

2. RELATED WORKS

to each node, and compulsory participation of every node in the consensus process.

Hence, an agreement calculation targets finding a typical understanding that is a

success for the entire network.

Many consensus algorithms exist in the literature, but I will discuss the commonly

used consensus algorithms in Blockchain-based applications—Proof Of Work (POW)

consensus algorithm utilized to choose a miner for the next block. POW calculation’s

focal thought is to tackle a tricky numerical riddle and effectively give out an answer.

This numerical riddle requires a ton of computational power, and consequently, the

node who tackles the puzzle at the earliest opportunity will mine the following block.

For a more detailed understanding of POW refer [22].

Byzantine Fault Tolerance (BFT) consensus algorithm is the element of a dis-

tributed network to arrive at consensus(agreement on an equal worth) in any event

when a portion of the nodes in the network neglect to react or react with erroneous

data. A BFT component aims to protect against the framework disappointments by

utilizing aggregate choice-making (both – right and flawed nodes), which plans to

decrease the impact of defective nodes. For a more detailed understanding of BFT

refer [20].

Proof of Stake (PoS) is a sort of agreement component utilized by blockchain

organizations to accomplish circulated agreement. It expects clients to stake their

ether’s(ETH) to turn into a validator in the organization. Validators are liable for

exactly the same thing as excavators in POW [22] requesting exchanges and making

new squares so everything hubs can concede to the condition of the organization.

The number of upgrades in contrast to POW is better energy effectiveness, lower

passage boundaries, decreased equipment necessities, more grounded invulnerability

to centralization, and more grounded support for shard chains. For a more detailed

understanding of PoS refer[14].

In the Proof of Burn (PoB) consensus algorithm, instead of placing into expensive

gear equipment, validators ’burn-through’ coins by sending them to the location from

where they are unrecoverable. By presenting the coins to an inaccessible location,

validators get a benefit to mine on the framework subject to a random selection pro-

10

2. RELATED WORKS

cess. Hence, consuming coins here infers that validators have long-term commitment

as a trade-off for their short-term loss. For a more detailed understanding of PoB [5]

In the Proof of Capacity (POC) consensus algorithm, validators ought to con-

tribute their hard drive space as opposed to placing assets into exorbitant hardware

or burning-through coins. The more hard-drive space validators contribute, the bet-

ter are their chances of getting picked for mining the following block and gaining the

block reward. For more detailed understanding of POC refer [46].

Some other consensus algorithms are Proof of Elapsed Time, Proof of Activity,

Proof of Weight, Proof of Importance, Leased Proof of Stake, etc. [30].

2.1.2 The Role of Blockchain in LMD

A blockchain ledger can maintain and store all information pertaining to a transaction

and acts as a single source of truth for customers, sellers, custom officials, delivery

services and so forth. Each entity involved in the delivery gets access to their share

of records thus, restricting the sensitive information to be withheld with accountable

entities. Million of goods trade daily across the globe that range from small shipments

to massive containers of ocean cargo thus providing many points of failure in a product

journey where fraud or theft might occur. The adoption of blockchain-based last-mile

delivery solutions will enable accurate documentation and fast transfer of original

documents. This makes the supply chain more efficient, builds trust between parties

and reduces unnecessary transaction costs.

Shipchain [45], is one of the blockchain-based solutions existing in the market to

provide the final delivery on the customer’s doorstep. Key functionalities in their busi-

ness application are as follows: pick up and delivery with full transparency provided

by the blockchain from the convenience of your smartphone, monitor in-real-time,

tracking updates simultaneously between web and mobile for any moving shipments,

upload signed documents, handling procedures, inventory lists, and shipment images

with just a few taps and share key shipment information and updates with the re-

cipient through the life of the shipment. However, there are certain limitations in

terms of secure verification of delivery agents and obtaining proof of delivery using

11

2. RELATED WORKS

handheld devices which need to be addressed, and those issues are addressed via my

newly proposed POD platform explained in chapter 3 of this thesis.

2.2 Supply Chain and Traceability

Mehmet Demir et al. [12] focus specifically on a subsection of the supply chain indus-

try called ”the last mile.” When parties with clashing interests team up in a business

climate, they need to construct trust to smooth the deals. It is average that when

the business goes as arranged, there is no explicit requirement for intermediation;

all gatherings direct and proceed with their organizations inside their decent edges.

Trust is essential amid conflict; when things don’t go true to form, parties need veri-

fication. They need a dependable, untampered, and verifiable record of information

identified with the exchange in question. Blockchain innovation gives this trust.

Other than its exemplary advantages, blockchain innovation offers answers for

two principle issues in the conveyance business. These are Chain of custody through-

out the handover of packages and Continuous monitoring. Chain of custody is an

issue when multiple parties conduct business indirectly through their delegates, in-

termediaries or specialists. These interactions, fundamentally the handover packages

between independent parties, have a security and trust issue. The absence of ordered

documentation or paper trail recording the succession of custody and handovers with

adequate physical or electronic proof feeds the problem. This trust issue cost organi-

zations as business misfortune or costs, for example, insurance fees due to difficulties

in finding responsible entities for harm that occurs at an unknown time.

To defeat the information flow issues, help other supporting business processes

and assemble trust, they proposed a novel blockchain-based structure Blockchain and

IoT Delivery Assurance on Supply-chain (BIDAS) for making solutions for delivery

assets that record and offer information on business members’ interaction. This struc-

ture makes arrangements that incorporate handover and monitoring aspects of the

delivery businesses and leverages few benefits of hyper-ledger blockchain technology.

BIDAS models the interaction flow between the initiator and administration dele-

12

2. RELATED WORKS

gates. The price sensitivity of the clients towards the delivery fees would be a test

for this sort of system as the advantages of the blockchain may not legitimize the

expense of each execution. Security and accessibility issues are additionally drilled

down. However, they guaranteed that their system carries trust-capable monitoring

even with restricted data.

Mohamed Awwad et al. [3] examines the case studies on early execution of

blockchain technology with Internet of Things (IoT) with uncommon significance

on the degree of deployment of blockchain technology for validation, transparency,

and traceability purpose at different enterprises, for example, online business, food,

and warehousing etc. Traceability in supply chain research fundamentally required

because of expanding transportation and shipping items throughout the world. They

featured different use-cases that are leveraging blockchain technology to tracing prod-

ucts. For instance, IBM teamed up with Capgemini at the Watson IoT centre and

effectively built up a Smart Container Management blockchain technology prototype,

tracking tuna fish over the blockchain framework, British airways use-case on main-

taining flight information on blockchain and many more.

Shiaofang Liang et al. [32] explores the utilization of traceability systems and

blockchain technology in domestic and foreign industry fields. The conventional prod-

uct traceability system has the issues of product label copying, spamming and prod-

uct quality issues and the difficulty of positioning the problem link. Consolidating

blockchain technology and supply chain qualities, they build blockchain and supply

chain logistics information ecosystem model from three dimensions: object, attribute,

and function. The primary layer is the base layer made out of the infrastructure and

information. The infrastructure layer gathers the fundamental information created by

each connection of coordination exercises through sensors, standardized identification

and other information procurement hardware. The basic information incorporates

logistics information, products, stockpiling, and so on. It likewise includes the enter-

prise information of third-party logistics enterprises. After the necessary information

is transferred to the data layer through the transfer mechanism it is encrypted asym-

metrically and timestamped to create information blocks, which are then connected

13

2. RELATED WORKS

into a blockchain. The subsequent layer is the core technology layer, comprised of

the network, the consensus and the contract layers, respectively. The network layer

spreads and stores the information blocks to each node through a specific network

transmission protocol and authentication mechanism and permits the confirmed nodes

to participate in the consensus and record blocks. The third part is fundamentally

the interaction layer, where the individuals from the chain conduct various business

operations. The major limitations of these systems are that they consider traceability

of an item as a major issue, not consider accountability of entities and they build a

Business to Consumer (B2C) platform instead direct Peer to Peer (P2P) platform

where consumers interact externally via interaction layer without their direct partic-

ipation in the blockchain system.

Recent work from Ju Myung Song et al.[48] highlights the challenges like a complex

chain of actors, high-cost entry barriers, challenges in tracing physical items and above

all culture adoption of decentralization in the last-mile logistics industry. To address

a portion of these difficulties, Johannes Kretzschmar et al. [31] introduced a strategy

to execute cargo sharing in the last mile setting utilizing a P2P network arrangement

dependent on blockchain and smart contracts. Their work’s objective is to execute

a platform functionality in logistics via a combination of an adapted blockchain and

smart contract technology as advancement to a sharing platform. The attention is

on the aversion of a proprietary provider with related costs because of infrastructure,

service provisions and eventually the danger of reliance on a market monopoly posi-

tion. Plus, there ought to be full authority over information distributing, stockpiling

and a straightforward interaction model through open smart contracts. Contrasted

with sharing platform solution, their P2P approach evades the danger of infrastruc-

ture failure with increased performance and scalability, as claimed by researchers.

Their proposed execution tried to store demands over blockchain, and the offer stage

carried out through Whisper channels (P2P clients discuss straightforwardly with one

another utilizing the Ethereum direct correspondence convention- Whisper). Every

customer manages and receives offers autonomously locally. After the lapse of the

solicitation cutoff time, the acknowledged bids calculated by matching algorithm are

14

2. RELATED WORKS

put away on the blockchain. The contractors notified via a corresponding event trig-

ger or Whisper message. Their P2P approach guarantees simple specially appointed

admittance for sharing e-assets, and distributed application suggests high unwavering

quality and adaptability.

A portion of the difficulties demonstrated in their work are: heuristics about

the accommodation of offers, calculation of the profit share and offer acceptance

criteria, a requester genuinely searching for the least expensive arrangement or the

smallest possible number of service providers to improve on scheduling and uniform

information model that covers all potential parts of last-mile delivery, like time, size

or weight limitations or extra prerequisites, like cooling or tracking of the carrier

vehicle. Work from both of these researchers contributes towards sharing resources

for last-mile logistics via e-marketplace use-case and helps in e-procurement.

2.3 Blockchain in Delivering Physical Assets

Riham AlTawy et al. [1] address the research problem of anonymous delivery of

the purchased physical goods via a blockchain-based platform called- Lelantos. Their

system is inspired by onion routing techniques which used to achieve anonymous mes-

sage delivery. Lelantos combines a blockchain smart contract interface to reasonably

and secretly a transitional delivery process without a trusted third party. It is a web

service to promote and enlist delivery companies that offer the requested service and

contractual party-side applications to monitor the state of the smart contract and

communicate with it based on the contractual party’s role. This platform utilizes a

lightweight execution of the on-chain operations to limit the on-chain code execution

and consequently gas use. The primary highlights of this stage include:

1. Fair Exchange: The package delivery directed by a decentralized smart con-

tract guarantees the reasonable exchange of assets to both vendors and delivery

companies and that package delivered to the intended customer.

2. Customer anonymity: No private data identified with the client revealed to any

15

2. RELATED WORKS

of the contractual parties.

3. Customer-merchant unlinkability: the inability of an adversary to trace a given

client back to the shipper or the opposite way around by inactively observing

the state of the contract or by being working together with appropriate chosen

subsets of delivery companies.

However, certain assumptions are made which otherwise breach their systems,

like no external attacks via GPS device, appropriate packing of goods, and delivery

companies paying regular shipping fees etc. In the end, they defined the security

properties of their system and provide evidence to support their security claim. They

contrasted their model and other existing recommendations and guaranteed their

convention disposes of the requirement for a confided in outsider and guarantees

reasonable trade between contractual parties and the offered obscurity by means of

both the blockchain and onion routing protocols.

The most promised solutions that tackle the problem of proof of delivery in deliv-

ering physical assets are provided by Khaled Salah et al. [24]. Researchers provided

two versions of POD, one with a single transporter involved in the delivery scenario

and the other with multiple transporters involvement. The proposed solution is suf-

ficiently conventional and can be applied practically to almost all shipped physical

items and assets. Their solution boosts each participating entity, including the ven-

dor, carrier, and purchaser, to act honestly, and it dispenses with the requirement for

an outsider as an escrow. The proposed POD solution guarantees responsibility, time-

liness, trustworthiness and makes it auditable. Additionally, the proposed solution

utilizes a Smart Contract Attestation Authority (SCAA) to guarantee that the code

follows the terms and conditions endorsed by the participating entities. In the real

world, courier and delivery companies use trackers and proof of delivery frameworks

to guarantee that their client’s necessities are met on schedule and without delays.

This solution uses equivalent settled upon security to boost every one of participating

entities to act genuinely. It guarantees the integrity of signed terms and conditions

structure by utilizing Interplanetary File System (IPFS) hash stored in the smart

16

2. RELATED WORKS

contract. It exhibits responsibility by using keys and hashes for the check of the gen-

uine real beneficiary. Refund and cancellation are likewise dealt with to safeguard the

privileges of the vendor, purchaser and carrier. Each participating entity signs the

terms and conditions agreement and consent to its content by depositing collateral

that is double the delivery item’s cost. At that point, the vendor prepares the item

and hands it over to the carrier. Each item has two keys that the vendor gives, for

example, a key assigned to the carrier referred to as KeyT and a key given over to

the purchaser referred to as KeyB. The carrier delivers the item to the purchaser,

and the two of them trade their keys. It guarantees that the carrier has arrived at

the planned purchaser. Both the carrier and purchaser enter the keys to the smart

contract, and confirmation happens. The smart contract registers the hashes of the

keys entered, and if the hashes match, the delivery payment is settled. The purchaser

is refunded one item price; the carrier gets its deposited collateral with additional

10% of the item price paid for the delivery service. Finally, the vendor receives the

remainder of the stored item price, including the vendor’s collateral and 90% of item

price paid by the purchaser.

In its second version[42], it gave a proof of concept for multiple carriers’ inclusion

by collaborating with a chain of smart contracts. Like the previous one, the frame-

work’s principle participating entities are vendor, purchaser, carrier/(s), arbitrator

and SCAA. However, the difference is that as the item gets handed over between

two entities, a chain of contracts is made dependent on the number of carriers and at

least two contracts needed between a vendor and a purchaser. In any case, the terms

and conditions segment of the contract between the vendor, purchaser and carrier(s)

stays as before. Three types of contracts intended to deliver the item between the

vendor and the purchaser and make it versatile to the number of carriers required

per delivery. The contract is made dependent on the need, and together they make

a chain of contracts. Each contract points to the next contract. Hence, every parent

contract has the location of its child contract, and each child has the location of its

parent contract. Additionally, all contracts have the location of the primary main

contract that began the chain. The main contract has an additional location, which

17

2. RELATED WORKS

is the last contract’s location in the chain. Delivery consistently starts with the con-

tract of the type POD and finishes with contract Buyer Transporter Contract (BT).

Consequently, POD is the main contract, and BT is the finish of the chain contract.

In the centre, if the number of carriers is more than one, contracts of the type Courier

Service contract (CS) are created as per delivery needs.

In the POD contract, the vendor, purchaser and first carrier sign the terms and

conditions and store the agreed-upon collateral. Afterwards, the vendor creates the

package and physically hand it over to the carrier with a key. The carrier would then

make the following CS contract and Carrier 2 consents to the terms and conditions

and deposits collateral held by the CS contract. Consequently, every contract goes

about as an escrow to the Ether kept to it. Carrier 2 would then receive the packaged

item and notify everyone that Carrier 1 has shown up. It will permit Carrier 1 to

affirm that it has reached and that the key is currently with Carrier 2. Carrier 2

enters the key, which hashed and contrasted with the key hash effectively accessible

in the contract. If the confirmation is successful, the following CS contract is made

by Carrier 2, and the chain goes on until the objective location is the purchaser’s

location. When the objective is equivalent to the purchaser’s location, a BT contract

executes, and the last key verification stage completes.

2.4 Crowdsourcing

Katarzyna Gdowska et al. [19] consider a concept of occasional carriers which act

as free agents to accept or reject the assignments. The objective is to utilize crowd-

shipping to decrease the total delivery cost in the same-day last-mile delivery frame-

work by permitting Occasional Courier (OC) opportunity to accept or dismiss the

allocated delivery. They introduced probability functions to represent OC’s readiness

to deliver the item to the final customer. The OC’s readiness to acknowledge or dis-

miss the delivery task that is appointed to them and the impact of their choice on

the total delivery cost assumes a significant part in LMD. They urged OC’s to par-

ticipate in the framework by offering them exclusively determined expenses - based

18

2. RELATED WORKS

on historical information concerning the connection between OC’s readiness to accept

delivery and the given remuneration charge. Subsequently, researchers recognized and

advocated the requirement for another system to ascertain a satisfactory pay rate for

OC’s by considering the dynamics involved in the delivery process and consequently

lowering down the cost of last-mile delivery.

Simone Serafini et al. [44] conducted a sustainable crowd shipping study in Rome

using public transport for last-mile delivery. It mainly focuses on crowd shipping ser-

vices deployed using the public transport network wherein passengers act as crowd-

shippers that are already moving for some other reasons. Researchers utilized ex-

pressed inclination to distinguish the main highlights related with the decision of

acting as crowd-shipper and discrete decision models to understand underlying be-

haviour. The research covers the metro areas of Rome, Italy, to quantify the effect of

this freight transport strategy in the urban context. Their methodology assumes the

packages can be picked and dropped off in Automated Parcel Lockers (APL) located

either inside the metro station or in surroundings. Their survey identified socio-

demographic characteristics based on green attitude, i.e. their belief in adopting

sustainable transport modes or using organic products. The green attitude is esti-

mated in four levels(no GA, low, medium, high) partner a load to explicit supportive

of ecological, social viewpoints. Results showed 74% of respondents self-expressed a

medium degree of a green mentality. Locally situated outings expressed by respon-

dents and including the metro are mostly occurring in the first part of the day top

(79%). A comparative recurrence for the work-to-home tours in the early evening is

primarily due to the suburbanite trips during non-weekend days (84%). Admittance

to/from metro stations is typically performed by strolling (52.9%) and the average

travel time related with the whole is roughly 50 minutes. Results demonstrated that

if delivery points are situated inside the metro stations, a worker can go about as

a carrier with a possibility of 54.8%, notwithstanding the low compensation. Along

these lines, researchers with this work help to recognize the most pertinent instru-

ments/service characteristics to work with to build up a crowd-shipping service that

can depend on an adequately enormous base of potential crowd-shippers to provide

19

2. RELATED WORKS

a reliable solution to a substantial number of delivery requests.

Ming Ni et al. [39] inspects the issue of operations in Same-Day Delivery with

Crowd-shipping and Store Fulfilment (SDD-CSF). The principle objective is to close

the gap between nearby stores and clients. SDD-CSF makes order fulfilment plan

from two viewpoints: request souring choice and delivery method selection to limit

the expense related with order fulfilment plan. They embraced the new idea of last-

mile delivery from nearby stores utilizing publicly supported transportation using two

explicit delivery techniques dependent on distinct characteristics of crowd-sourced

shippers: Information Sharing Driver (ISD)’s and OC’s. They developed a dynamic

programming model for request satisfaction which numerically approximated into a

linear programming model. The proposed model considers both currently received

orders and predicted future demand to settle on order assignment decision that min-

imizes direct delivery cost and the future, expected delivery cost. They claimed that

under perfect information, the proposed model could converge to the global optimum

and used the Instacart dataset to quantify their results. The results indicate that their

proposed SDD-CSF model reduces delivery cost up to 15% - 18% approx in compar-

ison to traditional mixed linear programming models like Conservative, Myopic and

global-optimal etc used for delivery prediction. Also, researchers accommodated the

feedback control system in their model to cope with the inaccurate forecast of demand

and ensure timely delivery of items in comparison to other models.

Yuan Wang et al. [57] proposed a compelling large-scale mobile crowd-sourcing

where a massive pool of crowd-workers performs last-mile delivery. To proficiently

settle the model, they formulated it as a network min-cost flow problem and pro-

posed different pruning methods that drastically decrease the network size. They

directed various experiments with Singapore and Bejing datasets. Their outcomes

demonstrate that their solution can uphold real-time delivery optimization in the

large-scale mobile crowd-sourcing problem. In their crowd-delivery model, some pop-

stations circulated the city and an enormous pool of workers prepared to acknowledge

the delivery assignments from pop-stations to the purchasers’ locations. The logis-

tic companies just should be centred around the scheduling optimization of delivering

20

2. RELATED WORKS

parcels to the pop stations. They contrasted their model against UberRush. The crit-

ical distinction is that UberRush centres around on-demand delivery and sends them

to close carriers. However, their model aims to use an enormous crowd-workers pool

to complete the last leg of delivery with any possible transportation means. All in

all, they treat the transportation means as a black box, and these crowd-workers can

walk, take a transport/train, or drive a vehicle to finish the delivery task. A portion

of the pruning methodologies proposed by them is cost-based pruning, the limit based

pruning and recurrence based pruning. Aftereffects of their investigations show that

running time improved by two significant degrees from the benchmark solution and

can uphold real-time delivery optimization in the large-scale mobile crowd-sourcing

problem.

2.4.1 Crowd-Shipping effects on LMD

Brian Odongo et al. [7] investigated the methodology utilized by various crowd-

sourcing platforms to understand the network effects. An orchestrated system intro-

duced to investigate how the blend of technological, networking, pricing and moti-

vational strategies applied to crowd-sourcing platforms that concentrate on last-mile

delivery. The companies don’t deliver the items without help from anyone else; all

things considered, they provide a platform that matches clients who need any prod-

ucts, carriers who showed readiness and capacity to deliver items. Their fundamental

discoveries address questions like: Can successful technology and business model in

passenger mobility and hospitality industries be applied to the delivery of goods?

Over the most recent few years, numerous startups leverage crowd-logistics benefits

and raised millions in funds. Beyond that, huge players are trying different things

with this new delivery service. Amazon, DHL, UPS are to give some examples. The

logistics provider is optimistic about crowd-logistics to answer the clients’ develop-

ing assumptions for quicker, more customized and cost-productive delivery service.

The second colossal finding is technologies like mobile devices, digital payment infras-

tructure, location services, verified user profiles and online reviews, communication

application programming interfaces, and platform-specific algorithms enable crowd

21

2. RELATED WORKS

logistics. Third, the effect of crowd-logistics on LMD is that the fossil fuel emissions

estimated at 94% for deliveries in metropolitan regions and 82% in rural territories,

as demonstrated in certain studies. Some different investigators did a few trials and

found that it helps save 149 km and subsequent decrease of the material impres-

sion of 55% and air utilization of 60%. Fourth, to urge individuals to participate in

crowd-logistics, they should be granted some momentary remuneration.

A report from Barclays [4] proposes that most logistics providers are optimistic

about the future of delivery goods. Barclays tracked down that 92% of suppliers

accept that proceeded with development in internet shopping will give future growth

opportunities. Nonetheless, more than 50% expressed that the critical area they see as

a danger to future gains is adapting to the expanded capacity requirements. Almost

35% picture growth potential through better innovation and expanded global trade

and believed that it will reinforce by investments in additional innovative modes of

delivery. 28.3% are concerned about increased delivery by retailers’ delivery services,

and 33.8% are concerned by increasingly price-sensitive consumers, resulting in online

shoppers opting for cheaper, retailer-led services.

Hon-Yin Mak et al. [34] designed an omnichannel retail network’s pricing strat-

egy for its on the web and in-store channels dependent on shoppers’ choices on the

purchase, channel selection and participation in crowd shipping. They considered

a difference between two repayment modes for crowd shipping, i.e., repaying cus-

tomer deliverers their incurred delivery costs or providing an additional premium as

a (cross-channel) subsidy, against a store-worked delivery model. In the cost-based

reimbursement model, since in-store shoppers gain zero surpluses through reimburse-

ments, the crowd shipping option does not alter consumers’ incentives to shop in-store

or online. In this case, the only effect of crowd shipping is through (potential) effi-

ciency gains in the delivery process, i.e., it benefits the retailer if (and only if) it is

cheaper to use consumers for delivery than its delivery fleet. Through cross-subsidy,

the retailer can price discriminate between the online and in-store channels more ef-

fectively and improve profits and consumer surplus. Such extra gains are more salient

for products whose margin is high and the association between consumer’s travel costs

22

2. RELATED WORKS

and product valuation is strong (e.g., high-end products).Accordingly their overall in-

vestigation uncovers that the company’s productivity impact relies upon shoppers’

availability with the low estimation of time, though the pricing impact benefits firms

selling high-end items. Peer-to-peer crowd shipping can prompt critical mutually

beneficial results in dense metropolitan business sectors for high-end products with

everything taken into account.

Vincent E Castillo et al. [8] contributes towards building up an understanding

of how Crowd-sourced Logistics (CSL) contributes towards logistics effectiveness by

mimicking same-day delivery services from a distribution centre to 1,000 client areas

all through New York City under dynamic market conditions and by contrasting

the outcomes with those of a conventional devoted fleet of delivery drivers. The

discoveries investigated to propose how firms may discover vital advantages utilizing

CSL. They featured future key research areas for crowd-shipping like crowd-sourced

dedicated mixed fleet size optimization, crowd-sourced driver supply elasticity and

supply management strategies, same-day delivery request management strategies, the

suitability of CSL for various urban communities, impact on omnichannel dispersion

systems, and motivations for crowd-sourced drivers.

2.4.2 Reputation Based Systems

Reputation refers to building trust between two parties based on their behaviour

within the system. Let’s discuss an example of UberEats [55] reputation/rating sys-

tem to allow carriers proper functioning. These ratings help carriers understand what

their customers think of them and build trust in the system. Factors for calculation

of these ratings are:

1. Once the transporter finishes the pickup, and the application offers the chance

to rate the restaurant. They additionally rate their client once they drop off

their request.

2. Restaurant staff and clients have the choice to leave you criticism, as well. If

somebody gives a thumbs down(negative rating), the application may ask that

23

2. RELATED WORKS

individual for somewhat more input concerning why that rating was picked.

3. The application adds the evaluations a transporter gets into an average shown

to the clients previously and during the delivery.

4. Carrier can see average fulfilment rating in their application.

5. Generally evaluating comes from their last 100 appraisals from the restaurant

staff and delivery clients, and a carrier gets evaluations solely after ten effective

deliveries.

If carriers reliably get negative appraisals, warning issued, and Uber share resources,

including tips from other delivery individuals. If their rating didn’t improve, they

might lose admittance to the application.

2.4.2.1 Reputation System Design Patterns

Sergio Marti et al. [36] contributed towards a useful taxonomy of the field of peer-

to-peer reputation design. The reputation system’s framework usefulness essentially

partitioned into three-phase segments: Data Sharing, Scoring, and Response. The

main thrust behind reputation system design is offering assistance that seriously mit-

igates misbehaviour while imposing a minimal cost on well-behaved users. Subse-

quently, it is fundamental to the behaviour and expectations of typical right users,

the objectives and attacks of adversaries, and technological limitations resulting from

the system’s environment. There are two essential kinds of adversaries in peer-to-

peer networks: selfish peers and others are malicious peers. Self-centred peers wish

to utilize framework services while contributing negligible or no assets themselves.

On the other hand, malicious peers’ objective is to cause harm, either explicitly

focused on individuals from the network or the framework overall. The central part

of a reputation framework is liable for gathering data on peer’s conduct, which will be

utilized to decide how dependable they are on the absolute scale and comparative with

different peers. Associating a history of behaviour with a particular agent requires

a sufficiently persistent identifier; in this manner, a few properties in an identity

24

2. RELATED WORKS

scheme must be considered. These properties incorporate anonymity, spoof-resistant

and unforgettable. Utilizing these network identities, a reputation framework protocol

accumulates information on peer conduct in past exchanges to decide the ratings.

The amount and nature of this information are entirely against one another in

such distributed frameworks. Most careful peers may need to depend on their insight

and utilize just neighbourhood information while deciding to transact with a given

peer. Hence as the quantity of information assembled expands, the credibility of each

snippet of information diminishes. To increase the information sources a cautious

agent primarily relies on information collected from one or multiple sources. The

primary sources of information are personal experience, one-hop trusted peers (rep-

utable neighbours having an a-prior relationship), multi-hop trusted peers (reputable

peers that can trust other reputable neighbours) and the global system(all reputable

peers).

Most reputation systems don’t attempt to verify the integrity of the information

collected, which plays an essential role in reputation calculation; instead, they assume

the majority of users are honest and well-behaved. This problem can be solved using

reputation-based weighting similar to Page Rank. To manage novices (outsiders)

with no exchange history, an outsider adaptive strategy, i.e., all exchange data on

first-time connections with any outsider, are aggregated together. Then utilizing a

generosity metric dependent on recent transactions, an agent assesses the possible

likelihood of being cheated by the next stranger and concludes whether to trust the

next stranger dependent on that likelihood. When a companion’s exchange history

has gathered, the weighting is done then a reputation score computed. This reputation

score calculation occurs through a reputation score function.

In the end, Sergio et al. [36] discussed the incentive schemes and punishment

strategies that come under the response component of a reputation system that plays

a pivotal role in selecting honest peers. These incentive schemes fundamentally offer

one of two incentives: improve service or cash. Service can additionally be improved

in terms of speed, amount and quality. Suppose the reputation framework can distin-

guish effectively malicious peers. In that case, it might fight back in various ways like

25

2. RELATED WORKS

caution other peers, detach from the adversary, kick malicious peer from the network

for a specific period or restrict it. The adversary would have to get another identifier

that might be expensive or difficult to get to re-enter the framework.

Andrew Whitby et al. [58] provides a filtering technique to showcase how unfair

ratings are different and can be easily detected through statistical patterns. The direct

impact of reputation systems is incentivizing legitimate conduct and discouraging un-

scrupulous parties from participating. Researchers comprehensively characterize the

evaluations into two fundamental classes: Endogenous discounting or Exogenous dis-

counting of unfair ratings. Endogenous: covers strategies that bar or give weight to

presumed unfair ratings dependent on analyzing and comparing rating values them-

selves. However, Exogenous covers external factors, for example, the reputation of

raters etc. The assumption here is that low reputation raters will give unfair ratings,

which requires external evidence apart from reputation values. Researchers primarily

focus on the first category (Endogenous), and simulation scenarios are tested to vali-

date the proposed technique. Bayesian reputation framework used to filter out unfair

positive or negative ratings, and these frameworks depend on computing reputation

scores by statistical updating of beta Probability Density Functions (PDF). The

beta-family disseminations are a continuous family of distribution functions ordered

by two boundaries, alpha and beta. By differing these alpha and beta boundaries,

we can accomplish a uniform PDF. Non-uniform PDF can be interpreted as saying

that the general recurrence of a positive result in future is to some degree uncertain.

Researchers attempt to address the collection, age and aggregation of ratings as vec-

tors. When aggregated ratings for a specific rating for a particular agent are known,

it is feasible to ascertain the agent’s reputation probability distribution.

The principal issue with unfair ratings is that these ratings are subjective and

unverifiable. Simultaneously, the reputation framework may keep the seller rates

honest. What assurance is there that purchaser will be legitimate in the assessment

of sellers through ratings? Two types of unfair ratings are unfair positive ratings

(ballot-stuffing) and unfair negative ratings (badmouthing). The danger of unfair

ratings is most elevated when they can control the reputation frameworks to an agent’s

26

2. RELATED WORKS

benefit. For Instance, a purchaser may collude with a seller to abuse the seller’s rivals,

bringing about gains to the seller. This issue turns out to be more convoluted in

binary ratings where negative ratings (i.e., 0) can’t be dismissed essentially because

the ratee (an individual who gets appraisals) has received mostly positive ratings (i.e.,

1). The essential principle of filtering algorithm introduced here dependent on beta

distribution is to check that the score R(Z) of agent Z falls between q quantile(lower)

and 1-q quantile (upper) for each rater X.Their simulated results curiously show

when unfair raters prevail with regards to making seller’s reputations diverging from

their honesty levels, purchasers react by turning out to be more risk-averse or more

risk-seeking.

Zheng Zhao et al.[59] proposed a reputation model based on attribute reputation ,

making user identity credible. In designing a system model, two concepts play a ma-

jor role one is an attribute, and the other is services. For authentication, it need not

check each attribute; instead, it needs vital verifiable attribute information to provide

anonymous service to the owner of the attribute. Services are further classified into

authentication and authorization. An authentication service is an interaction of ap-

proving the attribute’s identity by confirming whether the set of attributes fulfils the

conditions given by the smart contract. Then again, authorized service is authorizers

created through smart contract must be able to sign attributes. Clients can provide

others with the option to utilize a specific attribute through the authorizer or reuse

the privilege after the trust between entities finished. Researchers used the Ethereum

account address to represent the identity of the user. When an identity is made, they

utilized attributes to represent the information contained in an identity. Fields of an

attribute incorporate hash, value, reputation, grantee and certificate. After attribute

creation is done, it’s related to two services: authentication and authorization. The

proprietor of the identity, for the most part, gives the read right to different identities

by permitting them to access attribute values. For instance, a customer can enable

a bank to access his name and ID information to create an account for him. In the

proposed framework to achieve this situation, the operation of attribute citation is

required. A reference request should have been dispatched from the reference or caller

27

2. RELATED WORKS

to the smart contract. The smart contract, at that point, checks the caller’s identity

and sends the reference request to the attribute owner. The attribute owner at that

point concludes whether to allow the attribute to the referencer. If the attribute

owner consents to enable the attribute to, attribute authorization finished. A client

can make his own attributes himself. However, it doesn’t have to pass the check.

As an example, let suppose Bob creates an attribute containing education qual-

ification. When the job seeker needs to confirm his academic record, Bob needs to

allow this attribute. Such attribute can’t be checked unless an educational institution

confirms that this attribute is legit. The proposed attribute signature can resolve this

problem or issue. When attribute requires to be certified by one or multiple parties,

their signatures are required. The certificate field of attribute records signature infor-

mation whenever the signer needs to get verified one can look for the signer address

stored in this field. However, there is the problem with this part, the user can cre-

ate multiple identities over blockchain at no cost, resulting in false identities hence

a risk of less trustworthiness because of the system’s decentralized nature. There-

fore, to solve this problem identity must be associated with reputation to construct

a reputation-based identity management model. To solve the effect of Sybil identi-

ties, Attribute Reputation Value (ARV) is used. It changes dynamically as soon as

the number of interactions increases. . To avoid attribute value getting frequently

changed every time attribute is modified ARV value reduced. Also, the limit is set

for the number of times attributes can modify. When an identity authorizes an at-

tribute to another identity trustworthiness is set up between them. To improve Rep,

the identity should be reliable in interactions with various identities. Subsequently,

it takes care of the issue of brush reputation and in this manner makes ARV really

persuading.

Marcela T. de Oliveira et al. [54] designed Blockchain Reputation-Based Con-

sensus (BRBC) system in which a node should have a reputation score higher than

a given network trust limit before being permitted to embed another block in the

chain. A randomly chosen set of judges will notice the node’s conduct and appro-

priately update the node reputation score. BRBC embraces network maturity as a

28

2. RELATED WORKS

criterion of initial reputation; the longer the node stays in the network, the more

possibility of turning into a miner. The consensus issue is officially characterized by

three properties: validity, agreement and termination. Validity guarantees that if all

the correct processes propose the same value, then any valid process converges to

this value. The key challenges for a reputation based blockchain are to find a way to

achieve the following:

1. Make distributed reputation score scheme for miners dependent on a trust limit

2. Monitor activity of miners.

3. Respond to malicious measures, including provisioning assets to assess and with-

draw the authorization of miners.

4. Keep a list of authorized miners that can change in time and arrange a rotation

mining scheme.

5. Perform network access control and self-organization for the number of autho-

rized miners as per the network’s size.

BRBC consensus mechanism is divided into the particular number of steps these

incorporate Access control (further grouped into three phases: generation of asym-

metric keys public for node ID and private key to finish paperwork for node activities,

a transaction in progress should be approved by the miner who signs it and advances

it to the network through another node exchange when effectively mined it become

part of the blockchain and all nodes will add the public key to the list of identification

keys.), Miner selection (occurs automatically when miners are needed self-selection

happens, i.e., Me >M, e is the average number of miners more prominent than current

miners. The number of judges expected to guarantee legitimate network activity and

screen miners relies upon expected resilience thinking about the number of malicious

nodes, expected time to expel malicious node and accuracy of trust deposited in the

monitored node. To mitigate judge selection manipulation, a node should not have

the option to distinguish its appointed judges ahead of time. Researchers embrace a

29

2. RELATED WORKS

non-reversible pseudo-random choice of judges dependent on the Bloom filter utiliz-

ing the public key of the miner node). After jury selection, each judge keeps up data

about its observed miners. The miner public key added to the trust table, and the

underlying reputation score is appointed to it. In a naive approach, a new miner gets

a high reputation score significantly higher than the threshold on the other hand in

suspicious approach judges don’t anticipate that new miners should be trustworthy

consequently allot a reputation score equivalent to the threshold. A miner should

have a good reputation to take part in the network. The voting favouring the expul-

sion of malicious nodes from a network happens if the reputation score drops down

to a specific threshold value.

The mechanism for expelling a malicious node has two phases voting and expul-

sion. All judges independently issue voting transactions for the nodes. At that point,

every one of these transactions is approved and mined into a block. To expel a node

for a network, more than half of the judges’ expected number should concur that the

node has fallen under a reputation threshold. For expulsion, the appointed authority

who sent the oldest vote should send expulsion transaction. The expulsion transac-

tion is then approved and mined into a block. The validation process incorporates

verification of the signatures of judges and the number of signatures. When a block is

mined, all nodes need to refresh their view and eliminate the address of the expelled

node, disposing of its public key. The significant thing to note is that if a removed

node re-joins the network, it must re-join with another key pair, and it will join as a

participant, not as a miner.

Sidra Malik et al. [35] highlight trust-related problems in the supply chain industry

and try to overcome this with the help of reputation assignment to the parties to

inculcate trust in the system. They proposed a TrustChain system, a three-layered

trust framework: Data, Blockchain, and Application layer. The goal is to achieve the

following:

1. Reputation model that assesses the quality of commodities.

2. Assignment of product-specific reputations for same participants.

30

2. RELATED WORKS

3. Utilization of smart contracts for transparent, effective, secure and automated

calculation of reputation scores.

4. Minimal overhead in terms of latency and throughput contrasted with other

straightforward blockchain-based supply chain models.

The proposed framework’s information layer encompasses supply chain informa-

tion delivered by the sensor gadget, trade events between entities, and regular en-

dorsements. The raw data can be stored in the database at the application layer

(i.e., off-the-chain), while the message digest of data is shipped off the blockchain

layer as transactions. At the blockchain layer, transactions stored on the ledger and

the processed following set of access rules define by Access Control List (ACL). The

entrance rules indicate who can peruse or compose the information on the record.

The transactions invoke smart contracts, which create a reputation and trust mod-

ule. The reputation and trust values put away on the digital profiles of supply chain

entities and items on the blockchain. Ultimately, the application layer associates with

the blockchain layer through queries. Additionally, administrators and regulators can

question the trust and quality scores of entities and commodities. In light of the

retrieved scores, they action rewards and penalties, which reimburse the entities with

high scores by publishing scores, punishes the entities with a low score by revocation

through the network and distribute the eventual product ratings for clients.

The proposed framework TrustChain is permissioned blockchain network uses hy-

perledger fabric for deployment. The smart contract further classified into the quality

contract and rating contract. Quality Agreement enlists the quality rating mea-

sures, for example, temperature thresholds, boundary thresholds (maximum upper

and lower bounds of required temperatures in which commodity is safe) and damage

thresholds (temperature thresholds exceeding which result in complete spoilage of

item). The quality contract generates two outputs: warning notifications and rep-

utations score of the commodity. The commodity reputation scores over and again

refreshed with each exchange event as the commodity moves through the item chain

till it arrives at the last retailer. Rating Contract: For exchange between purchaser

31

2. RELATED WORKS

or vendor, the rating contract is invoked to compute the vendor’s reputation with

three inputs: reputation score of traded commodities, regulator’s rating for vendor

and purchaser’s rating for the vendor—the reputation of the vendor at that point

registered as a weighted aggregate. When the smart contract calculates the repu-

tation, a reputation model is picked dependent on the aggregation function(mean,

middle or beta-reputation). Researchers adopt the time-differing and amnesic trust

score estimation that adjusts to supply chain events, where the recent events given

higher weights than older events. If another trader joins the network, starting trust

score allocated to him is the base score needed to participate in the network. The

trust score estimation includes two stages: one is computing the trader’s general rep-

utation score dependent on the current and past reputation scores, and the other

is calculating the trust score dependent on the overall reputation score and other

application-specific features. Results of their simulation indicated minimal overhead

in terms of latency and throughput is required for this system in comparison to other

simple blockchain-based supply chain models.

32

CHAPTER 3

Methodology

In this chapter, we describe our new crowdsourcing LMD scheme that leverages

blockchain and smart contracts. First, we describe the system design and archi-

tecture. Then, provide detailed descriptions for the main operational scenarios of the

proposed scheme. Finally, we compare our scheme to existing work in the literature

and provide an informal security analysis for our scheme to demonstrate the scheme

is resilient to known security attacks and satisfies the security and trust requirements.

3.1 System Overview

The system objective here is to achieve a last-mile decentralized system that leverages

the benefits of blockchain immutability and reputation based crowd-sourcing. Each

party in the system contains a certain level of trust based on which the system’s user

can choose the consensus algorithm. For instance, if the system’s parties have zero-

trust in each other, then the POW algorithm is most commonly accepted algorithm;

however, if most of parties in the system trust each other, then Proof of Authority

(POA) consensus algorithm is more acceptable. I made certain assumptions while

designing this system: each party is working in a trust-less environment, hence POW

used as a consensus algorithm, and reputation of parties are reliable, meaning no

reputation based attacks are possible in such a system.

The proposed solution uses the Ethereum blockchain to create a decentralized

system, builds trust, and uses immutable logs and events. This type of solution

reduces or eliminates the need for an intermediate agent or broker to sell physical

33

3. METHODOLOGY

items with proof of delivery. The roles of Ethereum entities in the smart contract are

as follows:

• Seller: It initiates the delivery process by asking for carrier assignment. It is

responsible for handing over the item to carrier, assignment of a carrier and

provide ratings to the carriers.

• Buyer: It is the entity that shows interest in buying an item.It provides the

details for specific carrier handling conditions required for purchased item and

responsible for providing ratings to the carriers.

• Carrier: It is responsible for delivery of an item to its correct buyer. Its ratings

and selection policy are handled by rating contract.

• Arbitrator: It is a trusted third party agreed by each entity in the delivery

process who is responsible for resolving disputes off-chain, reaching consensus

on weights assigned to carrier and to conduct few last-mile operations .

The delivery of a product is achieved with multiple smart contracts, facilitating

the automation of process and support in saving all transactions’ history without

alterations. A carrier assigned by a rating contract is based on carriers’ selection

policy 3.2.3. All other parties get notified about the status of the item during delivery.

An agreed upon and trusted arbitrator by each party is also part of the main POD

contract and can only step in in-case of dispute. Each of the mentioned participants

possesses an Ethereum address, and out of these seller and buyer entity contributes

to the carriers’ rating.

Figure 3.1.1 shows overall system overview depicting main participating entities in

a successful transaction.The main delivery contract follows a chain of events that each

participating entity should follow to preserve everyone’s right. All actions that take

place off the chain are accompanied by functions in the contract that trigger logged

events and notifications. The main delivery contract invokes the rating contract,

which holds the pool of carriers’ rating profile. The rating contract is responsible for

selecting a carrier by calculating reputation metric (see section 3.2.2) based on the

34

3. METHODOLOGY

Fig. 3.1.1: System Overview of the POD solution showing the main participating
entities participating in a successful transaction

previous delivery outcomes. In case of dispute, the main delivery contract invokes a

dispute contract that contains all the commonly occurred conflicts. For verification

of signatures, a blind signature contract deployed, which provides the seller’s ability

to send a blinded message to the buyer to obtain its signature and later verify the

buyer’s authenticity.

3.2 System Design

There are certain limitations discovered while replicating and analyzing the state-

of-the-art blockchain scheme for delivering physical assets are [24]. First, scalability

challenge i.e. deposit twice a collateral is not feasible for carrier/s because according

to some articles in New York Times in US alone 1.5 million parcels deliver per day

[23]. It is estimated that on average a carrier delivers 800+ deliveries in a day [41].

Second, verifiability of agents challenge which involves major flaw in verification of

the keys, either seller or carrier can be a fraudster i.e., there is a high chance if any

of the party readies to breach the system and share keys hash of each other bashes

the trust of the current system. Third, arbitrator role not explicitly defined in the

35

3. METHODOLOGY

existing POD work and every-time dispute occurs it goes to arbitrator and resolves

off-chain which incurs unnecessary cost on overall delivery process. To overcome

this set of challenges POD system proposed that leverages blockchain immutability

and crowd-sourcing techniques.The execution of a delivery is divided between set of

contracts and role of each contract is defined as follows:

• Rating Contract: The smart contract that ensures selection of carriers un-

der various different possible scenarios and assigns the one best suited for a

specific delivery. It also maintains the profile of carriers, update reputation

scores,penalizes or reward carriers based on their successful deliveries.

• Dispute Contract: The smart contract that handles the dispute under pre-

defined dispute scenarios that may likely to happen, if still dispute exists then

it is solved off-chain by the arbitrator.

• Main Delivery Contract: The smart contract which acts as the starting point

of the process flow and executes the last mile delivery operations like creating a

package, verification of entities, assigning carrier and invoking dispute contract

etc.

• Blind Signature Contract: The smart contract responsible for generation

and verification of blind signatures between two parties(seller and buyer). It

has function like verify signer function and parties verified function details of

which are attached in appendix 5.2 and explained in section 3.2.4.

3.2.1 System Initialization

A minimum reputation score s is assigned for each new carrier that joins the system.

Apart from that, a carrier pool with reputation scores are maintained by rating

contract to ensure n carriers with varied reputation score exist in the pool before

receiving a delivery request. This is done to ensure every-time a delivery request

36

3. METHODOLOGY

comes the selection policy must be met (section 3.2.3) and carrier must be assigned

to execute delivery.

3.2.2 Reputation

Reputation plays an essential role in building trust in the system because each par-

ticipating entity has a reputation value which reflects the trustworthiness of the at-

tribute(item) exchange. To overcome challenge of reserving collateral from each party

in terms of crypto-currency and to establish trust between two parties, it is essential

to have a reputation based network that leverages the benefits of blockchain im-

mutability and provides a confidence score to accomplish a deal between two parties.

The details about the calculation of this metric are as follows:

Reputation Score: For the carrier’s reputation score calculation, take the sum-

mation of reputation score provided by buyer and reputation score provided by seller

for that very carrier. This can be expressed mathematically as:

Repcarrier = Repbuyer ∗W1 +Repseller ∗W2

Note: Rep stands for reputation. W1, W2 are weights set by the arbitrator.

The proposed system also provides liberty to customize delivery by allowing the

buyer to provide some special delivery handling conditions, for instance: guarantee

delivery temperature conditions between (5 - 10) Fahrenheit. In that case, the sensor

rating can be beneficial. The sensor rating is optional here depending on the type of

physical asset to be delivered. This can be expressed mathematically as:

Repcarrier = Repbuyer ∗W1 +Repseller ∗W2 +Repsensor ∗W3

Note: Rep stands for reputation. W1, W2, W3 are weights set by the arbitrator.

The overall reputation score is computed as summation of all successful transactions

over a period of time :

37

3. METHODOLOGY

Rept =
t=tn∑
t=t0

Repcarrier(t)

Note: Rep t refers to the total reputation of a party over a period of time.

If an agent is the initial user to the system then every initial user is assigned

a Repmin score to participate in the system. This score is set by arbitrator within

the delivery scenario. The main significance of Repmin is to assign a carrier and to

provide equality to each participating carrier. To understand how this Repmin is used

in carrier selection policy see section 3.2.3.

3.2.3 Carrier Selection Policy

Selection of carriers also plays an important role in building trust to the system. It

not only avoids the possibility of greedy selection of carriers(i.e the carriers having

a greater trust score is always selected) but also provides a chance for low reputation

score carriers to equally participate in the system, I hereby follow a biased selec-

tive approach. In order to understand how selective biasness works let us consider

following scenarios:

3.2.3.1 SCENARIO 1

If an item requested by buyer contains custom delivery requirements for example

change in delivery location, seller will first check the pool of available carriers repu-

tation, the priority is giving to lower reputation score carrier but reputed carriers

(meeting minimum reputation score criteria). In case all carriers are below the mini-

mum threshold(Repmin) then wait for reputed carriers to join the system.

3.2.3.2 SCENARIO 2

If an item requested by buyer has no custom delivery requirements, check for the

reputation of carriers from the available pool. If any carrier is meeting the minimum

reputation score then that is eligible for delivery. However, if system has multiple

carriers that are eligible for delivery, ask for the carriers to bid for delivery.

38

3. METHODOLOGY

If the bidding amount is above minimum reputation score then carrier having

lowest bidding score is assigned the delivery. If in case multiple carriers are having

same bidding scores then the carrier who bid first is considered.

3.2.3.3 SCENARIO 3

If the bidding score didn’t solve carrier selection dispute and there reputation is also

same, then choose the carrier with highest priority but biased selection for example

70% times the carrier with high reputation score is selected and 30% times the carrier

with low reputation score is selected. In this way low reputation score carriers are

encouraged to participate and it will avoid the fraud or monoply of reputed carriers.

Using a proportional selection strategy (aka roulette wheel selection) or tournament

selection based on the carrier reputation score enable our approach select one ore

more candidate carriers with the minimum required reputation score.

Thus, the carrier’s assignment largely depends on customer delivery attributes

and the available pool of carriers. It not only provides equality but also brings trust

to the system.

3.2.4 Signature Verification of Agents

The existing POD systems are incapable to cope with the defect in the verification of

agents.To verify whether a last mile carrier reaches to a correct destination they use

simple blockchain key hashes without taking into account who enters that hash.To

overcome this limitation and to escort accountability blind signatures concept are

introduced on top of blockchain layer.

Figure 3.2.1 depicted the typical process flow used to verify two parties thus it is

executed when buyer sent the message to the smart contract that ‘package has been

received’ then seller sent a blinded message for buyer to sign so that seller verifies

weather the buyer is genuine or not. Contract listening script executes and listens to

verification events invoked by blind signature contract functions on-chain and as soon

as event invoked it in turn calls blind signature script containing details of verification

39

3. METHODOLOGY

Fig. 3.2.1: Generation and verification of blind signatures in proposed system

steps.

Steps involved in verification process of agents in proposed model are:

1. Generate private key for buyer and seller using already implemented RSA based

blind-signatures packages API. [29].

2. Buyer wants seller to sign a message without revealing its content.

3. Buyer gets n and e variables from seller’s public key. For significance of n and

e public values in key generation refer [47]

4. Buyer blinds message using these n and e values.

5. Buyer sends blinded message to seller.

6. Seller signs blinded message.

7. Seller sends signed message to buyer.

8. Buyer un-blinds the message using seller’s signed message, n and r values and

sent to main delivery contract for verification.

9. Main Delivery Contract verifies this signature by taking into account n, e, un-

blinded signature (prev step) and buyer’s message sent to seller.

40

3. METHODOLOGY

Fig. 3.2.2: General Blind Signature Process

10. Main Delivery contract also verifies weather seller did sign it or not via un-

blinded signature , seller’s public key and message values.

11. Boolean results are generated- i.e both parties verification resulted true then

settle payment executed and obtain proof of delivery.

This type of verification process eliminates the need of actual buyer to be present

at the time of delivery because anyone on behalf of buyer can show the signed token

from seller to carrier and obtain the item from carrier. For understanding of math

involved in blind signature algorithm or steps refer [29]. Details of contract listening

script, blind signature contract functions and blind signature script are added to

appendix 5.2.

3.2.5 Delivery Execution

Steps involved in delivery execution are:

1. Buyer shows interest in buying an item.

2. Main Delivery contract sent request to buyer to pay item’s price.

41

3. METHODOLOGY

Fig. 3.2.3: Sequence diagram of the smart contract code that shows the flow for a
successful and un-successful delivery execution

42

3. METHODOLOGY

3. Main Delivery contract ask for any customize delivery attributes request from

buyer like special package handling conditions or location.

4. Seller receives delivery request, create package, request to assign carrier and

sent the notification to the contract.

5. Main Delivery contract assigns carrier with the help of rating contract’s carrier

pool and carrier selection policy mentioned in section 3.2.3 .

6. Assigned carrier notifies each party that package is out for delivery meaning

item is on the way to its destination.

7. Assigned carrier notifies each party that he/she reached destination and deliv-

ered package.

8. Main Delivery contract ask for buyer’s message that needs to be blinded before

sending to seller for signature.

9. Message blinded,sent to seller and signatures verified via off-chain interactions

refer section 3.2.4

10. Settle payment between various parties executed.

11. Reputation score(see section 3.2.2)increment after successful delivery and it can

be checked via some helper functions defined within the contract.

12. In case signature verification failure happens then smart-contract dispute han-

dling function invokes.

13. Dispute handling function consists of set of possible conflicts and steps that are

executed under each conflict.

14. Reputation score decrements after un-successful delivery and it can be checked

via some helper functions defined within the contract.

Note : The steps shown in green are indicative of successful delivery execution and

steps shown in light red color are indicative of un-successful delivery due to possible

43

3. METHODOLOGY

disputes. Also, there can be many possible disputes that can happen (see algorithm

3.3.6). Figure 3.2.3 only reflects no signature verification match dispute.

3.3 Operational Scenarios

In this section, algorithmic details related to key last-mile delivery operations such as

carrier assignment, verification of receiving entity’s signatures, payment settlement ,

reputation building and handling of disputes in proposed POD system are elucidated.

3.3.1 Carrier Assignment

Algorithm 3.3.1 shows the algorithm for assigning carrier via a crowd-sourced pool

of carriers. The process of carrier assignment is two-fold, algorithm 3.3.1 is the caller

algorithm which calls algorithm 3.3.2, checks the state of the contract, sets the can-

cellation state and creates notification after successful assignment whereas algorithm

3.3.2 is callee algorithm which implements the carrier selection policy, calculates the

reputation score metric (described in section 3.2.2) of selected carrier and returns the

address of selected carrier. If no available carrier is assigned , it returns no carrier

assigned and notifies each party that no carrier is available to satisfy the carrier se-

lection policy. In that case, caller algorithm 3.3.1 sets the type of dispute variable

to 1, changes contract state to dispute and executes dispute algorithm 3.3.6. Within

dispute algorithm, carrier selection dispute function defined that takes care of carrier

selection policy and assigns a new carrier to a delivery from available pool of carriers

in case no carrier is assigned.

3.3.2 Verify Signatures

Signature verification happens every time the delivery item handed over to another

participant. The receiving entity (buyer) first confirms that the delivery carrier has

arrived at the destination.Then, buyer send the message off-chain to blind the mes-

sage and executes chain of events by invoking blind signature contract’s verification

44

3. METHODOLOGY

Algorithm 3.3.1 Main Delivery Contract: Carrier Assignment

Require: E, item price,contractState, cancellation state, carrier, type of dispute
1: E: the set of Ethereum addresses/entities participating in this contract.
2: carrier: the address variable set by this algorithm
3: Restrict the access to only seller address s ε E in the contract
4: procedure assignCarrier()
5: if contractState ==packageCreated then
6: carrier ←assigned by rating contract’s assignCarrier function . see

algorithm 3.3.2
7: if carrier!=null then
8: set the cancellation state for s ε E as false
9: set the cancellation state for carrier ε E as false

10: create a notification for package hand over to carrier after successful
assignment.

11: contractState←package handover and carrier assigned
12: else
13: Set type of dispute to 1
14: Revert contractState to dispute.
15: Execute dispute. . see algorithm 3.3.6
16: end if
17: end if
18: return carrier
19: end procedure

Algorithm 3.3.2 Rating Contract: Carrier Assignment

Require: pool of carrier’s previous ratings, CSP(carrier selection policy)
1: carrier: the carrier address set by this algorithm
2: Access restriction is handled by contract calling this procedure
3: procedure assignCarrier()
4: i← assign carrier location . returned by rating contract’s carrierSelector

function
5: reputation score←calculate reputation score . see section 3.2.2 for

reputation score calculation
6: carrier ←assign address of carrier at location i
7: if i!=no carrier assigned then
8: create a notification that CSP criteria met
9: check carrier assigned at address i has met minimum reputation score cri-

teria
10: else
11: create a notification that CSP criteria not met
12: end if
13: return carrier
14: end procedure

45

3. METHODOLOGY

function.These events include sending blinded token to seller who then signs it and

send back signed token to buyer. The buyer give signed token to to blind signature

script which verifies and returns the number of parties verified through off-chain in-

teraction. In case the number of parties is not equal to two, it sets the type of dispute

variable to 2, change contract state to dispute and execute dispute algorithm 3.3.6.

Algorithm 3.3.3 shows full details of how the function that does signature verification

works in code.

Algorithm 3.3.3 Main Delivery Contract: Verification of Signatures

Require: E, message to sign, contractState, VerifiedParties, type of dispute,
BS Contract

1: E: is the set of Ethereum addresses/entities participating in this contract.
2: VerifiedParties: a variable used to store number of parties verified.
3: Restrict the access to only buyer address s ε E in the contract
4: procedure AskForBuyerMessage(message to sign)
5: if contractState ==ArrivedToDestination then
6: call BS contract’s verify(message to sign) function

. returns verification event logs initiated off-chain
7: V erifiedParties←assign the number of parties

. Parties returned via BS Contract’s parties verified(message to sign)
function

8: else if VerifiedParties!=2 then
9: Set type of dispute to 2

10: Revert contractState to dispute.
11: Execute dispute . see dispute algorithm 3.3.6
12: else
13: Revert contractState and show error.
14: end if
15: return VerifiedParties
16: end procedure

3.3.3 Payment Settlement & Update Reputation Score

When the signature verification process is successful, the delivery item reaches its

correct buyer by a carrier. Algorithm 3.3.4 shows the process of payment settlement

wherein contract state is verified first then n amount of the item price store in smart-

contract transferred to seller’s account and m amount of stored item price transferred

to carrier’s account for its services. Once payment settlement happens, the carrier’s

46

3. METHODOLOGY

reputation score increments, and this procedure returns the updated reputation score

for future deliveries. Algorithm 3.3.5 use this updated reputation score and send it

back to the rating contract for updating the carrier’s current ratings. Whenever this

specific carrier picked next time by carrier selection policy, its new reputation score

is considered.

Algorithm 3.3.4 Main Delivery Contract: Settle Payment

Require: E, seller, buyer, carrier, item price, contractState , RT Contract,M,N
1: E: the set of Ethereum addresses/entities participating in this contract.
2: item price: the price stored in contract deposited by buyer for purchasing an item.
3: M: Carrier fee
4: N: Seller fee
5: Restrict the access to only arbitrator address a ε E in the contract
6: procedure settle payment()
7: if contractState ==BothPartiesVerifiedSuccessfully then
8: M ←transfer m amount of item price to carrier’s account.
9: N ←transfer n amount of item price to seller’s account.

10: contractState←PaymentSuccess
11: check for Rep score of assigned carrier and increment it.

. it is done via RT Contract’s reputationCheck(carrier) function
12: else
13: Revert contractState and show an error
14: end if
15: return carrier’s updated reputation score
16: end procedure

3.3.4 Dispute Handling

Disputes are always challenging to handle and incur an unnecessary cost to the whole

delivery process. Solving a dispute off-chain is still a challenge for arbitrator because

many factors need to be considered: the delivery time, the number of deliveries

allocated to a carrier, carrier selection policy breach, etc. A hybrid approach can be

beneficial to avoid this challenge, i.e. both smart-contract-based dispute handling and

off-chain dispute handling. For smart-contract-based disputes handling all commonly

occurred disputes, conflicts function defined in a contract(see appendix 5.2).Algorithm

3.3.6 shows full details of how dispute handling works in code. For instance, if the

type of dispute is level 1 then this algorithm calls dispute contract’s carrier selection

47

3. METHODOLOGY

Algorithm 3.3.5 Main Delivery Contract: Update Reputation Score

Require: E, rep score, carrier, contractState , RT Contract
1: E: is the set of Ethereum addresses/entities participating in this contract.
2: carrier: variable containing address of carrier c ε E.
3: rep score: variable used to store reputation score in the contract.
4: Restrict the access to only arbitrator address a ε E in the contract
5: procedure updateReputation()
6: if contractState ==PaymentSuccess then
7: send updated rep score to RT Contract’s setTarget(rep score,carrier) func-

tion
8: else
9: Revert contractState and show an error

10: end if
11: end procedure

function which contains the steps of assigning a new carrier by taking into account

the carrier selection policy. If in case dispute contract unable to solve a dispute, the

off-chain approach adopted where arbitrator audits the transaction logs to see a point

of failure and party responsible for it. Thus, this approach saves time in solving a

dispute and avoids atleast some cost incurring on the last-mile delivery process.

3.3.5 Cancel Delivery and Refund

The seller, buyer and or carrier can cancel delivery only under specific conditions.

Algorithm 3.3.7 shows the cancellation algorithm that happens through the main

delivery contract. Input needed for the algorithm is the address of the caller, cancel-

lation state and item price. The cancellation state is a boolean false if the item handed

over to the carrier. Any of the mentioned entities in the smart contract can decide

on cancelling the delivery request. For example, the buyer and carrier can cancel

delivery as long as it isn’t on its way to the destination. The seller can cancel as long

as the delivery item not handed over to the carrier. If the item is getting delivered,

nobody can cancel the exchange. Once, cancellation state checked refund is initiated

for the buyer and notification is sent to each party about delivery cancellation.

48

3. METHODOLOGY

Algorithm 3.3.6 Main Delivery Contract: Dispute Handling

Require: E, caller,buyer, carrier,arbitrator, contractState, type of dispute,
DS Contract

1: E: is the set of Ethereum addresses/entities participating in this contract.
2: procedure disputeHandling()
3: check for contractState as dispute
4: check for type of dispute.
5: if type of dispute==1 then
6: call for DS Contract’s carrierSelection() function

. contains details of resolving carrier selection dispute using pool of carriers.
7: else if type of dispute==2 then
8: call for DS Contract’s NoSignatureMatchFound() function

. decrements reputation of carrier and hold the item until correct proof of
buyer is provided.

9: else if type of dispute==3 then
10: call for DS Contract’s CarrierTimeExceeded() function

. decrements the carrier reputation for not delivering item on time and
initiates refund for buyer.

11: else
12: Create notification that dispute can be resolved off-chain by arbitrator.
13: Revert contractState and show an error.
14: end if
15: end procedure

Algorithm 3.3.7 Main Delivery Contract: Cancel delivery

Require: E, caller, cancelation state , item price
1: E: is the set of Ethereum addresses/entities participating in this contract.
2: procedure cancelDelivery(reason)
3: if caller ε E then
4: Check the cancellation state of caller.
5: if cancelation state== true then
6: contractState←cancelation and refund
7: Return the item price to buyer
8: Create the notification about the cancelation and refund of deposited

item price.
9: contractstate←Aborted

10: end if
11: else
12: Cancelation of delivery denied
13: Revert contractState and show an error
14: end if
15: end procedure

49

3. METHODOLOGY

3.3.6 Exceeded Delivery Time

Punctuality is crucial when dealing with delivery services. Therefore, delivery time

contributes to having a decent impression on the buyer and providing good cus-

tomer service. The buyer has the privilege to decline to take the item if the delivery

surpassed the expected delivery time. Algorithm 3.3.8 shows details of the exceed

delivery time calculation that permits the buyer to call the function if the current

delivery time surpassed the expected delivery time. In the event that delivery time

surpassed, it sets the contract state to dispute, sets the type of dispute variable to 3

and executes dispute algorithm 3.3.6

Algorithm 3.3.8 Main Delivery Contract: Exceeded Delivery Time

Require: E, caller,buyer, contractState ,current delivery time, type of dispute,
del window(Delivery Window)

1: E: is the set of Ethereum addresses/entities participating in this contract.
2: procedure exceedDeliveryTime()
3: if caller ==buyer && contractState== Item on the way to buyer then
4: if current time > del window then
5: contractState←dispute due to exceeding delivery time
6: Create notification about cancelation by buyer
7: Set type of dispute to 3
8: Execute dispute. . see dispute algorithm 3.3.6
9: end if

10: else
11: Revert contractState and show an error
12: end if
13: end procedure

3.4 Security Analysis

Every day millions of delivery packages go missing in the United States. An estimate

of 1.7 million packages worth $25million has either stolen or lost due to some kind of

fraud [37]. 36% of Americans have suffered from package theft [17], and 90% of thieves

are never caught [40]. Some recent studies conducted by US Foods indicated that 28%

of deliverers admitted they had taken food from customer’s delivery[16]. Retailers or

sellers face increasingly sophisticated shipping fraud tactics, including re-shipping

50

3. METHODOLOGY

frauds [51] i.e. once a package is en-route, the fraudster logs in to modify the delivery

address and reships it to their address. Stolen or compromised shipping accounts are

well-known fraud these days wherein fraudsters steal shipping account numbers from

consumers or businesses to make unauthorized shipments. Once accounts are com-

promised, packages are routed to a central location and then distributed to fraudulent

sites. The prominent distributor may be a part of the fraud ring or be a fraud victim

and unaware that they are shipping stolen goods—such type of fraud categorized as

interception fraud.These types of fraud hurt customer loyalty and incur an unneces-

sary cost to retailers. These scams and fraud tactics used highlight the urgent need

and importance of obtaining secure proof of delivery from receiving entity to ensure

the delivery done with the correct customer; else, it can result in any of the fraud

mentioned above.

By design, our proposed POD system inherits vital security features of blockchain.

These features include decentralized trust, integrity, non-repudiation, and availability.

Our framework likewise handles authentication and access control through smart

contract by utilizing restrict modifiers that permit certain actors to execute functions.

Also, by design, the proposed POD framework ensures against Man-In-The-Middle

(MITM) attacks and replay attacks as every message exchange is cryptographically

signed and time-stamped. Integrity plays a significant part in the no-alteration of

crucial information. The proposed POD framework gives the capacity to trace back

the history events using transaction logs. Non-repudiation guarantees verification

for the identity of the sender. The initiator’s Ethereum address for all function calls

recorded and part of the transaction logs. In the delivery interaction, all participating

entities sign any delivery operation utilizing their public keys. This guarantees that

no entity can deny its actions later. Data accessibility isn’t a worry as contracts are

deployed on the public blockchain and consistently accessible to participating entities

for performing various delivery operations.

To ensure the verifiability of the POD token secure blind signatures concept in-

corporated, it allows the signer to sign a token attached to the delivery item, thus

establishing a link between the signed token and deliverable item.Further, to make

51

3. METHODOLOGY

carriers accountable and discourage fraudulent activities in the proposed system, the

concept of minimum reputation score introduced. Each carrier interested in joining

the system must maintain a minimum reputation score, which later can be extended

into incentive mechanism to motivate the honest carriers in the form of conversion of

reputation score into ether. They will remain in the system as long as they meet the

minimum reputation criteria. The analysis of various security attributes presented

in different POD systems in contrast to proposed POD system is presented in table

3.4.1.

Table values 3indicates system possess that feature and 7indicates system does

not have that particular feature. NOT PRACTICAL value assigned to those features

where schemes are proposed but these schemes are not practically feasible. NOT

SCALABLE assigned to those where features are proposoed but they are not scalable.

Each system is analyzed based on common security parameters:

1. Accountability: each participating entity must be accountable for each delivery

operation performed by them.

2. Auditability: systematic and independent examination of a delivery state with

the goal of determining whether delivery operation is correct (according to the

consistency rules) and was continuously correct in the past.

3. Anonymity: the identity of a client who takes part in a smart contract is guar-

anteed to be kept private. Besides, all the information regarding the shipping

is also kept hidden.

4. Fair exchange of services: retailers are paid for the services only when the

package is dropped off and approved by a security verification mechanism. The

buyer ensured to receive a package if the seller is paid.

5. Protection against customer’s early aborts: whenever during the package deliv-

ery, parties who tackled their job are ensured to get paid regardless of whether

the buyer chooses to cancel the delivery.

52

3. METHODOLOGY

6. Authorized pickup: the package is delivered to the expected buyer, and no other

entity can successfully claim it.

7. Traceability: solution must be traceable enough to determine the point of failure

in delivery process.

53

3. METHODOLOGY

S
y
st

em
N

a
m

e
A

C
C

O
U

N
T

A
B

IL
IT

Y
A

U
D

IT
A

B
IL

IT
Y

A
N

O
N

Y
M

IT
Y

F
A

IR
E

X
C

H
A

N
G

E
O

F
S
E

R
V

IC
E

S
P

R
O

T
E

C
T

IO
N

A
G

A
IN

S
T

C
U

S
T

O
M

E
R

E
A

R
L
Y

A
B

O
R

T
S

A
U

T
H

O
R

IZ
E

D
P

IC
K

U
P

T
R

A
C

E
A

B
IL

IT
Y

P
ro

p
o
se

d
P

O
D

S
y
st

em
3

3
7

3
3

3
3

S
in

g
le

C
ar

ri
er

S
y
st

em
3

3
7

N
O

T
S
C

A
L

A
B

L
E

3
N

O
T

P
R

A
C

T
IC

A
L

3

M
u
lt

ip
le

C
ar

ri
er

S
y
st

em
3

3
7

N
O

T
S
C

A
L

A
B

L
E

3
N

O
T

P
R

A
C

T
IC

A
L

3

L
el

an
to

s
7

7
3

N
O

T
P

R
A

C
T

IC
A

L
3

3
7

T
ab

le
3.

4.
1:

S
ec

u
ri

ty
F

ea
tu

re
s

of
va

ri
ou

s
P

O
D

S
y
st

em
s

54

CHAPTER 4

Experiments and Results

4.1 Dataset Used For Experiments

To validate our proposed last-mile delivery scheme, we implemented a proof-of-concept

using the Ethereum blockchain. For testing the performance of our proof-of-concept,

we used a dataset of online food orders. [43] . The dataset could be downloaded the

data repository in [10].

The main attributes of the dataset are shown in Figure 4.1.1. The definition of

the different attributes used from the dataset are as follows:

1. Number: indicates serial number of orders per restaurant. For example if order

A is from KFC location 1 then value in this column is 1 until the location of

order changes.

2. Expected Delivery Time: indicates amount of time expected to deliver an item.

3. Minimum Charge Ordering: indicates minimum charges required to order an

item from a specific restaurant. Note some columns have NA values.

4. Cost Delivery: indicates cost to deliver an item.

5. Latitude: indicates latitude at which restaurant located.

6. Longitude: indicates longitude at which restaurant located.

7. Client Latitude: indicates latitude at which client located.

8. Client Longitude: indicates longitude at which client located.

55

4. EXPERIMENTS AND RESULTS

Fig. 4.1.1: Delivery Dataset Description

9. Distance: indicates distance in metres between client and restaurant located. It

is calculated as difference of client latitude and longitude vs restaurant’s latitude

and longitude.

10. Time: indicates the amount of time taken to deliver an item. It is in seconds.

11. web: indicates website from which order took place.

12. Number of Comments: indicates the feedback by clients after their delivery or

in case of dispute.

13. Typical traffic: indicates rush hours in the following three categories: free or

green traffic (G), average or orange traffic (O), and heavy or red traffic (R). For

example, the sequence R-O-G means that the typical traffic changes from “red”

in the morning to “orange” at noon and “green” in the afternoon, describing a

place where traffic conditions improve as time passes.

14. The traffic moment or Moment: is a categorical variable with three possible

values: Morning, Noon, and Afternoon. Moment helps to identify the typical

traffic, as captured by Google Maps API, around each restaurant during rush

hours on Saturdays.

56

4. EXPERIMENTS AND RESULTS

15. Name of provider: indicates the to the commercial name of each restaurant

4.2 Experiments Conducted & Results

To analyze the proposed POD system based on a reputation network, I need to test

this system against a real-life dataset (mentioned above). Execute multiple delivery

request simultaneously to observe how crowd-sourcing contributes to building trust

in the design and how blockchain immutable logs and blind signatures obtain proof

that the item delivered to the correct customer. I divide this section into two parts

one is experiment design, and the other one is experiment results

4.2.1 Experimentation Design

Fig. 4.2.1: Experimentation Design

Figure 4.2.1 explains the experimentation flow adopted to test the proposed sys-

tem. Steps involved in experimentation are:

1. Create a subset of the dataset mentioned above-containing orders from the top

5 frequently ordered restaurants because I want to test how multiple orders

57

4. EXPERIMENTS AND RESULTS

from the restaurant at a single location executed and helps grow the network

of carriers.

2. Create a producer-consumer queue where the producer picks up the order from

the dataset and adds it to the queue to consume it.

3. Consumer picks the item from a queue executes the delivery request.

4. The delivery script contains the application binary interface of smart contract

code and helps run the deployed contract functions through off-chain interac-

tions.

5. The delivery script is responsible for the carrier’s assignment, delivers the item

to the buyer, settle payment and increment of reputation score after successful

delivery.

6. Now once delivery executed successfully, one can retrieve POD for that delivery

and check the updated reputation score of the carrier assigned.

7. The delivery execution process continues until the consumer consumes all the

orders in the queue.

Note that producer here refers to restaurants or sellers receiving the orders, and

consumers are carriers who are executing deliveries. For a detailed understanding of

the producer-consumer problem refer [21]. By performing the steps mentioned above,

POD for all deliveries in the dataset are obtained. I analyze carriers’ reputation

scores in a pool and observe how it varies concerning the number of deliveries. All

the findings and results are reported in section 4.2.2 of this book.

4.2.2 Experiments Results

4.2.2.1 Delivery Execution Results:

The variance in reputation scores under the different number of carrier pool N (n

set to 5,10,15,20) who are responsible for delivering 258 delivery orders from top

58

4. EXPERIMENTS AND RESULTS

Fig. 4.2.2: Reputation Scores Vs Number Of Deliveries where N (number of carriers)
equals 5

Fig. 4.2.3: Reputation Scores Vs Number Of Deliveries where N (number of carriers)
equals 10

59

4. EXPERIMENTS AND RESULTS

Fig. 4.2.4: Reputation Scores Vs Number Of Deliveries where N (number of carriers)
equals 15

Fig. 4.2.5: Reputation Scores Vs Number Of Deliveries where N (number of carriers)
equals 20

60

4. EXPERIMENTS AND RESULTS

restaurants of Bogota City, Colombia are shown in figure 4.2.2, figure 4.2.3, figure

4.2.4 and figure 4.2.5 respectively. Carrier selection plays a vital role in delivery

execution. For testing purposes, a random selection process adopted to provide a

fair chance to each carrier within the pool. Results indicate that carriers with a

low reputation score in the proposed POD system get equal opportunities to deliver

an item and grow over time. For instance, in figure 4.2.2 carrier 5, who joined the

system with the lowest reputation score of 74, surpassing almost all other carriers in

the pool at the end of all 258 delivery orders. All this provide evidence that even

low reputation score carriers given the fair chance of opportunities to deliver items

in a proposed system maintaining appropriate selection, i.e. those carriers with high

reputation scores likely preferred over low reputation score carriers. Also, as the

number of carriers in the pool increases, the number of delivery orders per carrier

decreases, and most carriers’ have similar reputation scores over time, whether they

started late or early in the system. Hence, infers larger pool of carriers eliminates gap

between highly reputed carriers and less reputed carriers to some extent and motivate

newcomers to join the scheme.

4.2.2.2 Proof of Delivery Transaction Logs:

All the delivery transactions are stored in the form of an immutable ledger on the

blockchain.Figure 4.2.6 depicts the transaction logs of carrier assignment for a delivery

item which returns the address of selected carrier from the carrier pool, figure 4.2.7

shows transaction logs of obtaining a signature verified token indicating the num-

ber of parties verified and figure 4.2.8 illustrates payment settlement execution after

successful delivery which shows that stored item price in the contract is transferred

to seller’s and carrier’s account and reputation increment happens. All these figures

infer how a transaction logs and proof of delivery are stored over blockchain when

a successful delivery of an item happens. These logs are also helpful and retrieved

easily if in case dispute happens to better understand reasons for point of failure.

Note: These transaction logs are from one of the 257 deliveries executed using the

experimental setup mentioned in section 4.2.1.

61

4. EXPERIMENTS AND RESULTS

Fig. 4.2.6: POD: Assign Carrier Transaction Logs

Fig. 4.2.7: POD: Signature Verified Token Transaction Logs

62

4. EXPERIMENTS AND RESULTS

Fig. 4.2.8: POD: Settle Payment Transaction Logs

4.3 Cost Analysis

Gas utilized in the Ethereum blockchain as a measure of computational work . Various

transactions require a different amount of gas, and the transaction fee is calculated in

terms of gas, yet the actual cost paid is in Ether. Thus, the gas cost referred to as the

amount of gas needed for a transaction and the gas cost is the cost of gas in Ether.

Moreover, every transaction’s gas limit can be set to avoid running out of gas if there

are any bugs in the code. This gas limit gives a security component. It is likewise

conceivable to accelerate the transaction depending upon Ether’s amount spent per

unit of ’Gwei’. Therefore there is a trade-off between priority and cost. Choosing the

right gas price is a bit difficult as it constantly requires monitoring of the network.

This decision choice has been made simpler by ETH Service station by giving three

distinct classifications on their site [15].

1. Safe-Low: This is a gas value that one can decide to go for a modest and safe

alternative. It is affordable. Simultaneously, the transaction would be mined

63

4. EXPERIMENTS AND RESULTS

quickly. This price is determined after at least 50 transactions being executed

at this price in the last 24 hours.

2. Normal: This gas cost is acknowledged by the top miners and is generally near

the default wallet price.

3. Quick: This cost is the most negligible value needed to be picked to be favoured

by all the top miners. Choosing a price higher than this cost will most probably

not yield to a better speed.

In the cost analysis, a gas price of 58 Gwei was used, which is the latest Average

price based on ETH Gas Station [15]. A higher gas price means a higher cost of

transaction as well. The new proposed POD system transactional cost in ETH(ether)

required for each last-mile operation is reflected in table 4.3.1. To draw a comparison

between existing POD systems in literature vs the proposed POD system, the overall

cost for single and multi-carrier systems calculated.

Single carrier POD systems overall costs are (refer table 4.3.2) relatively less than

the new proposed system because of the less computational extensive steps performed.

However, multiple carrier POD system cost indicated that the new proposed POD

system has the advantage over these systems because of its customized delivery op-

tions and secured verification mechanisms leveraging crowd-sourcing benefits (see

table 4.3.3). The overall cost of system comparison in USD indicated in figure 4.3.1.

Even if one use cheap gas price of 52 Gwei for transacting various operations there

is not much difference in delivery cost. However, the overall transaction cost can be

improved by altering the consensus mechanisms for instance: POA which provides

flexibility to constraint the amount of gas used per transaction. Note the amount of

time taken to confirm every transaction in the proposed POD system is significantly

much less in comparison to old POD systems (figure 4.3.2).The minimum mean time

to execute blocks in proposed POD system is close to 1700 seconds on the other hand

POD Single Carrier and POD Multiple Carrier takes approximately 8000 seconds.

Gas consumption refers to the amount of gas consumed in execution and deploy-

ment of delivery smart contracts. Table 4.3.4 compares which part of our proposed

64

4. EXPERIMENTS AND RESULTS

POD system consumes more amount of gas than old POD systems. Single carrier

systems consume the least amount of gas in execution and deployment than multi-

carrier systems because fewer deployed contracts required for such system. However,

our proposed system deployment is relatively expensive than multi-carrier system by

Khaled [42] because flexibility is given to join n number of carriers and maintain them

in a pool on-chain. In terms of execution, our proposed POD system outperforms

and consumes less amount of gas in delivering an item because of less computational

extensive steps involved in delivery such as verification of agents via off-chain blind

signature API’s and division of delivery tasks among various contracts compared to

the multi-carrier system which use heavy verification hash on-chain mechanisms to

verify agents.

CONTRACT FUNC NAME GAS ESTIMATED LIMIT GAS USED AVG MEAN TIME TO CONFIRM BLOCK(SECOND) AVERAGE TRANSACTION FEE(ETH) AVERAGE TRANSACTION FEE (USD)

Blind Signature Deployment 6721975 475435 381 0.0275752 37.11

Rating Contract Deployment 6721975 1092312 542 0.0032769 84.63

Rating Contract- Input Weights by Arbitrator 6721975 86363 381 0.0050091 6.68

Rating Contract- Consensus called by seller 6721975 31015 381 0.0017989 2.40

Rating Contract- Consensus called by buyer 6721975 31903 381 0.0018504 2.47

Rating Contract- Insert Transporter 6721975 5000000 2266 0.29 389.47

Dsipute Contract- Deployment 6721975 681242 381 0.039512 53.09

Main Delivery- Deployment 6721975 1911033 542 0.1108399 147.94

Main Delivery- Interest to Buy Item 6721975 46009 381 0.0026685 3.56

Main Delivery- BuyerDepositItemPrice by Buyer 6721975 76102 381 0.0044139 5.90

Main Delivery- DeliveryAttributes by Buyer 6721975 49746 381 0.0028853 3.84

Main Delivery- Assign Transporter by seller 6721975 171046 381 0.0099207 13.22

Main Delivery- CreatePackage 6721975 51786 381 0.0030036 4.00

Main Delivery- DeliveryPackage 6721975 37451 381 0.0021722 2.90

Main Delivery- PackageReceived 6721975 33213 381 0.0019264 2.57

Main Delivery- Ask For Buyer sig by seller 6721975 102904 381 0.0059684 7.99

Main Delivery- Parties Verified off-chain 6721975 90000 381 0.00522 6.99

Main Delivery- Verify parties verification results 6721975 54605 381 0.0031671 4.24

Main Delivery- Settle Payment 6721975 86835 381 0.0050364 6.75

Main Delivery- Reputation Check 6721975 25113 381 0.0014566 1.96

Total 134439500 10134113 491.35 0.5277015 $787.71

Table 4.3.1: New POD System Cost

65

4. EXPERIMENTS AND RESULTS

C
O

N
T

R
A

C
T

F
U

N
C

N
A

M
E

G
A

S
E

S
T

IM
A

T
E

D
L

IM
IT

G
A

S
U

S
E

D
A

V
G

M
E

A
N

T
IM

E
T

O
C

O
N

F
IR

M
B

L
O

C
K

(S
E

C
O

N
D

)
A

V
E

R
A

G
E

T
R

A
N

S
A

C
T

IO
N

F
E

E
(E

T
H

)
A

V
E

R
A

G
E

T
R

A
N

S
A

C
T

IO
N

F
E

E
(U

S
D

)

P
O

D
D

ep
lo

y
m

en
t

50
00

00
0

66
69

00
4

11
29

4
0
.3

86
80

2
2

52
0
.5

4
85

23
37

9
02

P
O

D
S
ig

n
ed

T
er

m
A

n
d

C
on

d
it

io
n
s:

S
E

L
L

E
R

50
00

00
0

78
73

2
71

48
0.

00
4
56

65
6.

1
45

47
90

8
98

56

P
O

D
S
ig

n
ed

T
er

m
A

n
d

C
on

d
it

io
n
s:

C
A

R
R

IE
R

50
00

00
0

53
91

2
71

48
0.

00
31

26
9

4.
20

81
0
21

71
48

1
6

P
O

D
S
ig

n
ed

T
er

m
A

n
d

C
on

d
it

io
n
s:

B
U

Y
E

R
50

00
00

0
18

46
80

71
48

0.
01

07
1
14

14
.4

15
12

85
93

6
9

P
O

D
C

re
at

e
P

ac
ka

ge
A

n
d

K
ey

50
00

00
0

82
36

0
71

48
0
.0

04
7
76

9
6
.4

2
86

30
03

7
08

16

P
O

D
d
el

iv
er

P
ac

ka
ge

()
50

00
00

0
79

91
6

71
48

0.
00

4
63

51
6.

2
37

79
92

1
80

86
4

P
O

D
re

q
u
es

tP
ac

ka
ge

K
ey

()
B

Y
B

U
Y

E
R

50
00

00
0

86
55

4
71

48
0.

0
05

02
01

6
.7

55
92

2
38

67
26

4

P
O

D
ve

ri
fy

T
ra

n
sp

or
te

r(
)

50
00

00
0

13
65

82
71

48
0
.0

07
9
21

8
10

.6
6
09

56
14

8
91

5

P
O

D
ve

ri
fy

B
u
ye

r(
)

50
00

00
0

17
07

34
71

48
0
.0

09
9
02

6
1
3.

3
26

66
62

0
72

06

T
ot

al
45

00
00

00
75

42
47

4
76

08
.6

66
6
66

6
66

7
0
.4

3
74

63
5

$5
88

.7
3

T
ab

le
4.

3.
2:

S
in

gl
e

C
ar

ri
er

P
O

D
S
y
st

em
C

os
t

66

4. EXPERIMENTS AND RESULTS

C
O

N
T

R
A

C
T

F
U

N
C

N
A

M
E

G
A

S
E

S
T

IM
A

T
E

D
L

IM
IT

G
A

S
U

S
E

D
A

V
G

M
E

A
N

T
IM

E
T

O
C

O
N

F
IR

M
B

L
O

C
K

(S
E

C
O

N
D

)
A

V
E

R
A

G
E

T
R

A
N

S
A

C
T

IO
N

F
E

E
(E

T
H

)
A

V
E

R
A

G
E

T
R

A
N

S
A

C
T

IO
N

F
E

E
(U

S
D

)

P
O

D
C

on
tr

ac
t

D
ep

lo
y
m

en
t

50
00

00
0

28
1
90

60
1
12

9
4

0
.1

6
35

0
5
5

2
2
0
.0

41
5
26

6
2
36

P
O

D
S

ig
n

ed
T

er
m

A
n

d
C

o
n

d
it

io
n

s:
S

E
L

L
E

R
5
00

00
00

78
73

2
7
14

8
0
.0

04
5
66

5
6
.1

45
4
79

0
8
99

P
O

D
S

ig
n

ed
T

er
m

A
n

d
C

on
d

it
io

n
s:

C
A

R
R

IE
R

50
0
00

00
53

91
2

7
14

8
0
.0

03
1
26

9
4
.2

08
1
0
21

7
15

P
O

D
S

ig
n

ed
T

er
m

A
n

d
C

on
d

it
io

n
s:

B
U

Y
E

R
50

00
00

0
18

46
8
0

71
48

0
.0

1
0
71

1
4

1
4
.4

1
51

2
85

9
3
7

P
O

D
C

re
a
te

P
a
ck

ag
e

A
n

d
K

ey
50

00
00

0
80

70
8

71
48

0.
00

4
6
81

1
6.

29
9
70

4
8
43

4

C
ou

ri
er

C
on

tr
ac

t
D

ep
lo

y
m

en
t

50
00

00
0

2
98

80
34

11
29

4
0.

17
3
3
06

2
33

.2
3
07

8
9
25

8
0

C
ou

ri
er

C
on

tr
ac

t
S

ig
n

ed
T

er
m

A
n

d
C

o
n

d
it

io
n

s:
C

A
R

R
IE

R
2

50
00

00
0

78
55

4
71

48
0
.0

0
45

5
6
1

6
.1

3
1
48

3
03

5
4

C
ou

ri
er

C
on

tr
ac

t
C

a
rr

ie
r

2
C

o
n

fi
rm

P
ac

ka
ge

R
ec

ei
ve

d
50

00
00

0
81

85
4

71
48

0.
00

4
7
47

5
6.

38
9
06

4
2
67

8

C
ou

ri
er

ve
ri

fy
T

ra
n

sp
or

te
r(

)
h

as
h

en
te

re
d

b
y

ca
rr

ie
r

1
5
00

00
00

13
67

12
71

48
0.

00
7
92

9
3

10
.6

7
10

4
9
45

7
4

C
ou

ri
er

ve
ri

fy
T

ra
n

sp
or

te
r(

)
h

as
h

en
te

re
d

b
y

ca
rr

ie
r

2(
v
er

ifi
ca

ti
on

d
on

e
in

te
rn

al
ly

)
50

00
00

0
11

25
50

71
48

0.
00

6
5
27

9
8.

78
5
08

1
1
23

5

B
T

co
n
tr

ac
t

D
ep

lo
y
m

en
t

50
00

00
0

26
37

2
02

11
29

4
0
.1

52
9
57

7
2
05

.8
4
6
56

6
73

2
2

B
T

co
n
tr

ac
t.

C
on

fi
rm

P
ac

ka
g
eR

ec
ei

ve
d

()
50

0
00

00
11

18
9
8

7
14

8
0
.0

06
4
90

1
8
.7

34
2
10

8
4
88

B
T

co
n
tr

ac
t.

K
ey

sE
n
te

re
d

B
y
T

ra
n

sp
or

te
r(

)
50

00
00

0
1
36

71
2

71
48

0.
00

7
9
29

3
1
0.

6
7
10

4
9
45

7
4

B
T

co
n
tr

ac
t.

ve
ri

fy
K

ey
sB

y
B

u
y
er

()
50

00
00

0
11

26
3
8

71
48

0
.0

0
65

3
3

8
.7

9
1
94

4
57

3
3

P
O

D
.s

et
tl

e
p

ay
em

en
t(

)
50

00
00

0
63

3
20

71
48

0.
00

3
6
72

6
4
.9

42
4
91

2
9
65

C
ou

ri
er

.s
et

tl
e

p
ay

em
en

t(
)

50
00

00
0

6
32

76
71

48
0.

00
3
6
7

4
.9

3
89

9
2
28

2
9

B
T

co
n
tr

ac
t.

se
tt

le
p

ay
em

en
t(

)
50

00
00

0
72

17
2

71
48

0.
00

4
1
86

5.
63

3
41

1
9
06

3

T
ot

al
85

00
00

00
98

12
01

4
78

79
.6

47
0
58

82
35

0
.5

6
90

9
6
9

$
76

5
.8

8

T
ab

le
4.

3.
3:

M
u
lt

ip
le

C
ar

ri
er

P
O

D
S
y
st

em
C

os
t

67

4. EXPERIMENTS AND RESULTS

P
R

O
C

E
S
S

C
O

N
S
U

M
IN

G
G

A
S

N
E

W
P

O
D

S
Y

S
T

E
M

G
A

S
C

O
N

S
U

M
P

T
IO

N
S
IN

G
L

E
C

A
R

R
IE

R
G

A
S

C
O

N
S
U

M
P

T
IO

N
M

U
L
T

IP
L

E
C

A
R

R
IE

R
S

G
A

S
U

S
E

D

D
E

P
L

O
Y

M
E

N
T

B
L

IN
D

S
IG

N
A

T
U

R
E

C
O

N
T

R
A

C
T

47
54

35
P

O
D

C
O

N
T

R
A

C
T

66
69

00
4

P
O

D
C

O
N

T
R

A
C

T
28

19
06

0

D
IS

P
U

T
E

C
O

N
T

R
A

C
T

68
12

42
C

O
U

R
IE

R
C

O
N

T
R

A
C

T
29

88
03

4

R
A

T
IN

G
C

O
N

T
R

A
C

T
10

92
31

2
B

T
C

O
N

T
R

A
C

T
26

37
20

2

M
A

IN
D

E
L

IV
E

R
Y

C
O

N
T

R
A

C
T

19
11

03
3

IN
S
E

R
T

N
E

W
C

A
R

R
IE

R
IN

A
P

O
O

L
50

00
00

0

T
O

T
A

L
D

E
P

L
O

Y
M

E
N

T
G

A
S

C
O

N
S
U

M
P

T
IO

N
91

60
02

2
66

69
00

4
84

44
29

6

E
X

T
E

N
S
IV

E
D

E
L

IV
E

R
Y

E
X

E
C

U
T

IO
N

S
T

E
P

S
S
IG

N
IN

G
T

E
R

M
S

&
C

O
N

D
IT

IO
N

S
B

Y
B

U
Y

E
R

18
46

80
S
IG

N
IN

G
T

E
R

M
S

&
C

O
N

D
IT

IO
N

S
B

Y
B

U
Y

E
R

18
46

80

A
S
S
IG

N
M

E
N

T
O

F
C

A
R

R
IE

R
17

10
46

V
E

R
IF

IC
A

T
IO

N
O

F
A

G
E

N
T

S
17

07
34

R
E

S
T

O
F

D
E

L
IV

E
R

Y
E

X
E

C
U

T
IO

N
S
T

E
P

S
11

83
03

8

R
E

S
T

O
F

D
E

L
IV

E
R

Y
E

X
E

C
U

T
IO

N
S
T

E
P

S
80

30
45

R
E

S
T

O
F

D
E

L
IV

E
R

Y
E

X
E

C
U

T
IO

N
S
T

E
P

S
51

80
56

T
O

T
A

L
D

E
L

IV
E

R
Y

E
X

E
C

U
T

IO
N

G
A

S
C

O
N

S
U

M
P

T
IO

N
97

40
91

87
34

70
13

67
71

8

T
ab

le
4.

3.
4:

G
as

C
os

t
C

om
p
ar

is
on

68

4. EXPERIMENTS AND RESULTS

Fig. 4.3.1: Cost comparison between various POD systems

Fig. 4.3.2: Time comparison of between various POD systems

69

4. EXPERIMENTS AND RESULTS

4.4 Tools Used for Implementation

• Remix IDE: Solidity-based IDE(Integrated Development Environment) that

is used to write, compile and debug solidity code.For more features of remix

refer [26].

• Ganache-cli:a fast and customizable blockchain emulator. It allows you to

make calls to the blockchain without the overheads of running an actual Ethereum

node [18].

• Truffle: A world class development environment, testing framework and asset

pipeline for blockchains using the Ethereum Virtual Machine (EVM), aiming to

make life as a developer easier [53].

• RSA Blind Signatures packages:These already implemented version of RSA

based blind signatures packages(for signature generation and verification) can

be downloaded from here [29].

• web3.js-Ethereum JavaScript API :is a collection of libraries that allow

you to interact with a local or remote ethereum node using HTTP, IPC or

WebSocket [2].

70

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

The work presented in this thesis provided a crowd-sourced based proof of a delivery

system that facilitates trading and tracking sold items in a decentralized way. The

solution provides proof of physical objects’ delivery in a decentralized manner taking

advantage of crowd-sourcing, blind signatures and immutability that blockchain of-

fers. Starting with Chapter 1, a brief overview of last-mile challenges and introduction

of problems related to proof of delivery in last mile operations.

In Chapter 2, a literature review concerning blockchain use for obtaining proof of

delivery(POD), blockchain use for crowd-sourcing and last-mile delivery in general.

The primary focus is on literature that contributes to using blockchain to deliver

physical assets and crowd-sourcing via reputation-based systems to build trust and

provide equal opportunity to participate in the system.

In Chapter 3, a proposed POD system via blockchain and crowd-sourcing was

described thoroughly and then implemented. A carrier selection policy introduced

indicating how carriers selected under various possible conditions. To verify product

reached to its correct customer and obtain proof of delivery- signature verification

scheme based on blind signatures used and implementation design of the whole system

elucidated. The proposed solution is generic enough and can be applied to almost all

shipped items and assets. It has a trust mechanism that builds trust in the system

and provides equal opportunities for new agents. It also eliminates the need for a

trusted third party and utilizes smart contracts as escrow to settle payments even

71

5. CONCLUSION AND FUTURE WORK

under disputes. In the end, a brief discussed how proposed system handles commonly

occurred disputes. Moreover, I analyzed my solution’s security and concluded that

the solution is resilient to known security attacks and satisfies cyber-security features

and objectives.

In chapter 4, I tested out key functionalities and demonstrated the correct be-

haviour and outcomes considering execution of multiple delivery simultaneously. The

cost analysis reveals that the overall system resembles the cost of existing POD sys-

tems. The cost of each transaction in a smart-contract is proportional to the current

value of the gas price used. However, the overall system cost will be reduced by al-

tering the choice of consensus mechanism, which can be considered as part of future

work.

Blockchain provides immutability in terms of non-tampering of information blocks

stored over the chain. Immutability brings trust and integrity to the data used by var-

ious business stakeholders everyday.However, to achieve certain level of immutability

in current proposed POD schema consumes a substantial amount of computational

resources such as Ether gas, making it expensive to use. However, this cost can be

significantly reduced with non-crypto-currency consensus protocols.

5.2 Future Work

In this thesis, I presented a step in the right direction but there is still much work

to be done, in both obtaining secure proof of delivery and in making them practical

for large scale delivery applications. As a part of future work, one can explore how

to assign reputations to the delivery items, set multiple packages to the single carrier

to make it cost-effective, or maintain the balance between the pool of items vs a

collection of carriers? Is it useful to add the vehicle’s description as the delivery

attribute, the effect of different consensus algorithms on the delivery system’s overall

cost, and what type of information is necessary to put on-chain.

72

REFERENCES

[1] AlTawy, R., ElSheikh, M., Youssef, A. M., and Gong, G. (2017). Lelantos: A

blockchain-based anonymous physical delivery system. In 2017 15th Annual Con-

ference on Privacy, Security and Trust (PST), pages 15–1509.

[2] API, E. J. (2018). web3 - Ethereum JavaScript API. https://

web3js.readthedocs.io/en/v1.3.4/. [Online accessed 07-March-2021].

[3] Awwad, M., Reddy, S., Kazhana Airpulli, V., Zambre, M. S., Marathe, A., and

Jain, P. (2018). Blockchain technology for efficient management of supply chain.

[4] Barclays (2014). The Last Mile: Exploring the online purchasing and de-

livery journey. https://docplayer.net/1342335-The-last-mile-exploring-

the-online-purchasing-and-delivery-journey.html. [Online accessed 23-Feb-

2021].

[5] BinanceAcademy (2020). Proof of Burn (PoB). https://academy.binance.com/

en/articles/proof-of-burn-explained. [Online accessed 23-Feb-2021].

[6] Boyer, K., Prud’homme, A., and Chung, W. (2009). The last mile challenge:

Evaluating the effects of customer density and delivery window patterns. Journal

of Business Logistics, 30:185 – 201.

[7] Brian, O. (2018). How crowdsourcing is transforming the face of last mile delivery.

[8] Castillo, V., Bell, J., Rose, W., and Rodrigues, A. (2018). Crowdsourcing last mile

delivery: Strategic implications and future research directions. Journal of Business

Logistics, 39.

73

https://web3js.readthedocs.io/en/v1.3.4/
https://web3js.readthedocs.io/en/v1.3.4/
https://docplayer.net/1342335-The-last-mile-exploring-the-online-purchasing-and-delivery-journey.html
https://docplayer.net/1342335-The-last-mile-exploring-the-online-purchasing-and-delivery-journey.html
https://academy.binance.com/en/articles/proof-of-burn-explained
https://academy.binance.com/en/articles/proof-of-burn-explained

REFERENCES

[9] Chen, Y., Jing, Y., and Wei, J. (2018). Consumer’s intention to use self-service

parcel delivery service in online retailing: An empirical study. Internet Research,

28:00–00.

[10] Correa, J. C. (2018). Raw data of a web mining approach to collaborative

consumption of food delivery services. https://data.mendeley.com/datasets/

m9z9hw4nsc/1. [Online accessed 23-Feb-2021].

[11] Deloitte (2018). The last-mile challenge in Canada. https:

//www2.deloitte.com/content/dam/Deloitte/ca/Documents/consumer-

industrial-products/ca-final-mile-challengesIn-canada-report-2-

aoda-en.pdf. [Online accessed 23-Feb-2021].

[12] Demir, M., Turetken, O., and Ferwom, A. (2019). Blockchain and iot for delivery

assurance on supply chain(bidas). pages 5213–5222.

[13] Ethereum (2018). Ethereum Developer Resources. https://ethereum.org/en/

developers/. [Online accessed 23-Feb-2021].

[14] Ethereum (2020). Proof of Stake (PoS). https://ethereum.org/en/

developers/docs/consensus-mechanisms/pos/. [Online accessed 23-Feb-2021].

[15] EtherGasStation (2018). https://ethgasstation.info/. [Online accessed 23-

Feb-2021].

[16] Foods, U. (2019). NEW STUDY SHOWS WHAT CONSUMERS CRAVE

IN A FOOD DELIVERY SERVICE. https://www.usfoods.com/our-services/

business-trends/2019-food-delivery-statistics.html. [Online accessed 23-

Feb-2021].

[17] FoxNews (2019). Study: Estimated 36% of Americans have fallen victim to ’porch

pirates’. https://www.fox6now.com/news/study-estimated-36-of-americans-

have-fallen-victim-to-porch-pirates. [Online accessed 23-Feb-2021].

74

https://data.mendeley.com/datasets/m9z9hw4nsc/1
https://data.mendeley.com/datasets/m9z9hw4nsc/1
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/consumer-industrial-products/ca-final-mile-challengesIn-canada-report-2-aoda-en.pdf
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/consumer-industrial-products/ca-final-mile-challengesIn-canada-report-2-aoda-en.pdf
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/consumer-industrial-products/ca-final-mile-challengesIn-canada-report-2-aoda-en.pdf
https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/consumer-industrial-products/ca-final-mile-challengesIn-canada-report-2-aoda-en.pdf
https://ethereum.org/en/developers/
https://ethereum.org/en/developers/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethgasstation.info/
https://www.usfoods.com/our-services/business-trends/2019-food-delivery-statistics.html
https://www.usfoods.com/our-services/business-trends/2019-food-delivery-statistics.html
https://www.fox6now.com/news/study-estimated-36-of-americans-have-fallen-victim-to-porch-pirates
https://www.fox6now.com/news/study-estimated-36-of-americans-have-fallen-victim-to-porch-pirates

REFERENCES

[18] Ganache (2018). Ganache CLI. https://docs.nethereum.com/en/latest/

ethereum-and-clients/ganache-cli/. [Online accessed 07-March-2021].

[19] Gdowska, K., Viana, A., and Pedroso, J. P. (2018). Stochastic last-mile delivery

with crowdshipping. Transportation Research Procedia, 30:90–100.

[20] geeksforgeeks (2019a). practical Byzantine Fault Tolerance(pBFT) . https:

//www.geeksforgeeks.org/practical-byzantine-fault-tolerancepbft/. [On-

line accessed 23-Feb-2021].

[21] geeksforgeeks (2019b). Producer Consumer Problem using Semaphores.

https://www.geeksforgeeks.org/producer-consumer-problem-using-

semaphores-set-1/. [Online accessed 23-Feb-2021].

[22] geeksforgeeks (2019c). Proof of Work (PoW) Consensus. https://

www.geeksforgeeks.org/proof-of-work-pow-consensus/. [Online accessed 23-

Feb-2021].

[23] Haag, M. and Hu, W. (2019). 1.5 Million Packages a Day: The Internet Brings

Chaos to N.Y. Streets. https://www.nytimes.com/2019/10/27/nyregion/nyc-

amazon-delivery.html. [Online accessed 23-Feb-2021].

[24] Hasan, H. and Salah, K. (2018). Blockchain-based proof of delivery of physical

assets with single and multiple transporters. IEEE Access, PP:1–1.

[25] Hoffman, K., Zage, D., and Nita-Rotaru, C. (2009). A survey of attack and

defense techniques for reputation systems. ACM Comput. Surv., 42.

[26] IDE, R. (2018). Remix IDE. https://remix-ide.readthedocs.io/en/latest/.

[Online accessed 07-March-2021].

[27] Jøsang, A. and Golbeck, J. (2009). Challenges for robust trust and reputation

systems. In: Proceedings of the 5th Int. Workshop on Security and Trust Manage-

ment (STM2009).

75

https://docs.nethereum.com/en/latest/ethereum-and-clients/ganache-cli/
https://docs.nethereum.com/en/latest/ethereum-and-clients/ganache-cli/
https://www.geeksforgeeks.org/practical-byzantine-fault-tolerancepbft/
https://www.geeksforgeeks.org/practical-byzantine-fault-tolerancepbft/
https://www.geeksforgeeks.org/producer-consumer-problem-using-semaphores-set-1/
https://www.geeksforgeeks.org/producer-consumer-problem-using-semaphores-set-1/
https://www.geeksforgeeks.org/proof-of-work-pow-consensus/
https://www.geeksforgeeks.org/proof-of-work-pow-consensus/
https://www.nytimes.com/2019/10/27/nyregion/nyc-amazon-delivery.html
https://www.nytimes.com/2019/10/27/nyregion/nyc-amazon-delivery.html
https://remix-ide.readthedocs.io/en/latest/

REFERENCES

[28] Kavouras, I. (2018). How to Calculate Roulette Probabilities. https:

//www.888casino.com/blog/calculating-probability-roulette. [Online ac-

cessed 23-Feb-2021].

[29] KevineJohn (2018). RSA based Blind Signatures Implementation. https://

github.com/kevinejohn/blind-signatures. [Online accessed 07-March-2021].

[30] Kirill, G. (2019). Overview of 9 blockchain consensus algorithms. https://

digiforest.io/en/blog/blockchain-consensus-algorithms. [Online accessed

23-Feb-2021].

[31] Kretzschmar, J. and Eckardt, F. (2019). A blockchain approach towards cargo

sharing in last mile logistics. NexComm 2021, pages 11–15.

[32] Liang, S., Li, M., and Li, W. (2019). Research on traceability algorithm of

logistics service transaction based on blockchain. pages 186–189.

[33] Liu, Y., He, D., Obaidat, M., Kumar, N., Khan, K., and Choo, K.-K. R. (2020).

Blockchain-based identity management systems: A review. Journal of Network and

Computer Applications, 166:102731.

[34] Mak, H. Y. (2018). Peer-to-peer crowdshipping as an omnichannel retail strategy.

[35] Malik, S., Dedeoglu, V., Kanhere, S., and Jurdak, R. (2019). Trustchain: Trust

management in blockchain and iot supported supply chains.

[36] Marti, S. and Garcia-Molina, H. (2006). Taxonomy of trust: Categorizing p2p

reputation systems. Computer Networks, 50:472–484.

[37] NewYorkTimes (2018). 90,000 Packages Disappear Daily in N.Y.C. Is Help on

the Way? https://www.nytimes.com/2019/12/02/nyregion/online-shopping-

package-theft.html?mod=djem10point. [Online accessed 23-Feb-2021].

[38] Nguyen, D., De Leeuw, S., Dullaert, W., and Foubert, B. (2019). What is the

right delivery option for you? consumer preferences for delivery attributes in online

retailing. Journal of Business Logistics.

76

https://www.888casino.com/blog/calculating-probability-roulette
https://www.888casino.com/blog/calculating-probability-roulette
https://github.com/kevinejohn/blind-signatures
https://github.com/kevinejohn/blind-signatures
https://digiforest.io/en/blog/blockchain-consensus-algorithms
https://digiforest.io/en/blog/blockchain-consensus-algorithms
https://www.nytimes.com/2019/12/02/nyregion/online-shopping-package-theft.html?mod=djem10point
https://www.nytimes.com/2019/12/02/nyregion/online-shopping-package-theft.html?mod=djem10point

REFERENCES

[39] Ni, M., He, Q., Liu, X., and Hampapur, A. (2019). Same-day delivery with

crowdshipping and store fulfillment in daily operations. Transportation Research

Procedia, 38:894–913.

[40] Quadient (2019). How to Ensure Secure Package Delivery in Your Resi-

dential Community. https://www.parcelpending.com/blog/secure-package-

delivery/. [Online accessed 23-Feb-2021].

[41] Quora (2020). How many houses does the average postman deliver to in a

day? https://www.quora.com/How-many-houses-does-the-average-postman-

deliver-to-in-a-day. [Online accessed 23-Feb-2021].

[42] Salah, K. and Hasan, H. (2018). Blockchain-based solution for proof of delivery

of physical assets.

[43] Segura, M. A. and Correa, J. C. (2019). Data of collaborative consumption in

online food delivery services. Data in Brief, 25:104007.

[44] Serafini, S., Nigro, M., and Gatta, V. (2018). Sustainable crowdshipping us-

ing public transport: a case study evaluation in rome. Transportation Research

Procedia, 30:101–110.

[45] ShipChain (2020). How ShipChain Works? https://shipchain.io/how-it-

works. [Online accessed 23-Feb-2021].

[46] Shivaansh, K. (2019). Proof of Capacity(PoC). https://medium.com/

@shivaanshkapoor02/what-is-poc-proof-of-capacity-c85febb5d18e. [On-

line accessed].

[47] Signatures, B. (2018). Blind Signatures. https://www.sciencedirect.com/

topics/computer-science/blind-signature. [Online accessed 07-March-2021].

[48] Song, J. M., Sung, J., and Park, T. (2019). Applications of blockchain to improve

supply chain traceability. Procedia Computer Science, 162:119–122.

77

https://www.parcelpending.com/blog/secure-package-delivery/
https://www.parcelpending.com/blog/secure-package-delivery/
https://www.quora.com/How-many-houses-does-the-average-postman-deliver-to-in-a-day
https://www.quora.com/How-many-houses-does-the-average-postman-deliver-to-in-a-day
https://shipchain.io/how-it-works
https://shipchain.io/how-it-works
https://medium.com/@shivaanshkapoor02/what-is-poc-proof-of-capacity-c85febb5d18e
https://medium.com/@shivaanshkapoor02/what-is-poc-proof-of-capacity-c85febb5d18e
https://www.sciencedirect.com/topics/computer-science/blind-signature
https://www.sciencedirect.com/topics/computer-science/blind-signature

REFERENCES

[49] Song, L., Cherrett, T., Mcleod, F., and Wei, G. (2009). Addressing the last mile

problem. Transportation Research Record, 2097:9–18.

[50] Taniguchi, E. and Tamagawa, D. (2005). Evaluating city logistics measures con-

sidering the behavior of several stakeholders. Journal of the Eastern Asia Society

for Transportation Studies, 6.

[51] TransUnion (2020). Protecting the Last Mile of Retail E-Commerce: The Pre-

vention of Shipping Fraud. https://www.transunion.com/blog/prevention-of-

shipping-fraud. [Online accessed 23-Feb-2021].

[52] Treasureishere (2020). Last Mile Delivery Market to 2027 — Global Anal-

ysis and Forecasts by Technology. https://medium.com/@treasureishere/

last-mile-delivery-market-to-2027-global-analysis-and-forecasts-by-

technology-ae2c04b6c9b4. [Online; accessed 14-Feb-2021].

[53] Truffle (2018). Truffle test-framework. https://www.trufflesuite.com/docs/

truffle/overview. [Online accessed 07-March-2021].

[54] Tuler de Oliveira, M., Reis, L., Medeiros, D., Carrano, R., Olabarriaga, S.,

and Menezes, D. (2020). Blockchain reputation-based consensus: A scalable and

resilient mechanism for distributed mistrusting applications. Computer Networks,

179:107367.

[55] Uber (2021). Uber delivery-ratings-explained. https://www.uber.com/us/en/

deliver/basics/tips-for-success/delivery-ratings-explained/. [Online

accessed 23-Feb-2021].

[56] Wang, X., Zhan, L., Ruan, J., and Zhang, J. (2014). How to choose “last mile”

delivery modes for e-fulfillment. Mathematical Problems in Engineering, 2014.

[57] Wang, Y., Zhang, D., Liu, Q., Shen, F., and Lee, L. H. (2016). Towards enhancing

the last-mile delivery: An effective crowd-tasking model with scalable solutions.

Transportation Research Part E: Logistics and Transportation Review, 93:279–293.

78

https://www.transunion.com/blog/prevention-of-shipping-fraud
https://www.transunion.com/blog/prevention-of-shipping-fraud
https://medium.com/@treasureishere/last-mile-delivery-market-to-2027-global-analysis-and-forecasts-by-technology-ae2c04b6c9b4
https://medium.com/@treasureishere/last-mile-delivery-market-to-2027-global-analysis-and-forecasts-by-technology-ae2c04b6c9b4
https://medium.com/@treasureishere/last-mile-delivery-market-to-2027-global-analysis-and-forecasts-by-technology-ae2c04b6c9b4
https://www.trufflesuite.com/docs/truffle/overview
https://www.trufflesuite.com/docs/truffle/overview
https://www.uber.com/us/en/deliver/basics/tips-for-success/delivery-ratings-explained/
https://www.uber.com/us/en/deliver/basics/tips-for-success/delivery-ratings-explained/

REFERENCES

[58] Whitby, A. and Jøsang, A. (2004). Filtering out unfair ratings in bayesian rep-

utation systems. The Icfain Journal of Management Research, 4.

[59] Zhao, Z. and Liu, Y. (2019). A blockchain based identity management system

considering reputation. In 2019 2nd International Conference on Information Sys-

tems and Computer Aided Education (ICISCAE), pages 32–36.

79

Appendix A: Smart Contracts

1 //MAIN DELIVERY CONTRACT

2 pragma solidity ^0.4.26;

3 import ’./ Rating_Contract.sol’;

4 import ’./ Blind_Signatures.sol’;

5 import ’./ Dispute.sol’;

6

7 contract Main_Delivery {

8 Rating_Contract rt;

9 Blind_Signatures bs;

10 Dispute dt;

11 address public seller;

12 address public buyer;

13 address public transporter;

14 address public arbitrator; // Trusted incase of dispute

15 address public attestaionAuthority; // Party that attested the

smart contract

16

17 uint public itemPrice;

18 uint public rep_score;

19 string public Verified_parties;

20 uint type_of_dispute;

21 string itemID;

22

23

24 string public TermsIPFS_Hash; // Terms and conditions agreement

IPFS Hash

25

80

Appendix

26 // Enum wont allow the contract to be in any other state

27 enum contractState {IntialState , waitingForItemPriceByBuyer ,

MoneyWithdrawn , PackageCreated

28 ,waitingForAssignmentofTransporter ,

TransporterNotAssigned ,

29 TransporterAssigned ,

PackageAndTransporterAssigned ,

ItemOnTheWay ,ArrivedToDestination ,

30 PaymentSettledSuccess , Aborted , Refund ,

Dispute ,CancellationRefund }

31

32 contractState public state;

33

34 // @notice Will receive any eth sent to the contract

35 function () external payable {

36

37 }

38

39

40 mapping(address => bool) public cancellable;

41

42 uint deliveryDuration;

43 uint startEntryTransporterKeysBlocktime;

44 uint buyerVerificationTimeWindow;

45 uint startdeliveryBlocktime;

46

47 constructor(address _seller ,

48 address _buyer ,

49 address _arbitrator ,

50 address _attestationAuthority ,

51 address _rt_addr ,

52 address _bs_addr ,

53 address _dt_Addr ,

54 string memory _itemID)

55 public {

56 seller = _seller;

81

Appendix

57 buyer = _buyer;

58 arbitrator = _arbitrator;

59 attestaionAuthority = _attestationAuthority;

60

61

62 itemPrice = 1 ether;

63 itemID = _itemID;

64 deliveryDuration = 2 hours; // 2 hours

65

66 TermsIPFS_Hash = "

QmWWQSuPMS6aXCbZKpEjPHPUZN2NjB3YrhJTHsV4X3vb2td";

67

68 state = contractState.IntialState;

69 rt=Rating_Contract(_rt_addr);

70 bs= Blind_Signatures(_bs_addr);

71 dt= Dispute(_dt_Addr);

72

73 }

74

75 modifier costs () {

76 require(msg.value == itemPrice);

77 _;

78 }

79 modifier OnlySeller () {

80 require(msg.sender == seller);

81 _;

82 }

83

84 modifier OnlyBuyer () {

85 require(msg.sender == buyer);

86 _;

87 }

88

89 modifier OnlyTransporter () {

90 require(msg.sender == transporter);

91 _;

82

Appendix

92 }

93 modifier OnlyArbitrator () {

94 require(msg.sender == arbitrator);

95 _;

96 }

97

98 modifier OnlySeller_Buyer_Arbitrator () {

99 require(msg.sender == seller || msg.sender == buyer || msg.

sender == arbitrator);

100 _;

101 }

102

103 event TermsAndConditionsSignedBy(string ,address);

104 event RatingVerified(string info , address entityAddress);

105 event RatingNotVerified(string info , address entityAddress);

106 event PackageCreatedBySeller(string info , address entityAddress)

;

107 event DeliveryDeclined(string info , address entityAddress);

108 event Reputation_Check(string info , uint256);

109 event ItemPriceWithdrawnSuccessfully(string ,address);

110 event ItemNotPaid(string , address);

111 event InterestedInBuyItem(string ,address);

112 event PackageIsOnTheWay(string ,address);

113 event ArrivedToDestination(string ,address);

114 event BothPartiesVerified(string ,address);

115 event DeliveryTimeExceeded(string info ,address);

116 event CancellationRequest(address ,string , string);

117 event DeliveryAttributes(string ,bool ,string);

118 event NoDeliveryAttributes(string ,bool ,string);

119 event DisputeResolvedOffchain(string info ,address);

120

121

122 function InterestToBuyItem () public OnlyBuyer {

123 require(state == contractState.IntialState);

124 emit InterestedInBuyItem(’Buyer wants to Buy Item’, msg.

sender);

83

Appendix

125 state=contractState.waitingForItemPriceByBuyer;

126

127

128 }

129

130 function PayItemPrice () public payable costs OnlyBuyer {

131 if(msg.sender == buyer) {

132 require(state == contractState.

waitingForItemPriceByBuyer);

133 emit TermsAndConditionsSignedBy("Terms and Conditiond

verified : ", msg.sender);

134 emit ItemPriceWithdrawnSuccessfully("Item Price is

withdrawn successfully from: ", msg.sender);

135 state = contractState.MoneyWithdrawn;

136 cancellable[seller]=true;

137 cancellable[buyer] = true;

138

139 }

140 else{

141 emit ItemNotPaid("Item Price Not Paid: ", msg.sender);

142 state = contractState.Aborted;

143 }

144 }

145

146 function delivery_attributes(bool custm_Delivery , string

location) public OnlyBuyer{

147

148 if(custm_Delivery){

149 emit DeliveryAttributes(’Custom Delivery Requirements

Entered ’,custm_Delivery ,location);

150 }

151 else{

152 emit NoDeliveryAttributes(’No Custom Delivery

Requirements Entered ’,custm_Delivery ,location);

153 }

154 }

84

Appendix

155

156 function createPackage () public OnlySeller {

157 require(state == contractState.MoneyWithdrawn);

158

159 cancellable[msg.sender] = false;

160 cancellable[transporter]=false;

161

162 state = contractState.PackageCreated;

163 emit PackageCreatedBySeller("Package created and given to

transporter by the sender ", msg.sender);

164 }

165

166 function assignCarrier () public OnlySeller returns(address){

167 require(state == contractState.PackageCreated);

168 transporter=rt.assign_transporter ();

169 cancellable[msg.sender] = false;

170 cancellable[transporter]=false;

171 emit PackageCreatedBySeller("Package given to transporter by

the seller", transporter);

172 state = contractState.PackageAndTransporterAssigned;

173

174 return transporter;

175 }

176

177 function PackageOutForDelivery () public OnlyTransporter {

178 require(state == contractState.PackageAndTransporterAssigned

);

179 startdeliveryBlocktime = block.timestamp;//save the delivery

time

180 cancellable[buyer] = false;

181 emit PackageIsOnTheWay("The package is out for delivery ",

msg.sender);

182 state = contractState.ItemOnTheWay;

183 }

184

185 function ReachedDestination () public OnlyTransporter {

85

Appendix

186 require(state == contractState.ItemOnTheWay);

187 emit ArrivedToDestination("Transporter Arrived To

Destination " , msg.sender);

188 state = contractState.ArrivedToDestination;

189

190 }

191

192

193

194 function AskForBuyerMessage(string memory message) public

OnlySeller returns(string memory){

195 require(state== contractState.ArrivedToDestination);

196 bs.verify(message);

197 Verified_parties=bs.parties_verified(message);

198 return Verified_parties;

199 }

200 function VerifiedParties () public OnlySeller {

201

202 if(keccak256(abi.encodePacked(bs.x()))== keccak256(abi.

encodePacked(’2Parties Verified ’))){

203

204 emit BothPartiesVerified(’Parties Verified via Blind

Signatures ’,msg.sender);

205

206 }

207

208 else {

209 type_of_dispute =2;

210 state=contractState.Dispute;

211 }

212 }

213

214 function settle_payment () public OnlyArbitrator returns(uint){

215 seller.transfer (((90* itemPrice)/100));

216 transporter.transfer (((10* itemPrice)/100));

217 state=contractState.PaymentSettledSuccess;

86

Appendix

218 rep_score=reputation_check ();

219 rep_score=rep_score +1;

220 return rep_score;

221

222 }

223 function exceedDeliveryTime () public OnlyBuyer{

224 // refund incase delivery take more delivery time

225 require(block.timestamp > startdeliveryBlocktime+

deliveryDuration &&

226 (state == contractState.ItemOnTheWay));

227 emit DeliveryTimeExceeded(’Item not delivered on time ,

Refund Request by’,buyer);

228 state=contractState.Dispute;

229 type_of_dispute =3;

230 disputeHandling ();

231

232 }

233

234 function disputeHandling () public OnlySeller_Buyer_Arbitrator{

235 require(state== contractState.Dispute);

236

237 if(type_of_dispute ==1){

238 dt.carrierSelection ();

239

240 }

241 else if (type_of_dispute ==2)

242 {

243 dt.NoSignatureMatchFound ();

244 }

245 else if (type_of_dispute ==3){

246

247 dt.CarrierTimeExceeded ();

248 }

249 else{

250 emit DisputeResolvedOffchain(’Dsipute can be resolved

offchain by’, arbitrator);

87

Appendix

251 }

252 }

253 function cancelDelivery(string memory reason) public

OnlySeller_Buyer_Arbitrator{

254 require(cancellable[msg.sender]== true);

255 state=contractState.CancellationRefund;

256 buyer.transfer(itemPrice);

257 emit CancellationRequest(msg.sender ,’has requested a

cancellation due to’,reason);

258 state = contractState.Aborted;

259 }

260

261

262 function reputation_check () public returns(uint) {

263 rep_score=rt.reputation_check ();

264 emit Reputation_Check(’Reputation_Score ’,rep_score);

265 return rep_score;

266 }

267 function updateReputation () public {

268 require(state== contractState.PaymentSettledSuccess);

269 rt.setTarget(rep_score ,transporter);

270 }

271 }

1 // RATING CONTRACT

2 pragma solidity ^0.4.26;

3

4

5 contract Rating_Contract {

6

7 address public seller;

8 address public buyer;

9 address public transporter;

10 address public arbitrator; // Trusted incase of dispute

11 address public attestaionAuthority; // Party that attested the

smart contract

88

Appendix

12 uint public itemPrice;

13 uint public overall_reputation =0;

14 uint public trustscore;

15 uint public feature_weight_1;

16 uint public feature_weight_2;

17 uint public rep_score =0;

18 address public md_addr;

19 string itemID;

20

21 enum contractState { waitingForWeightsbyArbitrator ,

22 weights_set_by_arbitrator ,

weights_accepted_by_Seller ,

weights_accepted_by_Buyer ,

23 agreed_feature_weights }

24

25 contractState public state;

26

27 modifier OnlySeller () {

28 require(msg.sender == seller);

29 _;

30 }

31 modifier OnlyBuyer () {

32 require(msg.sender == buyer);

33 _;

34 }

35 modifier OnlyArbitrator () {

36 require(msg.sender == buyer);

37 _;

38 }

39

40 modifier OnlySeller_Buyer_Arbitrator () {

41 require(msg.sender == seller || msg.sender == buyer || msg.

sender == arbitrator);

42 _;

43 }

44

89

Appendix

45

46

47

48 event InputWeightsByArbitrator(string info , address

entityAddress);

49 event TermsAndConditionsSignedBy(string info , address

entityAddress);

50 event WeightsAssignedSuccessfully(string info , uint ,uint ,address

entityAddress);

51 event Overall_Reputation(string info ,uint , address entityAddress

);

52 event VerificationFailure(string info , uint ,address

entityAddress);

53 event VerificationSuccess(string info ,uint , address

entityAddress);

54 event PrintTransporterReputation(string info ,uint);

55 event Dispute(string info ,address entityAddress);

56 event PrintCountAddress(string info ,uint ,address entityAddress);

57 event Reputation_Check(string info ,uint , address);

58

59 constructor(

60 address _seller ,

61 address _buyer ,

62 address _arbitrator ,

63 address _attestationAuthority

64)

65 public {

66

67 seller=_seller;

68 buyer=_buyer;

69 arbitrator = _arbitrator;

70 attestaionAuthority = _attestationAuthority;

71 state = contractState.waitingForWeightsbyArbitrator;

72

73 }

74

90

Appendix

75

76 struct Agent_Struct {

77 string name;

78 string ID;

79 uint reputation;

80

81 uint buyer_score_for_carrier;

82 uint seller_score_for_carrier;

83 bool carrier_already_allocated;

84 }

85

86

87 mapping(address => Agent_Struct) public sellerStruct;

88 mapping(address => Agent_Struct) public buyerStruct;

89 mapping(address => Agent_Struct) public transporterStruct;

90

91 address [] public sellersAddress;

92 address [] public buyerAddress;

93 address [] public transporterAddress;

94

95

96 // input ratings

97

98 function getSellerReputation () external view returns(address []

memory){

99 return sellersAddress;

100 }

101 function getBuyerReputation () external view returns(address []

memory){

102 return buyerAddress;

103 }

104

105

106 function InsertTransporter(string memory name ,string memory ID,

uint _reputation ,

107 uint _buyer_score_for_carrier ,uint

91

Appendix

_seller_score_for_carrier)

108 public{

109 transporterStruct[msg.sender].name = name;

110 //set user name

111 transporterStruct[msg.sender].ID = ID;

112 transporterStruct[msg.sender]. reputation = _reputation;

113

114 transporterStruct[msg.sender]. buyer_score_for_carrier=

_buyer_score_for_carrier;

115 transporterStruct[msg.sender]. seller_score_for_carrier=

_seller_score_for_carrier;

116 transporterStruct[msg.sender]. carrier_already_allocated=

false;

117 // address ’i degistirdim

118 transporterAddress.push(msg.sender);

119 }

120 function getTransporterReputation () public view returns(address

[] memory){

121 return transporterAddress;

122 }

123

124 function getTransporterReputationCount () public view returns(

uint){

125 return transporterAddress.length;

126 }

127 function getBuyerReputationCount () public view returns(uint){

128 return buyerAddress.length;

129 }

130 function getSellerReputationCount () public view returns(uint){

131 return sellersAddress.length;

132 }

133

134

135 // weights_assigned

136

137 function input_weights_by_Arbitrator(uint w1,uint w2) public

92

Appendix

138 { if(msg.sender == arbitrator){

139 require(state == contractState.

waitingForWeightsbyArbitrator);

140 feature_weight_1=w1;

141 feature_weight_2=w2;

142 emit InputWeightsByArbitrator("Weights Inputed by

arbitrator : ", msg.sender);

143

144 state = contractState.weights_set_by_arbitrator;

145 }

146 }

147

148 // weights agreed by each Party

149

150 function consesus_on_weights(bool weight_flag) public {

151 if(msg.sender == seller)

152 {

153 require(state== contractState.weights_set_by_arbitrator);

154 if(weight_flag)

155 {

156 emit TermsAndConditionsSignedBy(’weights accepted by

seller ’,msg.sender);

157 state=contractState.weights_accepted_by_Seller;

158 }

159 else

160 emit Dispute(’Dispute occurs: weights are not accepted

by each party’,msg.sender);

161 }

162 else if(msg.sender == buyer)

163 {

164 require(state== contractState.weights_accepted_by_Seller)

;

165 if(weight_flag)

166 {

167 emit TermsAndConditionsSignedBy(’weights accepted by

buyer ’,msg.sender);

93

Appendix

168 state=contractState.weights_accepted_by_Buyer;

169

170 }

171 else

172 emit Dispute(’Dispute occurs: weights are not accepted

by each party’,msg.sender);

173

174 }

175 }

176 function setTarget(uint _rep_score ,address _transporter) public

returns(uint){

177 transporter=_transporter;

178 transporterStruct[transporter]. reputation= _rep_score;

179 return transporterStruct[transporter]. reputation;

180 }

181

182

183

184 function carrier_selector () public view returns (uint256) {

185

186 return uint256(uint256(keccak256(abi.encodePacked(block.

timestamp , block.difficulty)))%5);

187 }

188

189

190

191

192

193 function assign_transporter () public returns (address){

194

195 // uint x=getTransporterReputationCount ();

196

197

198

199 uint i=carrier_selector ();

200

94

Appendix

201

202 transporterStruct[transporterAddress[i]]. reputation=

transporterStruct[transporterAddress[i]]. reputation+

203 feature_weight_1*transporterStruct[transporterAddress[i

]]. buyer_score_for_carrier+

204 feature_weight_2*transporterStruct[transporterAddress[

i]]. seller_score_for_carrier;

205

206

207

208 transporter=transporterAddress[i];

209 transporterStruct[transporterAddress[i]].

carrier_already_allocated=true;

210

211

212 emit VerificationSuccess(’criteria met’,

transporterStruct[transporterAddress[i]]. reputation ,

transporter);

213 // emit VerificationFailure(’criteria not met , assign

different transporter ’,transporterStruct[

transporterAddress[i]]. reputation ,msg.sender);

214

215

216 return address(transporter);

217

218 }

219

220

221

222 function reputation_check () public returns(uint) {

223 emit Reputation_Check(’Reputation_Score ’,transporterStruct[

transporter].reputation ,msg.sender);

224 return transporterStruct[transporter]. reputation;

225 }

226

227

95

Appendix

228 }

1 // BLIND_SIGNATURE CONTRACT

2 pragma solidity ^0.4.26;

3 contract Blind_Signatures{

4 address public buyer;

5 address public seller;

6 address public arbitrator;

7 address public attestationAuthority;

8 string public x;

9 constructor(

10 address _buyer ,

11 address _seller ,

12 address _arbitrator ,

13 address _attestationAuthority

14)public{

15 buyer=_buyer;

16 seller=_seller;

17 arbitrator=_arbitrator;

18 attestationAuthority=_attestationAuthority;

19

20 }

21 event Verification(string info , address entityAddress , string

message);

22 function verify(string memory message) public returns(string

memory){

23 emit Verification(’Verification of blind -signatures off -

chain ’,msg.sender ,message);

24

25 }

26 function parties_verified (string memory temp_message) public

returns (string memory){

27 x=temp_message;

28 return x;

29 }

30

96

Appendix

31

32

33 }

1 // DISPUTE CONTRACT

2 pragma solidity ^0.4.26;

3 import ’./ Rating_Contract.sol’;

4

5 contract Dispute{

6 Rating_Contract rt;

7 address public buyer;

8 address public seller;

9 address public arbitrator;

10 address public attestationAuthority;

11 uint256 public rep_score;

12

13 address public rt_addr;

14 string public x;

15

16 constructor(

17 address _buyer ,

18 address _seller ,

19 address _arbitrator ,

20 address _attestationAuthority ,

21 address _rt_addr

22

23)public{

24 buyer=_buyer;

25 seller=_seller;

26 arbitrator=_arbitrator;

27 attestationAuthority=_attestationAuthority;

28 rt=Rating_Contract(_rt_addr);

29

30 }

31 event AvaialableCarriersPool(string info , address []);

32 event SignatureNotVerified(string info ,address);

97

Appendix

33 event ReputationDecreased(string info ,address);

34 event ProposedWeights(string info ,address ,uint256 ,uint256);

35 event TimeWindowExceeded(string info ,address);

36

37 function carrierSelection () public {

38 emit AvaialableCarriersPool(’Available Carriers ’, rt.

getTransporterReputation ());

39 rt.assign_transporter ();

40 }

41

42 function NoSignatureMatchFound () public{

43 emit SignatureNotVerified(’No Key Match Found’,msg.sender);

44 rep_score=rt.reputation_check ();

45 rep_score=rep_score -1;

46 // right now linear decreement but one can add non -linearity

using some feature table

47 emit ReputationDecreased(’Reputation Decreased ’,msg.sender);

48

49

50

51 }

52 function ConsensusWeightsDispute(uint _w1 ,uint _w2) public {

53 emit ProposedWeights(’arbitrator proposed new weights for

consensus ’,msg.sender ,_w1 ,_w2);

54

55 }

56 function CarrierTimeExceeded () public{

57 emit TimeWindowExceeded(’Delivery Time Window Exceeded ’,msg.

sender);

58 rep_score=rt.reputation_check ();

59 rep_score=rep_score -1;

60

61 emit ReputationDecreased(’Reputation Decreased ’,msg.sender);

62 }

63 }

98

Appendix B: Scripts

1 // CONTRACT LISTENING SCRIPT

2 const Web3=require(’web3’);

3

4 let web3 = new Web3(’ws:// localhost :8545’);

5 var contractAddress= "0x5C29808662b0F24eAE42aacF542FB9565260d7bd";

6

7

8 var abi=[

9 {

10 "inputs": [

11 {

12 "internalType": "address",

13 "name": "_buyer",

14 "type": "address"

15 },

16 {

17 "internalType": "address",

18 "name": "_seller",

19 "type": "address"

20 },

21 {

22 "internalType": "address",

23 "name": "_arbitrator",

24 "type": "address"

25 },

26 {

27 "internalType": "address",

99

Appendix

28 "name": "_attestationAuthority",

29 "type": "address"

30 }

31],

32 "payable": false ,

33 "stateMutability": "nonpayable",

34 "type": "constructor"

35 },

36 {

37 "anonymous": false ,

38 "inputs": [

39 {

40 "indexed": false ,

41 "internalType": "string",

42 "name": "info",

43 "type": "string"

44 },

45 {

46 "indexed": false ,

47 "internalType": "address",

48 "name": "entityaddress",

49 "type": "address"

50 },

51 {

52 "indexed": false ,

53 "internalType": "string",

54 "name": "message",

55 "type": "string"

56 }

57],

58 "name": "Verification",

59 "type": "event"

60 },

61 {

62 "constant": true ,

63 "inputs": [],

100

Appendix

64 "name": "arbitrator",

65 "outputs": [

66 {

67 "internalType": "address",

68 "name": "",

69 "type": "address"

70 }

71],

72 "payable": false ,

73 "stateMutability": "view",

74 "type": "function"

75 },

76 {

77 "constant": true ,

78 "inputs": [],

79 "name": "attestaionAuthority",

80 "outputs": [

81 {

82 "internalType": "address",

83 "name": "",

84 "type": "address"

85 }

86],

87 "payable": false ,

88 "stateMutability": "view",

89 "type": "function"

90 },

91 {

92 "constant": true ,

93 "inputs": [],

94 "name": "buyer",

95 "outputs": [

96 {

97 "internalType": "address",

98 "name": "",

99 "type": "address"

101

Appendix

100 }

101],

102 "payable": false ,

103 "stateMutability": "view",

104 "type": "function"

105 },

106 {

107 "constant": false ,

108 "inputs": [

109 {

110 "internalType": "string",

111 "name": "temp_message",

112 "type": "string"

113 }

114],

115 "name": "parties_verified",

116 "outputs": [

117 {

118 "internalType": "string",

119 "name": "",

120 "type": "string"

121 }

122],

123 "payable": false ,

124 "stateMutability": "nonpayable",

125 "type": "function"

126 },

127 {

128 "constant": true ,

129 "inputs": [],

130 "name": "seller",

131 "outputs": [

132 {

133 "internalType": "address",

134 "name": "",

135 "type": "address"

102

Appendix

136 }

137],

138 "payable": false ,

139 "stateMutability": "view",

140 "type": "function"

141 },

142 {

143 "constant": false ,

144 "inputs": [

145 {

146 "internalType": "string",

147 "name": "message",

148 "type": "string"

149 }

150],

151 "name": "verify",

152 "outputs": [

153 {

154 "internalType": "string",

155 "name": "",

156 "type": "string"

157 }

158],

159 "payable": false ,

160 "stateMutability": "nonpayable",

161 "type": "function"

162 },

163 {

164 "constant": true ,

165 "inputs": [],

166 "name": "x",

167 "outputs": [

168 {

169 "internalType": "string",

170 "name": "",

171 "type": "string"

103

Appendix

172 }

173],

174 "payable": false ,

175 "stateMutability": "view",

176 "type": "function"

177 }

178]

179 var BlindedContractDeployed = new web3.eth.Contract(abi ,

contractAddress);

180

181

182 BlindedContractDeployed.events.Verification ({

183 filter: {myIndexedParam: [20,23], myOtherIndexedParam: ’0

x123456789 ...’}, // Using an array means OR: e.g. 20 or 23

184 fromBlock: ’latest ’

185 }, function(error , event){

186

187 const blind_signature=require(’./ blind_signature ’);

188

189 console.log(blind_signature.verify(event.returnValues[’

message ’]));

190

191 console.log(event);

192 BlindedContractDeployed.methods.parties_verified(

blind_signature.verify(event.returnValues[’message ’])

).send({ from: ’0

x6f18e806d860F65028c1304194f755425f020EF6 ’});

193 });

1

2 // Blind Signature Verification Script

3

4

5 function verify(_string){

6

7 const BlindSignature = require("blind -signatures");

104

Appendix

8 const Seller = {

9 key: BlindSignature.keyGeneration ({ b: 2048 }), // b: key -

length

10 blinded: null ,

11 unblinded: null ,

12 message: null ,

13 };

14

15 const Buyer = {

16 message: _string ,

17 N: null ,

18 E: null ,

19 r: null ,

20 signed: null ,

21 unblinded: null ,

22 };

23

24 // Buyer wants Seller to sign a message without revealing it’s

contents.

25 // Buyer can later verify he did sign the message

26

27 console.log(’ Message Signed on -chain:’, Buyer.message);

28

29 // Buyer gets N and E variables from Seller ’s key

30 Buyer.N = Seller.key.keyPair.n.toString ();

31 Buyer.E = Seller.key.keyPair.e.toString ();

32

33 const { blinded , r } = BlindSignature.blind ({

34 message: Buyer.message ,

35 N: Buyer.N,

36 E: Buyer.E,

37 }); // Buyer blinds message

38 Buyer.r = r;

39

40 // Buyer sends blinded to Seller

41 Seller.blinded = blinded;

105

Appendix

42

43 const signed = BlindSignature.sign({

44 blinded: Seller.blinded ,

45 key: Seller.key ,

46 }); // Seller signs blinded message

47

48 // Seller sends signed message to Buyer

49 Buyer.signed = signed;

50

51 const unblinded = BlindSignature.unblind ({

52 signed: Buyer.signed ,

53 N: Buyer.N,

54 r: Buyer.r,

55 }); // Buyer unblinds

56 Buyer.unblinded = unblinded;

57

58 // Buyer verifies

59 const result = BlindSignature.verify ({

60 unblinded: Buyer.unblinded ,

61 N: Buyer.N,

62 E: Buyer.E,

63 message: Buyer.message ,

64 });

65 if (result) {

66

67 console.log(’Buyer: Seller Signatures verified!’);

68 } else {

69

70 console.log(’Buyer: Invalid Seller signature provided ’);

71 }

72

73 // Buyer sends Seller unblinded signature and original message

74 Seller.unblinded = Buyer.unblinded;

75 Seller.message = Buyer.message;

76

77 // Seller verifies

106

Appendix

78 const result2 = BlindSignature.verify2 ({

79 unblinded: Seller.unblinded ,

80 key: Seller.key ,

81 message: Seller.message ,

82 });

83 if (result2) {

84

85 console.log(’Seller : Buyer Verified!’);

86 } else {

87

88 console.log(’Seller: Buyer Not Verified ’);

89 }

90 return result+result2+’Parties Verified ’;

91 }

92 module.exports = { verify };

107

VITA AUCTORIS

NAME: Vipul Malhotra

PLACE OF BIRTH: Chandigarh, India

YEAR OF BIRTH: 1996

EDUCATION: Chitkara University, Bachelor’s of Computer Science,
Punjab, 2018

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2021

108

	A Secure Proof of Delivery Scheme for Crowdsourced Last Mile Delivery Using Blockchain
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	DEDICATION
	AKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Overview
	Last Mile Logistics Challenges
	Motivation
	Problem Statement
	Thesis Contribution
	Thesis Organization

	Related Works
	Blockchain
	Blockchain Types & Consensus Algorithms
	The Role of Blockchain in LMD

	Supply Chain and Traceability
	Blockchain in Delivering Physical Assets
	Crowdsourcing
	Crowd-Shipping effects on LMD
	Reputation Based Systems
	Reputation System Design Patterns

	Methodology
	System Overview
	System Design
	System Initialization
	Reputation
	Carrier Selection Policy
	SCENARIO 1
	SCENARIO 2
	SCENARIO 3

	Signature Verification of Agents
	Delivery Execution

	Operational Scenarios
	Carrier Assignment
	Verify Signatures
	Payment Settlement & Update Reputation Score
	Dispute Handling
	Cancel Delivery and Refund
	Exceeded Delivery Time

	Security Analysis

	Experiments and Results
	Dataset Used For Experiments
	Experiments Conducted & Results
	Experimentation Design
	Experiments Results
	Delivery Execution Results:
	Proof of Delivery Transaction Logs:

	Cost Analysis
	Tools Used for Implementation

	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES
	APPENDIX A Smart Contracts
	APPENDIX B Scripts
	VITA AUCTORIS

