
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-18-2021

Efficient and Accurate Neural Network Based Internal Combustion Efficient and Accurate Neural Network Based Internal Combustion

Engine Modeling and Prediction Engine Modeling and Prediction

Weiying Zeng
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zeng, Weiying, "Efficient and Accurate Neural Network Based Internal Combustion Engine Modeling and
Prediction" (2021). Electronic Theses and Dissertations. 8620.
https://scholar.uwindsor.ca/etd/8620

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8620?utm_source=scholar.uwindsor.ca%2Fetd%2F8620&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient and Accurate Neural Network Based Internal Combustion Engine

Modeling and Prediction

by

Weiying Zeng

A Dissertation

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

2021

© 2021 Weiying Zeng

Efficient and Accurate Neural Network Based Internal Combustion Engine

Modeling and Prediction

by

Weiying Zeng

APPROVED BY:

__

F. Gebali, External Examiner

University of Victoria

__

I. Ahmad

School of Computer Science

__

J. Wu

Department of Electrical and Computer Engineering

__

E. Abdel-Raheem

Department of Electrical and Computer Engineering

__

M. Khalid, Advisor

Department of Electrical and Computer Engineering

 March 24, 2021

III

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I. Co-Authorship

I hereby declare that this thesis incorporates material that is a result of joint research, as

follows: Chapter 3 to Chapter 5 of the thesis was co-authored with Dr. Mohammed Khalid,

Dr. Xiaoye Han, and Dr. Jimi Tjong. In all cases, the key ideas, primary contributions,

experimental designs, data analysis, interpretation, and writing were performed by the

author. Dr. Khalid contributed to the idea refinement, manuscript revision, and progress

supervision. Dr. Han supported experimental design and setup. Dr. Tjong’s contribution

was primarily through the provision of supervision.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I

have properly acknowledged the contribution of other researchers to my thesis, and have

obtained written permission from each of the co-author(s) to include the above material(s)

in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers, is

the product of my own work.

II. Previous Publication

This thesis includes one original paper that has been previously published and one original

paper that is going to be submitted for publication in peer reviewed journals, as follows:

IV

Thesis chapter Journal publication title/full citation
Publication

status

Chapter

[3] [4] [5]

Zeng, W., Khalid, M.A., Han, X. and Tjong, J.,

2020, “A Study on Extreme Learning Machine for

Gasoline Engine Torque Prediction”, IEEE

Access, 8, pp.104762-104774.

Published

Chapter

[6] [7]

Zeng, W., Khalid, M.A., Han, X. and Tjong, J., “A

Novel Progressive Extreme Learning Machine for

System Identification”, Applied Intelligence,

Springer

To be submitted

I certify that I have obtained a written permission from the copyright owner(s) to include

the above published material(s) in my thesis. I certify that the above material describes

work completed during my registration as a graduate student at the University of Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have

obtained a written permission from the copyright owner(s) to include such material(s) in

my thesis.

V

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

VI

ABSTRACT

Traditionally the internal combustion engines and their subsystems are modeled purely

based on their physical/mathematical principles. Such modeling techniques usually require

deep prior knowledge of the internal combustion engine, which is often too difficult for

many non-engine experts. In addition, the modeling process is usually very complicated

and time-consuming. In some cases, the models may not be useful for many real-world

applications due to oversimplified modeling assumptions. In recent years, with the rise of

artificial intelligence technologies, the neural network based internal combustion engine

modeling techniques have gained increasing popularity. In contrast to the traditional

internal combustion engine modeling approaches, the neural network based methods can

create the models directly from the system data instead of from the complicated

physical/mathematical equations. This type of approach is easier to handle and often has

fewer parameters to tune.

This dissertation presents an extreme learning machine based neural network modeling

technique for gasoline engine torque prediction. The technique utilizes a single-hidden

layer feedforward neural-network structure that has the potential to approximate any

continuous function with high accuracy. To verify the robustness of this technique, over

3300 data points collected from a real-world gasoline engine were used to train and test the

model. The data points spanned from 1000 rpm to 4500 rpm engine speed, idle to full

engine load, which mirrored the full map of normal engine operating conditions.

The experimental results demonstrate that the created model predicts the gasoline engine

torque with high accuracy. Furthermore, this research proposed a weight factor approach

VII

to further improve the model accuracy in the desired data regions without modifying the

input data set. The model evaluation showed that the weight factor approach could reduce

the overall prediction errors in the desired regions significantly. This feature is particularly

useful in tuning the performance of the model when the significance of the individual data

points varies, or when the distribution of the data points is imbalanced.

Moreover, an innovative form of extreme learning (referred to as progressive extreme

learning machine) was proposed and evaluated. It was capable of gradually improving the

estimation accuracy with recursions. The new algorithm maintained the random weights

generation feature of the traditional extreme learning machine and upheld the training speed

advantage over many other competing algorithms. The experimental evaluation results

show that progressive extreme learning machine has higher accuracy and superior

generalization than many other extreme learning machine based algorithms. Furthermore,

its performance was also compared with some nonlinear machine learning algorithms using

the publicly available data sets. The experimental evaluation results showed that the

progressive learning machine outperformed the support vector regression and had

comparable performance with Levenberg-Marquardt Algorithm.

VIII

DEDICATION

This thesis is dedicated to my wife Zhenyi, my daughter Lucy, my mother Miliang, my

father Shuangjian, and my brother Yidi. Love you all.

IX

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor, Dr. Mohammed Khalid,

for his faith and patience with me. His guidance, support, and encouragement are precious

during my dissertation work. I am so grateful to be his student and have learned a lot under his

supervision. I also like to thank my committee members, Dr. Jonathan Wu, Dr. Esam Abdel-

Raheem, and Dr. Imran Ahmad for all the invaluable comments and suggestions on my

research. I acknowledge Dr. Fayez Gebali from University of Victoria for his helpful

suggestions and corrections on my dissertation. Special thanks to Dr. Xiaoye Han, Dr. Jimi

Tjong, and Dr. Ming Zheng for all their supports, direct and indirect.

X

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION III

ABSTRACT .. VI

DEDICATION .. VIII

ACKNOWLEDGEMENTS .. IX

LIST OF TABLES ... XIV

LIST OF FIGURES ... XV

LIST OF SYMBOLS AND ABBREVIATIONS .. XVIII

Chapter 1. Introduction ... 1

1.1 Model-Based Internal Combustion Engine Modeling .. 1

1.2 Neural Network Based Automotive IC Engine Modeling 2

1.3 Thesis Goals .. 5

1.4 Scope of Work .. 6

1.5 Thesis Contributions ... 7

1.6 Thesis Organization .. 7

Chapter 2. Background and Related Work ... 9

2.1 The Basics of Single Layer Perceptron .. 9

2.2 Popular Activation Functions ... 12

2.3 Main Types of Neural Networks .. 18

XI

2.4 Neural Network Training Algorithms .. 23

2.4.1 Backpropagation ... 23

2.4.2 Neural Network with Random Weights .. 26

2.4.3 Radial Basis Function Neural Network .. 28

2.5 Summary ... 29

Chapter 3. Neural Network Algorithm for IC Engine Torque Modeling 31

3.1 Selection of Modeling Methodology .. 32

3.2 Extreme Learning Machine Based Neural Network Approximation 33

3.2.1 Single-Hidden Layer Feedforward Neural Network Approximation 34

3.2.2 Extreme Learning Machine Approximation for SLFN 36

3.2.3 Determine the 𝒌 Value for Regression Problem ... 40

3.2.4 Weighted ELM Regression for Engine Model ... 42

3.3 Summary ... 45

Chapter 4. IC Engine Experiment Setup and Data Acquisition.................................... 46

4.1 Experiment Design and Data Acquisition Target ... 46

4.2 Engine Dynamometer Test Cell Setup ... 47

4.3 Test Matrix and Control Parameters ... 48

4.3.1 Test Points and Data Acquisition .. 49

4.3.2 Range of Controlling Parameters .. 50

4.4 Model Parameter Selection and Data Partition ... 52

4.5 Summary ... 55

XII

Chapter 5. Experimental Evaluation of IC Engine Torque Model 56

5.1 Neural Network Training and Performance Evaluation 56

5.1.1 Data Preparation .. 56

5.1.2 Experimental Evaluation Results .. 59

5.1.3 Parameter Selection Considerations.. 62

5.2 Weighted Regression Approach and Results .. 67

5.2.1 Data Preparation .. 67

5.2.2 Weighted Regression Results.. 69

5.3 Summary ... 79

Chapter 6. Progressive Extreme Learning Machine ... 80

6.1 Review of the ELM-Based Techniques .. 80

6.2 Proposed Methodology ... 85

6.2.1 Structure of the Proposed Algorithm .. 86

6.2.2 Pseudo-code of the Pr-ELM Algorithm .. 89

6.3 Data Preparation and Model Evaluation ... 90

6.3.1 Data Preparation .. 91

6.3.2 Experimental Evaluation Results .. 94

6.4 Summary ... 97

Chapter 7. Comparison of Pr-ELM with Competing Algorithms 99

7.1 Comparison with Competing ELM-Based Algorithms .. 99

7.2 Comparison with LMA and SVR ... 103

XIII

7.2.1 Brief description of LMA and SVR algorithms .. 103

7.2.2 Evaluation Configurations and Results ... 109

7.3 Summary ... 116

Chapter 8. Conclusion and Future Work .. 117

8.1 Dissertation Summary .. 117

8.2 Principal Contributions ... 118

8.3 Additional Remarks and Future Directions .. 119

REFERENCES ... 122

VITA AUCTORIS .. 140

XIV

LIST OF TABLES

Table 3-1 Qualitative comparison of popular training algorithms 33

Table 4-1 Range of control parameters ... 51

Table 4-2 Model input/output parameters and statistics .. 54

Table 5-1 Summary of the model evaluation results ... 62

Table 5-2 Experimental results of weights and biases randomization 64

Table 5-3 The composition of the training and the testing data sets 69

Table 6-1 Model input/output parameters and statistics .. 92

Table 6-2 Comparison between traditional ELM and Pr-ELM (recursion = 15) 97

Table 7-1 Performance comparison with 50 hidden nodes ... 102

Table 7-2 Performance comparison with 100 hidden nodes 102

Table 7-3 Specification of the data sets ... 110

Table 7-4 Data attribute modification for energy efficiency data set 112

Table 7-5 Comparison of Pr-ELM, LMA, and SVR (50 hidden nodes) 114

Table 7-6 Comparison of Pr-ELM, LMA, and SVR (100 hidden nodes) 115

XV

LIST OF FIGURES

Figure 1-1 Thesis organization ... 8

Figure 2-1 Structure of a biological neuron (adapted from Q. Jaroz [31]) 10

Figure 2-2 Mathematical abstraction of a single neuron .. 11

Figure 2-3 Structure of a single-layer artificial neural network 11

Figure 2-4 Binary step activation function ... 13

Figure 2-5 Sigmoid activation function .. 14

Figure 2-6 Arctangent activation function .. 14

Figure 2-7 ReLU activation function .. 15

Figure 2-8 Exponential linear unit function .. 16

Figure 2-9 Hyperbolic tangent function .. 17

Figure 2-10 Deep feedforward neural network ... 19

Figure 2-11 Schematic diagram of Radial Basis Network (adapted from [36]) 20

Figure 2-12 Schematic of Autoencoder .. 21

Figure 2-13 Schematic diagram of Recurrent Neural Network .. 22

Figure 2-14 Schematic diagram of Deep Convolutional Network 23

Figure 3-1 Basic structure of an SLFN ... 36

Figure 3-2 Ridge Regression Mean Square Function (adopted from [67]) 40

XVI

Figure 3-3 Engine speed-load operating points visited by the simulated conventional

vehicle over each drive cycle. The blue crosses represent the engine state at

1s intervals (adapted from [24]). ... 43

Figure 4-1 Test system diagram .. 47

Figure 4-2 Eddy current dynamometer ... 48

Figure 4-3 Illustration of the exponential rise of the map size and complexity as the

control parameters increase (the table contents are blurred for proprietary

reasons) ... 50

Figure 5-1 Network structure with data normalization and restoration schemes 57

Figure 5-2 Number of hidden neurons vs. normalized RMSE 58

Figure 5-3 Torque model regression results ... 61

Figure 5-4 Hidden layer output range with different initializations 65

Figure 5-5 Selected LMSO points in a torque and engine speed map 68

Figure 5-6 Impact of the change of weight factor on RMSE .. 71

Figure 5-7 Impact of the change of weight factor on the correlation coefficients 72

Figure 5-8 RMSE comparison of the individual LMSO areas with w = 30 75

Figure 5-9 Corr. Coef. comparison of the individual LMSO areas with w = 30 76

Figure 5-10 Comparison of regression results of the LMSO1 points with w = 30 78

Figure 6-1 Structure of the proposed algorithm .. 89

Figure 6-2 Impact of the number of recursions on RMSE .. 95

XVII

Figure 6-3 Impact of the number of recursions on the correlation coefficient 96

Figure 7-1 Linear ε-insensitive loss function .. 107

XVIII

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

𝛼 Lagrange multiplier

𝛽 the weight vector connecting the hidden layer and output layer

𝛽̂ the estimation of the weight vector connecting the hidden layer and output layer

𝜆 the maximum number of recursions

ξ the slack variable for Support Vector Regression

𝜎 the center spread parameter

𝜂 the target accuracy

𝑏 the bias of the hidden layer

𝑐 neuron’s center

𝑓 the activation function

𝑔 the activation function of the hidden nodes

ℎ the output of a neuron

𝑘 the regularization factor

𝑚 the dimension of the input data

𝑛 the number of training samples

𝑤 the weight vector connecting the hidden layer and the input layer

𝑤̂ the estimation of the weight vector connecting the hidden layer and the input layer

𝐶 the box value for Support Vector Regression

H the output of hidden layer

XIX

𝐻† the Moore-Penrose inverse of matrix 𝐻

𝑁̃ number of neurons

𝑁 number of total data points

𝑋 model input

𝑌 model output

𝑌̂ the estimation of model output

XX

Abbreviations

AE Autoencoder

AG-ELM Adaptive Growth of Hidden Nodes

AOI Area of Interest

AFR Air-to-Fuel Ratio

ANN Artificial Neural Network

AIC Akaike’s Information Criterion

B-ELM Bidirectional Extreme Learning Machine

BP Backpropagation

CFD Computational Fluid Dynamics

CI-ELM Convex Incremental Extreme Learning Machine

CNN Convolutional Neural Network

D-ELM Dynamic Extreme Learning Machine

DL Deep Learning

E-ELM Evolutionary Extreme Learning Machine

EB-ELM Enhanced Bidirectional Extreme Learning Machine

ECU Engine Control Unit

ECI-ELM Enhanced Convex Incremental Extreme Learning Machine

EM-ELM Error Minimized Extreme Learning Machine

XXI

EGR Exhaust Gas Recirculation

EI-ELM Enhanced Incremental Extreme Learning Machine

ELM Extreme Learning Machine

ELM-AE Extreme Learning Machine Auto-Encoder

ELU Exponential Linear Unit

EM-ELM Error Minimized Extreme Learning Machine

EMVT Electromagnetic Valve Train

GELM-AE Generalized Extreme Learning Machine Autoencoder

H-ELM Hierarchical Extreme Learning Machine

HWFET Highway Fuel Economy Test

IC Internal Combustion

I-ELM Incremental Extreme Learning Machine

KKT Karush-Kuhn-Tucker

LLN Law of Large Numbers

LMA Levenberg-Marquardt Algorithm

LMSO Low-to-Medium Speed Operating

MAF Mass Air Flow

MLP Multilayer Perceptron

ML-ELM Multilayer Extreme Learning Machine

XXII

MSE Mean Square Error

NM Newton Meter

NNRW Neural Network with Random Weights

NOx Nitrogen Oxide

OEM Original Equipment Manufacturer

OP-ELM Optimally Pruned Extreme Learning Machine

OEB-ELM Random Orthogonal Projection Based Enhanced Bidirectional Extreme

Learning Machine

OS-ELM Online Sequential Extreme Learning Machine

P-ELM Pruned Extreme Learning Machine

PELM Parallel Extreme Learning Machine

Pr-ELM Progressive Extreme Learning Machine

PCM Powertrain Control Module

RBF Radial Basis Function

RBN Radial Basis Network

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RPM Revolutions per Minute

XXIII

RVFL Random Vector Functional Link

SaE-ELM Self-Adaptive Evolutionary Extreme Learning Machine

SLFN Single-hidden Layer Feedforward Neural-Network

SSE Sum of Squared Error

SVM Support Vector Machine

SVR Support Vector Regression

UDDS Urban Dynamometer Driving Schedule

VCT Variable Cam Timing

1

Chapter 1. Introduction

The modeling of the internal combustion (IC) engine and its subsystems is mainly realized

through either the model-based or the data-driven approaches [1], [2]. The model-based

approach often creates the engine models based on the physical laws of the engine system.

Proper system abstractions and assumptions are critical for the accuracy of the model.

Though such models have explicit structures, their expressions are usually mathematically

complicated. A major disadvantage of this approach is that it requires the users to have a

deep understanding of the engine system to build the models. On the other hand, the data-

driven approach can create engine models based on the data directly collected from the

target system. This method focuses on finding out the functional relations between the input

and output data of the modeling object, rather than understanding the complex physics of

the system. Among the data-driven automotive IC engine modeling approaches, the neural-

network-based models have become increasingly popular in recent years.

1.1 Model-Based Internal Combustion Engine Modeling

The model-based approach is classical and probably the first choice for many people when

it comes to IC engine modeling. Starting from the physics principles, with proper

abstractions, the system is constructed with mathematical equations that directly describe

the engine operational mechanism.

Various models were proposed to simulate the physical, electrical, and chemical processes

of the in-cylinder and other parts of engine systems. For instance, Tolou et al. presented a

semi-predictive model of turbocharged gasoline direct injection engine [3]. The model

2

approximated the combustion heat release with a double-Wiebe function and predicted the

cylinder peak pressure by tuning the Wiebe variables. Togun et al. proposed a nonlinear

mathematical approach to model the engine torque using a recursive least square method,

in which the nonlinearity was determined with Hammerstein structure, and the system was

identified by studying multi-order linear dynamics [4]. Tan and Reitz presented a spark

model with an equation to calculate the propagation rate of the ignition flame [5]. The

formation and properties of the flame kernel were also modeled in [6] by Boudier et al.

Their model results matched a set of typical engine experiment data without parameter

adjustments. To investigate the cycle-to-cycle performance variance of gasoline engines,

Daw et al. proposed a model that showed the autocorrelation between the stochastic

fluctuation of the engine parameters and the nonlinear deterministic coupling between

successive engine cycles [7]. In addition, some computational simulation approaches were

also adopted to model the engine operation. For instance, computational fluid dynamics

(CFD) and MATLAB/Simulink modeling technologies were demonstrated [8]–[11].

However, to use the model-based method properly, a comprehensive understanding of the

internal combustion engine or its subsystems is required, which limits non-experts’

accessibility to such approaches. Moreover, as pointed out in [12], the model-based

modeling strategies often fail to work effectively in practice due to the complexity of

multivariate coupling and unexpected noise in real-world applications.

1.2 Neural Network Based Automotive IC Engine Modeling

In contrast to the above-mentioned modeling approaches, the data-driven modeling

techniques can work well even without a deep understanding of the fundamental physics

3

of the target system. Generally, these techniques can create models directly from the data

collected on the target system instead of from the complicated governing equations derived

from physical principles. Moreover, the data-driven modeling techniques could function

well when multivariate correlation exists. Among many data-driven techniques for the

engine-related applications, artificial neural network (ANN) is very popular and has been

increasingly studied.

Wu et al. proposed a mass air flow (MAF) sensor model on a dual-cam engine using a two

hidden layer ANN structure [13]. The simulated results showed good agreement between

the dynamometer data and the vehicle test data. Togun and Baysec demonstrated the

capability of predicting engine torque and brake fuel specific consumption using neural

networks [14]. Cay investigated the applicability of ANN to predict engine performance

and exhaust temperature values [15]. Cycle-to-cycle combustion variation was studied by

Di Mauro et al. in [16], which helped identify the pre-ignition and pre-combustion factors,

as well as predict the variation of the indicated mean effective pressure. A neural network

based nonlinear predictive control scheme was investigated by Hu et al., in which the

coordinated control of throttle and wastegate on a turbocharged gasoline engine was

explored [17]. Li et al. presented a model for nitrogen oxide and smoke emissions on a

diesel engine [18], in which the authors not only discussed how to select the model inputs

based on the physical analysis but also showed the insightful comparisons of a range of

neural network architectures in terms of model complexity and accuracy. In addition to

characterizing engine performance and predicting engine behaviors, neural network models

were also used in engine fault diagnostics. Zheng et al. revealed how misfire could be

4

detected and categorized under different engine conditions using Elman neural network

[19]. Bearing knock fault features were detected by proper ANNs as demonstrated by Chen

and Randall [20]. Vibration data were investigated by Ahmed et al. with an ANN model

that could identify various engine faults and categorize the severity of the faults [21]. Wen

et al. proposed a bearing fault detection model using a convolutional neural network (CNN)

that could autonomously learn the unique features of each type of bearing fault and identify

the defective bearings with its fault type [22].

However, the neural network approaches in the aforementioned research papers still need

further improvement. Firstly, the neural networks all use a backpropagation algorithm to

train the weight of each neuron. In practice, this algorithm may not be easy enough to

implement, especially for non-experts. The disadvantages of backpropagation include

difficulties in determining the proper learning rate, getting trapped in local minima, prone

to over-training, and very time-consuming for most of the applications [23]. Secondly,

these neural network models are typically created and tested with about 80 to 130 data

points. More data points are required to explore the robustness of the neural network.

Thirdly, all the data points are treated equally in the neural network optimization process.

However, the weight of each data point needs to be considered differently to meet the

requirements of practical engineering considerations. For instance, the gasoline engines

usually operate at certain conditions much more often than other conditions [24]. Therefore,

a neural network model should have higher accuracy at the more frequently operated engine

conditions, even though the accuracy at the less frequently operated engine conditions may

have to be sacrificed slightly.

5

1.3 Thesis Goals

In this dissertation, we explore a novel neural network based approach for automotive IC

engine torque modeling. The proposed approach is easy to implement, so it can be quickly

adopted by the users, with and without the background knowledge in IC engines. In

addition, the proposed approach delivers sufficient accuracy for the intended IC engine

applications. It also provides comparable performance with other competing algorithms for

the data sets used in different applications other than IC engine torque modeling.

The goals of this research are as follows:

1) Explore a single-hidden layer feedforward neural-network (SLFN) approach for IC

engine torque modeling. Propose an improved extreme learning machine (ELM)

based methodology for IC engine torque modeling.

2) Conduct comprehensive IC engine mapping tests to collect a large amount of engine

mapping data that can cover the normal operating conditions of a real-world IC

engine. Over 3300 points are collected as the evaluation data set compared to

typically 80 to 130 points employed by other IC engine modeling algorithms.

3) Evaluate the performance of the proposed IC engine torque model with the

experimentally collected data set.

4) Investigate the effectiveness of the proposed algorithm. Compare its performance

with other popular ELM-based algorithms and the non-ELM algorithms.

6

1.4 Scope of Work

This section describes the key compositions of the dissertation and identifies the boundary

of the work. Necessary background information was covered before introducing each

algorithm. Practicality was considered throughout the research. The experiment design and

the evaluation criteria of the newly proposed algorithm were application-oriented to assure

that this research can help solve real-world engineering problems.

Comprehensive engine mapping experiments were carried out to provide a primary data

source to evaluate the proposed algorithms. Over 3300 data points were collected for this

research compared with about 80~130 data points used in the research described in Section

1.2. The experiments were conducted at an industry-leading testing facility and in line with

the standards of the leading automotive Original Equipment Manufacturers (OEMs). The

whole engine map for normal engine operating conditions was covered in the test. With a

large number of high-quality data, not only the robustness of the proposed algorithm was

tested, but the applicability of the created model was also guaranteed.

Other than many of the aforementioned research papers, in which all the data points were

treated uniformly to achieve an overall performance level of the neural network, a weighted

optimization was applied to treat the data points with different significance, so the engine

model could achieve higher accuracy at certain dedicated data areas. This feature is

important for the real-world applications as IC engines usually operate at certain operating

conditions at a higher frequency. These operating conditions require higher modeling

accuracy.

7

Further explorations were conducted to seek improvement of the existing ELM algorithm.

With this objective, a new ELM-based algorithm, named progressive extreme learning

machine (Pr-ELM), was proposed and evaluated against the competing ELM-based

algorithms. Regression accuracy and the linear relationship were used to assess the

performance of the algorithm.

1.5 Thesis Contributions

This dissertation presents an approach to create a single-hidden layer feedforward neural

network based regression model using ELM, which is used for predicting the output torque

of a gasoline engine. In addition, an improved ELM-based algorithm is proposed to enhance

the accuracy of the existing ELM algorithms. The contributions of this thesis are as follows.

1) Established a procedure to create an engine torque prediction model using ELM

approach so that a non-engine expert could also benefit from it.

2) Proposed a weight factor approach to further enhance the model accuracy in the

desired data regions based on real-world applications.

3) Proposed an improved ELM algorithm that could increase the accuracy of the

traditional ELM significantly.

1.6 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2, various neural network algorithms for SLFN are reviewed. The advantages

and disadvantages of each algorithm are highlighted. The ELM based engine modeling

8

algorithm is presented in Chapter 3. Chapter 4 describes the experimental setup and the

data acquisition approaches for evaluating the model. The engine test data presented in this

chapter are used to verify the proposed IC engine torque model. Chapter 5 presents the

experimental evaluation results of the engine torque model with the acquired data. A new

ELM based algorithm called Progressive ELM is presented in Chapter 6. Chapter 7 briefly

covers the comparison studies between Pr-ELM and other ELM-based algorithms, as well

the popular non ELM-based training algorithms. Finally, concluding remarks and future

research perspectives are provided in Chapter 8. The organization chart of this thesis is

shown in Figure 1-1.

Figure 1-1 Thesis organization

data handling

Initial

Research

Dissertation

Core

Background of

Efficient and Accurate Neural Network Based

Internal Combustion Engine Modeling and Prediction

thesis goals

Motivation &

Chapter 2

Literature reviewNN methodologies

study

Benchmark

Test setup &
Chapter 4

Experiment and

Data Acquisition

Algorithm & Chapter 6

Progressive ELMevaluation
Chapter 7

Comparison with

competing algo.

Public

databases

Chapter 8

Conclusions

Chapter 1

Introduction

Chapter 3

ELM based engine

modeling algorithm

Chapter 5

Test results

9

Chapter 2. Background and Related Work

Neural network based system modeling and identification techniques have provided new

perspectives on understanding the behavior of complex systems. Based on the anatomy of

the human nervous system and the mechanism of its operation, artificial neural networks

are created in an attempt to achieve similar functionalities that a human neural network can

do, such as learning adaptation, generalization, massive parallelism, robustness, associative

storage of information, and spatiotemporal information processing [25]. Without knowing

much physical insight into the target system, neural network based system modeling and

identification techniques can infer the relationships of the relevant system parameters from

the data that are usually acquired from the target system [26]. Like many system

identification models [4], [13], [14], [27], [28], two main issues that need to be solved are

the selection of proper neural network architecture (such as model parameters, activation

functions, and connection types) and the choice of model training algorithms (such as

backpropagation and support vector machine) [29].

In this chapter, the basic anatomy of neuron networks is introduced. Then the popular

neural network architectures are presented, followed by the introduction of the mainstream

network training algorithms for system identification.

2.1 The Basics of Single Layer Perceptron

The idea behind the artificial neural network is to mimic the anatomy of the human brain

neural network and simulate the mechanism of its operation.

10

The human brain is a vast and extremely sophisticated neural network. An exemplary

biological neuron network with only one neuron cell is demonstrated in Figure 2-1. Though

the biological sensory organs may be of various types, the input signals are all picked up

by the cell dendrites, through which the external input enters a neural system. Then the

electrochemical nerve impulse (also called stimulus) is generated in the dendrites and

transmitted through axons to the axon terminals (in a unilateral direction). The axon

terminals connect to the next one or multiple neurons’ dendrites in the synapse and

exchange nerve information in it. In a human brain, there are approximately 100 billion

neurons [30]. As more neurons joining in the process, the more complicated and abstracted

information the neural network can handle.

Figure 2-1 Structure of a biological neuron (adapted from Q. Jaroz [31])

In the same analogy, an artificial neuron node can be modeled mathematically as shown in

Figure 2-2. The cell receives and transmits information through the input and the output

ports, which simulate the dendrites and axon terminals of the biologic neural cell,

respectively. For illustration simplicity, only one input port and one output port are

presented in the figure. A bias term is also fed into the neuron node to analogize the

Dendrites

Nucleus

Myelin Sheath

Axon Terminals

Nerve Impulse

11

stochastic noises and all other unknown characteristics that may have contributed to the

overall input of the neuron cell. The cell body contains a function 𝑓, called the activation

function, to imitate the decision-making process of the neuron cell. The output is the

outcome of the processed information which is passed to the next connected neuron(s).

Figure 2-2 Mathematical abstraction of a single neuron

A single layer perceptron can be created accordingly by putting more neurons together. An

exemplar neural network is the integrate-and-fire model proposed by McCulloch and Pitts

[32]. As illustrated in Figure 2-3, each pink circle represents an input neuron cell, and the

blue circle represents an output neuron cell (biases are omitted for simplicity). The pink

circles analogize to the information sensory units such as dendrites, the link between the

pink and the blue circles represent the information transmitting unit such as the axons, and

the blue circle represents the axon terminals. The weight at each path indicates the

significance the cell gives to that input path. In this example, the output is a weighted sum

of the inputs.

Figure 2-3 Structure of a single-layer artificial neural network

Output Input

Bias

…

12

The mathematical equation of this model is shown in (2-1).

𝑦̂𝑖 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑑𝑥𝑑 (2-1)

2.2 Popular Activation Functions

There are various types of activation functions, such as sigmoid, arctangent, rectified linear

unit, and many other mathematical functions. According to the research by Huang et al.

[33], the specific function of the biological neural cells is unknown. A rectified linear unit

function may be a close form in the sense that it requires a threshold before anything

happens, which matches the firing concept of neural activation. In this section, a few

popular activation functions are briefly described.

• Binary step function

The binary step function is one of the simplest activation functions. It can be used to

represent a trigger threshold that determines whether a neuron should fire or not. As plotted

in Figure 2-4, the binary step function works much like a transistor: if the input is lower

than a certain level, the neuron remains inactive; if the input is greater than a certain level,

the neuron is activated. However, the output is invariable with a constant amplitude. The

mathematical expression of the binary step function is in (2-2).

𝑦 = {
0 if 𝑥 < 0
1 if 𝑥 ≥ 0

 (2-2)

13

Figure 2-4 Binary step activation function

• Sigmoid function

The sigmoid function is widely used as the activation function in various neural network

applications. Its mathematical expression is shown in (2-3). The sigmoidal function is

nonlinear and monotonic. It has a bounded output range between 0 and 1 as plotted in

Figure 2-5, which makes it a good candidate for probability estimation. In addition, its first-

order derivative has a bell-shaped curve, just like a normal distribution curve. Such a

property renders it many statistical advantages over other activation functions.

𝑦 = 1/(1 + 𝑒−𝑥) (2-3)

-20 -15 -10 -5 0 5 10 15 20

X

Y

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

14

Figure 2-5 Sigmoid activation function

• Arctangent function

The arctangent activation function maps the input to the range (-π/2, π/2) as showing in

Figure 2-6. It characterizes a slow rise when 𝑥 is far from 0 and transits to a sharp growth

phase when 𝑥 approaches to 0. Arctan is monotonic and has symmetric responses across

all 𝑥 ranges. Its mathematical expression is shown in (2-4).

𝑦 = 𝑎𝑐𝑡𝑎𝑛(𝑥) (2-4)

Figure 2-6 Arctangent activation function

-20 -15 -10 -5 0 5 10 15 20

X

Y

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-20 -15 -10 -5 0 5 10 15 20

X

Y

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

15

• Rectified linear unit function

Rectified linear unit (ReLU) function is a popular non-linear activation function, especially

for deep learning applications. As can be seen from (2-5) and Figure 2-7, the neuron fires

only to a certain range of the inputs: if the input is negative, its output remains 0; if the

input is non-negative, the output is the same value as the input. With such a property, it

works perfectly as a “mask” in a neural network to shut down the irrelevant paths without

physically changing the network architecture.

𝑦 = {
0, if 𝑥 < 0
𝑥, if 𝑥 ≥ 0

 (2-5)

Figure 2-7 ReLU activation function

• Exponential linear unit function

The exponential linear unit (ELU) is a variant of ReLU. When the input is non-negative.

ELU has the same as ReLU. However, when the input is negative, ELU smooths slowly

until the output approaches −𝑎, where it starts to smooth sharply. The equation and plot of

-20 -15 -10 -5 0 5 10 15 20

X

Y

-5

0

5

10

15

20

25

30

16

ELU can be found in (2-6) and Figure 2-8, respectively. Unlike ReLU function, ELU can

produce negative output and it is often considered as an alternative to ReLU.

𝑦 = {
 𝑥 𝑥 ≥ 0
𝑎(𝑒𝑥 − 1) 𝑥 < 0

 (2-6)

Figure 2-8 Exponential linear unit function

• Hyperbolic tangent function

The hyperbolic tangent function (tanh) maps the input to the range (-1, 1). It is essentially

a shifted version of sigmoid function and centers at 0. Therefore, in practice, its nonlinearity

is always preferred to the sigmoid nonlinearity [34]. In addition, it also helps in centering

the data by bringing the mean value close to 0. The equation and the plot of tanh function

are shown in (2-7) and Figure 2-9, respectively.

𝑦 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2-7)

-20 -15 -10 -5 0 5 10 15 20

X

Y

-5

0

5

10

15

20

25

30

a = 1

17

Figure 2-9 Hyperbolic tangent function

From the exemplary functions introduced above, it seems that only the nonlinear functions

can be used as neural network activation functions. In fact, the linear functions, such as

𝑦 = 𝑎𝑥 + 𝑏, may also be used as activation functions. However, there are two significant

disadvantages.

• As the derivatives of linear function have no relation to the input 𝑥, it is impossible to

use the popular backpropagation algorithm to optimize the network parameters

(because the gradient is the same all over the place regardless of the training data).

• Since the activations are linear, a multi-layer network is virtually the same as a single-

layer layer network as all the linear activation functions can be squashed into one single

linear function. Because of such attributes, it has limited power to extract deeper

features from the data source.

Therefore, the non-linear activation functions are preferred and widely accepted as the

activation functions in modern neural networks. However, because the true form of

activation function in a biological neuron cell is still unknown, it is impossible to justify

-3 -2 -1 0 1 2 3

X

Y

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

18

which non-linear activation function has the closest form to the true biological activation

function of a neuron cell [33]. In general, the choice of proper activation functions depends

on the particular network architecture, the available data set, and the network training

strategy. In addition, the selected activation functions need to be computationally efficient

and easy to handle, as there could easily be hundreds to millions of neurons in a modern

network. These neurons have to undergo derivative operations or other complex

mathematical operations extensively. Based on empirical observations, the sigmoid

function appears to be the most widely used one due to its computational efficiency and

mathematical advantages.

2.3 Main Types of Neural Networks

The types of neural networks have grown exponentially since the very first one proposed

by McCulloch and Pitts in 1943 [32]. Though different types of neural networks all work

essentially in the same principle (resembling the perception of the human nerve system),

they come with different capabilities in modeling different systems. Hidden neural nodes

and various network structures are used to build different types of neural networks. The

hidden nodes are specific functional nodes designed to extract particular features from a

given data set and deliver the output in a specific form. The connections between the nodes

represent the data flow directions in the network and help form the network architecture.

With the hidden neurons and various architectures, a linear regression model can have the

potential to describe the complex relationship between input and output data.

19

• Feedforward Neural Network

Feedforward neural network has one of the simplest network architectures. The

fundamental characteristic of a feedforward neural network is that its data path is

unidirectional, from the input node to the output node. The network can be either single

layer (as shown in Figure 2-3), single-hidden layer, or multiple hidden layers. The multiple

hidden layer feedforward neural network is also called deep feedforward neural network.

The output of the network is the sum of the products of the output of the last hidden layer

and their respective weights. An exemplar deep feedforward neural network is shown in

Figure 2-10. Though feedforward neural networks have been invented for decades, they

only get revived after the invention of the backpropagation algorithm and the development

of powerful computers. In practice, feedforward neural network is one of the most widely

used network types and most of them are trained using backpropagation based algorithms.

Its typical applications include system identification, pattern recognition, and computer

vision.

Figure 2-10 Deep feedforward neural network

I

I

I

H

H

H

H

H

H

O
Input Cell

H

O

I

Hidden Cell

Output Cell

20

• Radial Basis Network (RBN)

Radial basis network is one of the widely used neural networks for approximation

applications, particularly for scattered data interpolation. Unlike other neural networks,

RBN uses radial basis function as the activation function. Its cost function is the distance

from the data points to the centers [35], [36]. A schematic diagram of a radial basis network

is presented in Figure 2-11. The typical applications of radial basis networks are

approximation and classification. However, as indicated by Simonenko et al. [37], the

choice of radial basis network parameter is application dependent, which may pose

difficulties in exploiting its potential effectively.

Figure 2-11 Schematic diagram of Radial Basis Network (adapted from [36])

• Autoencoder (AE)

Autoencoder is a special network whose output is expected to replicate its input with the

least amount of distortion. It plays a fundamental role in unsupervised learning and deep

architectures [38]. Hinton et al. has proposed an effective way of initializing the weights to

allow deep autoencoder networks to reduce the dimensionality of the data without training

…...

…...

…...

x1 x2 xn

f(x)

I I I

H H H

O O

Non-linear

Transformation

(centers)
Input Cell

H

O

I

Hidden Cell

Output Cell

21

pattern deformations in [39]. Due to the simple implementation and relatively lower

computational cost, autoencoders have been widely used in many applications, such as

natural language processing, object detection, biometric recognition, and data analysis [40]

[41]. The schematic diagram of a simple autoencoder network is presented in Figure 2-12.

Figure 2-12 Schematic of Autoencoder

• Recurrent Neural Network (RNN)

Unlike the feedforward neural networks, RNN contains recurrent cell which receives its

own output, or it allows neuron connections from a neuron in one layer to its neurons in its

previous layers. As a result, sequential information can be captured. The dynamic temporal

behaviors can also be exploited. Based on different activation functions and connection

modes, there are various types of RNNs, such as stochastic neural network, bidirectional

network, fully recurrent neural network, simple recurrent neural network, neural Turing

machines, long short-term memories, and gated recurrent units [42]. Overall,

backpropagation through time algorithm is the most widely used algorithm to train RNNs.

Compared with the feedforward neural networks, RNNs usually require longer training

time as the input value of a neuron may depend on the outputs of a series of neurons in the

H

H

I

I

I

I

O

O

O

O

Input Cell

H

O

I

Hidden Cell

Match Input

Output Cell

22

downstream layers. In practice, RNN is commonly used in speech recognition, queuing

theory, mobility pattern prediction, and statistics.

Figure 2-13 Schematic diagram of Recurrent Neural Network

• Deep Convolutional Network

Convolutional neural networks are primarily used for image processing but can also be

used for other types of input such as audio. A typical use case of CNNs is that the user

feeds the network with images and the network classifies the data. As shown in Figure 2-14,

the input data are normally convolved with several different kernels to extract different

features. They are usually scanned in a raster sequence rather than parsed all at once. The

input data are then fed through convolutional layers instead of normal layers. These

convolutional layers also tend to shrink as they become deeper, mostly by easily divisible

factors of the input. Besides these convolutional layers, they also often feature pooling

layers. Pooling is a way to filter out details: a commonly found pooling technique is max

pooling. Deep convolutional networks enable the unsupervised construction of hierarchical

image representations.

I

I

O

OI

O

R

R

R

R

R

R

R

Input Cell

R

O

I

Recurrent Cell

Output Cell

23

Figure 2-14 Schematic diagram of Deep Convolutional Network

2.4 Neural Network Training Algorithms

Neural network training involves finding the appropriate weights for the neural nodes in

the network to approximate the target function by mapping the input to the output with

minimum estimation losses. Each neural network training algorithm may have its unique

advantages and limitations. Given the same neural network structure, different training

approaches may have significant differences in network performance. Therefore, it is vital

to select proper algorithms for specific applications. In this section, the popular neural

network training algorithms for system identification are presented.

2.4.1 Backpropagation

Backpropagation is one of the most widely used learning algorithms for ANNs [43]. Its

applications can be found in various fields, such as system modeling, pattern recognition,

sensitivity analysis, and the control of systems over time, among others. Some even think

backpropagation is one of the key factors that have brought wide popularity of the powerful

K

C

I
H

O
I K

I K

I K

I K

C

C

C

C

C

C

C

C

H

H

H

H

H

H

H

O

O
Input Cell

H

O

I

Output Cell

Kernel CellK

Convolution or PoolC

Hidden Cell

24

multilayer perceptron (MLP) network and created a trend of machine learning over the

statistical models [25].

In the standard backpropagation algorithm, the sum of squared error (SSE) is the commonly

used cost function1, which is repetitively derived, with respect to the weights and biases, to

gradually approach the proper weights and biases that lead to the minimized error function

for a given training data set. Considering an SLFN, the input to the hidden layer is

𝑛𝑒𝑡𝑖 =∑𝑤(𝑖,𝑗)𝑥𝑗 + 𝑏𝑖

𝑚

𝑗=1

 (2-8)

The output of the network is

𝑦𝑖̂ = 𝛽
𝑇 ∙ 𝑓(𝑛𝑒𝑡𝑖) (2-9)

The sum of squared error of the network is

𝐸 =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 (2-10)

1 Each cost function may have its unique advantages of being used for a certain application. For instance, Manhattan

distance may be a preferred cost function for high data dimensionality. However, the selection of cost functions is not in

the scope of this research.

25

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) ∈ 𝑅
𝑚, 𝑚 is the dimension of 𝑥, 𝛽 is weight connecting the

hidden layer and output layer. 𝑓 is the activation function, and 𝑛 is the number of training

samples.

In the traditional backpropagation algorithm, the weights and biases are initialized

arbitrarily (usually between -0.1 to 0.1), although it is better to initialize them based on the

prior information if it is available. The error function is derived repeatedly and

backpropagated to find out the gradient with respect to every 𝛽𝑖, 𝑤𝑖𝑗, 𝑏𝑖 at each data point.

The weights and biases are updated along the steepest gradient as showing in (2-11) to

(2-13) until the stop condition is met.

𝑤𝑘+1(𝑖, 𝑗) = 𝑤𝑘(𝑖, 𝑗) − 𝜂
𝜕𝑓(𝐸)

𝜕𝑤𝑘(𝑖, 𝑗)
 (2-11)

𝑏𝑘(𝑖) = 𝑏𝑘(𝑖) − 𝜂
𝜕𝑓(𝐸)

𝜕𝑏𝑘(𝑖)
 (2-12)

𝛽𝑘(𝑖) = 𝛽𝑘(𝑖) − 𝜂
𝜕𝑓(𝐸)

𝜕𝛽𝑘(𝑖)
 (2-13)

where 𝜂 is the learning rate.

The learning rate of traditional backpropagation is a relatively small number. Even 0.01 is

common in many cases. If the learning rate is too small, the network may converge very

slowly. Whereas if the learning rate is too big, the network may oscillate around the optimal

value and never approach the optimal value close enough. To increase the learning speed

while still remaining good accuracy, some improved backpropagation-based algorithms

have been proposed. For instance, Levenberg-Marquardt (LM) algorithm has incorporated

Gauss-Newton algorithm with the gradient descent approach, so it can converge fast when

26

the estimated value is far from the expected value, and use a relatively smaller learning rate

when the estimated value is close to the expected value.

Many backpropagation algorithms and their improved variants were used in IC engine

related applications over the years. Wang et al. [44] proposed an approach to estimate

nitrogen oxide (NOx) emissions using mutual information and the backpropagation neural

network. It was verified that the proposed neural network could reduce absolute deviation

and root mean square error by about 15% compared with the static map approach. Najafi

et al. [45] used the standard backpropagation to create a neural network to analyze the

performance and pollutant emissions of a spark-ignition engine operating on ethanol-

gasoline blends. It was observed that the ANN model could achieve as high as 0.97 to 1

correlation coefficient and 0.46% to 5.57% mean relative error. A similar study was carried

out in [27] to reveal the ANN’s potential to offer fast, accurate, and reliable means in

prediction or approximation affairs. A scaled conjugate gradient algorithm, a variant of

backpropagation, was proposed by Cay [15] to train an SLFN to predict specific fuel

consumption, engine power, and exhaust temperature of a gasoline engine. The model was

able to predict the engine performance with the 𝑅2 values about 0.99 between the training

and test data sets. To improve early diagnosis of the fault on electromagnetic valve train

(EMVT), backpropagation neural network was adapted with grey relation analysis to learn

the fault pattern and help identify early symptoms of EMVT failure [46].

2.4.2 Neural Network with Random Weights

From a parameter estimation perspective, multilayer perceptron networks tend to have a

large number of free parameters. However, a system with a large number of free parameters

27

often requires a large number of data samples to train. The training process often takes a

much longer time than the simpler networks. Schmidt et al. [47] argued that the weights of

the neural network might not be important and do not need to be tuned to very high accuracy.

Further research has lead to neural network with random weights (NNRW). It provides a

non-iterative approach to solve the ANN training problems that are solved by the traditional

BP-based learning approaches. Compared with traditional learning with global tuning such

as deep learning with the BP-based method, NNRW can achieve a much faster training

speed with acceptable accuracy. In addition, NNRW is easy to implement and its universal

approximation capability has been proven in theory [48], [49].

In recent years, NNRW has attracted wide attention and has gone through many interesting

developments. A 2D-NNRW algorithm was proposed for facial recognition [50]. It

employed left and right projecting vectors to reduce the high dimensional input weight in

the hidden layer while still preserved the image matrix structure. It showed improved

recognition performance compared to the traditional NNRW approach on the popular

datasets. Ramanujan et al. [51] dug deep into the NNRW structure and found out that an

NNRW contained a subnetwork that had an impressive performance on a given task without

modifying the weights. Moreover, they proposed an approach to sort out the impressive

subnetwork from the large NNRW. Ramanujan et al.'s work was helpful in understanding

the optimization and initialization of neural networks. The ranks of the input data and the

quality of the random feature mapping in the NNRW were studied in [52]. It revealed that

there was a certain threshold of the rank of the input data beyond which the performance

of the NNRW increased with the increase of the rank. Moreover, the revealed relationship

was independent of the number of hidden neural nodes and the activation functions. In

28

order to evaluate the quality of random feature mapping in the NNRW, a dispersion degree

of the matrix information distribution was proposed in this study. It could predict the quality

of model initialization prior to model training and greatly improve the efficiency of

modeling.

2.4.3 Radial Basis Function Neural Network

The basic RBF neural network is an MLP with three layers: the input layer, the hidden

neuron layer, and the output layer. The nodes in each layer are fully connected to the

previous layer. It calculates the distance between each input point and its centroid. The

activation function is some nonlinear function that operates on the distance. A potential

advantage of RBF networks is that it can augment the new training data without retraining

the network. The structure of an RBF network is shown in Figure 2-11 and its Gauss

function adapted expression is shown in (2-14).

ℎ𝑗 = exp (−
‖𝑥 − 𝑐𝑗‖

2

𝜎𝑗
2) (2-14)

where ℎ𝑗 is the output of the 𝑗𝑡ℎ neuron, 𝑥 is the input vector, 𝑐𝑗 is the neuron’s center and

𝜎𝑗 is the center spread parameter.

Generally, the RBF centers can be selected from the training data sets, determined through

clustering analysis [53]. Based on its universal approximation capability, various

applications of RBF network have been proposed by researchers. Some of the IC engine

related applications are presented as follows.

29

An RBF neural network trained with recursive least squares method was proposed to

simulate the IC engine parameters, such as crankshaft speed, intake manifold pressure, and

intake manifold temperature in [54]. Based on the RBF neural network, a model-based

predictive control strategy was developed and verified to achieve improved crankshaft

speed control results. Wang et al. [55] introduced an RBF neural network based dynamic

NOx prediction model, which used cylinder pressure as the feedback variable to indicate

NOx levels. The experiment demonstrated that cylinder pressures could be properly

predicted with acceptable accuracy. As a result, NOx levels were correctly estimated to

meet the requirement of diesel engines. A novel two-RBF-network based adaptive inverse

model control system was proposed to deal with the strong nonlinear effects in electronic

throttle body modeling [35]. The first RBF network was used to identify the sensitivity

information of the plant. The second RBF network was utilized as the inverse model

controller. The proposed model could achieve successful throttle setpoint tracking within

±0.2° static error even some parameter variations were presented. Bizon et al. [56]

proposed to use an RBF network to learn the relationship between cylinder pressure and

engine block vibration. Then the engine vibration data were used to predict the cylinder

pressure. The experiment showed that the relative error of the predicted peak cylinder

pressure was less than 4%.

2.5 Summary

This chapter briefly described the background knowledge of neural networks. The network

composition, the frequently used activation functions, and a few commonly adopted

30

training algorithms for system identification problems were covered. The neural network

based approaches for IC engine related modeling were also reviewed.

31

Chapter 3. Neural Network Algorithm for IC Engine Torque Modeling

In this research, we explored SLFN based approaches to model the output torque of an IC

gasoline engine. The modeling approach needs to be efficient and easy to handle, so it does

not require much effort to create to model. It will also benefit the non-experts, who

normally do not have much prior knowledge, to create similar IC engine torque models. On

the other hand, the modeling approach should be accurate enough so the created models

can be used for rapid prototype and cross verification. Based on the empirical experiences,

the discrepancy between the estimated and observed output values in an IC engine torque

model should be less than 5% to meet such requirements.

As pointed out in [57], there was no generic approach to determine the best neural network

architecture, such as the number of hidden neurons and the network layout, for a given

problem just based on the problem description. A common approach was to start with a

simple neural network structure if no prior data was available, then gradually build up the

complexity based on the performance of the created model.

In this chapter, SLFN was selected as the fundamental network type to build the IC engine

torque model due to its advantages in terms of structural simplicity and approximation

capabilities. A few popular SLFN modeling techniques were briefly compared with their

advantages and limitations identified. Eventually, the ELM based approach was chosen to

create the engine torque model. In addition to the conventional modeling approach where

all the points were equally considered, a weighted ELM model tuning approach was

introduced to adapt to the demands of the real-world applications where increased accuracy

was expected at certain engine operating conditions.

32

3.1 Selection of Modeling Methodology

Based on the discussions in Chapter 2, it was obvious that SLFN is one of the simplest

network architectures with structural simplicity - only one hidden layer and no feedback

from the output. It was also pointed out in previous research [23], [58], [59] that SLFN had

the potential to approximate any continuous function with high accuracy. Consequently,

SLFN was selected as the network structure to build the IC engine torque model in this

research.

In addition to network architecture, the selection of the training algorithm is also critical to

the overall performance of a neural network. A range of algorithms has been investigated.

Each of them has its advantages and limitations as shown in Table 3-1. For instance,

backpropagation is very popular and can be accurate in many cases, but it is slow in training

and may suffer from local minima traps. Radial basis function is slow in training and the

selection of the basis functions are application dependant. Deep learning is popular in

image/video processing and pattern recognition. However, it is over complicated for the IC

engine torque modeling application in this dissertation. Among the investigated training

algorithms, extreme learning machine has many advantages over other competing ones in

terms of algorithm complexity and training speed. In addition, it can yield quite a

comparable model accuracy as pointed out in many studies [60]–[62]. Based on the

heuristic considerations for speed, accuracy, and simplicity, ELM was selected as the

training algorithm.

33

Table 3-1 Qualitative comparison of popular training algorithms

Training Algorithm Key Advantage Key Disadvantage

Backpropagation Relatively small residual error
Slow training, local minima,

prone to overtraining

Radial Basis

Function (RBF)
Works well with discrete data

Slow training, application

dependent basis function

Support Vector

Regression (SVR)

Good for low dimensional data

regression and classification

Slow training, less accurate

for high dimensional data

Deep Learning
Prevalent in image and video

processing, Pattern recognition

Overly complex for the

current application, does not

perform well for small data

size, prone to over fitting

ELM

Extremely fast learning speed,

competitive accuracy, simple

handling

Unexploited benefit of weight

tuning

3.2 Extreme Learning Machine Based Neural Network Approximation

As one of the powerful neural network techniques, ELM has extended applications in

system identification, classification, pattern recognition, and deep learning. Though there

are critics about the nature of random weight generation in ELM [63], its popularity keeps

growing among the research communities over the years. To the best of the author’s

knowledge, though there are some automotive-related ELM applications, its capability in

gasoline engine torque modeling has not been thoroughly explored.

34

3.2.1 Single-Hidden Layer Feedforward Neural Network Approximation

Single hidden-layer feedforward neural network has a very simple structure, which makes

it much easier to be dealt with than many other complicated artificial neural networks

(ANN)2. As pointed out in [23], [58], [59], an SLFN with at most 𝑁̃ hidden neurons and

with almost any nonlinear activation function can learn 𝑁 distinct observations with zero

error, where 𝑁̃ is the number of hidden neurons and 𝑁 is the number of distinct

observations. It implies that it has the potential for accurate approximation. The description

of a generic SLFN approximation problem is as follows.

For 𝑁 arbitrary distinct samples (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚]
𝑇 ∈ 𝑅𝑚 and 𝑦 𝑖 =

 [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘]
𝑇 ∈ 𝑅𝑘, considering the standard model for SLFN approximation with 𝑁̃

nodes, the relation between the input and output data can be modeled as shown in (3-1),

𝑦𝑗 = ∑ 𝛽𝑖𝑔𝑖(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 , 𝑗 = 1,2, … ,𝑁 (3-1)

where 𝑚 is the dimension of the input data, 𝑘 is the dimension of the output data, 𝑤𝑖 =

[𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑚] is the weight vector connecting the 𝑖𝑡ℎ hidden node and the input

neurons, 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑘]
𝑇 is the weight vector connecting the 𝑖𝑡ℎ hidden node and

the output neurons, and 𝑏𝑖 is the bias of the 𝑖th hidden neuron. A structure of a general

SLFN with fully connected nodes is illustrated in Figure 3-1. The term 𝑤 ∙ 𝑥 is the inner

product of 𝑤𝑖 and 𝑥𝑗, and 𝑔 is the activation function of the 𝑖𝑡ℎ hidden neuron. In practice,

2 Artificial neural network and neural network will be interchangeably used in this dissertation.

35

𝑔 can be any nonlinear continuous function, such as sine, sigmoid, hyperbolic tangent, or

radial basis function. Different neurons can have different 𝑔 functions as well. However,

for the sake of simplicity and complying with common practice, the same 𝑔 functions will

be applied to all the neurons in this research. The term 𝑔𝑖(∙) represents the data feature

extracted by the 𝑖𝑡ℎ neuron. The compact version of (3-1) can be written as:

𝑌 = 𝐻𝛽 (3-2)

where

𝐻 = [
𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥1 + 𝑏𝑁̃)

⋮ ⋮ ⋮
𝑔(𝑤1 ∙ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥𝑁 + 𝑏𝑁̃)

]

𝑁×𝑁̃

 (3-3)

𝛽 = [
𝛽1
𝑇

⋮
𝛽𝑁̃
𝑇
]

𝑁̃×𝑘

 (3-4)

𝑌 = [
𝑦1
𝑇

⋮
𝑦𝑁
𝑇
]

𝑁×𝑘

 (3-5)

36

Figure 3-1 Basic structure of an SLFN

Let 𝛽̂ be the estimation of 𝛽, 𝑤̂ be the estimation of 𝑤, 𝑏̂ be the estimation of 𝑏, and 𝑌̂ be

the estimation of 𝑌. If the number of neurons equals the number of samples (generally 𝐻 is

a full rank square matrix in such a case), there exists a perfect estimation of 𝛽, which is

𝛽̂ = 𝐻(𝑤̂, 𝑥, 𝑏̂)
−1
∗ 𝑌, to make ‖𝑌̂ − 𝑌‖ = 0. However, in practice, the number of neurons

is often much less than the number of samples (𝑁̃ ≪ 𝑁). As a result, there may not exist a

perfect estimation of 𝛽̂ that makes ‖𝑌̂ − 𝑌‖ = 0 . Therefore, the target of the SLFN

approximation is to find out the appropriate estimations of 𝛽̂, 𝑤̂, and 𝑏̂, which can minimize

the cost of the estimation 𝐸 as shown in (3-6).

𝐸 = ‖𝑌̂ − 𝑌‖ = 𝑚𝑖𝑛
𝑤̂𝑖,𝑏̂𝑖,𝛽̂𝑖

‖𝐻(𝑤̂𝑖, 𝑏̂𝑖) ∙ 𝛽̂𝑖 − 𝑌‖ (3-6)

3.2.2 Extreme Learning Machine Approximation for SLFN

Since the gradient-based approximation method, such as backpropagation, has several

prominent disadvantages as pointed out in [23], a different algorithm was preferred in this

Input Layer

Hidden Layer

xm

x2

x1

h1

h2

h3

Output Layer

yk

y1

(𝛽11, …, 𝛽1𝑘)
……

(𝛽𝑁̃1, …, 𝛽𝑁̃𝑘)

(𝑤11, 𝑏11), (𝑤21, 𝑏21), …, (𝑤𝑁̃1, 𝑏𝑁̃1)
(𝑤12, 𝑏12), (𝑤22, 𝑏22), …, (𝑤𝑁̃2, 𝑏𝑁̃2)

……
(𝑤1𝑚, 𝑏1𝑚), (𝑤2𝑚, 𝑏2𝑚), …, (𝑤𝑁̃𝑚, 𝑏𝑁̃𝑚)

ℎ𝑁̃

37

research. Though there are some debates about the random weight generation feature of

ELM in the machine learning community [63], researchers have revealed that ELM has

superior training speed and comparable accuracy over many other popular SLFN training

algorithms, such as RBF, SVM, and AdaBoost [61]. However, its application in gasoline

engine torque prediction has not been explored.

Among many ANN training algorithms, a neural network with random weights (NNRW)

is appealing due to its advantages in network simplicity, faster training speed, and

competitive accuracy [64]. Compared with other NNRWs, such as Random Vector

Functional Link (RVFL) [48] and standard feed-forward neural network with random

weights (the Schmidt’s method) [47], ELM outshines due to the advantages such as setting

the bias of the output node to zero, transforming different hidden nodes to one unified form,

and generating random node parameters prior to knowing the training data [65]. In addition,

ELM can be extended to multiple hidden layer architecture and has a strong potential for

big data analytics [64], [66].

Therefore, in this research, an ELM based SLFN gasoline engine torque model was

explored and assessed. The uniqueness, as well as the competitiveness, of the traditional

ELM approach, largely lies in the fact that the weights and biases of the hidden neurons do

not need to be tuned. With prefixed 𝑤̂ and 𝑏̂ (which are usually randomly generated

numbers between 0 and 1), the approximation problem stated in (3-6) can be simplified as

(3-7), in which only 𝛽 needs to be optimized.

𝐸 = ‖𝑌̂ − 𝑌‖ = 𝑚𝑖𝑛
𝛽̂𝑖
‖𝐻𝛽̂𝑖 − 𝑌‖ (3-7)

38

The minimal norm least square estimation of 𝛽 is as the following [23]:

𝛽̂ = 𝐻†𝑌 (3-8)

where 𝐻† is the Moore-Penrose inverse of matrix 𝐻. The unbiased least square estimation

of the matrix is:

𝐻† = {
(𝐻𝑇𝐻)−1𝐻𝑇 , 𝑖𝑓 𝐻𝑇𝐻 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

𝐻𝑇(𝐻𝐻𝑇)−1, 𝑖𝑓 𝐻𝐻𝑇 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟
 (3-9)

However, according to the ridge regression theory [67], the variance of the above unbiased

least square estimation can be large so the estimation may be far from the true value when

multicollinearity exists. In addition, when 𝐻𝐻𝑇 (or 𝐻𝑇𝐻) is not invertible, there can be no

unique solution of 𝛽̂. Therefore, further regulation of 𝛽̂ is needed. In order to improve the

stability of the estimation, a small positive real number 𝑘 is added to all the diagonal

elements of the correlation matrix.

As a result, the ridge regression estimation of 𝛽 is:

𝛽∗̂ = H†Y

= {
(𝑘𝐼 + 𝐻𝑇𝐻)−1𝐻𝑇𝑌, 𝑖𝑓 𝐻𝑇𝐻 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

𝐻𝑇(𝑘𝐼 + 𝐻𝐻𝑇)−1𝑌, 𝑖𝑓 𝐻𝐻𝑇 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

(3-10)

Consequently, the estimated output of the network becomes:

𝑌̂ = 𝐻𝛽∗̂ (3-11)

39

The variance of the ridge regression estimator is

𝑉𝑎𝑟(𝛽∗̂) = {
𝜎2𝑍(𝐻𝑇𝐻)−1𝑍𝑇 , 𝑖𝑓 𝐻𝑇𝐻 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

𝜎2𝑍(𝐻𝐻𝑇)−1𝑍𝑇 , 𝑖𝑓 𝐻𝐻𝑇 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟
 (3-12)

where

𝑍 = {
(𝑘𝐼 + 𝐻𝑇𝐻)−1, 𝑖𝑓 𝐻𝑇𝐻 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

(𝑘𝐼 + 𝐻𝐻𝑇)−1, 𝑖𝑓 𝐻𝐻𝑇 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟
 (3-13)

The squared bias of the ridge regression estimator is

𝐵𝑖𝑎𝑠2(𝛽∗̂) = 𝑘2𝛽𝑇𝑍−1𝛽 (3-14)

From the above equations, the total variance of 𝛽∗̂ is a monotonically decreasing function

with respect to 𝑘, while the total squared bias of 𝛽∗̂ is a monotonically increasing function

with respect to 𝑘. As shown in Figure 3-2. with the 𝑘 value approaching to zero, the total

variance decreases sharply, though the squared bias would increase. According to the

existence theorem, these properties lead to a conclusion that there always exists such a 𝑘

value that makes the mean square error (MSE) of 𝛽∗̂ smaller than the MSE of 𝛽̂ , as

indicated by the red dotted line in the figure. Therefore, 𝛽∗̂ is a closer estimation of the true

model parameter 𝛽. Compared with the gradient descent based algorithms, this method

almost only requires a matrix inversion operation to determine the unsolved model

parameters. Therefore, the training speed of ELM is significantly faster than many of its

competitors [23], [62].

40

Figure 3-2 Ridge Regression Mean Square Function (adopted from [67])

3.2.3 Determine the 𝒌 Value for Regression Problem

As pointed out in the previous section, the small number 𝑘 in (3-10) needs to be determined

for better regression performance. The best 𝑘 is proved to be a positive value very close to

zero, but it is also impossible to calculate it out mathematically, as it ultimately depends on

the unknown parameter being estimated [67], [68]. To find a closer estimation of the true

𝑘 , several approaches have been proposed, such as ridge trace method [67], Akaike’s

information criterion (AIC) [69], and Adjusted 𝑅2 [70], [71]. However, each of these

approaches alone has some unique disadvantages. For instance, ridge trace may be too

subjective so that it is difficult to be generalized for the new data set. AIC can be good in

selecting the best model among all candidates, but it requires the best model to be well

established among the candidate models, which is often impractical [72]. Adjusted 𝑅2 is

useful for evaluating parameters, but it is incapable of model selection.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

k

1
/S

ig
m

a
_
S

q
u

a
re

0

11

22

33

44

55

66

77

88

99

110

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

k

1
/S

ig
m

a
_

S
q

u
a

re

0

11

22

33

44

55

66

77

88

99

110

Bias Squared

Ridge

Variance

Ordinary Least Square

41

In this research, a ten-fold cross-validation approach incorporated with ridge regression

was used to determine a proper 𝑘 value which could produce an error-minimized estimation

of 𝛽. This method had two main benefits: it delivered a deterministic result, so the process

could be computerized without human interference; the result was statistically

representative, so it had higher chances to fit the complete targeted data set. The key steps

of the approach are listed as follows.

1) The training data set was randomly divided into ten equal (or almost equal if there

was residue) partitions, such as 𝑋 = (𝑋1, 𝑋2, … , 𝑋10).

2) For each 𝑛 = 1,2,3, … ,10, the 𝑛𝑡ℎ partition was set as the validation data set and all

the rest data was taken as the training data set.

3) For each potential 𝑘 value, 𝛽∗̂ was computed using the training data set according

to (3-10), then 𝑦̂ was calculate according to (3-11).

4) The distance between the estimated 𝑦̂ and the expected 𝑦 was calculated using the

validation data set according to (3-15),

𝐸(𝑦̂ − 𝑦)𝑘 = 𝑠𝑞𝑟𝑡(∑(𝑦̂𝑖 − 𝑦𝑖)𝑘
2

𝑚

𝑖=1

/𝑚) (3-15)

where 𝑚 is the size of the testing data set, 𝑘 is the partition number.

5) Steps 3) and 4) were repeated for all the data partitions. The cross-validation

distance was calculated for the overall data set following (3-16).

𝐶𝑉_𝐸(𝑦̂ − 𝑦)𝑘
(10)

=∑ 𝐸(𝑦̂ − 𝑦)𝑘
10

𝑛
 (3-16)

42

6) The 𝑘 value which had the minimum overall cross-validation distance was chosen,

as showing (3-17)

3.2.4 Weighted ELM Regression for Engine Model

Though the ELM method described in the above sections could optimize ordinary linear

regression by reducing the overall distance between the estimated and expected values, it

might not be well suited for the applications where higher accuracy was preferred at certain

points. As indicated in (3-7), since the optimization target was to minimize the squared

accumulative distance of all the points in the data set, each point would contribute an equal

weight to the squared accumulative distance. Therefore, the optimization might be affected

by the availability and distribution of the data samples. The outcome might not suit certain

practical IC engine applications.

For instance, as pointed out in [24], though an engine map spreads over a wide range of

operating conditions, a typical light-duty vehicle engine actually spends most of the time

at the low to medium speed operating (LMSO) conditions in the standard vehicle and fuel

emission tests, such as the United States Environmental Protection Agency’s Urban

Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET), as

shown in Figure 3-3. The blue crosses are the engine speed and torque conditions during

the tests when periodic snapshots are taken. Based on the observation, it is desirable that

an engine regression model could have higher accuracy at or near these operating points,

even though the accuracy at other less frequently operating points may have to be

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘
𝐶𝑉_𝐸(𝑦̂ − 𝑦)𝑘

(10)
 (3-17)

43

compromised slightly. In the past, a few researchers proposed a weight matrix on ELM

algorithm to solve imbalanced sampling and multiclass classification problems [61], [73],

[74]. However, to the best of the authors’ knowledge, there was no exploration of using

weight regulated ELM to enhance a regression model only at certain data areas without

changing the input data sets. Hence, this study proposed the approach of implementing

weight regulated ELM on an SLFN linear regression model to serve such a purpose.

Figure 3-3 Engine speed-load operating points visited by the simulated conventional

vehicle over each drive cycle. The blue crosses represent the engine state at 1s intervals

(adapted from [24]).

By introducing an 𝑁 × 𝑁 diagonal matrix 𝑊 = 𝑑𝑖𝑎𝑔[𝑤1, 𝑤2, ⋯ ,𝑤𝑁]
𝑇 , where 𝑁 is the

number of data samples, each data point is assigned an adjustable weight factor 𝑤𝑖>0,

where 𝑖 is the position of the input data point. By default, 𝑤𝑖 equals 1 at every point, which

means no weight is added at that point. Whereas at the point where higher accuracy is

desired, 𝑤𝑖 should increase accordingly. Based on the study by Zong et al., the optimization

target with the weighted function becomes [73]:

1000 2000 3000 4000 5000 6000

Enging Speed (rpm)

T
o
rq

u
e

(N
m

)

0

100

200

300

400

500

600

700

800

UDDS

1000 2000 3000 4000 5000 6000

Enging Speed (rpm)

T
o
rq

u
e

(N
m

)

0

100

200

300

400

500

600

700

800

HWFET

44

Minimize: 𝐿𝑃𝐸𝐿𝑀 =
1

2
‖𝛽‖2 +

1

2
𝑘𝑊∑ ‖𝜉𝑖‖

2𝑁
𝑖=1 (3-18)

 Subject to: {
ℎ(𝑥𝑖)𝛽 = 𝑦𝑖 − 𝜉𝑖
𝜉𝑖 = 𝑦𝑖 − 𝑦𝑖̂

 (3-19)

where 𝜉𝑖is the training error with respect to the training sample 𝑥𝑖.

A single Lagrangian function is possible to be defined in such a way that all the constraints

and the objective function are combined. According to Karush-Kuhn-Tucker (KKT)

theorem, the equivalent optimization target is [73], [75],

𝐿𝑃𝐸𝐿𝑀 =
1

2
‖𝛽‖2 +

1

2
𝑘𝑊∑‖𝜉𝑖‖

2

𝑁

𝑖=1

−∑𝛼𝑖(ℎ(𝑥𝑖)𝛽 − 𝑦𝑖 + 𝜉𝑖)

𝑁

𝑖=1

 (3-20)

where 𝛼𝑖 is the Lagrange multiplier.

By setting the partial derivatives of (𝛼𝑖, 𝜉𝑖, 𝛽) to zero, the optimal condition of KKT is as

follows.

{

𝜕𝐿𝑃𝐸𝐿𝑀
𝜕𝛽

= 0

𝜕𝐿𝑃𝐸𝐿𝑀
𝜕𝜉

= 0

𝜕𝐿𝑃𝐸𝐿𝑀
𝜕𝛼𝑖

= 0

 ⇒

{

 𝛽 =∑𝛼𝑖ℎ(𝑥𝑖)

𝑇 = 𝐻𝑇𝛼𝑖

𝑁

𝑖=1

𝛼𝑖 = 𝑘𝑊𝜉𝑖

ℎ(𝑥𝑖)𝛽 − 𝑦𝑖 + 𝜉𝑖 = 0

 (3-21)

As a result, the solution to the optimal condition is:

𝛽∗̂ = {
𝐻𝑇(𝑘𝐼 +𝑊𝐻𝐻𝑇)−1𝑊𝑌, when N is small

(𝑘𝐼 + 𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊𝑌, when N is large
 (3-22)

45

Once 𝛽∗̂ is determined, the model is considered as trained and ready for testing. Then the

predicted model output data can be calculated according to (3-11).

3.3 Summary

This section presented an ELM-based approach to building a single-hidden layer

feedforward neural network for system modeling. The model adopted random weight

generation at the hidden neural nodes but analytically calculated the weights that connect

the hidden neurons and the output neurons. Ten-fold cross-validation was utilized to

stabilize the model performance. In addition, a weighted approach was utilized which

enabled the model to have further enhanced accuracy at or near certain desired data points.

46

Chapter 4. IC Engine Experiment Setup and Data Acquisition

In this chapter, a comprehensive IC engine mapping experiment is presented. The test

covered the normal operating conditions of the tested engine, with the engine speed ranging

from 1000 rpm to 4500 rpm, and the engine torque ranging from idle to full load. The test

was conducted using facilities that were built in complying with the industry-leading engine

test requirements. The test procedure also strictly followed the production engine test

standard. Over 3300 high-quality data points were collected in the experiment. The number

of data points in this study greatly surpasses the number of data points that were used in

the experiments reported in previous research.

4.1 Experiment Design and Data Acquisition Target

In order to verify the proposed modeling approach and evaluate its performance for IC

engine torque modeling, a comprehensive gasoline engine mapping test was designed.

Unlike previous research studies [13]–[17], [44], [76], where the data set was relatively

small (about 80~130 points), over 3300 data points, which covered all the normal operating

points of the tested engine, were collected in this experiment. The experiment was

conducted at an industry-leading engine testing facility. The test conditions were in line

with the stringent industrial test standards. To ensure the quality of data, the data was

collected while the engine was running at steady states. The data was also properly

averaged to reduce the effects of possible disturbance during engine operation.

47

4.2 Engine Dynamometer Test Cell Setup

The model was validated on an 8-cylinder, 4-stroke, dual-equal variable camshaft timing

(VCT) gasoline engine. The experiment was performed at an industry-leading engine dyno

testing facility. The diagram of the key test cell setup is shown in Figure 4-1.

Figure 4-1 Test system diagram

The sophisticated dyno control system was the command center that controlled the dyno

operation, cell equipment function, and test data logging. The data from the test cell

measurement and the engine control unit (ECU) was recorded. The engine was connected

to a high-performance Eddy Current dynamometer (as showing in Figure 4-2) which was

capable of measuring torque within ±0.5% error along the full scale and maintaining

rotation speed within ±0.1% error at the maximum revolving speed [77]. A heat exchange

cooling tower was used to maintain the engine coolant out temperature and pressure at

90.5±2.8 ℃and 145±3.4 kPa, respectively. The maximum engine oil sump temperature was

capped at 90.5±2.8 ℃ by an external oil cooler heat exchanger throughout the whole engine

Test Cell Control Room

Dyno Control System

Engine

Cooling Tower

P

EC Dyno

Intake and Exhaust

Management

Emission Bench

Environment Control

System

48

test map. The environment control system regulated the ambient temperature and supplied

fresh air to maintain proper environment air quality. The combustion air was circulated by

the intake and exhaust management system. Fresh air was blown vertically by an intake air

pipe connected from the air conditioning unit to the inlet of the engine air box. The

temperature and humidity of intake air were maintained at 23.8±2.8 ℃ and 7.9±0.7

g_H2O/kg_Air, respectively. The emission gases were sampled by the emission bench for

composition analysis. The ECU was interfaced with VISION 5.0 software [78], through

which the ECU parameters were monitored and controlled in real-time. An Ethernet-based

communication protocol (ASAM ASAP3) was used to exchange information between the

dyno controller and VISION 5.0 software, through which the ECU parameters were

updated to the dyno control system at a frequency of 20 Hz.

Figure 4-2 Eddy current dynamometer

4.3 Test Matrix and Control Parameters

The aim of the engine experiment was to map the engine operation with fine steps and

collect genuine data during the whole process. The collected data should be comprehensive

49

and accurate so that it can serve as a trusted representative set for the neural network to

build the corresponding engine model. Additionally, such a data set should serve as solid

real-world evidence to support the practical utility of the created engine model.

4.3.1 Test Points and Data Acquisition

As pointed out in [79], an engine map should describe the behavior of the engine in terms

of engine Revolutions-Per-Minute (RPM), Load, Air-to-Fuel Ratio (AFR), Exhaust Gas

Recirculation (EGR), Spark Advance Angle, and Variable Cam Timing (VCT). The output

should include power, torque, and regulated emission gases. It is necessary to point out that

though the previous studies mentioned in Section 1.2 have created models for the engine

or its subsystem, the number of data points that were used (approximately 80-130 points)

might not be sufficient to describe a realistic engine map. As indicated in Figure 4-3, with

the increase of the number of independent control variables, the size of the engine control

map would rise exponentially. For instance, if an engine control map is as simple as a

speed–load map only, and the numbers of breakpoints of the engine speed and load are 𝑚

and 𝑛, respectively, then the size of the engine control map is 𝑚×n. If VCT is an added

control parameter and its breakpoint is 𝑘, then the size of the engine control map will grow

to 𝑚 × 𝑛 × 𝑘. If EGR is another added control parameter that has ℎ breakpoints, then the

size of the engine control map shall grow to 𝑚 × 𝑛 × 𝑘 × ℎ. As the total size of the engine

map keeps growing, the complexity and the number of points to characterize the engine

would consequently increase drastically. So as the data used to create the map. Therefore,

a large amount of data is usually needed when it comes to evaluating a neural network

based modern IC engine modeling methodology. In addition, it also helps to certify that the

50

created engine models would be representative of the real-world engine over a wide range

of operating conditions.

 Figure 4-3 Illustration of the exponential rise of the map size and complexity as the

control parameters increase (the table contents are blurred for proprietary reasons)

Therefore, in this research, a complete engine mapping test was carried out to provide a

comprehensive data set for engine modeling and to test the generalization of the created

model. A combination of speed, load, VCT, and spark sweeps was designed for this

experiment. The sweeps were comprehensive enough to cover all the normal operating

conditions of this engine.

4.3.2 Range of Controlling Parameters

The range and step length of each control parameter are shown in Table 4-1.

V
C

T
 (
°

) Speed (RPM)

V
C

T
 (
°

) Speed (RPM)

P
e

d
a

l
P

o
s
it
io

n
 (

%
)

VCT Control

Introduced
 E

GR C
ontro

l

Intro
duced

P
e

d
a

l
P

o
s
it
io

n
 (

%
)

Map Size

m x n

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
) 500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

Map Size

m x n x k

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
) 500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
) 500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

500 1000 1500 2000 2500 3000 3500 4000 4500

0 23.9 26.3 29.4 37.6 39.5 31.8 33.4 34.5 31.4

10 27.7 30.4 33.8 42.9 45.0 36.5 38.3 39.5 36.0

20 29.2 32.0 35.6 27.9 39.0 33.9 26.6 32.6 29.4

30 28.8 31.6 35.2 25.8 36.4 31.7 18.1 25.5 22.7

40 27.9 30.7 34.1 25.5 35.4 30.8 16.5 18.4 16.0

50 27.0 29.7 33.0 25.3 34.6 29.2 18.3 12.6 10.5

60 26.1 28.7 31.9 25.1 33.9 27.3 18.1 12.7 10.6

70 25.2 27.7 30.8 24.8 33.1 25.4 18.0 13.5 11.3

80 24.3 26.7 29.7 24.6 32.4 23.5 17.8 15.2 12.9

90 23.4 25.7 28.6 24.3 31.7 21.6 17.7 13.5 11.3

100 22.5 24.7 27.5 24.1 30.9 19.7 17.6 12.9 10.8

Engine Speed (RPM)

P
ed

al
 P

o
si

ti
o

n
 (

%
)

Map Size

m x n x k x h

Map Size

m x n

51

Table 4-1 Range of control parameters

ECU Parameter Sweep Range Step Size

Engine Speed 1000 - 4500 rpm 500 rpm

Pedal position 0 - 100% 10%

VCT 0 - 50 deg 5 deg

Spark timing borderline – 4 deg before borderline 1 deg

The data was collected for constant throttle spark timing sweeps, during which RPM, pedal

position (which was equivalent to load in this application), and VCT were fixed. AFR was

calibrated to remain at a stoichiometric ratio wherever possible and enriched to suppress

knock and achieve maximum torque at high loads. Spark advance angle was varied at each

condition from borderline to borderline-4 degree crank angle at a step length of 1 degree

crank angle. In order to collect only the steady-state data, the test was scheduled to stay at

each running condition for 3 minutes for the engine to stabilize. A data point was logged at

10 seconds to the end of each step. The logged value was the average of the data sampled

in the previous 30 seconds. Then spark timing sweeps continued and the data was collected

at each combination of RPM, pedal, and VCT. By following such a sweeping sequence, the

transition disturbance between different steps was reduced to a minimum.

52

Overall, it took more than 10,000 minutes (over 166 hours) to complete the engine mapping

test. The total number of the collected data samples was 3356 3 , which substantially

surpassed the number of data samples reported in the ANN models in Section 1.2. All the

dyno cell measurements and the ECU data were sampled at a 10 Hz rate by the dyno control

system.

4.4 Model Parameter Selection and Data Partition

The focus of this study was to create a model that was able to predict gasoline engine output

torque from a given engine input data set. The predicted values were compared with the

measured values to assess the model’s prediction capability. The evaluation metrics were

root mean square error (RMSE) and correlation coefficient. Over 300 parameters were

recorded at each point during the engine mapping process. These parameters included the

test environmental parameters, cell control parameters, powertrain control module (PCM)

parameters, and inferred parameters. Only some of the parameters were needed to model a

gasoline engine. Taking the engineering sense into consideration (assuming the prior

knowledge was available to the user), the parameters that directly affected the in-cylinder

combustion process were selected, such as VCT, spark advance angle, and engine speed.

Considering from a non-engine expert perspective (assuming no prior knowledge was

available to the user), the parameters that were less relevant to the engine combustion

process, such as barometric pressure (a redundant parameter in this case) and exhaust gas

3 Some duplicated points are removed. For instance, at some high load conditions, the engine load has already reached

maximum while pedal has not reached 100% yet. In such cases, duplicated points will occur.

53

temperature (a result of combustion rather than a cause of it), were also included. A list of

the model input/output parameters and their statistics in the training and the testing data

sets is shown in Table 4-2.

All the collected data points were randomly partitioned as the training data set, validation

data set and the testing data set at a ratio of 8:1:1 (or very close to 8:1:1). The training data

set was used to train the model, whereas the validation data set was used to validate the

model and tune the model hyperparameter (such as k). The handling of the training and

validation data sets together completed the model training process, which eventually

delivered a determined engine torque model. The testing data set was kept “unseen”

(isolated) during the whole training process. They were used to provide an unbiased

evaluation of the determined model.

As a result, there were 2685 data points in the training data set, 335 data points in the

validation data set, and 336 data points in the test data set.

54

Table 4-2 Model input/output parameters and statistics

Model Parameters
I/O

Type

Training Data Set Validation Data Set Testing Data Set

Min Mean Max Min Mean Max Min Mean Max

Engine Torque (Nm) Output 55.3 323.7 671.6 54.6 321.3 635.6 55 326.7 657.4

Engine Speed (rpm) Input 999 2658 4504 999 2728 4504 999 2586 4504

Intake Manifold Pressure (kPa) Input 24.9 71.4 100.3 24.9 70.4 100.3 25 71 100.3

Barometric Pressure (kPa) Input 98.2 99.7 100.9 98.2 99.7 100.9 98.2 99.8 100.9

Intake Air Temperature (℃) Input 17.7 24.2 35.5 19.3 24.2 35.3 19.4 24.2 34.6

VCT (deg) Input 0 25 50 0 24 50 0 23 50

Spark Advance Angle (deg) Input 0 28 55 6.5 28 55 5.75 27.9 55

Lambda (-) Input 0.84 0.96 1 0.84 0.95 1 0.84 0.96 1

Exhaust Gas Temperature (℃) Input 362.5 712.2 938.7 363.1 716.4 929.3 398.3 707.3 934.2

Exhaust Gas Pressure (kPa) Input 1.7 5.6 13.6 1.9 5.7 13.5 2.1 5.5 13.6

55

4.5 Summary

This section described an IC engine mapping test setup and the data acquisition approach

for the test. The designed test provided real-world engine data to evaluate the proposed

modeling algorithm. Engine dyno setup, test procedures, and data partitions were explained.

The engine test was conducted in line with industry-leading standards so as to guarantee

the completeness and accuracy of the collected data. Over 3300 engine mapping points

were collected. To the best of the author’s knowledge, no previous research studies used

such a scale of engine mapping data for neural network based IC engine torque modeling.

The scale and quality of the test data not only demonstrated the capability of the proposed

modeling methodology in handling a large amount of data but also proved that the created

IC engine torque model was applicable in real-world scenarios.

Moreover, parameter selection and data partition schemes for the neural network were

discussed. In order to make sure the proposed IC engine torque model had good

generalization ability, the data was randomly partitioned in an 8:1:1 ratio across the training,

validation, and testing data sets. In addition to the IC engine torque-related parameters,

some irrelevant parameters were also included in the model input data. Such arrangement

simulated the use of non-experts who did not have much engine-related knowledge to

support parameter selection. It could also help evaluate the robustness of the proposed

algorithm when irrelevant inputs were involved in the modeling.

56

Chapter 5. Experimental Evaluation of IC Engine Torque Model

The evaluation results of IC engine torque model were described in this chapter. The model

was presented in Chapter 3. The experimental data collected using the setup described in

Chapter 4 was used to train and evaluate the model. The model output torque was compared

with the experimental data to assess the model performance. The evaluation metrics used

were root mean square error (RMSE) and correlation coefficient in this case. Both the

weighted and unweighted modeling approaches were presented in this chapter.

5.1 Neural Network Training and Performance Evaluation

5.1.1 Data Preparation

As pointed out in [80], [81], the empirical initialization of the weights and biases in the

random weight networks with the non-iterative training algorithms, such as ELM, may not

always lead to optimal performance. Therefore, a good selection of the initialization range

is required to achieve desirable performance. In addition, since many of the activation

functions (such as sine or sigmoid function) have periodic or asymptotic output ranges, it

is preferable that given the randomized weights and biases, the output of the neuron

response should avoid such ranges, so the change of the input values can be reflected

sufficiently on the output.

In this research, the activation function was a sigmoid function. All the input and output

parameters (such as those listed in Table 4-2) were normalized to [0, 1], where 0

corresponded to 95% of their minimum values and 1 corresponded to 105% of their

maximum values, respectively. Such normalization can create some room for redundancy

57

in case the estimated output values fell slightly out of the range of the training values. The

randomization range of the hidden neuron weights and the biases were both selected as [-

1, 1] after parameter tuning. The considerations in the selection of the model initialization

parameters are discussed in detail in Section 5.1.3.1. For this application, such settings

would make the overall hidden neuron inputs reside in [-3.6, 2.9], which was a suitable

input range to avoid the asymptotic output range of the activation function. After model

computation, the output data was restored to their original scales. The network structure

with data normalization and restoration is illustrated in Figure 5-1. The training data set

was used to train the network in order to extract the data feature. The test data set was used

to provide unbiased evaluations of the model once the model was determined.

Figure 5-1 Network structure with data normalization and restoration schemes

To finalize the model structure, the number of hidden neurons also needs to be determined.

Traditionally, the manual trial-and-error approach is used to find an acceptable number of

hidden nodes. However, this approach is time-consuming and cannot always guarantee that

the optimal number of hidden nodes exists in the experimental range. In this research,

random orthogonal projection based enhanced bidirectional ELM (OEB-ELM) [82] was

adopted to find the optimal number of hidden neurons. The key steps of this approach are

x1-Raw

x2-Raw

xn-Raw

Input Layer

Hidden Layer

xm

x2

x1

h1

h2

h3

Output Layer

(𝑤11, 𝑏11), (𝑤21, 𝑏21), …, (𝑤𝑁̃1, 𝑏𝑁̃1)
(𝑤12, 𝑏12), (𝑤22, 𝑏22), …, (𝑤𝑁̃2, 𝑏𝑁̃2)

……
(𝑤1𝑚, 𝑏1𝑚), (𝑤2𝑚, 𝑏2𝑚), …, (𝑤𝑁̃𝑚, 𝑏𝑁̃𝑚)

ℎ𝑁̃

Normalization

Normalization

Normalization

y Restoration y-Raw(β11,…, β1k)

58

briefly covered in Section 5.1.3.2. Compared with B-ELM [83] and EB-ELM [84]

algorithms, this approach led to better generalization and a more compact network structure.

Five sets of the orthogonalized initialization matrices were evaluated at each odd hidden

node step to search for the appropriate initialization set that could deliver the minimum

residual error. In order to explore how the change of the number of hidden neurons would

affect the performance of the model, sweeps of the number of hidden neurons versus the

normalized RMSE were conducted on the training data set and validation data set. The

normalization is performed by rescaling all the RMSE values relative to the one when the

number of hidden nodes equals one. The residual error exit condition was not considered

in the sweep so that the full curve trend was revealed. As shown in Figure 5-2, when the

number of hidden neurons reached 36, the normalized RMSEs of both data sets started to

converge, with both values smaller than 0.1. Based on this discovery, the number of hidden

neurons was determined as 36 for this model.

Figure 5-2 Number of hidden neurons vs. normalized RMSE

59

5.1.2 Experimental Evaluation Results

The training data set was firstly fed into the neural network with the above-determined

model parameters to learn the features of the training data. The performance of the trained

model was then assessed by checking the RMSE of the validation data set with respect to

the regulation factor 𝑘. As described in Section 3.2.3, a deterministic regulation factor 𝑘

was derived from the ten-fold cross-validation approach. If the RMSE of the validation data

set was within 5% of the range of RMSE of the training data, the regulation factor 𝑘 would

be deemed as acceptable and the model would be evaluated with the test data set. Otherwise,

the factor 𝑘 would have to be re-calculated. In this gasoline engine torque model, the

optimal 𝑘 was determined to be 5.007e-6 through this approach.

The evaluation results of the training data set, the validation data set, and the testing data

set are presented in Figure 5-3 (a), (b), and (c), respectively. The observed data and the

model predicted data are overlaid in the figures, in which the black triangles represent the

observed data; the red squares represent the predicted data. It can be seen that the predicted

data are closely clustered around the observed data along the 45-degree line in all the data

sets. This pattern indicates that the model predicted values have a very high degree of

accuracy, and the model has good generalization ability across different data sets.

Specifically, the RMSE was 8.75 Newton Meter (Nm) and the correlation coefficient was

0.9983 between the predicted and observed values of the training data set as shown in

Figure 5-3 (a). The RMSE was 9.18 Nm and the correlation coefficient was 0.9983 between

the predicted and observed values of the validation data set as shown in Figure 5-3 (b). The

RMSE was 9.29 Nm and the correlation coefficient was 0.9981 between the predicted and

60

observed values of the testing data set as shown in Figure 5-3 (c). The results showed good

generalization across the training, validation, and testing data sets. Considering the wide

torque distribution in the data sets and according to the practical engineering requirements

(as stated in Chapter 3), the results were considered as within acceptable range. A summary

of the model evaluation results is presented in Table 5-1.

61

(a) Training data set

(b) Validation data set

(c) Testing data set

Figure 5-3 Torque model regression results

0 100 200 300 400 500 600 700

Torque [Nm]

T
o
r
q

u
e
 [

N
m

]
0

100

200

300

400

500

600

700
Training Data (Observed)

Training Data (Predicted)

0 100 200 300 400 500 600 700

Torque [Nm]

T
o
r
q

u
e
 [

N
m

]

0

100

200

300

400

500

600

700
Validation Data (Observed)

Validation Data (Predicted)

0 100 200 300 400 500 600 700

Torque [Nm]

T
o

rq
u

e
[N

m
]

0

100

200

300

400

500

600

700
Testing Data (Observed)

Testing Data (Predicted)

62

Table 5-1 Summary of the model evaluation results

 No. of Points RMSE (Nm) Corr. Coef

Training Data 2685 8.75 0.9983

Validation Data 335 9.18 0.9983

Testing Data 336 9.29 0.9981

5.1.3 Parameter Selection Considerations

5.1.3.1 Initialization Range

As mentioned in Section 5.1.1, all the input/output parameters were normalized to [0, 1]

with 0 and 1 corresponding to 95% and 105% of their minimum and maximum values,

respectively. Both the weights and biases of hidden neurons were initialized randomly in

[-1, 1] under the uniform distribution. Three primary considerations led to such

initialization settings, listed as follows.

1) The input parameters were normalized to [0, 1] to reduce the chances that a large-

value parameter would dominate the total response of the neurons. For instance, in

our case engine speed ranged from 1000 to 4500 rpm, whereas exhaust gas pressure

resided between 2 to 12 kPa. Such a normalization range effectively prevented the

response of the exhaust gas pressure from being dwarfed by the response of the

engine speed.

2) Setting 95% and 105% of the minimum and maximum values corresponding to 0

and 1 (rather than traditionally just setting the minimum and maximum values to 0

63

and 1) offered some room for redundancy in data reconstruction, in case the

estimation of the unseen values fell slightly out of the range of the training values.

3) Setting the randomization interval of both the weights and biases to [-1,1] was to

make sure that the overall input (𝑤𝑋 + 𝑏) of the activation function (sigmoid

function) fell in such a range that the change of the input values (𝑋) would be

reflected sufficiently in the neuron response.

Inspired by the research studies in [80], [81], [85], more trials were conducted with different

initialization ranges of the weights and biases of the model. The goal was to explore a

possible better initialization range or to justify the current initialization range for the engine

torque model. Each of the initialization combinations had 1000 repetitions. The averaged

result is reported in Table 5-2.

64

Table 5-2 Experimental results of weights and biases randomization

Randomization Mean (of 1000 trials)

Set
Weights

Range

Biases

Range
RMSE_Training RMSE_Validation RMSE_Testing

1 [-1, 1] [0, 1] 8.8642 8.6269 10.2115

2 [-5, 5] [0, 1] 17.6299 17.8968 18.0910

3 [-10, 10] [0, 1] 28.4095 28.9260 28.2529

4 [-20, 20] [0, 1] 38.6620 40.0870 39.8914

5 [-1, 1] [-1, 1] 8.8983 8.6049 9.0448

6 [-5, 5] [-1, 1] 17.5118 17.5713 18.5456

7 [-10, 10] [-1, 1] 28.4811 28.3062 29.2314

8 [-20, 20] [-1, 1] 38.8517 40.7123 38.6112

9 [-1, 1] [0, 5] 9.1710 9.9599 9.3129

10 [-5, 5] [0, 5] 18.1878 19.1947 18.9728

11 [-10, 10] [0, 5] 28.8576 30.2735 29.3644

12 [-20, 20] [0, 5] 38.9344 39.1467 39.6945

13 [-1, 1] [0, 10] 13.1210 12.7263 12.9518

14 [-5, 5] [0, 10] 20.9542 23.0103 20.5373

15 [-10, 10] [0, 10] 30.6106 31.0789 30.7309

16 [-20, 20] [0, 10] 39.6459 39.7117 40.3064

As can be seen in the table, multiple acceptable randomization intervals were available for

this model. For instance, set 1, 5, and 9 all delivered comparably small RMSEs.

In addition, the ranges of the overall input (𝑤𝑋 + 𝑏) for Set 5 and Set 6 were plotted, as

shown in Figure 5-4, to explore what may have caused the difference between the RMSEs.

As can be seen in the figure, the overall input range with set 5 initialization was [-3.6, 2.9],

whereas the overall input range with set 6 initialization was [-17.5, 18.3]. Provided the

65

activation function was sigmoid, a significant part of the overall output with set 6

initialization was suppressed, which could lead to crippled feature extraction of the neurons.

This observation also partially explained the better initialization of set 5.

Figure 5-4 Hidden layer output range with different initializations

Based on the above analysis, [-1, 1] was chosen as the initialization intervals for both the

weights and biases of the hidden neurons in this research.

5.1.3.2 Number of Hidden Neurons

Inspired by the research in [49], [82]–[84], a random orthogonal projection based enhanced

bidirectional extreme learning machine was adopted as the approach to determine the

number of hidden neurons in this research. The key steps of the approach are as follows:

1) The OEB-ELM algorithm was executed using the training data set and validate the

performance on the validation data set.

-20 -16 -12 -8 -4 0 4 8 12 16 20

Input Data

H
id

d
e
n

 L
a

y
e
r
 O

u
tp

u
t

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sigmoid Function

Initialization Set 6

Initialization Set 5

66

2) A sweep from 1 to 85 hidden nodes was conducted. In order to grasp the full trend,

no exit condition on the residual error was set for the sweep. When the number of

hidden neurons was odd, five sets of random initializations of the weights and biases

matrices were generated. Then the matrices were orthogonalized using the Gram-

Schmidt orthogonalization method.

3) The residual error between the estimated torque and the observed torque was

calculated and stored temporarily for each number of hidden nodes. When the

number of hidden neurons was odd, only the set of the orthogonalized matrices that

delivered the minimum residue error were retained as the initialization parameters

for that node.

4) Totally 1000 such sweeps (repeat Step 2 and Step 3) were conducted to make sure

the results would be in line with the true population values according to the Law of

Large Numbers (LLN).

5) The average return of the sweeps was calculated. The normalized results of the

training data set and validation data set were plotted.

In this research, the number of the hidden nodes was selected as the smallest number that

could reduce the residue error by 90% (e.g., normalized RMSE = 0.1), which was 36 nodes

in this case as shown in Figure 5-2. Compared with the traditional method, this approach

was more objective. The process could be automated as well.

67

5.2 Weighted Regression Approach and Results

5.2.1 Data Preparation

The performance of the above-established model can be tuned to deliver even higher

estimation accuracy at certain data points by accepting slightly bigger errors at other data

points. This feature is desirable when the significance of the data points varies, or when the

distribution of the samples is imbalanced across the whole data set. For instance, as pointed

out in Section 3.2.4, the LMSO points in the engine operating map might deserve higher

accuracy as they were the most often run points during the standard vehicle and fuel

economy test schedules, such as UDDS and HWFET. To demonstrate how the weighted

approach worked, five representative LMSO points (𝐿𝑀𝑆𝑂𝑖, 𝑖 = 1,2, … ,5) were selected as

the central points, around which five special areas of interest (AOI) were defined. In this

research, the representative LMSO points were selected as 1000rpm@15%load,

1500rpm@30%load, 1500rpm@50%load, 2000rpm@40%load, and 2000rpm@60%load.

The size of each AOI was ±50 rpm and ±4% load. The five representative points and their

respective AOIs are plotted in Figure 5-5. For convenience, the remainder of the paper

addressed all the points in a single AOI by the representative point. Each representative

𝐿𝑀𝑆𝑂𝑖 could be assigned a unique weight factor 𝑤̃𝑖 (𝑤̃𝑖 > 1). Then, a square diagonal

weight matrix could be defined as 𝑊 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2, … , 𝑤𝑁), where 𝑁 was the number of

the training data points. In such a way, each training data point 𝐷𝑃𝑡 would have a

corresponding adjustable weight 𝑤𝑡 at the 𝑡𝑡ℎ diagonal position of matrix 𝑊, where 𝑡 =

1,2, … ,𝑁. If a 𝐷𝑃𝑡 fell in the AOI of an 𝐿𝑀𝑆𝑂𝑖, then the 𝑡𝑡ℎ diagonal weight element of

68

matrix 𝑊 was set as 𝑤𝑡 = 𝑤̃𝑖 . Otherwise, 𝑤𝑡 = 1, which meant no accuracy enhancement

was applied to that data point.

In this manner, it was possible to customize the weight factor for each data point and best

adapt this approach to the specific needs of different applications. To simplify the

demonstration, the same weight factor was applied to all the representative LMSO point,

which meant 𝑤̃1 = 𝑤̃2 = 𝑤̃3 = 𝑤̃4 = 𝑤̃5. Once the weight matrix 𝑊 was determined, the

torque regression model derived from Section 5.1 could be re-trained with the weight

matrix to deliver more accurate estimations for the points in the AOIs.

Figure 5-5 Selected LMSO points in a torque and engine speed map

In order to compare the performance between the weighted regression and the non-

weighted regression, the same training, validation, and testing data sets as specified in

Section 4.4 were reused in this experiment. In addition, the same neuron initialization and

regulation factor specified in Section 5.1.2 were also reused. The evaluation metrics were

the RMSE and correlation coefficient of the LMSO points before and after applying the

1000 1500 2000 2500 3000 3500 4000

Engine Speed [rpm]

L
o
a
d

 [
%

]

0

10

20

30

40

50

60

70

80

90

100

15

30

50

40

60

LMSO1 = 1000rpm@15%Load

LMSO2 = 1500rpm@30%Load

LMSO3 = 1500rpm@50%Load

LMSO4 = 2000rpm@40%Load

LMSO5 = 2000rpm@60%Load

69

weight matrix. The number of LMSO points and the non-LMSO points in the training,

validation, and testing data sets are listed in Table 5-3.

Table 5-3 The composition of the training and the testing data sets

 Training Data Set Validation Data Set Testing Data Set

Total Number 2685 335 336

LMSO Points 285 37 34

Non-LMSO Points 2400 298 302

5.2.2 Weighted Regression Results

In order to grasp the trend of how the weight factor would affect RMSE and the correlation

coefficient, sweeps of the weight factor were firstly conducted on the training, validation,

and testing data sets. The results are shown in Figure 5-6 (a), (b), and (c), respectively. The

red-dotted line represents the RMSE of the LMSO points after applying the weight factor;

the blue-squared line represents the RMSE of the non-LMSO points after applying the

weight factor; the black-triangled line represents the overall RMSE of all the data points.

As can be seen in figures, the RMSE of the LMSO points was reduced notably as the value

of weight factor increased, which indicated that the model prediction accuracy at these

points has been improved greatly. On the other hand, the bigger weight factor had also

caused greater RMSE on the non-LMSO points as well as the overall data set. However,

the accuracy gain on the LMSO points outweighed the accuracy loss on the non-LMSO

points significantly in this experiment. For example, when the weight factor was 60, the

RMSE of the LMSO points could be reduced by about 6 Nm, while the RMSE of the other

70

points only increased by less than 3 Nm. In addition, the same data trend was observed

across the training, validation, and testing data sets, which indicated the model had good

generalization ability across different data sets.

Similar patterns were observed on the correlation coefficient as well. The results are shown

in Figure 5-7 (a), (b), and (c), respectively. The red-dotted line represents the correlation

coefficient of the LMSO points; the blue-squared line represents the correlation coefficient

of the non-LMSO points; the black-triangled line represents the overall RMSE of all the

data points. It was observed that significant rises of the correlation coefficients were

exhibited on the LMSO points in training, validation, and testing data sets as the weight

factor increased, The rise of correlation coefficient indicates that the observed data and

predicted data are increasingly related. In the meantime, the correlation coefficients of the

non-LMSO points and the overall data set only suffered from very limited drops. In this

experiment, the gain of the correlation coefficient was about 0.003, whereas the loss was

less than 0.001 for both data sets when the weight factor reached 60.

71

(a) Training data set

(b) Validation data set

(c) Testing data set

Figure 5-6 Impact of the change of weight factor on RMSE

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Weight Factor

R
M

S
E

 [
N

m
]

2

4

6

8

10

12

14

16
Training_Overall

Training_Non-LMSO_Points

Training_LMSO_Points

0 5 10 15 20 25 30 35 40 45 50 55 60

Weight Factor

R
M

S
E

 [
N

m
]

2

4

6

8

10

12

14

16
Validation_Overall

Validation_Non-LMSO_Points

Validation_LMSO_Points

0 5 10 15 20 25 30 35 40 45 50 55 60

Weight Factor

R
M

S
E

 [
N

m
]

2

4

6

8

10

12

14

16
Testing_Overall

Testing_Non-LMSO_Points

Testing_LMSO_Points

72

(a) Training data set

(b) Validation data set

(c) Testing data set

Figure 5-7 Impact of the change of weight factor on the correlation coefficients

0 5 10 15 20 25 30 35 40 45 50 55 60

Weight Factor

C
o

r
r
.
C

o
e
f.

0.995

0.996

0.997

0.998

0.999

1.000

1.001
Training_Overall

Training_Non-LMSO_Points

Training_LMSO_Points

0 5 10 15 20 25 30 35 40 45 50 55 60

Weight Factor

C
o

r
r
.
C

o
e
f.

0.995

0.996

0.997

0.998

0.999

1.000

1.001
Validation_Overall

Validation_Non-LMSO_Points

Validation_LMSO_Points

0 5 10 15 20 25 30 35 40 45 50 55 60

Weight Factor

C
o

r
r
.
C

o
e
f.

0.995

0.996

0.997

0.998

0.999

1.000

1.001
Testing_Overall

Testing_Non-LMSO_Points

Testing_LMSO_Points

73

When 𝑤 = 1 (which meant no weight was applied), the overall RMSEs were 8.75 Nm,

9.18 Nm, and 9.29 Nm for the training, validation, and testing data sets, respectively; the

overall correlation coefficients were 0.9983, 0.9983, and 0.9981 for the training, validation,

and testing data sets, respectively. These numbers matched the results of the torque

regression model demonstrated in Section 5.1.2, which indicated that the non-weighted

approach was a special case of the weighted approach with 𝑤 = 1. The weighted and non-

weighted approaches could essentially be unified as one general approach. Another

interesting observation was that when 𝑤 continued to grow, the marginal benefits, such as

the decreasing RMSE and the increasing correlation coefficient on the LMSO points,

started to diminish. On the other hand, the side effects, such as the rising RMSE and the

decreasing correlation coefficient on the non-LMSO points, kept expanding. This trait

revealed that the optimal weight 𝑤 should be determined based on the trade-off between

the two aspects according to the specific applications.

In addition to considering all the LMSO points as a whole, it was worth exploring how

much improvement was achieved in each LMSO area with the introduction of the weight

factor. In order to do so, comparisons of the same LMSO areas before and after applying

the weight factor were also conducted in this research. Note that in Figure 5-6 and

Figure 5-7 when the weight factor reached about 30, the benefit margins of increasing

weight factor, such as reduced RMSE and increased correlation coefficient, started to

dwindle. As a result, 𝑤 = 30 was chosen in this example. As demonstrated in Figure 5-8,

the introduction of the weight factor (e.g., 𝑤 = 30) could reduce the RMSE by

approximately 2~8 Nm in all the LMSO areas across the training, validation, and testing

data sets, though the reduction quantity might vary from one area to another. Similar

74

patterns could also be observed on the correlation coefficients as shown in Figure 5-9. The

correlation coefficients of all the LMSO areas increased after applying the weight factor.

In general, about 0.1~0.2 increase was observed. The extent of enhancement could be

different among the training, the validation, and the testing data sets. An increase in

correlation coefficient was observed where a bigger RMSE reduction occurred, which

indicated that the introduction of the weight factor did enhance the regression accuracy of

that LMSO area.

75

(a) Training data set

(b) Validation data set

(c) Testing data set

Figure 5-8 RMSE comparison of the individual LMSO areas with w = 30

R
M

S
E

 [
N

m
]

0

2

4

6

8

10

12

14

16

10.92

8.88

7.77

5.29

9.30

2.72 3.09
2.58

2.96 2.65

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

10.9

8.9

7.8

5.3

9.3

2.7 3.1
2.6 3.0 2.6

Training Non-Weighted

Training Weighted

R
M

S
E

 [
N

m
]

0

2

4

6

8

10

12

14

16

12.28

6.29

7.29

5.28

7.80

3.24

1.34
2.10

2.96

3.86

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

12.3

6.3
7.3

5.3

7.8

3.2

1.3
2.1

3.0
3.9

Valid. Non-Weighted

Validation Weighted

R
M

S
E

 [
N

m
]

0

2

4

6

8

10

12

14

16

7.82

11.08

9.31

4.00

10.99

2.45

4.23

2.75 2.88 3.25

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

7.8

11.1

9.3

4.0

11.0

2.5

4.2

2.8 2.9 3.2

Testing Non-Weighted

Testing Weighted

76

(a) Training data set

(b) Validation data set

(c) Testing data set

Figure 5-9 Corr. Coef. comparison of the individual LMSO areas with w = 30

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

C
o
rr

.
C

o
ef

.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.799

0.895

0.925

0.741

0.863

0.908

0.964
0.983

0.934

0.981

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

0.799

0.895

0.925

0.741

0.863

0.908

0.964
0.983

0.934

0.981

Training Non-Weighted

Training Weighted

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

C
o
rr

.
C

o
ef

.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.722

0.994 0.997

0.780 0.776

0.904

0.998 0.991

0.943 0.942

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

0.722

0.994 0.997

0.780 0.776

0.904

0.998 0.991

0.943 0.942

Valid. Non-Weighted

Valid. Weighted

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

C
o
rr

.
C

o
ef

.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.772

0.892
0.908

0.798

0.971

0.935

0.984 0.991

0.934

0.991

LMSO1 LMSO2 LMSO3 LMSO4 LMSO5

0.772

0.892
0.908

0.798

0.971

0.935

0.984 0.991

0.934

0.991

Testing Non-Weighted

Testing Weighted

77

These observations provided very helpful information to improve the regression model.

Firstly, the inconsistency of enhancement among different LMSO areas indicated that a

unified weight factor did not suit all the data regions. The quantitative difference could help

determine better-customized weight factors for the individual data regions. Secondly, the

inconsistent behavior among the training, validation, and testing data sets implied that the

data partition might be imbalanced across the data sets. Therefore, the feature learned in

one data set might not suit other data sets in the same way. The quantitative difference

indicated the distribution discrepancy, which would help adjust the use of the available data

to deliver a better generalization of the model.

In order to visualize the enhancement brought by the weight factor on the individual data

points, the comparison of the observed data, non-weighted regression data, and the

weighted regression data are illustrated in Figure 5-10. For the sake of convenience, only

LMSO1 points were presented. As can be seen in the figure, the weighted regression points

were closer to the observed points than the non-weighted regression points (e.g., the

weighted regression data were closer to the 45-degree line than the non-weighted regression

points). This matched the finding in the above section that the weighted regression data had

a smaller RMSE and higher correlation coefficient than the non-weighted regression data.

78

(a) Training data set

(b) Validation data set

(c) Testing data set

Figure 5-10 Comparison of regression results of the LMSO1 points with w = 30

80 85 90 95 100 105
Torque_LMSO1 [Nm]

T
o

rq
u

e_
L

M
S

O
1

 [
N

m
]

80

85

90

95

100

105
Training_Observed

Training_Non-Weighted

Training_Weighted

80 85 90 95 100 105
Torque_LMSO1 [Nm]

T
o

rq
u

e
_

L
M

S
O

1
 [

N
m

]

80

85

90

95

100

105
Validation_Observed

Validation_Non-Weighted

Validation_Weighted

80 85 90 95 100 105
Torque_LMSO1 [Nm]

T
o

rq
u

e
_

L
M

S
O

1
 [

N
m

]

80

85

90

95

100

105
Testing_Observed

Testing_Non-Weighted

Testing_Weighted

79

5.3 Summary

This chapter presented an ANN approach to predict gasoline engine output torque with high

accuracy using an ELM based single-hidden layer feedforward neural network. Ten-fold

cross-validation was adopted to stabilize the model. Totally 3356 real-world engine

experiment points were collected for this model, in which 2685 and 335 experiment points

were used to train and validate the model, respectively. The remaining 336 collected data

points were kept unseen from the model to provide unbiased tests of the model. The results

demonstrated that the model could predict the engine torque with high accuracy. The

RMSE between the observed torque and the predicted torque was about 9 Nm, which was

about 2.7% of the mean torque value. In addition, this research also proposed a weight

factor approach to further enhance the model accuracy in the designated data regions. The

experiment showed that the RMSE in these regions could be further reduced by

approximately 6 Nm. Moreover, by exploring the quantitative improvement in the desired

regions individually, this research also revealed that optimal overall improvement could be

achieved by customizing the weight factor for each desired region accordingly.

80

Chapter 6. Progressive Extreme Learning Machine

In this chapter, the popular ELM-based algorithms are reviewed. The principles of each

algorithm are briefly explained and their limitations are also pointed out. To improve the

accuracy of the traditional ELM, a new ELM-based algorithm is proposed. The same

experimental data collected in Chapter 4 is used to train and evaluate the proposed

algorithm for IC engine torque model. The performance comparison between the proposed

algorithm and the traditional ELM is also presented.

6.1 Review of the ELM-Based Techniques

Since its introduction in the 2000s, ELM has attracted attention from the machine learning

community and gained increasing popularity among researchers, thanks to many of its

advantages, such as compact network structure, fast learning speed, and competitive

accuracy. One exceptional characteristic of ELM is its random weight generation feature

(also called random feature mapping), which not only reduces the network training time

tremendously but also benefits the generalization of the algorithm ([33], [60]). However,

by adopting this feature, the potential to improve network accuracy through tuning the

weight of the hidden neuron layer is also limited. The traditional ELM algorithm

approximates the target function by only calculating the weight between the hidden layer

and the output layer to minimize the sum of squared estimation error. Depending on the

specific data sets, if the number of hidden nodes is far less than the number of available

data points, the traditional ELM may not generate a result as good as that of the gradient-

descent approaches.

81

In the past years, many variants of ELM had been proposed to improve its performance,

particularly its accuracy. A majority of them were realized through either incremental or

pruning approaches to analytically determine the weights and biases of the hidden neuron

layer, or the weights between the hidden neuron layer and the output layer.

For instance, incremental ELM (I-ELM [49]) was proposed to approximate the target

function by gradually adding random hidden neurons to the network while analytically

calculating the weights between the newly added neurons and the output nodes. Enhanced

random search based incremental ELM (EI-ELM [86]) was proposed to improve the quality

of the random hidden neurons by generating multiple sets of hidden nodes at each learning

step and picking the one that leads to the smallest residue error. Therefore, this approach

tended to have better regression accuracy than I-ELM. To improve the convergence rate of

I-ELM, convex incremental ELM (CI-ELM [87]) was proposed by utilizing the convex

optimization concept and allowing the weights of the existing hidden nodes to be adjusted

when a new node was added to the network. Enhanced convex incremental ELM (ECI-

ELM [88]) further improved the generalization and convergence speed of CI-ELM by

adopting a random search method on the introduced hidden neuron.

Bidirectional ELM (B-ELM [83]) was another type of incremental network. B-ELM did

not only analytically decide the weight between the hidden layer and the output layer, but

also propagated the error to determine the proper weights and biases of the hidden layer. In

addition, unlike I-ELM and its variants, B-ELM only had to analytically determine the

weights of the even number of neurons while still adopting random weight generation for

the odd number of neurons. It was proved in theory that B-ELM had a faster learning speed

82

and potentially more compact network size than I-ELM. To further improve B-ELM,

enhanced bidirectional ELM (EB-ELM [84]) and random orthogonal projection based

enhanced bidirectional ELM (OEB-EM [82]) were proposed consecutively. EB-ELM

enhanced the quality of random parameter generalization by proposing a few candidates

during the initialization steps, then choosing the best one that leads to maximum error

reduction. OEB-ELM further optimized the convergence speed of EB-ELM by adopting

the improved enhanced random search and orthogonal projection method. In addition, it

was able to integrate B-ELM and EB-ELM into a unified form as its non-orthogonal

variants.

In order to exploit the benefit of adjusting the weights of the existing nodes (which were

usually unchanged in many incremental ELMs), ELM with adaptive growth of hidden

nodes (AG-ELM [89]) was proposed. It utilized a method to adaptively evaluate the weight

matrix whenever a new hidden node was introduced. Based on the analysis, the existing

networks might be replaced by an updated one with better performance and generalization

ability. Error minimized ELM (EM-ELM [90]) allowed one or multiple hidden nodes to be

added at each incremental step, so the output weights could be incrementally updated.

Through such arrangements, the computational complexity of EM-ELM was significantly

lower than the traditional ELM.

In contrast to the incremental approaches, where the hidden nodes were incrementally

added to the network, the pruning approaches worked by removing the irrelevant nodes to

enhance the performance of the network. For instance, pruned ELM (P-ELM [91]) started

optimizing with a large number of hidden nodes, then calculating the relevance of each

83

hidden node in regards to its contribution to the reduction of the overall residual error.

Based on the results, it could trim the less relevant neurons to reduce the network size and

increase the overall estimation accuracy. Optimally pruned ELM (OP-ELM [92]) was an

upgrade of P-ELM. It used multi-response sparse regression algorithm to sort the neurons

by their usefulness, then utilized the leave-one-out validation approach to prune the

irrelevant neurons. The experimental results had shown that OP-ELM could achieve a

similar level of accuracy as SVM within a very short computational time. Though the

pruning approaches can achieve a more concise network structure, they usually have two

typical problems. Firstly, the output accuracy highly depends on the settings of the

optimization threshold, according to which the less desirable nodes are pruned. Secondly,

the training time may be significantly longer than the traditional ELM. It is also strongly

related to the initial size of the network from which the algorithm starts to trim the irrelevant

nodes.

In addition to the above-mentioned variants, there are other advancements of ELM that are

noteworthy. ELM with kernels [61] utilized a kernel function to abstract the hidden layer

activation function so that the activation function could be unknown to the users. Though

such a method appeared to generate much better regression accuracy than the traditional

ELM, it also used a much larger feature mapping size. The author found out that by

increasing the number of hidden neurons of the traditional ELM to make it have the same

feature mapping size as ELM with kernels, the traditional ELM may also achieve

comparable accuracy as the ELM with kernels. Additionally, the selection of different

kernel functions may also lead to significantly different network performance. By

analyzing the universal approximation capabilities of ELM, dynamic ELM (D-ELM) was

84

proposed in [93], in which Zhang et al. proved that D-ELM could approximate any

Lebesgue p-integrable function provided the activation function was Lebesgue p-integrable.

To deal with a large amount of data, parallel ELM (PELM [94]) was proposed. It used

parallel programming techniques to significantly reduce the computational time of ELM

while still maintaining the regression accuracy. In case the input data were only available

in sequence, online sequential ELM (OS-ELM [95]) provided the means to process the

training data one-by-one or chunk-by-chunk (with either fixed or varying chunk sizes).

When a new data point or data chunk arrives, OS-ELM only had to calculate a part of the

hidden layer output matrix and update the network output weight according to the recursive

least square solution [96]. Self-adaptive evolutionary ELM (SaE-ELM [97]) was proposed

to address the limitations of its predecessor - evolutionary ELM (E-ELM [98]). In E-ELM,

the mutation strategy was manually selected. However, different vector generation

strategies might have highly different performance. In contrast, SaE-ELM could adaptively

determine the network parameters and deliver a more proper differential evolution strategy.

As deep learning (DL) has attracted increasing attention due to its excellent performance

in pattern recognition and computer vision applications, ELM’s potential for DL was also

exploited to improve the learning efficiency of DL. For instance, Kasun et al. proposed

ELM auto-encoder (ELM-AE [99]) that could map features based on the singular values in

an unsupervised manner. By integrating it with multilayer ELM (ML-ELM [73]) in the

same fashion as the deep neural networks, the overall network had a similar performance

as the deep Boltzman machine. To regulate the data manifold of the autoencoder, a

generalized ELM autoencoder (GELM-AE [100]) was proposed. By adding a

regularization term to the objective function, GELM-AE forced the output of similar

85

samples to be close in the mapped space, so more proper features could be extracted for

clustering. As pointed out by Tang et al., due to the shallow structure of ELM, it might not

be effective for the natural signals, such as images and videos. To deal with this issue, a

hierarchical ELM (H-ELM) was proposed in [60]. It was constructed in a multilayer

manner and trained with ELM-based algorithm. The experimental results showed that H-

ELM could achieve high-level representation and outperform the accuracy of the traditional

ELM.

6.2 Proposed Methodology

It can be seen from the aforementioned studies that, though the ELM-based algorithms have

unparalleled training speed and good generalization compared with the BP-based

algorithms, they still have difficulties in reaching comparable regression accuracy for

certain applications, especially when the number of hidden nodes is far less than the number

of available data points. Inspired by the work done by Tang et al. in [60], a recursive ELM-

based learning framework (referred to as Pr-ELM) was proposed in this thesis to improve

the accuracy of ELM. This research only focused on system identification applications. In

the proposed algorithm, the estimated results were used to expand the input data set to

further tune the model recursively, until the predetermined error threshold or the maximum

number of recursions was reached. As a result, the estimated result would approach the

expected values progressively.

The proposed approach differs from the incremental cascade ELM [101] by the fact that

the number of hidden nodes in Pr-ELM is fixed. It also differs from the research in [102],

[103] by the fact that Pr-ELM uses the result of the output layer to enhance the model input

86

data. To verify the performance of the proposed algorithm, a gasoline engine torque model

was created using the same data collected in the experiment described in Section 4.3. The

results are compared with the model presented in Section 5.1.

The novelties of the proposed algorithm are as follows:

1) It outperforms the conventional ELM in terms of accuracy (RMSE) in system

modeling applications.

2) It retains the advantages of the conventional ELM in terms of algorithm simplicity

and generalization ability.

3) It supports automatic tuning as no human intervention is needed to find the optimal

parameters.

4) It preserves the potential to work with other ELM algorithms, such as B-ELM and

EM-ELM, to further enhance the overall accuracy.

6.2.1 Structure of the Proposed Algorithm

The structure of the proposed algorithm is shown in Figure 6-1. Given a training data set

with arbitrary distinct samples (𝑥𝑖, 𝑦𝑖), where 𝑖 = 1,2, … ,𝑁, the target accuracy 𝜂 and the

maximum number of recursions 𝜆, Pr-ELM is firstly initialized as the conventional ELM

with randomly generated input weights 𝑤 and biases 𝑏, as shown in (6-1).

𝑌 = 𝑔(𝑤𝑋 + 𝑏)𝛽 (6-1)

where

87

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑁
𝑥21
⋮

𝑥22 ⋯

 ⋮ ⋮

𝑥2𝑁
⋮

𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑁

] (6-2)

𝑤 = [

𝑤11 𝑤12 ⋯ 𝑤1𝑚
𝑤21
⋮

𝑤22 ⋯

 ⋮ ⋮

𝑤2𝑚
⋮

𝑤𝑁̃1 𝑤𝑁̃2 ⋯ 𝑤𝑁̃𝑚

] (6-3)

𝑏 = [

𝑏11 𝑏12 ⋯ 𝑏1𝑁
𝑏21
⋮

𝑏22 ⋯
 ⋮ ⋮

𝑏2𝑁
⋮

𝑏𝑁̃1 𝑏𝑁̃2 ⋯ 𝑏𝑁̃𝑁

] (6-4)

𝑚 is the dimension of the input data, 𝑘 is the dimension of the output data, 𝑁̃ is the number

of hidden neurons, 𝑁 is the number of data samples, 𝑔 is the activation function of the

hidden nodes, and 𝑔(∙) = 𝐻 is the output of the hidden layer.

Similar to the traditional ELM, the weights 𝛽 between the hidden neural nodes and the

output neural nodes is calculated through Moore-Penrose pseudo inverse as shown in (3-10).

The hidden layer maps the 𝑚 x 𝑁 dimensional input data onto the 𝑁̃ x 𝑁 dimensional

space.

Unlike the traditional ELM, if the output error (measured by RMSE) is greater than the

predefined value η, or the recursion is less than the predefined value λ, the output matrix

will be appended to the input matrix, expanding its dimension to (𝑚 + 𝑘) x 𝑁. As the

number of hidden nodes is not changed, the hidden layer is still mapping the input data to

an 𝑁̃ x 𝑁 dimensional space. To maintain the simplicity and generalization ability of the

conventional ELM, the input weights 𝑤∗and biases 𝑏∗of the newly formed input matrix are

still randomly generated. The mathematical expressions of the expanded input matrix, the

88

new input weights, and the new biases are shown in (6-5), (6-6), and (6-7), respectively.

The weights between the hidden neural nodes and the output neural nodes, 𝛽∗, is calculated

according to (3-10) as in the conventional ELM.

𝑋∗ =

[

𝑥11 𝑥12 ⋯ 𝑥1𝑁
𝑥21
⋮

𝑥22 ⋯

 ⋮ ⋮

𝑥2𝑁
⋮

𝑥𝑚1
𝑦11
⋮
𝑦𝑘1

𝑥𝑚2
𝑦12
⋮
𝑦𝑘2

⋯
⋯
⋮
⋯

𝑥𝑚𝑁
𝑦1𝑁
⋮
𝑦𝑘𝑁]

 (6-5)

𝑤∗ =

[

𝑤11
∗ 𝑤12

∗ ⋯ 𝑤1𝑚
∗ 𝑤1,𝑚+1

∗ ⋯ 𝑤1𝑚+𝑘
∗

𝑤21
∗ 𝑤22

∗ ⋯ 𝑤2𝑚
∗ 𝑤2,𝑚+1

∗ ⋯ 𝑤2,𝑚+𝑘
∗

⋮
𝑤𝑁̃1
∗

⋮
𝑤𝑁̃2
∗

⋮ ⋮ ⋯
⋯ 𝑤𝑁̃𝑚

∗ 𝑤𝑁̃,𝑚+1
∗ ⋯ 𝑤𝑁̃,𝑚+𝑘

∗
]

 (6-6)

𝑏∗ = [

𝑏11
∗ 𝑏12

∗ ⋯ 𝑏1𝑁
∗

𝑏21
∗

⋮
𝑏22
∗ ⋯
 ⋮ ⋮

𝑏2𝑁
∗

⋮
𝑏𝑁̃1
∗ 𝑏𝑁̃2

∗ ⋯ 𝑏𝑁̃𝑁
∗

]
(6-7)

The error of the newly derived output data will be re-evaluated. If it is still greater than the

predefined value η or the iteration is less than the predefined value λ, such iteration will

continue until the exit condition is fulfilled. As a result, the estimated output data shall

progressively approach the expected values until saturation.

89

Figure 6-1 Structure of the proposed algorithm

6.2.2 Pseudo-code of the Pr-ELM Algorithm

The pseudo-code of the proposed Pr-ELM algorithm is summarized in the Algorithm.

Algorithm Progressive ELM Algorithm

For 𝑁 arbitrary distinct samples (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚]
𝑇 ∈ 𝑅𝑚 and

𝑦
𝑖
= [𝑦

𝑖1
, 𝑦
𝑖2
, … , 𝑦

𝑖𝑘
]𝑇 ∈ 𝑅𝑘 , consider the standard ELM approximation with 𝑁̃

hidden nodes,

Initialization:

Given the training data set, set the

accuracy target η and maximum

number of recursions λ

No Yes
END

90

Step 1) Initialization: Set the acceptable RMSE threshold as η and the maximum

number of iterations as λ.

Step 2) Training the network:

o Normalize the data samples to [0, 1], where 0 corresponds to 95% of their

minimum values and 1 corresponds to 105% of their maximum values,

respectively.

o Randomly generate the weight of the neuron 𝑤𝑁̃×𝑚 and bias 𝑏𝑁̃×𝑁, and calculate

the hidden node output matrix 𝐻𝑁̃×𝑁. It should be assured that the 𝐻𝑁̃×𝑁 does

not fall into the periodic or asymptotic range of the given activation function.

Otherwise, the normalization range of the data samples may need to be adjusted.

o Calculate the weight vector 𝛽𝑁̃×𝑘 and find out the estimated model output 𝑌̂

while RMSE of (𝑌̂, 𝑌) ≥ 𝜂 or the number of iterations ≤ 𝜆 do

o Append the estimated 𝑌̂ to the training data set to form a new training data

set as [𝑋 𝑌̂].

o Randomly generate the weights and biases according to the size of the

input data. Then compute the hidden node output matrix 𝐻𝑁̃×𝑁
∗ .

o Calculate the weight vector 𝛽𝑁̃×𝑘
∗ and the estimated model output 𝑌∗̂

end while

o Restore the model output to the original scale

6.3 Data Preparation and Model Evaluation

In this section, a gasoline engine torque model was created with the proposed algorithm.

The model was trained and tested with data collected from the engine mapping experiment

91

described in Chapter 4. The evaluation metrics were RMSE and correlation coefficient. The

performance difference between the proposed model and the traditional ELM model was

highlighted.

6.3.1 Data Preparation

In order to minimize the effect of data discrepancies, the collected experimental data were

randomly partitioned into the training data set and the testing data set, at a ratio of 8:2 (or

very close to 8:2). As a result, there were 2685 data points in the training data set and 671

data points in the testing data sets. The model input parameters were the ones that might

directly affect the engine combustion process, such as VCT and spark advance angle. The

parameters that had less impact on the engine combustion process, such as the barometric

pressure and exhaust gas temperature, were also included in the model input. A list of the

model input/output (I/O) parameters and their statistics in the training and the testing data

sets are shown in Table 6-1.

92

Table 6-1 Model input/output parameters and statistics

Model Parameters I/O Training Data Set Testing Data Set

Min Mean Max Min Mean Max

Engine Torque (Nm) Output 55.6 323.7 671.6 55.3 323.9 670.3

Engine Speed (rpm) Input 999 2662 4504 999 2602 4504

Intake Manifold Pressure (kPa) Input 23.8 71.2 100.1 22.3 71.4 100.7

Barometric Pressure (kPa) Input 98.2 99.7 100.9 98.2 99.8 100.9

Intake Air Temperature (℃) Input 17.7 24.2 35.5 19.3 24.3 35.3

VCT (deg) Input 0 25 50 0 24 50

Spark Advance Angle (deg) Input 0 27 55 0 28 55

Lambda (-) Input 0.84 0.96 1.0 0.87 0.96 1.0

Exhaust Gas Temperature (℃) Input 369.2 712.5 937.6 370.8 707.6 927.3

Exhaust Gas Pressure (kPa) Input 2.1 5.6 11.9 2.1 5.4 11.9

93

As shown in the table, the model I/O parameters differed a lot numerically. Therefore, data

normalization was required to avoid the neural response being dominated by the large

numerical parameters. In this experiment, all the input/output parameters were normalized

to [0, 1], where 0 corresponded to 95% of their minimum values and 1 corresponded to

105% of their maximum values, respectively. Such normalization also created some room

for redundancy in case the estimated output value fell slightly outside of the range of the

input value. After neural network computation, the output parameters needed to be restored

to their original scales and reviewed in the backdrop of the specific engineering application.

The randomization range of the hidden neural weights and biases were both [-1, 1]. Sigmoid

function was selected as the activation function for this application. Such initialization

settings made the inputs of the activation function reside in the range of [-3.7, 3.1], and the

outputs stayed away from the asymptotic range of the activation function output. Therefore,

each input value would have a unique output response and the change of input value would

also be reflected sufficiently in the neural response.

To reveal the impact of the number of hidden nodes on the model performance, 40, 60, 80,

and 100 hidden nodes were used to build the model, respectively. In addition, no RMSE

exit condition (as indicated in the Algorithm) was applied to this experiment. The algorithm

ran up to 30 recursions to demonstrate the effect of recursions on the model performance.

It was noted that the model size of this application was not very big, so the quantization

noise was generally not a concern.

94

6.3.2 Experimental Evaluation Results

In order to minimize possible disturbances, the average result from 200 repeated execution

of the algorithm was reported. The authors had verified that this number of trials was

appropriate to make sure that the mean of the trials would represent the mean of the

population based on LLN theorem. As can be seen in Figure 6-2, the proposed algorithm

reduced the RMSE of the engine torque model output significantly over a wide number of

hidden neural nodes. The key observations are summarized as follows.

1) For any given number of hidden nodes, Pr-ELM could gradually reduce the output

RMSE with the increased number for recursions.

2) For any given number of recursions, a smaller output RMSE could be achieved by

increasing the number of hidden nodes.

3) The reduction in RMSE was mainly achieved within the first 5 recursions. After

about 15 recursions, the RMSE reduction began to saturate.

4) Compared with the traditional ELM, which corresponds to the 0 recursion, Pr-ELM

could further minimize the RMSE by approximately 30% to 40% for any given

number of hidden nodes.

5) Consistent performance was observed between the training and the testing data sets.

95

(a) Training data set

(b) Testing data set

Figure 6-2 Impact of the number of recursions on RMSE

Similar patterns were observed on the model output correlation coefficient. As shown in

Figure 6-3, with an increase of recursions, significant rises of the correlation coefficients

were exhibited for all the cases with a different number of hidden nodes. In addition, as the

recursion continued to grow, the correlation coefficients plateaued, which indicated stable

0 5 10 15 20 25 30

Recursion

R
M

S
E

 [
N

m
]

0

2

4

6

8

10

12
40 Nodes

60 Nodes

80 Nodes

100 Nodes

0 5 10 15 20 25 30

Recursion

R
M

S
E

 [
N

m
]

0

2

4

6

8

10

12
40 Nodes

60 Nodes

80 Nodes

100 Nodes

96

convergence of the algorithm. Moreover, good generalization was also observed between

the training and testing data sets.

(a) Training data set

(b) Testing data set

Figure 6-3 Impact of the number of recursions on the correlation coefficient

As observed in the above figures, when the recursion reached 15, the benefit of Pr-ELM

began to saturate in this experiment. Therefore, a comparison between the traditional ELM

0 5 10 15 20 25 30

Recursion

C
o

rr
C

o
ef

_
T

ra
in

in
g

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

1.0005

40 Nodes

60 Nodes

80 Nodes

100 Nodes

0 5 10 15 20 25 30

Recursion

C
o

rr
C

o
ef

_
T

es
ti

n
g

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

1.0005

40 Nodes

60 Nodes

80 Nodes

100 Nodes

97

and Pr-ELM (with recursion =15) was made in Table 6-2. As shown in the table, Pr-ELM

had substantially better RMSE than the traditional ELM for various numbers of hidden

nodes, for both the training and the testing data sets. The average reduction of RMSE of

Pr-ELM was about 30% to 40%. Similarly, a significant increase of correlation coefficients

was observed on Pr-ELM for all the compared groups.

Table 6-2 Comparison between traditional ELM and Pr-ELM (recursion = 15)

Hidden

Nodes

RMSE Correlation Coefficient

Training

Data Set

Testing

Data Set

Training

Data Set

Testing

Data Set

40

Traditional ELM 10.6 11.2 0.9976 0.9975

Pr-ELM 7.3 8.1 0.9988 0.9987

60

Traditional ELM 7.7 8.5 0.9987 0.9986

Pr-ELM 4.7 5.9 0.9995 0.9994

80

Traditional ELM 6.1 7.1 0.9992 0.9991

Pr-ELM 3.3 4.8 0.9998 0.9997

100

Traditional ELM 5.0 6.1 0.9995 0.9993

Pr-ELM 2.5 3.9 0.9999 0.9998

6.4 Summary

This chapter presented an IC engine torque model created with Pr-ELM algorithm. The

data acquired from the engine mapping test conducted in Chapter 4 was used to train and

test the model. The experimental evaluation results showed that Pr-ELM significantly

98

increased model accuracy in comparison to the traditional ELM approach. Meanwhile, the

Pr-ELM still retained the random initialization feature. In this research, Pr-ELM

outperformed the traditional ELM by providing 30% to 40% RMSE reduction. The

experiment also showed good generalization between the training and testing data sets.

99

Chapter 7. Comparison of Pr-ELM with Competing Algorithms

In this chapter, the proposed Pr-ELM algorithm was experimentally evaluated and

compared with other algorithms. Firstly, the performance of the proposed algorithm was

compared with a range of the ELM-based algorithms. The same engine mapping data

acquired in Chapter 4 was used to create and evaluate the IC engine torque models. The

evaluation metrics were RMSE, correlation coefficient, and the training time. Secondly, the

performance of the proposed Pr-ELM algorithm was evaluated against other non-ELM

based algorithms, such as Levenberg Marquardt Algorithm (LMA) and Support Vector

Regression (SVR) algorithms. In this case, the IC engine mapping data and the data sets

from the University of California, Irvine, Machine Learning Repository [104] were used to

evaluate the algorithms.

7.1 Comparison with Competing ELM-Based Algorithms

In this section, experimental results are presented that compare the effectiveness of the

proposed Pr-ELM against the popular ELM-based algorithms, such as EI-ELM, EB-ELM,

EM-ELM, and OP-ELM. These algorithms are the improved versions of their ELM

predecessors. They are more efficient than classical ELM and other constructive neural

networks [33].

The following measures were taken to ensure that the comparison among different

algorithms was carried out under the same conditions.

100

1) The same real-world engine mapping data acquired from the experiment in Chapter 4

was applied to all the algorithms. The same I/O parameter normalizing scheme as

described in Section 5.1 was also reused.

2) The number of hidden nodes was set to be the same in all algorithms. Specifically, 50

and 100 hidden nodes were used in this experiment for comparison purposes.

3) The weights and biases of the hidden neurons were randomly generated between [-1,

1]. The sigmoid function was selected as the activation function for all the algorithms.

4) All the experiments were conducted in Matlab 2017b running on the same Windows 10

machine with a 16-GB RAM and an Intel i7-6700 CPU @ 3.4 GHz processor.

5) Two hundred trials were conducted with each algorithm and the averaged result of each

algorithm was reported. The authors had verified that this number of trials was

appropriate to reflect the true mean of the population in this application according to

the LLN theorem.

In addition, some algorithm-specific settings also need to be highlighted. In this experiment,

20 sets (k=20) of weights and biases were randomly generated at each corresponding

increment step of EI-ELM and EB-ELM. The maximum number of neurons allowed was

set to 55 and 105 respectively for OP-ELM algorithm. The step length of pruning was set

to one. Only the results from the trials that stopped at 50 nodes or 100 nodes were accepted

as valid results of OP-ELM. The number of recursions of the Pr-ELM was set to 30 which

was in line with the settings in Chapter 6.

The performance of the algorithms was evaluated by using the following metrics: RMSE,

the correlation coefficient, and the neural network training time. The experimental results

101

of 50 and 100 hidden nodes are shown in Table 7-1 and Table 7-2, respectively. It can be

seen that the proposed Pr-ELM had the lowest RMSE and the highest correlation coefficient

among all the listed algorithms for both the training data set and the testing data set.

Specifically, if the number of hidden nodes was 50, the RMSE of Pr-ELM was about 6 Nm,

which was approximately 35% less than that of EM-ELM, 40% less than that of OP-ELM,

78% less than that of EB-ELM, and 84% less than that of EI-ELM. Similarly, the

correlation coefficient of Pr-ELM was over 0.9992, which was also better than that of all

the other competing algorithms. The training time of Pr-ELM was about 0.67 second.

Though it was only slightly better than EM-ELM, it was over 6 times faster than that of

EB-ELM and OP-ELM, and about 12 times faster than the training time of EI-ELM under

the evaluation conditions.

If the number of hidden nodes was 100, the RMSE of Pr-ELM could reach about 3 Nm,

which was approximately 50% better than that of EM-ELM, 50% better than that of OP-

ELM, 80% better than that of EB-ELM, and more than 90% better than that of EI-ELM

under the evaluation conditions. Similarly, the correlation coefficient of Pr-ELM was over

0.9998, which was higher than that of all the other competing algorithms. The training time

of Pr-ELM was about 1.6 seconds, which was about 2 times faster than EM-ELM, over 4.5

times faster than EB-ELM and OP-ELM, and about 10 times faster than EI-ELM under the

evaluation conditions.

102

Table 7-1 Performance comparison with 50 hidden nodes

 Training Testing

 RMSE

(Nm)

Corr.

Coef.

Time (s) RMSE

(Nm)

Corr.

Coef.

EI-ELM (k=20) 44.8 0.9573 8.11 44.7 0.9576

EB-ELM (k=20) 27.7 0.9832 4.45 27.9 0.9831

EM-ELM 9.0 0.9983 0.70 9.6 0.9981

OP-ELM 9.4 0.9981 4.19 9.9 0.9980

Pr-ELM 5.8 0.9993 0.67 6.5 0.9992

Table 7-2 Performance comparison with 100 hidden nodes

 Training Testing

 RMSE

(Nm)

Corr.

Coef.

Time (s) RMSE

(Nm)

Corr.

Coef.

EI-ELM (k=20) 36.5 0.9712 16.4 36.5 0.9712

EB-ELM (k=20) 27.6 0.9835 1.06 27.6 0.9835

EM-ELM 5.0 0.9995 2.64 5.0 0.9995

OP-ELM 5.0 0.9995 10.15 5.0 0.9995

Pr-ELM 2.4 0.9999 1.91 2.4 0.9999

Though the experimental evaluations showed impressive performance of Pr-ELM over the

other ELM-based algorithms, it is worth pointing out that the number of hidden nodes was

103

a pre-determined value in Pr-ELM. Unlike the other compared algorithms, Pr-ELM was

incapable of determining the network architectures.

7.2 Comparison with LMA and SVR

In this section, the performance of Pr-ELM was further compared with the popular non-

linear neural network based system identification algorithms, such as LMA and SVR.

Comprehensive experimental results are presented following a brief description of the

LMA and SVR algorithms. The IC engine mapping data set (collected in Chapter 4) and

the data sets from the University of California, Irvine, Machine Learning Repository [104]

were both used to evaluate the algorithms.

7.2.1 Brief description of LMA and SVR algorithms

7.2.1.1 Backpropagation Levenberg-Marquardt Algorithm

Levenberg-Marquardt Algorithm (LMA) is a popular backpropagation-based neural

network training algorithm that is usually recommended as the first alternative to the

conventional backpropagation algorithm [105]. It combines two minimization methods: the

gradient descent method and the Gauss-Newton method [106]–[108]. A brief description

of the algorithm is as follows.

The optimization target of the system identification problem is to minimize the error

function:

𝑓(𝑥) =
1

2
∑(𝑦𝑗 − 𝑦̂𝑗)

2 =

𝑚

𝑗=1

1

2
∑𝑟𝑗

2(𝑥)

𝑚

𝑗=1

 (7-1)

104

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the input data vector, 𝑟𝑖 is the residue of each estimation. It is

assumed that 𝑚 > 𝑛, which means the number of data points is greater than the dimension

of input parameters. Set the Jacobian matrix as

𝐽(𝑥) =

[

𝜕𝑟1(𝑥)

𝜕𝑥1

𝜕𝑟1(𝑥)

𝜕𝑥2
⋯

𝜕𝑟1(𝑥)

𝜕𝑥𝑁
𝜕𝑟2(𝑥)

𝜕𝑥1

𝜕𝑟2(𝑥)

𝜕𝑥2
⋯

𝜕𝑟2(𝑥)

𝜕𝑥𝑁
⋮

𝜕𝑟𝑚(𝑥)

𝜕𝑥1

⋮
𝜕𝑟𝑚(𝑥)

𝜕𝑥2

⋱ ⋮

⋯
𝜕𝑟𝑚(𝑥)

𝜕𝑥𝑁]

 (7-2)

The first and second order derivative of the error functions are:

∇𝑓(𝑥) =∑𝑟𝑗(𝑥)∇𝑟𝑗(𝑥) = 𝐽(𝑥)
𝑇𝑟(𝑥)

𝑚

𝑗=1

 (7-3)

∇2𝑓(𝑥) = 𝐽(𝑥)𝑇𝐽(𝑥) +∑𝑟𝑗(𝑥)∇
2𝑟𝑗(𝑥)

𝑚

𝑗=1

 (7-4)

The second order derivative is called Hessian matrix (∇2𝑓(𝑥)). As ∇2𝑟𝑗(𝑥) or the residual

𝑟𝑗(𝑥) are small, the Hessian matrix can be simplified as showing in ((7-5).

𝐻 = 𝛻2𝑓(𝑥) = 𝐽(𝑥)𝑇𝐽(𝑥) (7-5)

Therefore, a combination of simple gradient descent and the Gauss-Newton optimization

approach can be realized [109], in which the second order derivative is approximated by

the operation of Jacobian matrix. In order to avoid the estimation bouncing around the local

minima, when the estimated value is far from the target value, the weight descends along

105

the steepest slope direction, which is the traditional backpropagation approach as shown in

((7-6).

𝑥𝑖+1 = 𝑥𝑖 − 𝜆∇𝑓(𝑥𝑖) (7-6)

When the estimated value is close to the targeted value, the weight descends along the

curvature of the slop by solving the equation ∇𝑓(𝑥) = 0. The update rule for the Gauss-

Newton method is set up by expanding ∇𝑓(𝑥) with Taylor Series and omitting the residues

over second order, as shown in ((7-7).

𝑥𝑖+1 = 𝑥𝑖 − (∇
2𝑓(𝑥𝑖))

−1∇𝑓(𝑥𝑖) (7-7)

As pointed out earlier, the Hessian matrix can be approximated with the Jacobian as shown

in ((7-5). The main advantage of this technique is its shorter convergence time. It is

complementary to the simple gradient descent algorithm. The unified expression of LMA

is shown in ((7-8),

𝑥𝑖+1 = 𝑥𝑖 − (𝐻 + 𝜆𝐼)
−1∇𝑓(𝑥𝑖) (7-8)

where 𝐻 is the Hessian matrix at 𝑥𝑖. The parameter 𝜆 is multiplied by a factor (usually 10)

when a step leads to an increase of the error function 𝑓(𝑥). The parameter 𝜆 is divided by

the same factor when a step results in a decrease of the error function 𝑓(𝑥). It is worth

noting that when 𝜆 is large, the algorithm becomes the steepest descent algorithm. Whereas

when 𝜆 is small, the algorithm becomes Gauss-Newton method to reduce the influence of

the gradient descent.

106

7.2.1.2 Support Vector Regression

Support vector regression (SVR) is an extended application of the support vector machine

SVM algorithm. SVM works by finding the maximum margin to separate the hyperplane

to correctly classify the training data. Whereas the standard SVR uses an ε-sensitive region

to characterize the cost function, within the region the estimation error is not penalized

[110]. The simple mathematical formulation of SVR is described as follows.

For a linear regression case, given a finite training data set (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑁 , 𝑦𝑁),

where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚]
𝑇 ∈ 𝑅𝑚 and 𝑦𝑖 = [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝]

𝑇 ∈ 𝑅𝑝 , the multivariate

regression target function is estimated as (7-9),

𝑦̂𝑖 =< 𝑤, 𝑥 > +𝑏 =∑ 𝑤𝑗 ∗ 𝑥𝑖𝑗
𝑚

𝑗=1
+ 𝑏, 𝑖 = 1,2, … ,𝑁 (7-9)

where 𝑁 is the number of data points, 𝑚 and 𝑝 are the dimensions of the input data and

output data, respectively. 𝑦̂𝑖 is the estimation of the observed true model output 𝑦𝑖. 𝑤 is the

weight of the input matrix. Minimized norm value of ||𝑤||2 is desired in order to flatten

the estimation surface as much as possible.

The loss of the estimation is defined as 𝑒𝑖, which is the absolute difference between the

estimated and the observed values4 in this case. The loss is supposed to within the ε-

4 It is worth noting that linear loss function is used in this example. However, other types of residuals may also be used,

such as quadratic loss function or Huber loss function.

107

sensitive region as shown in (7-10). If the estimation loss of a point is within the ε region,

there is no penalty for that point. Otherwise, the outlier should be penalized.

𝑒𝑖 = |𝑦𝑖 − 𝑦̂𝑖| < 𝜀 (7-10)

However, the condition may not hold for all the points. In order to solve this issue, slack

variables 𝜉𝑖 and 𝜉𝑖
∗ are added to each data point to “soften” the restriction, as shown in

Figure 7-1. Therefore, the cost function of the SVR becomes:

 Minimize: ℒ =
1

2
∗ ||𝑤||

2
+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1 (7-11)

 Subject to: {

𝑦𝑖 − 𝑦̂𝑖 ≤ 𝜀 + 𝜉𝑖

𝑦̂𝑖 − 𝑦𝑖 ≤ ε + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ > 0

 (7-12)

where 𝐶 is a positive box value that penalizes the estimations outside of the ε region.

Figure 7-1 Linear ε-insensitive loss function

The optimization problem is usually solved using Lagrange dual formulation. The

nonnegative multipliers 𝑎𝑖 and 𝑎𝑖
∗ are introduced at each estimated point.

Kernel space

108

Minimize: ℒ =
1

2
∑ ∑ (𝑁

𝑗=1
𝑁
𝑖=1 𝑎𝑖 − 𝑎𝑖

∗)(𝑎𝑗 − 𝑎𝑗
∗)𝑥𝑖

′𝑥𝑗 +

 𝜀 ∑ (𝑎𝑖 + 𝑎𝑖
∗) + ∑ 𝑦𝑖(𝑎𝑖

∗ − 𝑎𝑖)
𝑁
𝑖=1

𝑁
𝑖=1

(7-13)

 Subject to: {

∑ (𝑎𝑖 − 𝑎𝑖
∗) = 0𝑁

𝑖=1

0 ≤ 𝑎𝑖 ≤ C

 0 ≤ 𝑎𝑖
∗ ≤ C

 (7-14)

Once all 𝑎𝑖 and 𝑎𝑖
∗ are determined, the weight can be described as a linear combination of

the data samples, as shown below:

𝑤 =∑ (𝑎𝑖 − 𝑎𝑖
∗)𝑥𝑖

𝑁

𝑖=1
 (7-15)

Hence, the regression function can be constructed as:

𝑦̂𝑖 =∑ (𝑎𝑖 − 𝑎𝑖
∗) < 𝑥𝑖, 𝑥 > +𝑏

𝑁

𝑖=1
 (7-16)

Subject to:

{

𝑎𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 𝑤𝑥𝑖 + 𝑏) = 0

𝑎𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏) = 0

𝜉𝑖(𝐶 − 𝑎𝑖) = 0

𝜉𝑖
∗(𝐶 − 𝑎𝑖

∗) = 0

 (7-17)

From the above equations, it is observed that 𝑤 does not need to be calculated explicitly in

SVR models as the target function is estimated through the inner products of the input data.

In addition, the linear SVR model can also be extended to the non-linear case by replacing

the inner product < 𝑥𝑖
′, 𝑥 > with a nonlinear kernel function 𝐺(𝑥) =< 𝑔(𝑥𝑖)

′, 𝑔(𝑥) >. The

commonly used kernel function include Gaussian, RBF, and Polynomial functions. As a

result, the final estimation function with kernel is formulated as follows [111].

109

𝑦̂𝑖 =∑ (𝑎𝑖 − 𝑎𝑖
∗) < 𝑔(𝑥𝑖), 𝑔(𝑥) > +𝑏

𝑁

𝑖=1
 (7-18)

Subject to:

{

𝑎𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 𝑦̂𝑖) = 0

𝑎𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 𝑦̂𝑖) = 0

𝜉𝑖(C − 𝑎𝑖) = 0

𝜉𝑖
∗(𝐶 − 𝑎𝑖

∗) = 0

 (7-19)

7.2.2 Evaluation Configurations and Results

In this section, the performances of Pr-ELM, LMA, and SVR were compared on the

gasoline engine mapping data set (collected in Chapter 4) and eleven benchmark data sets

obtained from University of California, Irvine, Machine Learning Repository [104]. The

experimental data sets contain a wide variety of applications, data samples, and data

attributes. The specification of these data sets is provided in Table 7-3

110

Table 7-3 Specification of the data sets

Name

Training data Testing data Attributes

IC Engine Mapping Data 2685 671 12

Airfoil Self-noise 1202 301 5

Abalone 3342 835 8

Servo Data 134 33 4

Concrete Strength 824 206 8

Combined Cycle Power Plant 7654 1914 4

Energy Efficiency (heating) 614 154 8

Energy Efficiency (cooling) 614 154 8

Wine Quality (Red) 1279 320 11

Wine Quality (White) 3918 980 11

Gas Turbine Emission (CO) 29386 7347 9

Yacht Hydrodynamics 246 62 6

The following measures were taken to preprocess the data sets and configure the modeling

parameters.

1) The same data partition and I/O parameters normalizing scheme were applied to all the

data sets as described in Chapter 6. The RMSEs are reported in the same units as the

original data sets. The number of hidden nodes was set to 50 and 100, respectively, in

the experiment for comparison purposes.

2) The weights and biases of the hidden neurons were randomly generated between [-1,

1]. The activation function was selected as a sigmoid function for Pr-ELM. The number

of recursions was set as 30, to be in line with the configurations in Section 7.1.

3) All the experiments were conducted in Matlab 2017b running on the same Windows 10

machine with a 16-GB RAM and an Intel i7-6700 CPU @ 3.4 GHz processor.

111

4) The Matlab built-in functions for LMA and SVR regressions were used to create LMA

and SVR system models. Specifically, for LMA, the activation function was tansig, the

decrease 𝜇 was 0.1, and the minimum performance gradient was 1e-7. Whereas

Gaussian kernel function, default box constraint, and sequential minimal optimization

solver were used for SVR.

5) The encoded attributes in the data sets were expanded to separate binary attributes based

on the number of encoded types. For instance, in the energy efficiency data set, the

orientation of the buildings was coded as 2, 3, 4, and 5. However, these numbers could

not be directly used in the model training process, as in reality there should be no scaling

relationship among the orientations of a building. Therefore, in our experiment, such

encoded data attributes were separated into different binary attributes in order to

eliminate the improper bias of numerical relationship in the training process. An

example of such modifications of the energy efficiency data set is presented in

Table 7-4. However, it is worth noting that such an expansion of the number of

attributes is not reflected in data set specification as shown in Table 7-3.

6) Two hundred trials were conducted on each algorithm and the averaged results of each

algorithm were reported. The authors verified that this number of trials was appropriate

to make sure that the mean of the trials would represent the mean of the population

based on LLN theorem.

112

Table 7-4 Data attribute modification for energy efficiency data set

Original Attribute Modified Attribute

Orientation Orietation1 Orietation2 Orietation3 Orietation4

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 0 1

The evaluation metrics of the experiment were training time, testing RMSE, and testing the

correlation coefficient. As shown in Table 7-5, when the number of hidden nodes was 50,

Pr-ELM could obtain smaller testing RMSE than SVR across all data sets except the Wine

Quality (red) data set. However, the difference was minor for the data set. Pr-ELM could

achieve a similar level of testing RMSE as LMA for most of the experimental data sets. Its

RMSE on the Yacht Hydrodynamics data set was even slightly smaller than that of LMA.

Additionally, Pr-ELM achieved very similar performance as LMA in terms of correlation

coefficient. Moreover, Pr-ELM had significantly shorter training time than the other

algorithms. Specifically, it was over 100 times faster than LMA and more than 20 times

faster than SVR in data training under the experimental conditions.

Similar patterns were observed when the number of hidden nodes was 100. As shown in

Table 7-6, improved RMSE and correlation coefficient were exhibited on Pr-ELM and

LMA compared with the 50 hidden node cases for most of the data sets. Likewise, Pr-ELM

also demonstrated similar performance as LMA with respect to RMSE and correlation

coefficient. Meanwhile, Pr-ELM maintained a significant advantage in training time over

the competitors. However, it was also observed that Pr-ELM and LMA had worse RMSE

113

in the 100 hidden node case than in the 50 hidden node case on some data sets, such as the

Yacht Hydrodynamics. One of the reasons for this discrepancy could be training overfitting.

Such a problem also implied that the experimental configuration may not be appropriate

for all the data sets. Parameter tuning might be required to adapt to the needs of specific

applications. In addition, it was noted that the performance of SVR had no apparent changes,

which was a piece of evidence that the presented results were the true representations of

the population mean values based on the LLN theorem.

114

Table 7-5 Comparison of Pr-ELM, LMA, and SVR (50 hidden nodes)

 Data sets

Pr-ELM LMA SVR

Testing

RMSE

Testing

CorrCoef

Training

Time

Testing

RMSE

Testing

CorrCoef

Training

Time

Testing

RMSE

Testing

CorrCoef

Training

Time

IC Engine Mapping Data 6.60 0.9992 0.05 2.38 0.9999 40.65 11.25 0.9974 0.24

Airfoil Self-noise 2.76 0.9161 0.03 2.68 0.9207 2.11 3.98 0.8157 0.13

Abalone 2.17 0.7454 0.06 2.19 0.7400 2.68 2.25 0.7362 1.42

Servo Data 0.60 0.91146 0.01 1.56 0.0.6093 0.56 1.48 0.4750 0.03

Concrete Strength 6.13 0.9307 0.01 6.35 0.9269 1.18 7.86 0.8839 0.10

Combined Cycle Power Plant 4.07 0.9712 0.12 3.96 0.9727 5.50 4.21 0.9692 4.93

Energy Efficiency (heating) 1.74 0.9850 0.01 0.79 0.9969 2.88 2.79 0.9616 0.08

Energy Efficiency (cooling) 2.36 0.9690 0.01 1.66 0.9847 2.41 2.97 0.9501 0.09

Wine Quality (red) 0.69 0.5655 0.02 0.69 0.5667 1.37 0.65 0.6031 0.23

Wine Quality (white) 0.72 0.5884 0.06 0.72 0.5881 3.20 0.73 0.5714 1.88

Gas Turbine Emission (CO) 1.23 0.8411 0.46 1.21 0.8454 28.34 1.30 0.8192 89.90

Yacht Hydrodynamics 0.79 0.9987 0.01 1.34 0.9950 0.93 7.37 0.9320 0.04

115

Table 7-6 Comparison of Pr-ELM, LMA, and SVR (100 hidden nodes)

 Data sets

Pr-ELM LMA SVR

Testing

RMSE

Testing

CorrCoef

Training

Time

Testing

RMSE

Testing

CorrCoef

Training

Time

Testing

RMSE

Testing

CorrCoef

Training

Time

IC Engine Mapping Data 4.03 0.9998 0.11 2.72 0.9999 134.97 11.30 0.9974 0.24

Airfoil Self-noise 6.06 0.7571 0.05 3.11 0.8954 4.04 4.00 0.8147 0.13

Abalone 3.55 0.5321 0.13 2.23 0.7315 10.09 2.25 0.7374 1.41

Servo Data 0.99 0.7946 0.02 2.03 0.5176 1.62 1.50 0.4701 0.03

Concrete Strength 6.37 0.9239 0.04 6.97 0.9122 3.25 7.83 0.8827 0.10

Combined Cycle Power Plant 23.22 0.6486 0.28 3.95 0.9728 10.32 4.19 0.9693 4.89

Energy Efficiency (heating) 1.19 0.9928 0.03 1.24 0.9923 8.68 2.79 0.9618 0.08

Energy Efficiency (cooling) 2.12 0.9745 0.03 2.17 0.9739 7.61 2.99 0.9495 0.09

Wine Quality (red) 1.20 0.3667 0.06 0.72 0.5455 5.59 0.64 0.6065 0.23

Wine Quality (white) 0.86 0.4983 0.15 0.73 0.5747 12.12 0.73 0.5672 1.86

Gas Turbine Emission (CO) 1.49 0.7782 1.15 1.22 0.8465 99.47 1.31 0.8192 88.26

Yacht Hydrodynamics 1.33 0.9949 0.02 2.64 0.9800 2.40 7.25 0.9308 0.04

116

7.3 Summary

This chapter presented the experimental evaluation and comparison results of the proposed

Pr-ELM algorithm. Pr-ELM was compared with other ELM-based algorithms using the IC

engine mapping data set. In addition, Pr-ELM was also compared with LMA and SVR

algorithms using the IC engine mapping data and eleven publicly available benchmark data

sets. The results showed that in addition to the dominant advantage in training time, Pr-

ELM had a similar performance as LMA and outperformed SVR in terms of RMSE and

correlation coefficient under the evaluation conditions.

117

Chapter 8. Conclusion and Future Work

8.1 Dissertation Summary

In this dissertation, we explored the SLFN-based approaches for IC engine torque modeling.

An ELM-based approach was proposed to create the gasoline engine torque model.

Rigorous and comprehensive engine mapping tests were conducted to collect the

application data and verify the performance of the created IC engine torque model. Over

10000 minutes of engine dynamometer test were conducted, and more than 3300 high-

quality data points were acquired. The experimental evaluation results demonstrated that

the proposed approach can create the IC engine torque model with high accuracy. In

addition, the approach was extended to a weight-tuning feature, with which the model

performance could be tuned based on practical needs of the real-world applications without

modifying the available data sets.

Based on the analyses of the popular ELM-based algorithms, a new approach named

progressive ELM (Pr-ELM) was proposed. The random feature mapping attribute of the

traditional ELM was inherited. The estimated model outputs were used to supplement the

input data set for the model, which in turn helped reduce the model estimation error with

regard to RMSE. Further experimental evaluation results showed that Pr-ELM could

significantly improve the performance of the traditional ELM and outperform the

competing ELM-based algorithms in terms of model output RMSE and correlation

coefficient.

More evaluations were done with eleven publicly available data sets from the University

of California, Irvine, Machine Learning Repository. The performance of Pr-ELM was

118

further compared with the popular and robust non-ELM based algorithms, such as LMA

and SVR. In addition to its unparalleled advantage in training speed, the experimental

evaluation results showed that Pr-ELM had a comparable performance as LMA in terms of

RMSE and correlation coefficient under the experimental conditions. Pr-ELM also

demonstrated better performance than SVR in terms of RMSE and correlation coefficient

for most of the cases.

8.2 Principal Contributions

The principal contributions of this dissertation are as follows.

1) We established a procedure to create the IC engine torque model using the ELM-based

neural network techniques. The modeling approach is efficient and requires minimal

prior knowledge of IC engines for its implementation, so even the non-engine experts

can also benefit from the approach.

2) Complete engine mapping experiments were conducted in line with the industry-

leading engine test standards. Over 3300 high-quality data points were employed to

evaluate the IC engine torque model. Such scale and quality of the engine experiment

surpassed the previously reported studies and strongly supported the practicality of the

proposed model.

3) Rigorous evaluations showed that the created model could predict IC engine output

torque over the full engine operating map with high accuracy. The prediction RMSE

was about 2.7% of the population mean. The proposed weighted modeling approach

effectively enabled the further enhancement of model accuracy.

119

4) The proposed Pr-ELM strengthened the performance of the existing ELM-based

algorithm for system identification applications. Experimental evaluations with the IC

engine mapping data and various publicly available data sets showed that Pr-ELM

performed significantly better than the competing ELM-based technologies in terms of

model accuracy. Pr-ELM also demonstrated comparable performance with LMA and

better performance than SVR for different data sets under the evaluation conditions.

5) The proposed approach advanced the techniques for rapid IC engine torque modeling.

The created model can provide reliable references for real-world IC engine tests and

cross verifications. Based on the evaluation results, the proposed approach can save

approximately up to 20 percent of the engine mapping time.

8.3 Additional Remarks and Future Directions

The ELM-based neural network modeling approaches have provided new perspectives for

neural network system modeling. Unlike the gradient descent based algorithms, the ELM-

based approaches adopt random feature mapping. Therefore, they usually have unparalleled

training speed and very good generalization. However, they also appear to perform less

accurately, especially when the number of hidden neurons is far less than the number of

training data points.

Based on the extensive evaluation of the ELM-based algorithms, we found that for a given

data set, the accuracy of the model output largely depends on the output of the hidden layer

in the ELM models. If the outputs of the hidden layer are the same, the ELM-based

algorithms tend to have very comparable accuracy with the BP-based ones when both are

120

optimized for minimum SSE. As a result, the focus of improving the ELM-based algorithms

should be on the improvement of random feature mapping.

The following directions may be of interest in future research.

1) Studying the effectiveness of Pr-ELM on a wider category of applications, such as

classification, pattern recognition, and deep learning.

2) Exploring the impact of the initialization process on the performance of the ELM-

based algorithms [64]. Since the quality of the feature layer output has a direct effect

on the overall performance of the ELM models, it is valuable to conduct a thorough

study of this topic.

3) Exploring innovative approach to find the close-form estimation of an

ill-conditioned matrix. Based on the studies of the previous ELM-based algorithms,

the weight of the hidden layer is often optimized by calculating the inverse of the

input matrix using the Moore-Penrose pseudo inverse. However, due to the

ill-formed nature of the input matrix, such pseudo inverse is one-sided. In other

words, when the pseudo inverse is multiplied with the input matrix from the other

side, the result may be far from an identity matrix. As a result, the output of the

model may not be the expected value. Therefore, it is desired to have a close-form

estimation of the inverse of the input matrix. Possible approaches may include

tuning the pseudo inverse of the input matrix by adding linear combinations of the

vectors from its null space, or approximating the activation function through

accurate linearization.

121

4) Investigating the opportunity of applying the proposed Pr-ELM on top of other NN

algorithms, ELM, and non-ELM based, in order to extract deep data features and

improve the overall performance of the algorithms.

5) Exploring the opportunity of utilizing the neural network based IC engine model as

the digital twin [112] in engine testing and cross-validation. In the era of industry

4.0, physical objects and virtual twins are growing together. Taking the advantage

of the ELM algorithms, the digital twin model may be seamlessly integrated with

the IC engine model. The data can be exchanged in real-time and a change made to

one end would automatically lead to a change in the other end accordingly. In this

regard, the ANN coupled digital twins may open up new possibilities in early fault

diagnosis and more efficient and powerful product analysis [113], [114].

122

REFERENCES

 [1] Q. Tan, “Model-Guided Data-Driven Optimization and Control for Internal

Combustion Engine Systems,” Electronic Theses and Dissertations, 2018, [Online].

Available: https://scholar.uwindsor.ca/etd/7625.

[2] D. Jung and C. Sundstrom, “A Combined Data-Driven and Model-Based Residual

Selection Algorithm for Fault Detection and Isolation,” IEEE Transactions on Control

Systems Technology, vol. 27, no. 2, pp. 616–630, 2019, doi:

10.1109/TCST.2017.2773514.

[3] S. Tolou, R. T. Vedula, H. Schock, G. Zhu, Y. Sun, and A. Kotrba, “Combustion

Model for a Homogeneous Turbocharged Gasoline Direct-Injection Engine,” Journal

of Engineering for Gas Turbines and Power, vol. 140, no. 10, p. 102804, 2018, doi:

10.1115/1.4039813.

[4] N. Togun, S. Baysec, and T. Kara, “Nonlinear Modeling and Identification of a Spark

Ignition Engine Torque,” Mechanical Systems and Signal Processing, vol. 26, pp.

294–304, 2012, doi: 10.1016/j.ymssp.2011.06.010.

[5] Z. Tan and R. D. Reitz, “An Ignition and Combustion Model Based on the Level-Set

Method for Spark Ignition Engine Multidimensional Modeling,” Combustion and

Flame, vol. 145, no. 1–2, pp. 1–15, 2006, doi: 10.1016/j.combustflame.2005.12.007.

[6] P. Boudier, S. Henriot, T. Poinsot, and T. Baritaud, “A Model for Turbulent Flame

Ignition and Propagation in Spark Ignition Engines,” Elsevier, vol. 24, no. 1, pp. 503–

510, 1992.

123

[7] C. S. Daw, C. E. A. Finney, J. B. Green, M. B. Kennel, J. F. Thomas, and F. T.

Connolly, “A Simple Model for Cyclic Variations in a Spark-Ignition Engine,” SAE

Transactions, 1996, p. 962086, doi: 10.4271/962086.

[8] S. G. Poulos and J. B. Heywood, “The Effect of Chamber Geometry on Spark-Ignition

Engine Combustion,” SAE transactions, pp. 1106–1129, 1983.

[9] G. Fontana and E. Galloni, “Variable Valve Timing for Fuel Economy Improvement

in a Small Spark-Ignition Engine,” Applied Energy, vol. 86, no. 1, pp. 96–105, 2009,

doi: 10.1016/j.apenergy.2008.04.009.

[10] J. M. Luján, C. Guardiola, B. Pla, and P. Bares, “Estimation of Trapped Mass by in-

Cylinder Pressure Resonance in HCCI Engines,” Mechanical Systems and Signal

Processing, vol. 66–67, pp. 862–874, 2016, doi: 10.1016/j.ymssp.2015.05.016.

[11] R. W. Weeks and J. J. Moskwa, “Automotive Engine Modeling for Real-Time Control

Using MATLAB/SIMULINK,” SAE Transactions, pp. 295-309, 1995, doi:

10.4271/950417.

[12] G. Jiang, P. Xie, H. He, and J. Yan, “Wind Turbine Fault Detection Using a Denoising

Autoencoder With Temporal Information,” IEEE/ASME Transactions on

Mechatronics, vol. 23, no. 1, pp. 89–100, 2018, doi: 10.1109/TMECH.2017.2759301.

[13] B. Wu et al., “Using Artificial Neural Networks for Representing the Air Flow Rate

through a 2.4 Liter VVT Engine,” SAE transactions, 2004, doi: 10.4271/2004-01-

3054.

124

[14] N. K. Togun and S. Baysec, “Prediction of Torque and Specific Fuel Consumption of

a Gasoline Engine by Using Artificial Neural Networks,” Applied Energy, vol. 87, no.

1, pp. 349–355, 2010, doi: 10.1016/j.apenergy.2009.08.016.

[15] Y. Cay, “Prediction of a Gasoline Engine Performance with Artificial Neural

Network,” Fuel, vol. 111, pp. 324–331, 2013, doi: 10.1016/j.fuel.2012.12.040.

[16] A. Di Mauro, H. Chen, and V. Sick, “Neural Network Prediction of Cycle-to-Cycle

Power Variability in a Spark-Ignited Internal Combustion Engine,” Proceedings of

the Combustion Institute, vol. 37, no. 4, pp. 4937–4944, 2019, doi:

10.1016/j.proci.2018.08.058.

[17] Y. Hu, H. Chen, P. Wang, H. Chen, and L. Ren, “Nonlinear Model Predictive

Controller Design Based on Learning Model for Turbocharged Gasoline Engine of

Passenger Vehicle,” Mechanical Systems and Signal Processing, vol. 109, pp. 74–88,

2018, doi: 10.1016/j.ymssp.2018.02.012.

[18] H. Li, K. Butts, K. Zaseck, D. Liao-McPherson, and I. Kolmanovsky, “Emissions

Modeling of a Light-Duty Diesel Engine for Model-Based Control Design Using

Multi-Layer Perceptron Neural Networks,” SAE Technical Paper 2017-01-0601,

2017, doi: 10.4271/2017-01-0601.

[19] T. Zheng, Y. Zhang, Y. Li, and L. Shi, “Real-Time Combustion Torque Estimation

and Dynamic Misfire Fault Diagnosis in Gasoline Engine,” Mechanical Systems and

Signal Processing, vol. 126, pp. 521–535, 2019, doi: 10.1016/j.ymssp.2019.02.048.

125

[20] J. Chen and R. B. Randall, “Intelligent Diagnosis of Bearing Knock Faults in Internal

Combustion Engines Using Vibration Simulation,” Mechanism and Machine Theory,

vol. 104, pp. 161–176, 2016, doi: 10.1016/j.mechmachtheory.2016.05.022.

[21] R. Ahmed, M. El Sayed, S. A. Gadsden, J. Tjong, and S. Habibi, “Automotive

Internal-Combustion-Engine Fault Detection and Classification Using Artificial

Neural Network Techniques,” IEEE Transactions on Vehicular Technology, vol. 64,

no. 1, pp. 21–33, 2015, doi: 10.1109/TVT.2014.2317736.

[22] L. Wen, X. Li, L. Gao, and Y. Zhang, “A New Convolutional Neural Network-Based

Data-Driven Fault Diagnosis Method,” IEEE Transactions on Industrial Electronic.,

vol. 65, no. 7, pp. 5990–5998, 2018, doi: 10.1109/TIE.2017.2774777.

[23] G. Huang, Q. Zhu, and C. Siew, “Extreme Learning Machine: A New Learning

Scheme of Feedforward Neural Networks,” in 2004 IEEE International Joint

Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary,

2004, vol. 2, pp. 985–990, doi: 10.1109/IJCNN.2004.1380068.

[24] Z. Gao et al., “Drive Cycle Simulation of High Efficiency Combustions on Fuel

Economy and Exhaust Properties in Light-Duty Vehicles,” Applied Energy, vol. 157,

pp. 762–776, 2015, doi: 10.1016/j.apenergy.2015.03.070.

[25] S. Shanmuganathan, “Artificial Neural Network Modelling: An Introduction,” in

Artificial Neural Network Modelling, vol. 628, S. Shanmuganathan and S.

Samarasinghe, Eds. Cham: Springer International Publishing, 2016, pp. 1–14.

126

[26] J. Sjoberg, H. Hjalmarsson, and L. Ljung, “Neural Networks in System

Identification,” IEEE Control systems magazine, vol. 10, pp. 31-35, 1994.

[27] M. K. Deh Kiani, B. Ghobadian, T. Tavakoli, A. M. Nikbakht, and G. Najafi,

“Application of Artificial Neural Networks for the Prediction of Performance and

Exhaust Emissions in SI Engine Using Ethanol- Gasoline Blends,” Energy, vol. 35,

no. 1, pp. 65–69, 2010, doi: 10.1016/j.energy.2009.08.034.

[28] Y. Çay, I. Korkmaz, A. Çiçek, and F. Kara, “Prediction of Engine Performance and

Exhaust Emissions for Gasoline and Methanol Using Artificial Neural Network,”

Energy, vol. 50, pp. 177–186, 2013, doi: 10.1016/j.energy.2012.10.052.

[29] S. Lu and T. Basar, “Robust Nonlinear System Identification Using Neural-Network

Models,” IEEE Transactions on Neural Networks and Learning Systems, vol. 9, no.

3, pp. 407–429, 1998, doi: 10.1109/72.668883.

[30] S. Herculano-Houzel, “The Remarkable, Yet Not Extraordinary, Human Brain as a

Scaled-Up Primate Brain and Its Associated Cost,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 109, no. Supplement 1, p.

10661, 2012, doi: 10.1073/pnas.1201895109.

[31] Q. Jarosz, “Single Neuron Cell Hand-tuned.”

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg (accessed Nov.

20, 2020).

[32] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous

Activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

127

[33] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in Extreme Learning

Machines: A Review,” Neural Networks, vol. 61, pp. 32–48, 2015, doi:

10.1016/j.neunet.2014.10.001.

[34] “CS231n Convolutional Neural Networks for Visual Recognition.”

https://cs231n.github.io/neural-networks-1/ (accessed Jan. 23, 2021).

[35] Y. Xiaofang, W. Yaonan, S. Wei, and W. Lianghong, “RBF Networks-Based

Adaptive Inverse Model Control System for Electronic Throttle,” IEEE Transactions

on Control Systems Technology, vol. 18, no. 3, pp. 750–756, 2010, doi:

10.1109/TCST.2009.2026397.

[36] S. Elanayar V.T. and Y. C. Shin, “Radial Basis Function Neural Network for

Approximation and Estimation of Nonlinear Stochastic Dynamic Systems,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 5, no. 4, pp. 594–603,

1994, doi: 10.1109/72.298229.

[37] S. Simonenko, V. Bayona, and M. Kindelan, “Optimal Shape Parameter for the

Solution of Elastostatic Problems with the RBF Method,” Journal of Engineering

Mathematics, vol. 85, no. 1, pp. 115–129, 2014, doi: 10.1007/s10665-013-9636-7.

[38] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,” in

Proceedings of ICML workshop on unsupervised and transfer learning, pp. 37–49,

2012.

[39] G. E. Hinton, “Reducing the Dimensionality of Data with Neural Networks,” Science,

vol. 313, no. 5786, pp. 504–507, 2006, doi: 10.1126/science.1127647.

128

[40] G. Dong, G. Liao, H. Liu, and G. Kuang, “A Review of the Autoencoder and Its

Variants: A Comparative Perspective from Target Recognition in Synthetic-Aperture

Radar Images,” IEEE Geoscience and Remote Sensing Magazine, vol. 6, no. 3, pp.

44–68, 2018, doi: 10.1109/MGRS.2018.2853555.

[41] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural

Networks, vol. 61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.

[42] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial Neural Networks-

Based Machine Learning for Wireless Networks: A Tutorial,” IEEE Communications

Surveys and Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019, doi:

10.1109/COMST.2019.2926625.

[43] P. J. Werbos, “Backpropagation through Time: What It Does and How to Do It,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990, doi: 10.1109/5.58337.

[44] G. Wang, O. I. Awad, S. Liu, S. Shuai, and Z. Wang, “NOx Emissions Prediction

Based on Mutual Information and Back Propagation Neural Network Using

Correlation Quantitative Analysis,” Energy, vol. 198, p. 117286, 2020, doi:

10.1016/j.energy.2020.117286.

[45] G. Najafi, B. Ghobadian, T. Tavakoli, D. R. Buttsworth, T. F. Yusaf, and M.

Faizollahnejad, “Performance and Exhaust Emissions of a Gasoline Engine with

Ethanol Blended Gasoline Fuels Using Artificial Neural Network,” Applied Energy,

p. 10, 2009.

129

[46] T. Guo, S. Chang, Z. Chen, H. Huang, and J. Xu, “Fault Monitoring and Diagnosis of

Actuators in Electromagnetic Valve-Train Based on Neural Networks Optimization

Algorithm,” IEEE Access, vol. 7, pp. 110616–110627, 2019, doi:

10.1109/ACCESS.2019.2933881.

[47] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feedforward Neural Networks

with Random Weights,” in Proceedings., 11th IAPR International Conference on

Pattern Recognition., The Hague, Netherlands, 1992, vol. Vol II, pp. 1–4.

[48] B. Igelnik and Yoh-Han Pao, “Stochastic Choice of Basis Functions in Adaptive

Function Approximation and the Functional-Link Net,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 6, no. 6, pp. 1320–1329, 1995, doi:

10.1109/72.471375.

[49] G. Huang, L. Chen, and C. Siew, “Universal Approximation Using Incremental

Constructive Feedforward Networks with Random Hidden Nodes,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 17, no. 4, pp. 879–892,

2006, doi: 10.1109/TNN.2006.875977.

[50] J. Lu, J. Zhao, and F. Cao, “Extended Feed Forward Neural Networks with Random

Weights for Face Recognition,” Neurocomputing, vol. 136, pp. 96–102, 2014, doi:

10.1016/j.neucom.2014.01.022.

[51] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari, “What’s

Hidden in a Randomly Weighted Neural Network?,” in 2020 IEEE/CVF Conference

130

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, Jun. 2020,

pp. 11890–11899, doi: 10.1109/CVPR42600.2020.01191.

[52] W. Cao, L. Hu, J. Gao, X. Wang, and Z. Ming, “A Study on the Relationship between

the Rank of Input Data and the Performance of Random Weight Neural Network,”

Neural Computing and Applications, vol. 32, no. 16, pp. 12685–12696, 2020, doi:

10.1007/s00521-020-04719-8.

[53] Y. Wu, H. Wang, B. Zhang, and K.-L. Du, “Using Radial Basis Function Networks

for Function Approximation and Classification,” ISRN Applied Mathematics, vol.

2012, pp. 1–34, Mar. 2012, doi: 10.5402/2012/324194.

[54] S. W. Wang, D. L. Yu, J. B. Gomm, G. F. Page, and S. S. Douglas, “Adaptive Neural

Network Model Based Predictive Control of An Internal Combustion Engine with A

New Optimization Algorithm,” Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, vol. 220, no. 2, pp. 195–208,

2006, doi: 10.1243/095440706X72754.

[55] J. Wang, Y. Zhang, Q. Xiong, and X. Ding, “NOx Prediction by Cylinder Pressure

Based on RBF Neural Network in Diesel Engine,” in 2010 International Conference

on Measuring Technology and Mechatronics Automation, Changsha City, China,

2010, pp. 792–795, doi: 10.1109/ICMTMA.2010.621.

[56] K. Bizon, G. Continillo, E. Mancaruso, and B. M. Vaglieco, “Towards On-Line

Prediction of the In-Cylinder Pressure in Diesel Engines from Engine Vibration Using

Artificial Neural Networks,” SAE Technical Paper 2013-24-0137, 2013.

131

[57] D. Stathakis, “How Many Hidden Layers and Nodes?,” International Journal of

Remote Sensing, vol. 30, no. 8, pp. 2133–2147, 2009, doi:

10.1080/01431160802549278.

[58] G. Huang and H. A. Babri, “Upper Bounds on the Number of Hidden Neurons in

Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 9, no. 1, pp. 224–

229, 1998, doi: 10.1109/72.655045.

[59] N. J. Guliyev and V. E. Ismailov, “A Single Hidden Layer Feedforward Network with

Only One Neuron in the Hidden Layer Can Approximate Any Univariate Function,”

Neural Computation, vol. 28, no. 7, pp. 1289–1304, 2016, doi:

10.1162/NECO_a_00849.

[60] J. Tang, C. Deng, and G.-B. Huang, “Extreme Learning Machine for Multilayer

Perceptron,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27,

no. 4, pp. 809–821, 2016, doi: 10.1109/TNNLS.2015.2424995.

[61] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Machine for

Regression and Multiclass Classification,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529, 2012, doi:

10.1109/TSMCB.2011.2168604.

[62] G. Huang, Q. Zhu, and C. Siew, “Extreme Learning Machine: Theory and

Applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006, doi:

10.1016/j.neucom.2005.12.126.

132

[63] L. P. Wang and C. R. Wan, “Comments on "The Extreme Learning Machine,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 19, no. 8, pp. 1494–

1495, 2008, doi: 10.1109/TNN.2008.2002273.

[64] W. Cao, X. Wang, Z. Ming, and J. Gao, “A Review on Neural Networks with Random

Weights,” Neurocomputing, vol. 275, pp. 278–287, 2018, doi:

10.1016/j.neucom.2017.08.040.

[65] G. Huang, “An Insight into Extreme Learning Machines: Random Neurons, Random

Features and Kernels,” Cognitive Computation, vol. 6, no. 3, pp. 376–390, 2014, doi:

10.1007/s12559-014-9255-2.

[66] X. Wang, R. Wang, and C. Xu, “Discovering the Relationship Between

Generalization and Uncertainty by Incorporating Complexity of Classification,” IEEE

Transactions on Cybernetics., vol. 48, no. 2, pp. 703–715, 2018, doi:

10.1109/TCYB.2017.2653223.

[67] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for

Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, p. 55, 1970, doi:

10.2307/1267351.

[68] G. H. Golub, M. Heath, and G. Wahba, “Generalized Cross-Validation as a Method

for Choosing a Good Ridge Parameter,” Technometrics, no. 21(2), pp. 215–223, 1979.

[69] W. Pan, “Akaike’s Information Criterion in Generalized Estimating Equations,”

Biometrics, vol. 57, no. 1, pp. 120–125, 2001, doi: 10.1111/j.0006-

341X.2001.00120.x.

133

[70] K. O. Kvålseth, “Cautionary Note About R2,” The American Statistician, vol. 39, no.

4, pp. 279–285, 1985.

[71] O. Harel, “The Estimation of R2 and Adjusted R2 in Incomplete Data Sets Using

Multiple Imputation,” Journal of Applied Statistics, vol. 36, no. 10, pp. 1109–1118,

2009, doi: 10.1080/02664760802553000.

[72] K. P. Burnham, D. R. Anderson, and K. P. Burnham, Model selection and multimodel

inference: a practical information-theoretic approach, 2nd ed. New York: Springer,

2002.

[73] W. Zong, G.Huang, and Y. Chen, “Weighted Extreme Learning Machine for

Imbalance Learning,” Neurocomputing, vol. 101, pp. 229–242, 2013, doi:

10.1016/j.neucom.2012.08.010.

[74] K. Li, X. Kong, Z. Lu, L. Wenyin, and J. Yin, “Boosting Weighted ELM for

Imbalanced Learning,” Neurocomputing, vol. 128, pp. 15–21, 2014, doi:

10.1016/j.neucom.2013.05.051.

[75] R. Fletcher, Practical methods of optimization, 2nd ed. Chichester, West Sussex

England: John Wiley & Sons, Ltd, 2013.

[76] K. Atashkari, N. Nariman-Zadeh, M. Gölcü, A. Khalkhali, and A. Jamali, “Modelling

and Multi-Objective Optimization of A Variable Valve-Timing Spark-Ignition Engine

Using Polynomial Neural Networks and Evolutionary Algorithms,” Energy

Conversion and Management, vol. 48, no. 3, pp. 1029–1041, 2007, doi:

10.1016/j.enconman.2006.07.007.

134

[77] Meidensha Corporation, “Automotive Testing Systems Specification,”

https://www.meidensha.com/products/automobile/prod_01/prod_01_03/index.html

[Accessed Dec. 14, 2020].

[78] “ATI Accurate Technologies, “VISION Calibration and Data Acquisition Software,”

https://www.accuratetechnologies.com/Products/VISIONSoftware [Accessed Dec.

14, 2020].

[79] T. Holliday, A. J. Lawrance, and T. P. Davis, “Engine-Mapping Experiments: A Two-

Stage Regression Approach,” Technometrics, vol. 40, no. 2, pp. 120–126, 1998, doi:

10.1080/00401706.1998.10485194.

[80] W. Cao, J. Gao, Z. Ming, and S. Cai, “Some Tricks in Parameter Selection for Extreme

Learning Machine,” IOP Conference Series: Materials Science and Engineering., vol.

261, p. 012002, Oct. 2017, doi: 10.1088/1757-899X/261/1/012002.

[81] M. Li and D. Wang, “Insights into Randomized Algorithms for Neural Networks:

Practical Issues and Common Pitfalls,” Information Sciences, vol. 382–383, pp. 170–

178, 2017, doi: 10.1016/j.ins.2016.12.007.

[82] W. Cao, J. Gao, X. Wang, Z. Ming, and S. Cai, “Random Orthogonal Projection Based

Enhanced Bidirectional Extreme Learning Machine,” in Proceedings of ELM 2018,

vol. 11, J. Cao, C. M. Vong, Y. Miche, and A. Lendasse, Eds. Cham: Springer

International Publishing, 2020, pp. 1–10.

[83] Y. Yang, Y. Wang, and X. Yuan, “Bidirectional Extreme Learning Machine for

Regression Problem and Its Learning Effectiveness,” IEEE Transactions on Neural

135

Networks and Learning Systems., vol. 23, no. 9, pp. 1498–1505, 2012, doi:

10.1109/TNNLS.2012.2202289.

[84] W. Cao, Z. Ming, X. Wang, and S. Cai, “Improved Bidirectional Extreme Learning

Machine Based on Enhanced Random Search,” Memetic Computing, vol. 11, no. 1,

pp. 19–26, 2019, doi: 10.1007/s12293-017-0238-1.

[85] W. Cao, M. J. A. Patwary, P. Yang, X. Wang, and Z. Ming, “An Initial Study on the

Relationship Between Meta Features of Dataset and the Initialization of NNRW,” in

2019 International Joint Conference on Neural Networks (IJCNN), Budapest,

Hungary, 2019, pp. 1–8, doi: 10.1109/IJCNN.2019.8852219.

[86] G. Huang and L. Chen, “Enhanced Random Search Based Incremental Extreme

Learning Machine,” Neurocomputing, vol. 71, no. 16–18, pp. 3460–3468, 2008, doi:

10.1016/j.neucom.2007.10.008.

[87] G. Huang and L. Chen, “Convex Incremental Extreme Learning Machine,”

Neurocomputing, vol. 70, no. 16–18, pp. 3056–3062, 2007, doi:

10.1016/j.neucom.2007.02.009.

[88] W. Wang and R. Zhang, “Improved Convex Incremental Extreme Learning Machine

Based on Enhanced Random Search,” in Unifying Electrical Engineering and

Electronics Engineering, vol. 238, S. Xing, S. Chen, Z. Wei, and J. Xia, Eds. New

York, NY: Springer New York, 2014, pp. 2033–2040.

[89] R. Zhang, Y.Lan, G.Huang, and Z. Xu, “Universal Approximation of Extreme

Learning Machine With Adaptive Growth of Hidden Nodes,” IEEE Transactions on

136

Neural Networks and Learning Systems, vol. 23, no. 2, pp. 365–371, 2012, doi:

10.1109/TNNLS.2011.2178124.

[90] G. Feng, G. Huang, Q. Lin, and R. Gay, “Error Minimized Extreme Learning Machine

With Growth of Hidden Nodes and Incremental Learning,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 20, no. 8, pp. 1352–1357, 2009, doi:

10.1109/TNN.2009.2024147.

[91] H. Rong, Y. Ong, A. Tan, and Z. Zhu, “A Fast Pruned-Extreme Learning Machine for

Classification Problem,” Neurocomputing, vol. 72, no. 1–3, pp. 359–366, 2008, doi:

10.1016/j.neucom.2008.01.005.

[92] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, “OP-ELM:

Optimally Pruned Extreme Learning Machine,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 21, no. 1, pp. 158–162, 2010, doi:

10.1109/TNN.2009.2036259.

[93] R. Zhang, Y. Lan, G.-B. Huang, Z.-B. Xu, and Y. C. Soh, “Dynamic Extreme

Learning Machine and Its Approximation Capability,” IEEE Transactions on

Cybernetics., vol. 43, no. 6, pp. 2054–2065, 2013, doi: 10.1109/TCYB.2013.2239987.

[94] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel Extreme Learning Machine for

Regression Based on Mapreduce,” Neurocomputing, vol. 102, pp. 52–58, 2013, doi:

10.1016/j.neucom.2012.01.040.

[95] N. Liang, G. Huang, P. Saratchandran, and N. Sundararajan, “A Fast and Accurate

Online Sequential Learning Algorithm for Feedforward Networks,” IEEE

137

Transactions on Neural Networks, vol. 17, no. 6, pp. 1411–1423, 2006, doi:

10.1109/TNN.2006.880583.

[96] E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 2nd ed. New York:

Wiley, 2001.

[97] J. Cao, Z. Lin, and G.-B. Huang, “Self-Adaptive Evolutionary Extreme Learning

Machine,” Neural Processing Letters, vol. 36, no. 3, pp. 285–305, 2012, doi:

10.1007/s11063-012-9236-y.

[98] Q. Zhu, A. K. Qin, P. N. Suganthan, and G. Huang, “Evolutionary Extreme Learning

Machine,” Pattern Recognition, vol. 38, no. 10, pp. 1759–1763, 2005, doi:

10.1016/j.patcog.2005.03.028.

[99] L. L. Kasun, H. Zhou, B. Huang, and C. M. Vong, “Representational Learning with

ELMs for Big Data,” IEEE Intelligent Systems, p. 5, 2013.

[100] K. Sun, J. Zhang, C. Zhang, and J. Hu, “Generalized Extreme Learning Machine

Autoencoder and a New Deep Neural Network,” Neurocomputing, vol. 230, pp. 374–

381, 2017, doi: 10.1016/j.neucom.2016.12.027.

[101] Y. Wan, S. Song, and G. Huang, “Incremental Extreme Learning Machine Based

on Cascade Neural Networks,” in 2015 IEEE International Conference on Systems,

Man, and Cybernetics, Kowloon Tong, Hong Kong, Oct. 2015, pp. 1889–1894, doi:

10.1109/SMC.2015.330.

138

[102] A. Oakden, “Cascade Networks and Extreme Learning Machines,” MSc Thesis,

Canberra: Australian National University, 2014.

[103] T. Gedeon and A. Oakden, “Extreme Learning Machines with Simple Cascades:,”

in Proceedings of the 5th International Conference on Simulation and Modeling

Methodologies, Technologies and Applications, Colmar, Alsace, France, 2015, pp.

271–278, doi: 10.5220/0005539502710278.

[104] D. Dua and C. Graff, “UCI Machine Learning Repository,” 2019.

https://archive.ics.uci.edu/ml/index.php (accessed Feb. 14, 2021).

[105] The MathWorks, Inc., “Levenberg-Marquardt Backpropagation”

https://www.mathworks.com/help/deeplearning/ref/trainlm.html;jsessionid=52ca70d

d85a61850337047e46469 (accessed Dec. 05, 2020).

[106] A. Reynaldi, S. Lukas, and H. Margaretha, “Backpropagation and Levenberg-

Marquardt Algorithm for Training Finite Element Neural Network,” in 2012 Sixth

UKSim/AMSS European Symposium on Computer Modeling and Simulation, Malta,

Malta, 2012, pp. 89–94, doi: 10.1109/EMS.2012.56.

[107] G. Lera and M. Pinzolas, “Neighborhood based Levenberg-Marquardt algorithm

for neural network training,” IEEE Transaction on Neural Networks, vol. 13, no. 5,

pp. 1200–1203, 2002, doi: 10.1109/TNN.2002.1031951.

[108] Dundee Conference on Numerical Analysis and G. A. Watson, Eds., Numerical

analysis: proceedings of the biennial conference, Dundee, 1977. Berlin: Springer,

1978.

139

[109] M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with the

Marquardt Algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp.

989–993, 1994.

[110] M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and

Applications for Engineers and System Designers. Apress Media, LLC, 2015.

[111] S. Salcedo-Sanz, J. L. Rojo-Álvarez, M. Martínez-Ramón, and G. Camps-Valls,

“Support Vector Machines in Engineering: An Overview: Support Vector Machines

in Engineering,” WIREs Data Mining and Knowledge Discovery, vol. 4, no. 3, pp.

234–267, 2014, doi: 10.1002/widm.1125.

[112] R. Wagner, B. Schleich, B. Haefner, A. Kuhnle, S. Wartzack, and G. Lanza,

“Challenges and Potentials of Digital Twins and Industry 4.0 in Product Design and

Production for High Performance Products,” Procedia CIRP, vol. 84, pp. 88–93,

2019, doi: 10.1016/j.procir.2019.04.219.

[113] M. Schluse, M. Priggemeyer, L. Atorf, and J. Rossmann, “Experimentable Digital

Twins—Streamlining Simulation-Based Systems Engineering for Industry 4.0,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1722–1731, 2018, doi:

10.1109/TII.2018.2804917.

[114] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital Twin: Enabling Technologies,

Challenges and Open Research,” IEEE Access, vol. 8, pp. 108952–108971, 2020, doi:

10.1109/ACCESS.2020.2998358.

140

VITA AUCTORIS

Name: Weiying Zeng

Place of Birth: Changsha, China

Year of Birth: 1984

Education: China Agricultural University, Beijing, China

 (2003-2007) B.Sc.

 Peking University, Beijing, China

 (2006-2009) B.Econ.

 China Agricultural University, Beijing, China

 (2007-2009) M.Sc. Vehicle Engineering

 University of Windsor, Windsor, Ontario, Canada

 (2013-2021) Ph.D. Electrical Engineering

141

LIST OF PUBLICATIONS

Publications completed during my registration as a doctoral graduate student at the

University of Windsor, ON, Canada

Published Journal papers:

[1] Zeng, W., Khalid, M.A. and Chowdhury, S., 2016, “In-vehicle networks outlook:

Achievements and challenges”, IEEE Communications Surveys & Tutorials, 18(3),

pp.1552-1571.

[2] Zeng, W., Khalid, M.A., Han, X. and Tjong, J., 2020. A Study on Extreme Learning

Machine for Gasoline Engine Torque Prediction. IEEE Access, 8, pp.104762-104774.

To be submitted Journal paper:

[1] Zeng, W., Khalid, M.A., Han, X. and Tjong, J., “A Novel Progressive Extreme

Learning Machine for System Identification”, Applied Intelligence, Springer

Conference paper:

[1] Zeng, W., Khalid, M. and Chowdhury, S., 2015, May. A qualitative comparison of

FlexRay and Ethernet in vehicle networks. In 2015 IEEE 28th Canadian Conference on

Electrical and Computer Engineering (CCECE) (pp. 571-576). IEEE.

	Efficient and Accurate Neural Network Based Internal Combustion Engine Modeling and Prediction
	Recommended Citation

	tmp.1624047482.pdf.daXH6

