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ABSTRACT 

    Waste heat recovery plays an important role for alleviating the energy crisis and mitigating 

climate change. The thermoelectrical generator (TEG), a solid energy convertor, is a promising 

technology. However, the performance of a TEG is sensitive to its geometric structure and 

working conditions. An improved geometric structure and matching to the working conditions 

can make a TEG fully utilize its thermoelectrical conversion potential.  

The TEG optimization is a kind of combinatorial problem. An effective algorithm is needed to 

optimize a TEG’s performance. The particle swarm optimization (PSO) algorithm is introduced 

in this study to optimize a TEG’s output power, efficiency, and even some economic indices 

(exergy efficiency and levelized cost of energy (LOCE)). In order to address the premature 

convergence (which is one of the main challenges for algorithms), a mutation program is used to 

improve the traditional PSO method. Meanwhile, many parameter combinations related to the 

algorithm (such as mutation factor (mu), cognitive parameter (C1), and social parameter (C2)) 

were tried. The mutation particle swarm optimization (M-PSO) is an effective algorithm to 

optimize the performance for the TEG. The results indicate that it is difficult to reach the optimal 

state in different performance indices simultaneously, necessitating a multi-objective 

optimization. Although the multi-objective optimization can be solved by the M-PSO using a 

weighted approach, there are biases introduced when selecting a weighting factor. In order to 

improve the multi-objective optimization further, the ε-constraint method is introduced into the 

M-PSO algorithm. Through optimizing of the TEG by this method, a series of acceptable 

solutions are acquired, which are named Pareto solutions. After that, the technique for order 

preference by similarity ideal solution (TOPSIS) method was used to analyze these Pareto 

solutions to search for a TOPSIS ideal solution. 

Additionally, a hyperbolic-shaped variable cross-section TEG was simulated. Based on a 

comprehensive thermodynamic model, it appears that the hyperbolic TEG is equipped with 

higher output power and efficiency compared to the constant cross-section one. The study also 

indicates that the four non-dimensional parameters (shape parameter (β), area ratio (μ), 

temperature ratio (θ), and resistance ratio (rx)) have considerable influences on the hyperbolic 

TEG performance. In this way, it is necessary to optimize the TEG power generation and 

efficiency in the variable searching space of these parameters. However, differing from the 

traditional optimization, it is necessary to solve the control equations in every iteration when 
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searching for an optimal configuration based on the comprehensive model. In order to do this, the 

Dual-MPSO algorithm was used in the optimizing research. 

Finally, a transient TEG model is established using the SIMULINK. Under a periodic source 

temperature varied with a sinusoidal function, it is verified that the hyperbolic TEG has a higher 

mean power output and overall efficiency compared to that of the traditional one. Moreover, the 

results indicate that the shape parameter (β) and the period of the source temperature have 

considerable influences on the mean power output and overall efficiency of the hyperbolic TEG. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Motivation 

With modern society developing rapidly, the human lifestyle is increasingly reliant on energy. 

The global energy demand experienced a dramatic increase over the past decades, from 10 TW in 

the 1980s to 50 TW in the early twenty-first century [1]. Meanwhile, it is predicted that this 

figure will increase three-fold by the mid-century [1]. Nowadays, a large amount of energy is still 

derived from fossil fuel combustion [1]. However, relying on fossil fuel excessively will 

inevitably put humans in a dire state, due to its finite supply and environmental issues. Exploiting 

energy-saving technology is one of the effective measures to avoid the dilemma of supplying 

energy or reducing environmental effects. As an energy recovery technology, the thermoelectric 

generator (TEG) is considered to have considerable development prospects; thereby, it has 

become the focus of researchers’ concern in recent years. 

The TEG is to a kind of solid-state energy convertor, which can produce electrical power 

under a temperature difference. Compared with traditional energy convertors, TEG technology 

recovers waste heat, without moving parts [2]. However, in order to popularize the TEG 

technology, it is crucial to improve its thermoelectrical conversion performance further. There are 

many factors that determine the thermoelectrical conversion performance. Firstly, a TEG’s 

performance is easy to be affected by its working conditions, especially temperature. According 

to the relevant literature, some important thermoelectrical properties, such as the Seebeck 

coefficient, electrical resistivity, and thermal conductivity, vary with temperature [3, 4]. Matching 

an appropriate working temperature for a TEG can assist in fully using the thermoelectrical 

conversion performance of the materials [4]. Besides, the thermal source used to drive a TEG 

may be dynamic. For instance, an oscillating source temperature can be seen in an internal 

combustion engine or an incineration system [5, 6]. Due to the thermal inertia of TE materials, 

there is a lag between the variations of the real working temperature of a TEG and the source 

temperature [5, 6]. This means that the effects of the source temperature variation characteristics, 

such as the wave form and amplitude of the temperature, on the thermoelectric conversion 

performance in a transient application should not be ignored.  

Additionally, the thermoelectric conversion performance of a TEG is susceptible to its 

geometric structure, which has been reported in the literature. Some studies have indicated a 
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TEG’s efficiency can be improved by increasing its couple length appropriately [7, 8]. However, 

with decreasing cross-sectional area of the TE couple, the output power decreases, while the 

efficiency improves [9, 10]. Besides, some researchers proposed that, compared to traditional TE 

couples, the variable cross-section is a better design [11-13]. Variable cross-section TEG leg 

designs, such as trapezoid and parabolic, can be used to improve a TEG’s efficiency [12, 13]. 

Technologies of semiconductor manufacture, such as Additive Manufacture (AM), Selective 

Laser Sintering/Melting (SLS/SLM), and Spark Plasma Sintering (SPS), have developed at an 

astounding pace in the past decades, making it possible to produce, and even commercialize, a TE 

element with complex structural design [21]. Altering geometry to improve a TEG’s performance 

under both steady-state and dynamic operations is one of the main motivations for this research. 

However, it is worth noting that the effects of factors, such as temperature and geometry, on 

the TEG performance are not always monotonic and independent based on the literature review 

mentioned above. Hence a univariate analysis is not enough to find the optimal state for a TEG. 

Besides, there are many indices to evaluate a TEG’s performance. It is usually necessary to 

simultaneously consider multiple objectives, such as power output, efficiency, and even cost-

effectiveness, for a TEG when optimizing its performance. Generally, the performance 

optimization for a TEG is to a multiple variable and criteria decision-making problem, which 

should be solved by an algorithm. Recently, some traditional algorithms, such as genetic 

algorithm (GA) and simplified conjugate-gradient method (SCGM) have been applied to conduct 

the TEG optimization [14, 15].  However, during the process of TEG optimization, premature or 

poor convergence occur for these algorithms [15-17]. Actually, when using an algorithm, such as 

GA or SCGM to deal with a complicated problem, a large amount of time is always spent on 

trial-and-error calculations or tuning parameters, such as initial guesses and crossover probability 

[15, 18]. Therefore, one of the main research areas in TEG optimization is algorithm 

improvement in order to increase the accuracy and reliability of the TEG optimization. Particle 

swarm optimization (PSO) is a kind of bionic algorithm. Compared to the traditional algorithms 

(GA and SCGM), PSO uses a concise program and has excellent convergence. It has been applied 

in the optimization of power systems, such as a biodiesel engine and a hybrid electric system, in 

recent years [19, 20]. One of the main innovations in this research is to apply the PSO algorithm 

for TEG optimization. Meanwhile, it is necessary to improve the PSO method in order to avoid 

premature convergence and decrease the trial-and-error calculations or parameter tuning 

processes.  
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1.2 Objective and Scope  

The overall objective in this study is to enhance a TEG’s performance through simultaneously 

optimizing its geometric structure and working conditions. The work can be divided into two 

different parts. In part one, the particle swarm optimization (PSO) algorithm was used to conduct 

the TEG optimization. Then, the PSO method was improved further in order to increase its 

accuracy and reliability. In another part, a novel cross-section function is introduced to the design 

of the TEG. Finally, the novel shape design is optimized to improve the TEG’s performances 

under the steady-state and transient operations respectively.   

The scope of the work is as follows: 

1. Utilize a mutation subprogram to improve the traditional PSO method, and apply the 

mutation PSO (M-PSO) method in multi-variable optimization of the TEG.  

2. Use a weighted approach with the M-PSO algorithm to conduct a multi-objective 

optimization of the TEG. Compare this with the epsilon-constraint method introduced in 

the M-PSO algorithm in order to acquire a series of acceptable solutions (Pareto 

solutions), then use the technique for order preference by similarity ideal solution 

(TOPSIS) to analyze those acceptable results of the multi-objective optimization. 

3. Introduce hyperbolic cross-section function to the design of the TE element. Through a 

comprehensive thermodynamic TEG model, explain the reason why the hyperbolic 

structure improves the thermoelectric conversion performance is explained.  

4. Improve the M-PSO to be a dual-MPSO algorithm, and use the improved algorithm to 

optimize the hyperbolic TEG based on the comprehensive thermodynamic model. 

5. Build a transient model for the hyperbolic TEG under a periodic thermal source. Analyze 

the difference in the dynamic thermoelectrical conversion performance between the 

hyperbolic and traditional TEG. 

1.3 Thesis Organization  

This thesis organizations are as follows: 

Chapter 2 

In the second chapter, a simplified thermodynamic TEG model was established to calculate 

two objective performance functions of a TEG. The mutation program was used to improve the 

accuracy and reliability of the traditional PSO algorithm. The M-PSO method was introduced to 

optimize the output power and efficiency of the TEG. Some parameters in the M-PSO algorithm, 

such as mutation factor (mu), cognitive parameter (C1), and social parameter (C2), are known to 
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affect its optimal results. Accordingly, 320 parameter combinations were tested to illustrate the 

accuracy and reliability of the M-PSO further. Finally, the weighted approach was combined with 

the M-PSO algorithm to conduct a multi-objective optimization for the TEG's output power and 

efficiency. 

Chapter 3 

Although the weighted approach can be used to solve the multi-objective optimization for a 

TEG (shown in the previous chapter), there are human influences when selecting a weight factor. 

In this chapter, an ε-constraint method was used to improve the multi-objective optimization for 

two new objective functions, exergy efficiency and levelized cost of energy (LCOE). Again, 320 

parameter combinations were tested to illustrate the accuracy and reliability of the M-PSO 

method in the TEG exgeroeconomic optimization. Then, through combining the ε-constraint 

method with the M-PSO algorithm, the multi-objective optimization for the TEG’s exergy 

efficiency and LCOE was conducted, first by acquiring a series of acceptable solutions, named 

Pareto solutions. Then, a technique for order preference by similarity ideal solution (TOPSIS) 

method was used to analyze these Pareto solutions to search for a TOPSIS ideal solution. 

Chapter 4 

In this chapter, a novel cross-section function was introduced to the design of a TEG module. 

The differences in the thermoelectric conversion performance between the hyperbolic and 

traditional TEG modules were compared through a comprehensive thermodynamic model. 

Meanwhile, through comparing the internal temperature and thermal resistance distributions of 

the two kinds of TE elements, the mechanism was revealed by which the variable cross-section 

design enhances a TEG’s performance. Based on the TEG model, the four non-dimensional 

parameters (shape parameter (β), area ratio (μ), temperature ratio (θ), and resistance ratio (rx)) 

were found to have notable effects on the TEG performance. Optimal parameter combinations for 

the hyperbolic TEG were determined by an algorithm, which makes the TEG have maximum 

power output or efficiency. However, differing from the simplified thermodynamic model, the 

temperatures at the two ends of the TEG in the comprehensive TEG model are unknown. In this 

chapter, a dual-MPSO algorithm was introduced to optimize the hyperbolic TEG. 

Chapter 5 

Sometimes, the practical application environments for TEGs may be dynamic. Some heat 

sources are even characterized by periodic variations, such as a combustion engine and an 
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incineration system. In this way, it is worthwhile to study the transient characteristics of TEGs. 

Besides, the TEG designed with a variable cross-section has been verified to have better 

thermoelectrical conversion performance than the traditional TEG under a steady-state condition; 

However, research about the variable cross-section TEG leg under transient operation is rarely 

reported. In this chapter, a transient hyperbolic TEG model was established. Under a sinusoidally 

varying periodic source temperature, the differences in the transient characteristics of the 

hyperbolic- and traditional-shaped TEG legs were compared.  

Chapter 6 

The main research achievements and conclusions of each part were summarized in this 

chapter. Meanwhile, some suggestions and prospects are presented for future studies. 
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CHAPTER 2 

MUTATION PARTICLE SWARM OPTIMIZATION (M-PSO) OF A 

THERMOELECTRIC GENERATOR IN A MULTI-VARIABLE SPACE 

2.1 Introduction 

Fossil fuel has played a dominant role in social development over the past decades. However, 

excessive reliance on fossil fuel creates a dilemma due to energy-related environmental issues, 

such as global warming and acid rain [1, 2]. Under this situation, many researchers devote 

themselves to developing energy-saving technology. The application of thermoelectric generators 

(TEG) is considered a part of the effort to recover more energy from traditional energy systems, 

such as an Otto cycle system or Rankin cycle system, to improve their overall efficiency [3, 4]. 

TEG is a kind of semiconductor-based energy converter, producing power from a temperature 

difference. Due to its highlighted advantages, like compact structure, lack of moving parts, and 

low noise, TEG technology is increasingly becoming the focus of researchers’ concerns [5, 6]. 

 Many researchers dedicate themselves to improve the low efficiency of TEGs (5%-7%), 

which is considered as the main reason impeding TEGs further development [7]. Apart from the 

development of advanced TE materials, it is cost-effective to optimize the TEG structure and 

working conditions. There are two kinds of studies for optimization of the TEG structure and 

working conditions: single-variable research and multi-variable/objective optimization. As for the 

former work, Jang et al. [8] used the finite element method to analyze independently the effects 

of geometry on micro-thermoelectric generator performance. The results indicated that a smaller 

cross-sectional area has a positive effect on efficiency; however, the effect on output power is 

negative [8]. Meanwhile, a thicker substrate layer can weaken the performance of the TEG due to 

a higher heat loss from the substrate [8]. A function was derived by Kim [9] to describe the 

relationship between the internal temperature difference and the load current of a TEG. Also 

derived from this function was the observation that the internal temperature drop can lead to a 

TEG output power reduction [9].  Shi et al. [10] used normal power density (NPD) and efficiency 

to evaluate the performance of a pin-shaped TE couple. It was shown that the trapezoid is the 

preferable cross-section shape of a TE couple due to its higher NPD value and efficiency [10]. 

X. Wang, D. S-K Ting, and P. Henshaw, “Mutation particle swarm optimization (M-

PSO) of a thermoelectric generator in a multi-variable space,” Energy Conversion 

and Management 224 (2020) 113387 



 

8 
 

Additionally, using a three-dimensional numerical TEG model, Meng et al. [11] found that there 

are two different optimal lengths of the TE couple to maximize the efficiency or output power. 

Through a thermal resistance model analysis for a TEG, it was verified by Ming et al. [12] that 

the efficiency experiences a dramatic increase with temperature difference growth; meanwhile, 

the effect of cold junction temperature on the efficiency is linear. Some researchers studied a 

TEG with complicated pin-shaped TE couples. Karana et al. [13] studied a new asymmetrical and 

segmented TEG. They introduced a new geometric parameter, a, to describe the exponentially 

varying cross-sectional area of the N-type leg [13]. The results indicated that the maximum 

efficiency can be improved by 5% when a is 3 for the modified TEG [13]. 

Currently, the manufacture of TEGs is a complicated process. Normally, it is necessary to 

consider many factors simultaneously, such as temperature, geometry and load, when designing 

TEGs. In this way, multi-variable (and even multi-objective) optimization for a TEG has been an 

increasingly popular topic. Huang et al. [14] utilized a simplified conjugate-gradient method to 

acquire the optimal configuration for a thermoelectric cooler (TEC, which is inverse to a TEG), 

by varying TE couple length and base area ratio. Through geometric optimization, the TEC 

cooling rate was improved by 10.21 times [14]. Likewise, Meng et al. [15] used the same method 

to optimize output power and efficiency for a TEG. Based on the results, they made a balance 

between the output power and efficiency through multi-objective optimization, making both 

achieve better results simultaneously [15]. In addition, with the development of intelligent 

algorithms, many researchers have tried to optimize TEGs by different methods. A vehicle-TEG 

system was optimized by Heghmanns et al. [16] through a genetic algorithm, and as a result, can 

save fuel by 0.5%-0.7%, depending on the driving conditions. Chen et al. [17] applied a multi-

objective genetic algorithm (MOGA) to acquire optimized results of output power and efficiency 

for a TEG. The results showed that the output power and efficiency can be improved by 51.9% 

and 5.4% respectively under a temperature difference of 40 ℃ [17]. Moreover, based on the non-

dominated sorting genetic algorithm (NSGA- II), Ge et al. [18] acquired an optimal solution 

distribution for the semiconductor volume and output power called the Pareto front, using the 

technique for order preference by similarity to an ideal solution (TOPSIS). 

Based on the previous research achievements for TEGs, geometric structure and working 

conditions have totally different influences on the performance of a TEG. Meanwhile, for some 

parameters, such as base area ratio and working temperature, their effect on output power and 

efficiency of a TEG is non-monotonic. Therefore, it is useful to acquire a better parameter 

combination through an algorithm, improving the performance of a TEG. Additionally, some 
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continuous functions related to the performance of a TEG have been built as objects by some 

researchers through a simplified one-dimensional thermal resistance model. Then, the studies 

about multi-variable/ objective optimization for a TEG can be conducted using an intelligent 

algorithm, such as a conjugate-gradient method and genetic algorithm.   

However, there will be many limitations for a TEG when it is applied to a specific situation, 

especially working temperature. Therefore, objective functions related to the performance of a 

TEG are normally discontinuous in the whole search space. In this paper, a constraint condition 

was utilized - that the temperature difference is below 40 K. In this way, utilizing a 

comprehensive one-dimensional thermal resistance model, two discrete functions of the relative 

temperature were established to describe the output power and efficiency of a TEG, respectively. 

Meanwhile, these functions were validated by the experimental data from Hsu et al. [19], and 

considered as optimization objectives. After optimizing for single-objective functions, a 

weighting approach was adopted to establish a multi-objective function, and optimized for it 

through an algorithm, making the TEG module design able to produce better output power and 

efficiency at the same time. Moreover, although the conjugate-gradient method and genetic 

algorithms have been mainstream algorithms in optimization, researchers should not lose sight of 

the limitations of the two methods. Due to excessive reliance on the initial conditions, the 

conjugate-gradient method will be more complicated and time-consuming when used to solve an 

optimization problem with more than three variables involved [15]. Despite its better design for 

search in direction, there are many drawbacks to genetic algorithms, such as poor convergence 

and some trial-and-error calculations [15, 20]. Particle swarm optimization (PSO) is a kind of 

bionic algorithm [20-21]. Compared with the other two algorithms, PSO uses a concise program 

and has excellent convergence, thereby being more suitable for high dimension optimization 

problems [21]. Additionally, in order to increase the diversity of the population and improve the 

accuracy of the algorithm, it is beneficial to incorporate some subprograms into the PSO method, 

such as mutation or differential evolution [21]. Hence, a kind of mutation PSO (M-PSO) 

algorithm was used to optimize a TEG in this paper. This method can accelerate the convergence 

procedure. Meanwhile, the mutation can increase randomization for the algorithm, making it 

possible to improve PSO applicability for discrete problems. Therefore, the main contribution of 

the paper is that by using a mutation subprogram, the premature convergence when applying a 

PSO method to conduct the combinatorial optimization for a TEG under a constraint condition 

can be effectively avoided. Overall, this work demonstrated the combination of algorithm 

improvement and multi-objective optimization. 



 

10 
 

2.2 Energy analysis for a TEG 

Normally, a TEG is made of many TE couples in series as shown in Figure 2.1. According to 

the Seebeck effect, when under a temperature difference, TEGs produce a voltage which is directly 

proportional to the temperature gradient. The Seebeck voltage can be calculated by Eqs. (1) and 

(2) [22-24]. 

𝑉 = 𝑆(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟 (1) 

𝑆 = 𝑆𝑃 + |𝑆𝑁| (2) 

where S is overall Seebeck coefficient, SP and SN are Seebeck coefficients of a P and N 

semiconductors, Th and Tc are the hot and cold side temperatures of a TEG, and Npair is the number 

of TE couples. 

When a load resistance connects with the positive and negative terminals of a TEG, there will 

be power produced from this system. Based on Ohm’s law, the output power (P) can be calculated 

by Eq. (3) [22-24]. 

𝑃 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝐿 
(3) 

in which Ri and RL are internal and load resistances, respectively. Commonly, the internal 

resistance is the sum of the resistances of TE couples and conductors. In this way, the calculations 

for the internal resistance can be shown as the following (Eqs. 4-7) [22]. 

𝑟𝑡𝑒𝑔 = (
𝜌𝑃𝐿𝑃
𝐴𝑃

+
𝜌𝑁𝐿𝑁
𝐴𝑁

)𝑁𝑝𝑎𝑖𝑟 
(4) 

where rteg is the resistance of TE couples. ρP, ρN, LP, LN, and AP, AN are the electrical resistivity, 

couple length and cross-sectional area of the P and N semiconductors, respectively. If both P and 

N components of a TEG have the same cross-sectional area (A) and couple length (L), the TE 

couple resistance can be derived as Eq. (5). 

𝑟𝑡𝑒𝑔 =
𝐿

𝐴
(𝜌𝑃 + 𝜌𝑁)𝑁𝑝𝑎𝑖𝑟 =

2𝑁𝑝𝑎𝑖𝑟𝐿

𝐹𝐴𝑠𝑢𝑏
(𝜌𝑃 + 𝜌𝑁)𝑁𝑝𝑎𝑖𝑟 

(5) 

𝑟𝑐 =

𝜌𝑐(1 +
1

√𝐹
)

𝑑𝑐
(2𝑁𝑝𝑎𝑖𝑟 + 1) 

(6) 
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𝑅𝑖 = 𝑟𝑡𝑒𝑔 + 𝑟𝑐 (7) 

in which F is the P or N to substrate area ratio, Asub is the substrate area, rc is conductor resistance, 

and ρc and dc are the electrical resistivity and thickness of a conductor. 

The heat transfer process is displayed in Figure 2.2. Based on the first law of thermodynamics, 

there are two kinds of energy absorbed by the hot side substrate of a TEG, which are input heat 

and Joule heat.  

 

Figure 2.1. Structural diagram of a TEG module 

 

Figure 2.2. Heat transfer in a TEG module 

Normally, Joule heat can be transferred to both sides of a TEG when current passes through it. 

Thus, it was assumed that only half of the Joule heat is absorbed by the upper-temperature side 

[22-23]. The thickness of a TEG module is very small; hence, the heat transfer from the edge of 
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the TEG can be ignored. In this way, there are three kinds of energy released from the hot 

temperature side, which are Fourier heat, Peltier heat, and heat loss. Applying a steady-state 

energy balance, the input heat (�̇�𝑖𝑛𝑝𝑢𝑡) can be calculated by Eq. (8) [22-23]. 

�̇�𝑖𝑛𝑝𝑢𝑡 = �̇�𝐹 + �̇�𝑃 + �̇�𝐿 −
1

2
�̇�𝐽 

(8) 

in which �̇�𝐹 is Fourier heat, �̇�𝑃 is Peltier heat, �̇�𝐿 is heat loss, and �̇�𝐽 is Joule heat. 

According to Fourier’s law of heat conduction and Peltier effect, the Fourier heat and Peltier 

heat can be calculated using Eqs (9) and (10) [22-23]. Besides, the Joule heat can be displayed as 

Eq. (11) based on Joule's law [22]. 

�̇�𝐹 = 𝐾(𝑇ℎ  −  𝑇𝑐)𝑁𝑝𝑎𝑖𝑟 (9) 

�̇�𝑃 = 𝑆𝑇ℎ𝐼𝑁𝑝𝑎𝑖𝑟 = 𝑆
2𝑇ℎ

(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖  +  𝑅𝐿
 

(10) 

�̇�𝐽 = 𝐼
2𝑅𝑖 =

𝑆2(𝑇ℎ  −  𝑇𝑐)
2𝑁𝑝𝑎𝑖𝑟

2

(𝑅𝑖  +  𝑅𝐿)
2

𝑅𝑖 
(11) 

where K is the net thermal conductance of a TE couple (𝐾 =
𝐴

𝐿
(𝑘𝑃 + 𝑘𝑁)). 

The heat loss mainly occurs in the gaps between the TE couples [25]. Normally, the filling 

material in the gaps is air. In this way, the heat loss can be estimated from the temperature 

difference-conductive thermal resistance of air ratio [25], i.e., 

�̇�𝐿 =
𝑇ℎ − 𝑇𝑐
𝑅𝑔𝑎𝑝

=
(𝑇ℎ  −  𝑇𝑐)

𝐿
𝐴𝑠𝑢𝑏𝑘𝑎𝑖𝑟(1 −  𝐹)

 
(12) 

in which Rgap is the conductive thermal resistance of the air in the gaps, and kair is the thermal 

conductivity of air. 

According to Eqs. (3) and (8)-(12), the efficiency of a TEG (𝜂) can be shown as Eq. (13) [22-

23].  
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𝜂 =
𝑃

�̇�𝐹  +  �̇�𝑃 +  �̇�𝐿  −  
1
2
�̇�𝐽

=

𝑆2(𝑇ℎ  −  𝑇𝑐)
2𝑁𝑝𝑎𝑖𝑟

2

(𝑅𝑖  +  𝑅𝐿)
2 𝑅𝐿

𝐾(𝑇ℎ  −  𝑇𝑐)𝑁𝑝𝑎𝑖𝑟  +  𝑆
2𝑇ℎ

(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖  +  𝑅𝐿
 +  

(𝑇ℎ  −  𝑇𝑐)
𝐿

𝐴𝑠𝑢𝑏𝑘𝑎𝑖𝑟(1 −  𝐹)

 − 
1
2

𝑆2(𝑇ℎ  −  𝑇𝑐)
2𝑁𝑝𝑎𝑖𝑟

2

(𝑅𝑖  +  𝑅𝐿)
2 𝑅𝑖

 

(13) 

2.3 Modelling validation 

In keeping with Hsu et al. [19], a TEG module with a 10 cm by 10 cm substrate area was 

considered in this paper. The TEG module consisted of 199 pairs of cube-shaped couples in 

series. The initial dimension of couples and conductors was 2 mm × 2 mm × 0.64 mm and 4.5 

mm × 2 mm × 0.5 mm, respectively [19]. The properties of TE materials can be seen in Tables 

2.1 and 2.2. 

Table 2.1. Material properties of P semiconductor [26] 

Properties of P 

semiconductor 

 

Seebeck coefficient 
 (VK-1) 

8.3335 × 10−12𝑇3 − 1.3273 × 10−8𝑇2 + 6.3023 × 10−6𝑇
− 7.0396 × 10−4 

Thermal conductivity  
(Wm-1K-1) 

1.5888 × 10−8𝑇3 − 3.3157 × 10−6𝑇2 − 2.1177 × 10−3𝑇 + 1.5775 

Electrical resistivity 
(Ωm) 

−7.3559 × 10−13𝑇3 + 6.1348 × 10−10𝑇2 − 6.3483 × 10−8𝑇
− 1.7788 × 10−6 

 

Table 2.2. Material properties of N semiconductor [26] 

Properties of N 
semiconductor 

 

Seebeck coefficient 
(VK-1) 

−3.9819 × 10−12𝑇3 + 7.3415 × 10−9𝑇2 − 3.8211 × 10−6𝑇
+ 3.9458 × 10−4 

Thermal 
conductivity  
(Wm-1K-1) 

2.1889 × 10−8𝑇3 − 4.5960 × 10−6𝑇2 − 4.5182 × 10−3𝑇 + 2.4815 

Electrical resistivity 
(Ωm) 

−6.8342 × 10−13𝑇3 + 6.6613 × 10−10𝑇2 − 1.5518 × 10−7𝑇
− 1.8059 × 10−5 

 



 

14 
 

Based on Eq. (3) it was found that the output power of a TEG will reach a maximum value 

(Pmax) when the internal resistance equals the load resistance as shown in Eq. (14).  

𝑃𝑚𝑎𝑥 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

4𝑅𝑖
 

(14) 

Using the one-dimensional thermodynamic model of a TEG, the maximum output power and 

open circuit voltage can be calculated from the temperature difference. In Hsu et al. [19], the 

temperature difference ranged from 5 K to 40 K and the hot temperature was fixed at 518 K. Using 

these conditions, the results were validated by the experimental data from Hsu et al. [19]. 

In this paper, a TEG module was considered through a thermodynamic model under a limited 

temperature difference (within 40 K). Under this limited temperature difference, the one-

dimensional model is acceptable because, under this condition, the effects of the internal 

temperature field on the TEG performance are limited. In this way, the average values of the 

related physical parameters were taken into this study in order to solve the influences of the 

internal temperature field on the TEG performance. The general calculation equation for the 

average values of the related physical parameters can be shown as in Eq. (15): 

∆̅=
∫ 𝛿(𝑇) ∙ 𝑑𝑇
𝑇ℎ
𝑇𝑐

(𝑇ℎ − 𝑇𝑐)
 

(15) 

where ∆̅  represents the average value of the Seebeck coefficient, thermal conductivity, or 

electrical resistivity. δ(T) represents the equation related temperature of the physical parameter. Th 

and Tc are the hot and cold temperatures. 

Based on the results for open circuit voltage (Figure 2.3-(a)), it was found that there was a 

similar tendency in both the experiment and thermodynamic model. Namely, the open circuit 

voltage experienced a dynamic increase linearly with the temperature difference growth. The 

values of the thermodynamic model are higher than those from the experiment. However, the 

largest error is 12% (when the temperature difference is 40 K) and the average error is about 8%. 

Likewise, the maximum output power increased non-linearly with the temperature difference rise, 

as shown in Figure 2.3-(b). The maximum error is about 9% at a temperature difference of 40 K, 

and the average error is around 4%. Error bars in Figures 2.3-(a) and (b) illustrate the 12% and 9% 

error, respectively. 
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The thermodynamic model was established based on some simplifying assumptions. In this 

paper, the contact thermal resistance and welding resistance were ignored, which is the main 

reason for the calculated values being higher than the experimental data. Additionally, the 

average values of TE material properties were used into the model. Moreover, as temperature 

difference increases, the error will increase when using the average values to simulate the actual 

behavior of the TE material [27]. That is a reason why the largest error happens at the largest 

temperature difference (40 K). 

However, some references indicate that the thermodynamic model is acceptable under a 

limited working temperature difference (in this paper the temperature difference was below 40 K) 

[27-28]. Since this work mainly focused on the effectiveness of the M-PSO algorithm to optimize 

the performance of the TEG, the errors can be considered as within the acceptable range [29-30]. 

 

(a) 

 

(b) 

Figure 2.3. Comparison of thermodynamic model with experimental results for (a) open circuit 

voltage, and (b) maximum output power 
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2.4 Single-objective optimization for the TEG via M-PSO method 

The PSO was developed mainly for applications in social science and computer science [21]. 

As a kind of bionic algorithm, the PSO imitates the food searching process of bird flocks. 

Through interacting locally with the environment, the particles (birds) can change their velocity 

continuously to find the best location [21]. The updated equations for the velocity vector (V) and 

location vector (X) of the ith generation particle are shown in Eqs. (16) and (17) [21,31-32]. 

𝑉𝑖+1 = 𝑤𝑉𝑖 + 𝐶1𝑅1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝐶2𝑅2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖) (16) 

𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖+1 (17) 

where, w is the inertia weight, which can adjust the effect of the velocity of the previous 

generation. C1 and C2 are positive acceleration constants known as the cognitive and the social 

parameters. Pbest is the local best position, and Gbest is the global best position. R1 and R2 are two 

random numbers ranging from 0 to 1.  

Equation (16), the velocity updating equation, has three terms. The first is 𝑤𝑉𝑖  which 

represents momentum, describing the tendency of each particle to maintain its movement habit. 

Using the swarm of bird analogy, it is the tendency for an individual bird to maintain its velocity 

vector. Term two, 𝐶1𝑅1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖), is the cognitive term. It can be interpreted to mean the 

particle memory influence which describes the difference between the current position and its 

individual best position. In the bird analogy, it quantifies how much an individual bird is 

influenced by its own previous experience in terms of finding food. The last term is 

𝐶2𝑅2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖), representing the swarm information sharing which is the difference between 

the position of the ith particle and the global best position of all particles. This relates to how well 

the bird listens to other bird’s reports of food found. 

Therefore, the physical significances of the C1 and C2 are the level of individual cognition and 

social information sharing in and between the birds of the swarm. The value of C1 and C2 can be 

used to adjust the relative contribution of the cognitive and information sharing term, governing 

the extent to which the particle moves to the individual and global best position [33]. The particle 

population (Popsize) defines the number of simultaneous participants in the searching process. 

The calculation process of a PSO method is shown in Figure 2.4-(a). After defining the 

objective function and related constants, the initial particle population was created. Then, the 

objective function was used to evaluate the fitness for each particle, which was compared with the 

local best and global best. Moreover, the velocity and position of the particles was adjusted by 
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Eqs. (16) and (17). This cycle of calculation continued until the convergence criterion was 

satisfied. 

However, a shortage of enough diversity can potentially make the PSO method hard to 

converge to the global optimum, especially for discrete optimizing problems [34-35]. The M-PSO 

method (as shown in Figure 2.4-(b)) is an effective way to tackle this problem. Differing from the 

traditional PSO method, the subprogram, mutation, can increase randomization for the algorithm, 

making it possible to improve its search direction. During the mutation process, a threshold 

condition was set up as shown in Eq. (18): 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = (1 − (𝑖 − 1) (𝑚𝑎𝑥𝑔𝑒𝑛 − 1)⁄ )
1
𝑚𝑢 

(18) 

where, maxgen is the maximum number of generations, and mu is the mutation factor.  

Once a random number was below the threshold value, the mutation program was invoked. In 

this way, a new position was created randomly between a lower boundary (lb) and upper 

boundary (ub). The value of the boundary was calculated by Eqs. (19)-(22). Meanwhile, the new 

position remained if its fitness was better than that of the old position. 

𝛿𝑥 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (19) 

𝑙𝑏 = 𝑋𝑖 − 𝛿𝑥 (20) 

𝑢𝑏 = 𝑋𝑖 + 𝛿𝑥 (21) 

[𝑙𝑏 𝑢𝑏] ∈ [𝑋𝑚𝑖𝑛 𝑋𝑚𝑎𝑥] (22) 
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(b) 

Figure 2.4. Comparison of PSO and M-PSO algorithms (a) the flow diagram for PSO method, 

and (b) the flow diagram for M-PSO method 

2.4.1 Variables and dimension in the searching space 

Before performing the optimization for the TEG, it is necessary to confirm variables and 

dimensions of the searching space. The thermodynamic model for the TEG mentioned before has 

indicated that its performance is closely related to its geometric structure and working conditions. 

Thus, the effects of load resistance and substrate area ratio on the output power and efficiency of 

the TEG were analyzed. In the analysis, all other parameters were kept at the default values and 

the temperature difference was 40 K. The results for the output power are shown in Figure 2.5-

Start
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and specific parameters 

Create initial population 

Evaluate fitness of each particle 
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Evaluate fitness of each particle to 
acquire global best position

Termination criteria  met. Stopyes

Update position and velocity for each 
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Update history best position for each 
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No 
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(a). Over the studied load resistance, its effect on the output power is non-monotonic. Although 

the influence of substrate area ratio on the output power is monotonic, the variation was affected 

by the load resistance. The same can be said about efficiency as shown in Figure 2.5-(b). In other 

words, the load resistance significantly affects the linear relationship between the efficiency and 

substrate area ratio. When the load resistance was 0.01 Ω, the efficiency increased roughly 

linearly with increasing substrate area ratio. Under a load resistance of 0.5 Ω, the efficiency 

increases, reaches a maximum and decreases, when the substrate area ratio is increased from 0.1 

to 0.9. However, with the load resistance rising to 10 Ω further, the efficiency experiences a 

moderate decrease with the substrate area ratio growth. 

 

(a) 

 

(b) 

Figure 2.5. variations of output power and efficiency with different substrate area ratio and load 

resistance, (a) variations of output power and (b) variation of efficiency 
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Additionally, the previous research about the TEG module reported by our group indicated 

that there was an opposite effect of the couple length on the output power and efficiency [36]. 

Although the effect of the working temperature on the output power is linear, its effect on the 

efficiency is not [36]. Meanwhile, changes in the working temperature and TE couple structure 

can lead to a variation of the internal resistance, which also is an important factor in TEG optimal 

performance [36].  

Overall, it is inadequate to optimize TEG performance in a single variable space as there are 

coupling effects between different variables. Therefore, it is necessary to conduct the 

optimizations for the TEG module in the 5-dimensional searching space made by hot temperature 

(Th), cold temperature (Tc), load resistance (RL), TE couple length (L), and substrate area ratio (F). 

2.4.2 Comparison of PSO and M-PSO algorithm in optimizing problem 

Before solving an optimizing problem, it is necessary to establish an objective function and 

search space. The objective functions in this study were output power and efficiency and the 

variables considered in the objective functions were: hot temperature, cold temperature, load 

resistance, couple length, and base area ratio. The problem descriptions are as follows, and the 

searching space is shown in Table 2.3. 

The objective function (1) for the output power is: 

𝑓1(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹) = {

𝑆2(𝑇ℎ − 𝑇𝑐)
2𝑁𝑝𝑎𝑖𝑟

2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝐿 , 𝑇ℎ − 𝑇𝑐 ≤ 40 𝐾

0, 𝑇ℎ − 𝑇𝑐 > 40 𝐾

 

(23) 

The objective function (2) for the efficiency is: 

𝑓2(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹) =

{
 
 

 
 
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2 𝑅𝐿

�̇�𝐹 + �̇�𝑃 + �̇�𝐿 −
1
2 �̇�𝐽

, 𝑇ℎ − 𝑇𝑐 ≤ 40 𝐾

0, 𝑇ℎ − 𝑇𝑐 > 40 𝐾

 

(24) 
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Table 2.3. Limits of the search space for the optimization of the output power and efficiency 

Variable Value range 

Hot temperature (Th): 273 𝐾 ≤ 𝑇ℎ ≤ 573 𝐾 

Cold temperature (Tc): 273 𝐾 ≤ 𝑇𝑐 ≤ 573 𝐾 

Load resistance (RL): 0.01 𝛺 ≤ 𝑅𝐿 ≤ 10 𝛺 

Couple length (L): 0.0005 𝑚 ≤ 𝐿 ≤ 0.0009 𝑚 

Based area ratio (F): 0.1 ≤ 𝐹 ≤ 0.9 

 

In this paper, the PSO and M-PSO methods, compiled through MATLAB, were used to 

optimize the output power and efficiency of the TEG. In the PSO or MPSO algorithm, some 

random numbers are generated in MATLAB. In MATLAB, random numbers are generated 

through the Mersenne Twister generator, which generates a pseudo-random number [37]. The 

random number is deterministic and depends on the value of the seed selected. The seed value 

with 0 is the default in MATLAB, and “shuffle” is a kind of dynamic seed value, which is related 

to the clock system in the computer. Before doing PSO and MPSO optimizations, seven kinds of 

seed values were tested. The results indicate (as shown in Table 2.4) that the optimal power 

output and efficiency were the same when using the different seed values. Hence, the seed value 

was set to default for the random number generator in this study. 

Table 2.4. The optimal power and efficiency under different seed values 

Seed value Output power (W) Efficiency (%) 

0 (default) 23.6 4.05 

1 23.6 4.05 

2 23.6 4.05 

3 23.6 4.05 
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4 23.6 4.05 

5 23.6 4.05 

shuffle 23.6 4.05 

 

During the optimizing process, the inertia weight was kept the same (0.4) for the two methods. 

Additionally, the largest value of the mutation factors considered in this paper was 0.05, which is 

the highest probability of mutation occurring, which leads to the greatest randomization in the 

algorithm and potentially the best chance of finding the optimum value. In this way, the biggest 

difference between the M-PSO and traditional PSO algorithms should occur when mu = 0.05. 

Meanwhile, there were three groups of constants, involving the cognitive parameter (C1), the 

social parameter (C2), and the particle population (Popsize), which were utilized in the two 

methods. The optimized results are shown as Figures 2.6 and 2.7. 

 

Figure 2.6. Development of optimal output power using PSO and M-PSO methods 
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Figure 2.7. Development of optimal efficiency using PSO and M-PSO methods 

According to the results for the output power, the optimized result based on the PSO method 

varied dramatically across the values of related parameters. Conversely, the result acquired by the 

M-PSO algorithm was most repeatable. However, one should not lose sight of the important 

influence of the related parameters on the rate of convergence (inverse of the necessary number 

of iteration steps). Moreover, the optimized result of the M-PSO algorithm was better than that of 

the PSO method. When C1 = 2.0, C2 = 0.5, and Popsize = 200, the optimal output power of the 

TEG using the M-PSO method is about 17.8% higher than that of the PSO method. Additionally, 

there were similar tendencies for the optimal efficiency of the TEG. When C1 = 2.0, C2 = 0.5, and 

Popsize = 200, the optimal efficiency of the M-PSO method is about 9.3% higher than that of the 

PSO method.  

The figures also illustrate that it was easy to drop into a local best value using the PSO method 

due to its poorer randomness. Therefore, the PSO method was not suitable for solving this 

discrete optimizing problem for the TEG. Meanwhile, no matter whether optimizing output power 

or efficiency for the TEG, the M-PSO was an effective method to impede acquiring incorrect 

results since the mutation subprogram increased randomization for the algorithm. 
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2.4.3 The influence of parameters in the M-PSO method on the optimization of 

results 

Based on the results mentioned above, it was found that the parameters in the M-PSO method 

have non-ignorable effects on the optimization of results, especially on the rate of convergence 

and precision. In this way, there were 320 parameter combinations considered for the output 

power and efficiency optimization in this paper. Thereinto, the mutation factor was [0.01, 0.02, 

0.03, 0.04, 0.05], and the particle population was [50, 200, 350, 500]. Meanwhile, there were four 

values for the cognitive and social parameters, which were [0.5, 1.0, 1.5, 2.0].  

Figure 2.8 displays the rate of convergence for optimizing output power under different set-up 

parameters. Under a specific mutation factor, increasing the particle population (when Popsize 

was below 200) improved the rate of convergence. When the Popsize was more than 200 and mu 

was more than 0.02, however, the rate of convergence was not only decided by the particle 

population, but also acceleration constants (C1 and C2). As for a bionic algorithm, the result is 

consistent with its biological root. When having more population, the bird flock can search for the 

location of food more rapidly. However, when the population of the bird flock is sufficient, the 

information sharing mechanism also plays a dominant role in the group working efficiency. 

Moreover, the rate of convergence experienced an obvious decline when the mutation factor 

increased from 0.01 to 0.05 under a specific particle population. The main reason is that the 

searching characteristics of the M-PSO with a lower mutation factor is much closer to that of the 

standard PSO method.   

          

       (a)                                                                                            (b) 
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     (c)                                                                                           (d)   

 

            (e) 

Figure 2.8. Rate of convergence for the optimal output power of the TEG under different 

mutation factors: (a) mu = 0.01, (b) mu = 0.02, (c) mu = 0.03, (d) mu= 0.04, and (e) mu = 0.05 

The optimization results for the output power are shown in Figure 2.9. Overall, the optimized 

results for the output power were repeatable through the M-PSO algorithm under most situations. 

Those points, lower than the optimal value, were defined as false points. There were 64 

combinations for each specific mutation factor. Based on the results, it was found that the false 

point rates for the mutation factors 0.01 and 0.02 were the highest, which were both about 4.7%. 

That for mutation factor 0.03 ranked in the middle, which was about 3.1%. The lowest false point 

rate was found for the cases of mutation factors of 0.04 and 0.05, which were both about 1.6%. 

Therefore, the accuracy of the optimized result for the output power with a higher mutation factor 

was better than that with a lower mutation factor. A higher mutation factor can increase the 
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randomization for the algorithm dramatically, making it more likely to converge at an optimal 

value. 

Likewise, there were 80 combinations for each Popsize. The false point rate for the Popsize 

with 50 topped the group, at 7.5%. The figure for Popsize with 200 was 5%. When the Popsize 

was higher than 200, the false point rate was 0. In this way, the accuracy of the optimized result 

can also be improved by increasing the particle population. It is easy to understand that a bird 

flock with more population can locate the position of food more accurately.  

Overall, there were 320 combinations tested in total for the output power optimization through 

the M-PSO algorithm. The standard deviation of the means associated with the algorithm for the 

output power optimization was 0.00463 W.  

False point

23.6 W

   

False point

23.6 W

 

   (a)                                                                            (b) 

False point

23.6 W

False point

23.6 W

 

       (c)                                                                                  (d) 
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False point

23.6 W

 

(e) 

Figure 2.9. Optimized results for the output power of the TEG under different mutation factors: (a) 

mu = 0.01, (b) mu = 0.02, (c) mu = 0.03, (d) mu= 0.04, and (e) mu = 0.05 

There were similar tendencies found in the optimized results of efficiency. The rate of 

convergence for optimal efficiency is shown in Figure 2.10. More iteration steps were needed for 

the result to converge under a higher mutation factor. Meanwhile, increasing the particle 

population was an effective method to accelerate the calculation to converge when the Popsize 

was below 200. However, even under a higher particle population (Popsize more than 200), the 

influence of acceleration constant on the rate of convergence cannot be ignored. 

           

        (a)                                                                                  (b) 
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             (c)                                                                                     (d) 

 

(e) 

Figure 2.10. Rate of convergence for the optimal efficiency of the TEG under different mutation 

factors: (a) mu = 0.01, (b) mu = 0.02, (c) mu = 0.03, (d) mu= 0.04, and (e) mu = 0.05 

The optimized results for the efficiency are displayed in Figure 2.11. Similar to the optimal 

output power, the false point rates for the cases with mutation factors of 0.01 and 0.02 were 4.7% 

and 3.1%, respectively. When the mutation factor was more than 0.02, the false point rate was 0. 

Moreover, the false point rate for the case of a Popsize of 50 was about 6.3%. When the Popsize 

was more than 50, the false point rate was 0. Therefore, the mutation factor and particle population 

had a positive correlation with the accuracy of the optimized result for the efficiency using the M-

PSO method. 

Overall, there were 320 combinztions tested in total for the efficiency optimization through 

the M-PSO algorithm. The standard deviation of the means associated with the algorithm for the 

efficiency optimization was 0.00174%.  
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False point

4.05%

   

False point

4.05%

 

        (a)                                                                                  (b) 

4.05%

  

4.05%

 

        (c)                                                                                    (d) 

4.05%

 

(e) 

Figure 2.11. Optimal results for the efficiency of the TEG under different mutation factors: (a) mu 

= 0.01, (b) mu = 0.02, (c) mu = 0.03, (d) mu= 0.04, and (e) mu = 0.05 
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2.4.4 The optimized results for the output power and efficiency of the TEG 

module 

Through analysis of convergence rate and stability of the M-PSO method mentioned above, 

two different parameter combinations emerged to optimize the output power and efficiency 

(shown in Table 2.5), making it possible to converge. The iterative processes are displayed in 

Figure 2.12.  

Table 2.5. Parameters selected for optimizations of the output power and efficiency 

Parameter Output power Efficiency 

cognitive parameter (C1) 2.0 1.5 

social parameter (C2) 0.5 1.0 

Particle population 

(Popsize) 

350 500 

Mutation factor (mu) 0.01 0.01 

Inertia weight (w) Random number in  

[0.4 to 0.9] 

Random number in  

[0.4 to 0.9] 

Dimensionality (D) 5 5 

 

It was found that the optimization of output power and efficiency converged separately after 

242 and 184 steps, respectively, under the two parameter combinations in Table 2.4. After the 

optimization for the TEG module through the M-PSO method, the output power and efficiency 

were to 23.6 W and 4.05%, respectively. The related configurations of working conditions and 

geometric structures for these optimal TEGs are shown in Table 2.5.   
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Figure 2.12. Convergence of the output power and efficiency optimizations 

Table 2.5 Optimized working conditions and geometric structure configurations of the TEG 

module 

Objective 

function 

Th  

(K) 

Tc  

(K) 

RL  

(Ω) 

L  

(m) 

F  

Output power 335.9 295.9 0.1237 0.0005 0.9 

Efficiency  315.5 275.5 0.5678 0.0009 0.1998 

2.5 Multi-objective Optimization for the TEG Via M-PSO Method 

Through the single-objective optimizations, it was found that there were totally different 

configurations for the working conditions and geometric structures of the TEG when optimizing 

maximum output power or efficiency in the search space. However, both the efficiency and output 

power are significant objects to be considered in the TEG design. Therefore, it is meaningful to 

take into account both the output power and efficiency for a TEG. In this paper, a multi-objective 

function relating to the output power and efficiency of the TEG module was built through a 

weighted approach. Then, the multi-objective optimization was conducted under the same search 

space by the M-PSO method. The multi-objective function is shown in Eq. (25). 
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𝑓3(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹) = {
(1 − 𝜔)

𝑓1
𝑓1,𝑂𝑝𝑡

+ 𝜔
𝑓2

𝑓2,𝑂𝑝𝑡
, 𝑇ℎ − 𝑇𝑐 ≤ 40 𝐾

0,                                             𝑇ℎ − 𝑇𝑐 > 40 𝐾

 

(25) 

where, ω is the weight factor for the second objective function (here, it is for the efficiency); f1,Opt 

and f2,Opt are the optimized results for the output power and efficiency, which were 23.6 W and 

4.05% in this study. 

Actually, the weight factor can be changed from 0 to 1 based on the design goals of the TEG 

[15]. The value of the weight factor represents the relative significance of the corresponding 

single-objective function [15]. The single-objective optimization indicated that the TEG module 

has a poor efficiency. In practice, power can be increased by using multiple cells, but efficiency 

cannot be increased in this way. Therefore, to emphasize an increase in efficiency, a higher weight 

factor (0.8) was allocated to the efficiency of the TEG. In addition, the related parameters in the 

M-PSO method were kept the same as those used to optimize efficiency. The iteration process is 

displayed in Figure 2.13, and the configuration for the working conditions and geometric 

structures of the TEG is shown in Table 2.6. 

 

Figure 2.13. Convergence of the multi-objective optimization 
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Table 2.6. Optimized working conditions and geometric structure configurations of the TEG 

module 

f3 f2  

(%) 

f1  

(W) 

Th  

(K) 

Tc  

(K) 

RL  

(Ω) 

L  

(m) 

F 

0.8448 3.99 6.69 316 276 0.3841 0.0009 0.3082 

Based on the optimization results, after 334 iteration steps, the multi-objective function (f3) 

converged at 0.8448. Under the multi-objective optimal configuration for the TEG, the output 

power and efficiency were about 6.69 W and 3.99%, respectively. A short sensitivity test of the 

results indicates that the efficiency can be increased from 3.46% to 3.99% by increasing the weight 

factor from 0.7 to 0.8. When increasing the weight factor further to 0.9, there was less increase in 

the efficiency, from 3.99% to 4.04%, an absolute gain of only 1.25%. However, the output power 

declined 24.3%, from 6.69 W to 5.07 W. Therefore, the weight factor choice of 0.8 was a good 

one. 

2.6 Conclusions 

    In this paper, a steady-state thermodynamic model was used to analyze a TEG module with 

199 pairs of couples. Two discrete functions, for the output power and the efficiency of the TEG 

module, were the optimization objectives. Then, it was demonstrated that the M-PSO algorithm is 

an effective method to acquire accurate optimized results for the output power and efficiency 

when the temperature difference was below 40 K. Meanwhile, a weighted approach was used to 

build a multi-objective function for the output power and efficiency. The multi-objective 

optimization was executed by the same algorithm, making it possible to acquire better output 

power and efficiency for the TEG simultaneously. The main conclusions are as follows: 

1) Compared with the traditional PSO method, the M-PSO can improve the randomization 

for the algorithm, which makes the discrete optimization converge to a global best more 

easily. Through single-objective optimizations using the M-PSO method, the output 

power and efficiency of the TEG module can reach 23.6 W and 4.05%, respectively, for a 

maximum temperature difference of 40 K. 

2) The effects of parameters in the M-PSO method mainly affected the rate of convergence 

and accuracy. The research indicated that a higher mutation factor can improve the 

accuracy of the optimized result, while having a negative effect on the convergence rate. 

Additionally, when the particle population is low, the optimizing process can be 

accelerated to converge at an optimized result by increasing the population. At a higher 
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population level, the acceleration constants play a significant role in the convergence 

speed. 

3) The weighted optimization approach is a kind of trade-off analysis, which is an effective 

method to convert a multi-objective optimization into a single optimization. When the 

weight factor for the efficiency was 0.8, the output power and efficiency of the TEG 

module reached 6.69 W and 3.99%, respectively. 
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CHAPTER 3 

EXERGOECONOMIC ANALYSIS FOR A THERMOELECTRIC GENERATOR 

USING MUTATION PARTICLE SWARM OPTIMIZATION (M-PSO) 

3.1 Introduction 

The development of modern civilization increasingly excessively relies on energy supply, 

especially electricity. The global population consumed about 20-terawatt hour (TWh) electricity 

in 2010 [1]. It is predicted that the electricity demand will experience nearly a two-fold increase 

to 34 TWh in 2035 [1]. Thereinto, the majority of electricity supply also was contributed by fossil 

fuel [1]. It is estimated that the daily oil consumption will increase sharply from 87.4 million 

barrels in 2011 to 123 million barrels in 2025 [2]. Despite the fact that fossil fuels are the 

industrial energy source for maintaining continuous social development, excessive reliance on 

fossil fuels is detrimental to the environment [3]. The relevant research has verified the carbon 

dioxide (CO2), mainly released from fossil fuel consumption, leads to at least two-thirds of the 

greenhouse effect enhancement [2]. To prevent further deterioration of the environment, the 

energy sector must strive toward greater efficiency. To this end, thermoelectric generator (TEG) 

technology is positioned to play an important role, harnessing otherwise wasted, and/or readily-

available heat into electricity. This potential has spurred TEG materials development and other 

aspects of TEG at an astounding pace in recent years, leading to progressively competitive TEG 

technology. In spite of this, there is still an obvious gap between the poor performance of TEG 

and the level of performance which would lead to its widespread utilization. 

Therefore, the study of performance improvement for TEG devices is always an important 

topic in this field. Differing from the TE materials development is the improvement of TEG 

performance through internal structure optimization. Many researchers were attracted, initially, 

by the output power and efficiency optimization for a TEG device, for those indices are the most 

direct characteristics to evaluate the performance. Mu et al. [4] utilized a three-dimensional 

model to study the effects of geometric structure on a Mg2Si-based TEG. They found that the 

TEG efficiency increases with couple length and the inverse of couple width. A comprehensive 

mathematical model developed by Fan et al. [5] confirmed that the maximum output power of a 

X. Wang, P. Henshaw, and D. S-K Ting, “Exergoeconomic analysis for a 

thermoelectric generator using mutation particle swarm optimization (M-PSO),” 

Applied Energy 294 (2021) 116952 
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TEG can be optimized at the appropriate couple length and cross-sectional area under a 

convective thermal boundary condition. Wang et al. [6] studied different shapes of TE couples. 

Their results indicated that the electrical properties of a TEG are not sensitive to the TE couple 

shape, but the cross-sectional area. The output power decreases, while the efficiency improves, 

with decreasing cross-sectional area [6]. Moreover, some research related to multi-stage TEGs 

has increasingly become a hot topic due to the huge influence of temperature on TE material 

performance. A modelling study for two-stage and three-stage TEGs was conducted by Kanimba 

et al. [7]. They found that the output power of the three-stage TEG is 21% more than that of the 

two-stage under a heat input of 505 W [7]. Wu et al. [8] also tried to analyze the performance of a 

multi-stage TEG module using a three-dimensional model. They selected three kinds of TE 

materials for each TE pin, which are Bi2(TeSe)3, SnSe, and SiGe for N-type pin; (BiSb)2Se3, 

PbTe, and FeNbSB for P-type pin. through changing the cross-sectional area for each local 

thermoelectric segment, the efficiency of the N-type pin can be improved from 12.2% to 21.7%, 

and that of the P-type pin can be increased from 22.9% to 25.7%, with a working temperature 

range of 300 -1100 K [8]. 

However, the commercialization of an energy system is not only decided by measures of 

physical performance, such as output power and efficiency, but also its energy quality and cost-

effectiveness play a significant role. Meanwhile, thermodynamic irreversibility is always 

significant and difficult to eliminate for an energy conversion system [9]. In this way, studies 

about optimization based on exergoeconomic analysis have been the focus of researchers’ 

concern. Using a one-dimensional model, Xiao et al. [10] made an analysis of the irreversible 

transfer process of a TEG. The results indicated that the irreversible convective heat process can 

lead to a large exergy loss. Thus, decreasing the irreversible heat loss is one of the research 

directions for the optimization of TEG performance [10]. In addition, Xiao et al. [10] found that 

the internal and load resistances should be matched during the process of TEG optimization, as 

the internal exergy loss is derived from the irreversible consumption of the TEG resistance. 

Through establishing an irreversible thermodynamic model for a two-stage TEG (TTEG), 

Manikandan and Kaushik [11] confirmed that the exergy efficiency of a TEG can be improved 

through optimizing the number of TE couples. After the optimization of a TEG, they determined 

the optimal number of TE couples as 30 when the hot side temperature was 450 K and that of the 

cold was 300 K, which can increase the TEG exergy efficiency to 13.1% [11]. Feng et al. [12] 

utilized an irreversible thermodynamic model to optimize a combined TE device which is a 

thermoelectric generator-driven thermoelectric heat pump (TEG-TEH). The results indicated that 
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the exergy efficiency of the system can be improved through increasing the TEG hot junction 

temperature appropriately [12]. Besides, when allocated more TE elements on the TEG, the 

device can achieve a higher exergy efficiency [12]. Asaadi et al. [13] analyzed the effects of 

geometric structure, involving height ratio and angle ratio, on the exergoeconomic performance 

of a two-stage TEG module through a three-dimensional model. The exergoeconomic 

performance of the two-stage TEG module was better than that of the single-stage except for its 

cost-effectiveness under the same conditions [13]. As for the two-stage TEG module, its 

exergoeconomic performance reached the maximum when the angle ratio was 1; however, the 

optimal height ratio was decided by the working temperature conditions [13]. 

From the literature [3-13], the researchers analyzed some design factors which may affect a 

TEG’s performance, such as cross-sectional area, working temperature, etc. The results indicate 

that the geometric structures and working conditions of a TEG module have considerable 

influence on its performance, in either power, energy or exergoeconomic aspects. Meanwhile, 

through optimizing a TEG’s performance based on single-objective function (output power or 

efficiency), they found that those influences on the performance of a TEG module are normally 

coupled, which makes it difficult to reach an optimal state for different performance indices 

simultaneously, especially for the exergoeconomic aspect. For example, a higher temperature 

difference can increase exergy output (higher output power), which has a positive effect on the 

cost-effectiveness of a TEG. However, with the temperature increasing further, the irreversible 

loss is more severe for a TEG system, making it possible to decrease the exergy efficiency while 

still increasing the power output and cost-effectiveness. Therefore, in order to break through the 

limitation for a TEG optimization, it is necessary to consider multiple objectives simultaneously, 

such as exergy efficiency and cost effectiveness, making it possible to achieve a balanced design.  

With regard to multi-objective optimization for a TEG, it is a type of combinatorial problem, 

which can be addressed by an algorithm, normally. Meng et al. [14] utilized a conjugate-gradient 

with a weighted approach to conduct a multi-objective optimization for a TEG to balance its 

performances in output power and efficiency. A few recent studies were focused on applying a 

genetic algorithm (GA) to solve a multi-objective optimization for TEGs. Chen et al. [15] applied 

a multi-objective genetic algorithm to optimize the output power and efficiency of a TEG. The 

results indicated that the power and efficiency can be increased by 51.9% and 5.4% under a 

temperature difference of 40℃. In addition, a GA method was applied by Ge et al. [16] to 

optimize power and efficiency for a segment of a TEG module. Through the multi-objective 

optimization, they acquired an assembly of acceptable results named Pareto solutions [16]. After 
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analyzing the Pareto solutions through the TOPSIS method, an ideal optimized power and 

efficiency was acquired. However, the recent research about multi-objective optimization of 

exergoeconomic performance of a TEG is rarely reported. Based on the previous studies [10-13], 

it can be found that energy quality and cost-effectiveness are significant for the application of 

TEG technology. Meanwhile, there are important effects of geometric structures and working 

conditions of a TEG on its exergoeconomic performance. Thus, one of the main purposes of this 

study is to conduct a multi-objective optimization for a TEG based on exergoeconomic analysis. 

Noticeably, the heat loss between the gaps of the TE couples can be considered as an important 

source of the internal irreversibility for a TEG. Hence, unlike the recent research related to multi-

objective optimization, the heat loss was considered in this exergoeconomic model of a TEG, 

making the study more accurate. 

 Additionally, in the existing literature related to multi-objective optimization for TEGs, most 

reported research ignored the influence of parameters in the algorithms on the optimized results. 

Inaccurate and premature convergence are the main challenges for algorithms, especially in 

complicated optimization problems [14, 17-18]. For example, due to excessive reliance on the 

initial conditions, the conjugate-gradient method will be more complicated and time-consuming 

when used to solve an optimization problem with more than three variables involved [14]. Also, 

the main challenge of GA is the poor convergence and some trial-and-error calculations [14, 19]. 

In order to solve this problem, it is normally necessary to spend lots of time on parameter tuning 

for algorithms, such as initial guesses and crossover probability. In this way, one of the main aims 

of this study is to provide a more effective method to optimize TEG performance. Meanwhile, 

this method can make the optimal results independent with the parameters of the algorithm. 

Firstly, compared with other algorithms, such as genetic algorithms, the particle swarm 

optimization (PSO) method has excellent convergency and concise programming [18]. The 

increasing number of researchers paid more attention to applying the PSO algorithm to 

engineering systems. Zhang et al. [20] utilized a hybrid PSO algorithm to optimize performance 

and emissions for a biodiesel engine. The result indicated that compared with GA, the hybrid 

PSO method can accelerate the converging process and acquire a superior optimum. The PSO 

algorithm can also be used to manage energy systems. Through a PSO method, Yang et al. [21] 

optimized the proportion of solar power generation in a hybrid electric system, making it possible 

to balance the hybrid system’s economy and efficiency under different electrical loads. In 

addition, the algorithm engineers confirmed that combined with a subprogram, such as mutation, 

can increase randomization for the algorithm, which is an effective method to alleviate the 
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premature convergence problem of traditional PSO algorithm [18, 22]. It is also verified in the 

study from Zhang et al. [20]. Therefore, the mutation particle swarm (M-PSO) algorithm was 

used to optimize a TEG module. Meanwhile, in order to test the independence of the optimal 

results, the influences of the main parameters in the M-PSO (involving social and cognitive 

constant, population size, and mutation factor) on the optimizing results were analyzed through 

testing a large number of parameter combinations. This work also can provide a reference for 

parameter selection of the M-PSO method, making it possible to simplify the parameter tuning 

process when solving a similar optimization problem for a TEG. Hence, the combination of these 

performance and algorithm parameters and the M-PSO algorithm applied to optimize a TEG is 

the unique feature of this work. 

In this study, under a steady-state condition, exergy analysis was conducted for a TEG with 

199 cascaded TE couples using a one-dimensional thermodynamic model. Based on the results, 

two objective functions related to the exergy efficiency and levelized cost of energy (LCOE) were 

established. Firstly, the exergy efficiency and LCOE were optimized separately through the M-

PSO method. In the process, 320 parameter combinations were tested in order to analyze the 

effects of these values on the convergence rate and optimized result. Then, a ξ-constraint with the 

M-PSO algorithm was used to conduct the multi-objective optimization for the TEG 

exergoeconomic performance, making it possible to acquire a series of alternatives, named Pareto 

solutions. Finally, these alternatives were evaluated by the TOPSIS method to obtain an ideal 

solution.  

3.2 Thermodynamic Analysis for a TEG 

In this paper, a one-dimensional steady-state thermodynamic model was used to analyze a 

TEG module. Through the energy and exergoeconomic analysis, there were two equations related 

to exergy efficiency and cost-effectiveness derived to be the objective functions, which is an 

important basis of optimization.   

3.2.1 Analysis based on the 1st law of thermodynamics for a TEG module 

Commonly, a TEG module consists of three different parts, which are cascading 

semiconductors, conductors, and ceramics (Figure 3.1). Based on the Seebeck effect, a voltage can 

be produced by a TEG module under a temperature difference, and the value of the voltage is 

proportional to the temperature gradient. The open circuit voltage of a TEG module can be 

calculated by Eqs. (1) and (2) [23]: 
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𝑉 = 𝑆(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟 (1) 

𝑆 = 𝑆𝑝 + |𝑆𝑛| (2) 

where, Sp and Sn are the Seebeck coefficients of P and N semiconductors. The overall Seebeck 

coefficient is represented as S. Th and Tc are the hot and cold temperatures. Npair is the number of 

TE couples. 

If a load is connected at its positive and negative, the TEG module will produce electrical 

power from this system. According to Ohm’s law, Eq. (3) can be used to calculate the output 

power [24]: 

𝑃 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝐿 
(3) 

where, P is the output power; the internal and load resistance are represented as Ri and RL. The 

internal resistance can be calculated by Eqs. (4-7), as it can be considered as the sum of the 

resistance of TE couples and conductors [25]: 

𝑟𝑡𝑒𝑔 = (
𝜌𝑃𝐿𝑃
𝐴𝑃

+
𝜌𝑁𝐿𝑁
𝐴𝑁

)𝑁𝑝𝑎𝑖𝑟 
(4) 

in which, ρP and ρN are the electrical resistivities of the P and N semiconductors. AP, AN, LP and LN 

represent the cross-sectional areas and couple lengths of the P and N semiconductors, respectively. 

In this paper, the cross-sectional area (A) and couple length (L) of the P and N semiconductor are 

kept the same; thereby, Eq. (4) can be written as Eq. (5) [25-26]: 

𝑟𝑡𝑒𝑔 =
𝐿

𝐴
(𝜌𝑃 + 𝜌𝑁)𝑁𝑝𝑎𝑖𝑟 =

2𝑁𝑝𝑎𝑖𝑟𝐿

𝐹𝐴𝑠𝑢𝑏
(𝜌𝑃 + 𝜌𝑁)𝑁𝑝𝑎𝑖𝑟 

(5) 

𝑟𝑐 =

𝜌𝑐(1 +
1

√𝐹
)

𝑑𝑐
(2𝑁𝑝𝑎𝑖𝑟 + 1) 

(6) 

𝑅𝑖 = 𝑟𝑡𝑒𝑔 + 𝑟𝑐 (7) 

in which F is the base area ratio which describes a proportion of TE couples’ area in the substrate 

area (as shown in Figure 3.1); Asub is the ceramic substrate area; ρc and dc are the electrical 

resistivity and thickness of the conductor. 
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Figure 3.1 shows the thermal transfer process of a TEG module. According to the first law of 

thermodynamics, there are two kinds of energy coming into the hot temperature side of a TEG 

module: the input heat and Joule heat. The rates of these energy transfers are expressed as �̇�𝑖𝑛𝑝𝑢𝑡 

and �̇�𝐽, respectively. 
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Figure 3.1. Cutaway view of a TEG module arrangement and its thermal transfer processes 

Commonly, the Joule heat can be transferred to both sides of a TEG when the current passes it. 

In this way, an assumption that only half of Joule heat is absorbed by the hot temperature side of a 

TEG module was made [26-27]. Meanwhile, there are three kinds of energy leaving the hot 

temperature side: Fourier heat (�̇�𝐹), Peltier heat (�̇�𝑃), and heat loss from the gap between the 

semiconductors (�̇�𝐿). Therefore, Eq. (8) can be used to calculate the input heat [26-28]: 

�̇�𝑖𝑛𝑝𝑢𝑡 = �̇�𝐹 + �̇�𝑃 + �̇�𝐿 −
1

2
�̇�𝐽 

(8) 
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where, the relative thermal transfer rate can be calculated by Eqs. (9-12): 

�̇�𝐹 = 𝐾(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟   (9) 

�̇�𝑃 = 𝑆
2𝑇ℎ

(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖 + 𝑅𝐿
 

(10) 

�̇�𝐿 =
(𝑇ℎ − 𝑇𝑐)𝐴𝑠𝑢𝑏𝑘𝑎𝑖𝑟(1 − 𝐹)

𝐿
 

(11) 

�̇�𝐽 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝑖 
(12) 

in which K is the net thermal conductance of a TE couple (𝐾 =
𝐴

𝐿
(𝑘𝑃 + 𝑘𝑁)), and kair is the 

thermal conductivity of air.  

3.2.2 Analysis based on the 2nd law of thermodynamics for a TEG module 

Sometimes, irreversibility is important for improving the operation of an energy system [9]. In 

this way, the second thermodynamic law can provide a better understanding for an energy system 

than the first law. Based on the second thermodynamic law, exergy analysis is an effective 

method to identify the location and source of irreversible losses for an energy system [9].  Hence, 

the optimization of exergy efficiency can provide an energy system with an excellent direction to 

decrease its irreversibility. In this paper, the exergy efficiency was used as an index to evaluate 

the performance of a TEG module.  

According to the exergy analysis for an energy system under a steady state, its balanced 

equation can be written as Eq. (13). 

∑𝐸𝑥𝑖𝑛 =∑𝐸𝑥𝑜𝑢𝑡 + 𝐼𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (13) 

For a TEG system, the irreversibility can be divided into two different parts: internal and 

external [13]. The internal irreversibility is induced by the welding resistance and material 

properties. According to the basic assumptions in this paper, the irreversibility caused by the 

welding resistance and contact thermal resistance can be ignored. Although the assumptions lead 

to some errors, some references indicate that within a limited temperature difference (the 

limitation of temperature difference is 40 K in this paper), the errors for an analytical model are 

acceptable [13, 29]. Besides, the effects of the errors on the effectiveness of algorithms can be 

neglected. Normally, ignoring welding resistance and contact thermal resistance can be found in 



 

47 
 

the research related optimization [29-30]. In this way, the internal irreversibility is mainly 

produced by the material properties. Moreover, the irreversible thermal transfer can be considered 

as the main factor causing external irreversibility. The exergy input rate of a TEG module can be 

defined by Eq. (14) [13]: 

𝐸�̇�𝑖𝑛𝑝𝑢𝑡 = �̇�𝑖𝑛𝑝𝑢𝑡(1 −
𝑇0
𝑇ℎ
) 

(14) 

in which T0 is ambient temperature, assumed as 293 K in this paper.   

Meanwhile, the exergy output rate of the system is actually the output power [9]. Therefore, 

the exergy efficiency (ψ) of a TEG module can be defined as in Eqs. (15-16), which is one of the 

objective functions in this study. 

𝐸�̇�𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑃 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝐿 
(15) 

𝜓 =
𝐸�̇�𝑜𝑢𝑡𝑝𝑢𝑡

𝐸�̇�𝑖𝑛𝑝𝑢𝑡
=

𝑆2(𝑇ℎ − 𝑇𝑐)
2𝑁𝑝𝑎𝑖𝑟

2

(𝑅𝑖 + 𝑅𝐿)
2 𝑅𝐿

�̇�𝑖𝑛𝑝𝑢𝑡(1 −
𝑇0
𝑇ℎ
)

 

(16) 

3.2.3 Cost-effectiveness analysis for a TEG module 

The commercialization of an energy system is decided by its cost-effectiveness. The 

exergoeconomic analysis was defined by Tsatsaronis et al. [9, 31]. This method makes it possible 

to analyze exergy and cost-effectiveness simultaneously, which can provide an important index 

for optimizing design and economic feasibility and profitability of an energy system. According 

to the economic balance, the cost calculation for a TEG module involves two different parts, 

which are device investment (Zinv) and other cost-related maintenance (Zom) as shown in Eq. (17) 

[9]. 

𝑐𝑜𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑍𝑖𝑛𝑣 + 𝑍𝑜𝑚 (17) 

As for a solid energy convertor, it is equipped with high reliability and long lifetime [32]. A 

manufacture claims that their TEG modules can be continuously operated for more than 100000 

hours [33]. In this analysis, the cost-related maintenance was ignored. Meanwhile, the costs of 

ceramics and semiconductors were considered in the device investment. Based on the market for 

materials, the cost of ceramics (Zceramic) is mainly a function of the machined surface area.  Also, 
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the cost of semiconductor material (Zsemiconductor) is related to both the machined surface and 

volume. The relative calculations are shown in Eqs. (18-20) [13]. 

𝑍𝑐𝑒𝑟𝑎𝑚𝑖𝑐 = 𝑍
′′𝐴𝑐𝑟 (18) 

𝑍𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 𝑍
′′′𝑉𝑠 + 𝑍

′′𝐴𝑠 (19) 

𝑍𝑖𝑛𝑣 = 𝑍𝑐𝑒𝑟𝑎𝑚𝑖𝑐 + 𝑍𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 (20) 

in which, Z’’ and Z’’’ are surface cost ($US/mm2) and volumetric cost ($US/mm3). 

In this paper, a Bi2Te3 based TEG with 199 cascade couples was simulated. The information 

about cost is shown in Table 3.1. 

Table 3.1. Cost of semiconductor and ceramic materials [13, 34] 

Material  Z’’ ($/mm2) Z’’’ ($/mm3) 

Semiconductor  0.0008896 0.0001682 

Ceramic  0.001 — 

 

As for an index of exergoeconomic analysis, the levelized cost of energy (LCOE, 

$US/kWh·m2) was considered as an objective function (as defined in Eqs. (21-22)):  

𝐶𝑅𝐹 =
𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 

(21) 

𝐿𝐶𝑂𝐸 =
𝑍𝑖𝑛𝑣 × 𝐶𝑅𝐹 × ∅

𝑁 × 𝐸�̇�𝑜𝑢𝑡𝑝𝑢𝑡 × 𝐴𝑐𝑟
 

(22) 

where, 𝐶𝑅𝐹 is capital recovery factor. i is interest rate, and 𝑛 is system life, which is normally 20 

years [13]. ∅ is the maintenance factor, which is assumed equal to 1 because of free-maintenance 

[13]. N is the total operating hours in a whole year. 

According to the information from American Express, the average interest rate for a business 

loan in 2021 is 6.98% - 19.97% [35]. Meanwhile, referring to the study from Asaadi et al. [13], 

the interest rate is assumed 10%. Besides, the study considered the TEG application scenario as 

vehicle engine exhaust recovery. In this way, it is impossible for the energy recovery system to be 

operated in a whole year as it is necessary to spend time on engine maintenance. Based on an 
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engine test made by Mohammadkhani et al. [36], the total operating hours in a whole year can be 

assumed to be 7500 h [13, 36]. 

3.2.4 Model establishment for a TEG module 

In this paper, a 10 cm by 10 cm Bi2Te3 based TEG module was considered, which is 

manufactured by Wise Life Technology, Taiwan. This TEG module is widely applied in waste 

heat recovery technology [37-38]. The TEG consists of 199 pairs of cube-shaped couples of 

which dimensions are 2 mm × 2 mm × 0.64 mm. Besides, the study considered the TEG 

application scenario as vehicle engine exhaust recovery. The relative research indicates that the 

end gas from an engine has a wide temperature distribution in the exhaust system, normally 

ranging from 300 K to 900 K [39-40]. In this way, when building a thermodynamic model for the 

TEG, it is necessary to the effect of temperature on the properties of TE materials rather than 

using constant parameters. The properties of TE materials can be shown in Table 3.2. 

Table 3.2. Material properties of P-Bi2Te3 and N-Bi2Te3 [41] 

Material properties P-Bi2Te3 N-Bi2Te3 

Seekbeck coefficient  

(VK-1) 

−1.3 × 10−10𝑇2 + 1.17 ×

10−6𝑇 − 8.8 × 10−5  

2.31 × 10−9𝑇2 − 1.65 ×

10−6𝑇 + 6.89 × 10−5  

Thermal conductivity 

 (Wm-1K-1) 

3.11 × 10−5𝑇2 − 0.02413𝑇

+ 5.902 

1.19 × 10−5𝑇2 − 0.00577𝑇

+ 2.004 

Electrical conductivity  

(S/m) 

1.802𝑇2 − 2102𝑇 − 686700 0.8963𝑇2 − 860.8𝑇 − 262900 

 

Additionally, many references indicated that the one-dimensional TEG model is effective 

under a limited temperature gradient [42-43]. In this way, the optimizations for the TEG 

exergoeconomic performance were conducted when the temperature gradient was below 40 K. 

Meanwhile, the average values of the TE material properties were taken into the model to 

reflect the effects of the internal temperature field on the TEG performances. Equation (23) 

represents a general formula for the average values of TE material properties: 

∆̅=
∫ 𝛿(𝑇) ∙ 𝑑𝑇
𝑇ℎ
𝑇𝑐

(𝑇ℎ − 𝑇𝑐)
 

(23) 
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where ∆̅ means the average value of the Seebeck coefficient, thermal conductivity, or electrical 

conductivity. δ(T) is the formula related temperature of these properties. Th and Tc are the hot and 

cold temperatures. 

3.3 Single-objective Optimization for a TEG Using M-PSO Algorithm 

In this paper, a M-PSO method developed from the PSO algorithm was used to conduct the 

optimizations. The PSO algorithm is a kind of bionic algorithm, imitating how a bird flock 

locates food. The birds’ velocities can be updated continuously through interacting with their 

surroundings locally to find the best position [34]. The updating equations for the velocity (Vi) 

and position (Xi) of ith generation particle are displayed in Eqs. (24) and (25) [44-46]: 

𝑉𝑖+1 = 𝑤𝑉𝑖 + 𝐶1𝑅1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝐶2𝑅2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖) (24) 

𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖+1 (25) 

where, w is the inertia weight, utilized to adjust the influence of the velocity of the previous 

generation particle. C1 and C2 are the cognitive and social parameters which are positive 

acceleration constants. R1 and R2 are random numbers ranging from 0 to 1. The local and global 

best positions are marked with Pbest and Gbest, respectively. 

The updated equation of the velocity (as shown in Eq. (24)) can be divided into three different 

parts. The first part,  𝑤𝑉𝑖, is called a momentum item, which represents the movement habit of 

the previous generation particles. Analogy to a bird swarm, the momentum item describes the 

birds’ inertia. The second part is 𝐶1𝑅1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖), also named as a cognitive item, which is 

actually a gap between the current position and its individual best position. Likewise, analogy to a 

bird, this item quantifies the tendency that a bird identifies the food location based on its own 

previous experience. 𝐶2𝑅2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖) is the third part, describing a gap between the ith particle’s 

position and the global best position in whole parties. It represents a level of food location 

information interaction in a bird’s swarm, thereby, named as a social information sharing item. 

Therefore, the parameters C1 and C2 represent the level of individual cognition and social 

information sharing in the bird’s swarm. Through changing the value of C1 and C2, the relative 

contribution of the cognitive and information sharing item can be adjusted, making it possible to 

govern the extent to which the particles look for the individual and global best position. Besides, 

during the searching process, the number of participants is defined by the particle population 

(Popsize). Finally, within unit time, the birds can update the position based on their velocity and 

original location (as shown in Eq. (25)).  
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The flow diagram of the M-PSO calculation method is displayed in Figure 3.2. The main 

sequence is similar to the traditional PSO algorithm. As shown in the flow chart, it is necessary to 

create an objective function firstly and make sure the direction for the optimization (looking for 

maximum value or minimum value?). The PSO theory indicates that in order to search for 

optimal position, the particles adjust their velocity based on the individual cognitive and social 

sharing. In this way, before conducting the iterations, the relevant parameters of the algorithm 

should be defined appropriately, such as C1 and C2, etc. For the next step, the initial particle 

swarm will be created involving their position and velocity vectors. After that, the fitness for each 

particle can be evaluated by the objective function, making it possible to acquire the local best 

and global best position in later generations. Besides, a mutation position will generate when the 

mutation condition (Rand. < threshold value) is triggered. Finally, if the maximum generation 

number criterion is not satisfied (namely, the iteration step is bigger than the maximum step), 

each new generation particles’ position and velocity will be created by the updating equations. 

Start

Input objective function, 
variables and relevant  
constant values

Initialization for particle 
swarm

Fitness evaluation for 
each particle

Rand. < threshold value ?

Individual and global 
best position updating

i>maxgen ?

Individual position and 
velocity updating

End 

Acquire mutation 
position

No

No

Yes

Yes

 

Figure 3.2. Flow chart of the M-PSO method 

The difference between the MPSO and PSO method is the subprogram named mutation. 

Although the traditional PSO method has an excellent performance in terms of convergence, the 

shortage of enough diversity can allow the PSO method to converge to a local optimum, and not 
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the global optimum [47]. The subprogram, mutation, can be considered as an effective method to 

tackle this problem, for it can increase the randomization of the algorithm. In the mutation 

program, a threshold condition was set up as shown in Eq. (26): 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = (1 − (𝑖 − 1) (𝑚𝑎𝑥𝑔𝑒𝑛 − 1)⁄ )
1
𝑚𝑢 

(26) 

where, maxgen is the maximum generations of particles and the mutation factor is marked as mu.  

The mutation program will be triggered when a random number is lower than the threshold 

value. Therefore, a new position will be generated from a lower boundary (lb) and an upper 

boundary (ub) randomly. Equations (27)-(30) display how to acquire the upper and lower 

boundary. Meanwhile, the new position will remain if its fitness is better than that of the old 

position.  

𝛿𝑥 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (27) 

𝑙𝑏 = 𝑋𝑖 − 𝛿𝑥 (28) 

𝑢𝑏 = 𝑋𝑖 + 𝛿𝑥 (29) 

[𝑙𝑏 𝑢𝑏] ∈ [𝑋𝑚𝑖𝑛 𝑋𝑚𝑎𝑥] (30) 

3.3.1 The influence of related parameters in the M-PSO method on the 

optimized results 

The top priority for an optimizing problem is to establish an objective function. In this paper, 

through exergoeconomic analysis, two functions were chosen to be optimization objects: exergy 

efficiency and LCOE. Meanwhile, these functions involve five variables ranging from working 

conditions to geometric structures. The objective functions and searching space are displayed in 

Eqs. (31) and (32) and Table 3.3. 

The objective function (1) for the exergy efficiency: 

𝑓1(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹) =

{
 
 

 
 
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2 𝑅𝐿

�̇�𝑖𝑛𝑝𝑢𝑡(1 −
𝑇0
𝑇ℎ
)

, 𝑇ℎ − 𝑇𝑐 ≤ 40 𝐾

0, 𝑇ℎ − 𝑇𝑐 > 40 𝐾

 

(31) 
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The objective function (2) for the LCOE: 

𝑓2(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹) = {

𝑍𝑖𝑛𝑣 × 𝐶𝑅𝐹 × ∅

𝑁 × 𝐸�̇�𝑜𝑢𝑡𝑝𝑢𝑡 × 𝐴𝑐𝑟
, 𝑇ℎ − 𝑇𝑐 ≤ 40 𝐾

0, 𝑇ℎ − 𝑇𝑐 > 40 𝐾

 

(32) 

Table 3.3. Relevant variables and their value ranges 

Variable Value range 

Hot temperature (Th): 300 𝐾 ≤ 𝑇ℎ ≤ 900 𝐾  

Cold temperature 
(Tc): 

300 𝐾 ≤ 𝑇𝑐 ≤ 900 𝐾  

Load resistance (RL): 0.01 𝛺 ≤ 𝑅𝐿 ≤ 10 𝛺  

Couple length (L): 0.0005 𝑚 ≤ 𝐿 ≤ 0.0009 𝑚  

Based area ratio (F): 0.1 ≤ 𝐹 ≤ 0.9  

 

The objective functions mainly involve five kinds of variables. In this way, the dimensionality 

of the searching space is five. Some research from algorithm engineers indicated that the 

recommendation for the inertia weight (w) ranges from 0.4 to 0.9, which can allow the particle to 

move enough freely [18, 22]. Additionally, according to the theory of the M-PSO algorithm, the 

influences of algorithm parameters in Eq. (24) on convergence speed and accuracy cannot be 

ignored. In order to illustrate the effectiveness of the M-PSO method in this study, 320 parameter 

combinations were considered for each optimization: exergy efficiency and LCOE. Accordingly, 

the mutation factor was [0.01, 0.02, 0.03, 0.04, 0.05], the particle population (Popsize) was [50, 

200, 350, 500], and there are four values for the cognitive and social parameters: [0.5, 1.0, 1.5, 

2.0]. 

The number of iterations to convergence for optimized exergy efficiency under different 

parameters is displayed in Figure 3.3. The rate convergence is the inverse of the number of 

iterations, and can be improved by increasing the particle population appropriately under a 

specific mutation factor. However, when the Popsize was more than 200, the convergence speed 

was associated with both the particle population and the acceleration constants (C1 and C2). The 

phenomenon can be illustrated through the analogy of a biological system. The bird flock 

equipped more individuals can find the location of food more quickly. However, with an 

excessive population of the bird flock, the effects of information communication within the group 

cannot be ignored. Additionally, at a specific particle population, there was a moderate decline in 
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the rate of convergence with the mutation factor growth. The main reason is that the diversity of 

the values increased under a higher mutation factor, requiring more iterative steps to acquire 

convergence.   

      

          (a)                                                                                     (b) 

        

                  (c)                                                                                  (d) 

 

(e) 

Figure 3.3. Rate of convergence for the optimized exergy efficiency of the TEG, (a) mu = 0.01, (b) 

mu = 0.02, mu = 0.03, mu = 0.04, and mu = 0.05 
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The optimized results for the exergy efficiency can be found in Figure 3.4. As a whole, a 

reliable optimized result for the exergy efficiency can be acquired through the M-PSO algorithm 

under most situations. Those points lower than the optimal value, were defined as false points. In 

this paper, 64 combinations were tested for each specific mutation factor. The results indicated 

that the false point rate for mutation factors of 0.01 and 0.02 were about 3.1% and 1.6%, 

respectively. The figure was 0% when the mutation factor was more than 0.02. Therefore, 

increasing the mutation factor can be considered as an effective method to improve the accuracy 

of the optimized result for the exergy efficiency. 

Likewise, 80 combinations were tested for each Popsize. The false point rate for the Popsize 

with 50 topped the group, with about 3.8%. When the Popsize was more than 50, the false point 

rate was 0%. In this way, the accuracy of the optimized result can also be improved through 

increasing the particle population. By analogy, it is easy to understand that a bird flock with more 

population can locate the position of food more accurately. 

False point

29.0%

False point

29.0%

 

    (a)                                                                                (b) 

29.0%
29.0%
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                                    (c)                                                                             (d) 

29.0%

 

(e) 

Figure 3.4. Optimized results for exergy efficiency of the TEG, (a) mu = 0.01, (b) mu = 0.02, mu 

= 0.03, mu = 0.04, and mu = 0.05 

In addition, similar tendencies can be found in the optimized results for the LCOE. Figure 3.5 

indicates that more iteration steps were needed to converge to a result under a higher mutation 

factor. Meanwhile, increasing Popsize can accelerate the convergence speed for the LCOE 

optimization. Nevertheless, it is necessary to consider the effect of the acceleration constants on 

the convergence speed when the particle population is more than 200. 

      

                    (a)                                                                                          (b) 
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              (c)                                                                                           (d) 

 

(e) 

Figure 3.5. Rate of convergence for the optimized LCOE of the TEG, (a) mu = 0.01, (b) mu = 

0.02, mu = 0.03, mu = 0.04, and mu = 0.05 

The optimized results for the LCOE are displayed in Figure 3.6. Differing from the exergy 

efficiency optimization, the false point was defined as those which are higher than the optimal 

value. Accordingly, the false point rate for the case of a mutation factor of 0.01 was around 1.6%. 

When the mutation factor was more than 0.01, the false point rate was 0%. Moreover, the false 

point rate for the case of the Popsize with 50 was about 1.3%. When the Popsize was more than 

50, the false point rate was 0%. Therefore, the mutation factor and particle population had a 

positive correlation with the accuracy of optimized results for the LCOE using the M-PSO 

method. 
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False point

1.93 $/kWh·m
2

         

1.93 $/kWh·m
2

 

             (a)                                                                                     (b) 

1.93 $/kWh·m
2

       

1.93 $/kWh·m
2

 

            (c)                                                                                   (d) 

1.93 $/kWh·m
2

 

(e) 

Figure 3.6. Optimized results for the LCOE of the TEG, (a) mu = 0.01, (b) mu = 0.02, mu = 0.03, 

mu = 0.04, and mu = 0.05 
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3.3.2 The optimized results for the exergy efficiency and LCOE of the TEG 

module 

According to the research mentioned before, two different parameter combinations were 

chosen for the exergy efficiency and LCOE optimizations, making it possible to converge at 

optimal results more rapidly and accurately. The parameter combinations were displayed in Table 

3.4.  

Table 3.4. Parameter selection for optimizations of exergy efficiency and LCOE 

Parameter Exergy efficiency LCOE 

cognitive parameter (C1) 1.5 2.0 

social parameter (C2) 0.5 0.5 

Particle population(Popsize) 350 500 

Mutation factor (mu) 0.01 0.01 

Inertia weight (w) 
Random number in  

[0.4 to 0.9] 

Random number in  

[0.4 to 0.9] 

Dimensionality (D) 5 5 

 

The result indicates that the optimization for the exergy efficiency and LCOE converged at the 

relevant optimal result after 229 and 260 steps, respectively. In terms of the optimal values, the 

exergy efficiency and LCOE were about 29.0% and 1.93 $US/kWh·m2, respectively. The related 

configurations of working conditions and geometric structures for the TEG are shown in Table 3.5. 
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Table 3.5. The optimized working conditions and geometric structure configurations of the TEG 

Optimization 

objective 

Exergy 

efficiency (%) 

LCOE 

($/kWh·m2) 

Th  

(K) 

Tc  

(K) 

RL  

(Ω) 

L  

(m) 

F  

Exergy 

efficiency 

29 12.9 340 300 0.6723 0.0009 0.2044 

LCOE  2.05 1.93 740.7 700.7 0.134 0.0005 0.9 

3.4 Multi-objective Optimization for a TEG using ξ-constraint combined with M-PSO 

algorithm 

The single-objective optimization indicated that there were totally different optimal 

configurations for a TEG when considering the exergy efficiency and LCOE. Besides, it is highly 

unlikely to achieve the optimal state for both exergoeconomic indices simultaneously. Table 3.5 

indicates that when the TEG reached the optimum conditions for the exergy efficiency or LCOE, 

the corresponding exergoeconomic index was 12.9 $US/kWh·m2 and 2.05%, respectively. 

However, designers have to consider exergy efficiency and LCOE for a TEG simultaneously.  

The optimization for the TEG system with more than two objectives is a multiple criteria 

decision-making problem [48]. Normally, when tackling the problem, it is possible to acquire an 

infinite number of solutions known as Pareto points rather than a unique one due to the 

competition between the objectives [48]. In this paper, the Pareto solutions can be acquired 

through a hybrid algorithm which is a combination of the M-PSO and ξ-constraint methods. Figure 

3.7 displays the flow diagram of the ξ-constraint M-PSO algorithm. The basic strategy is that one 

objective can be considered as an inherent part of the original problem, and another is introduced 

as a penalty condition. In this way, the multi-objective optimization can be defined as follows: 

The objective function: 

max [𝑓1(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹)] (33) 

The penalty condition: 

𝑓2(𝑇ℎ, 𝑇𝑐 , 𝑅𝐿 , 𝐿, 𝐹) ≤ 𝜉𝑘 (34) 

in which ξ can be calculated by Eq. (34) 
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𝜉𝑘 = 𝑓2(𝜇2) + 𝑘 ×
𝑓2(𝜇1) − 𝑓2(𝜇2)

𝑛
 

(34) 

where, μ1 and μ2 are anchor points of the Pareto frontier which can be acquired by single-objective 

optimization for the exergy efficiency and LCOE of the TEG module. According to Table 3.5, the 

value of 𝑓2(𝜇1) and 𝑓2(𝜇2) were 12.9 $US/kWh·m2 and 1.93 $US/kWh·m2, respectively. n is the 

number of equal intervals between points μ1 and μ2. 

As for a multiple criteria decision-making problem, the basic strategy for the problem is to 

acquire the Pareto frontier made by the Pareto points [48]. the results (as shown in Figure 3.8) 

indicate that the frontier curve is enough stable when n is 20. With the n increasing further, the 

Pareto points become denser; however, the Pareto frontier made by these points is almost 

unchanged. In this way, n was set up as 20 in the study. 

 

Figure 3.7. Diagram of ξ-constraint with M-PSO algorithm and TOPSIS method 
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Figure 3.8. Distribution of Pareto frontier under different values of n, (a) n=5, (b) n=10, (c) n=20, 

(d) n=30 

Based on the ξ-constraint M-PSO algorithm, a Pareto frontier of the multi-objective 

optimization for the TEG exergoeconomic performances can be acquired as shown in Figure 3.9. 

Although all the Pareto solutions are acceptable, there is a priority to evaluate these optimal 

results. In this research, a technique for order preference by similarity ideal solution (TOPSIS) was 

used to rank for these solutions, and then to acquire a TOPSIS ideal solution.  
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Figure 3.9. Distribution of Pareto frontier and TOPSIS ideal solution point 

TOPSIS is an effective method to deal with decision making problem based on multi-criteria, 

making it possible to acquire an ideal solution from numerous alternatives [49]. The basic 

principle of TOPSIS method is that the ideal solution should have the shortest distance from the 

positive ideal solution, meanwhile, having the farthest distance from the negative ideal solution 

[49].  

In this study, there were two inverse optimization problems, which are maximum exergy 

efficiency and minimum LCOE. In this way, before analyzing the solutions through TOPSIS 

method, it is necessary to change the minimum problem to a maximum one. Then, the solutions 

should be normalized in order to avoid the effects from dimensions. Finally, a TOPSIS ideal 

solution can be acquired through ranking for all of the alternatives based the scores of the distance 

from the positive and negative ideal solutions. The main steps of TOPSIS are as follows: 

1) Problem conversion 

𝐿𝐶𝑂𝐸𝑖
+ = 𝐿𝐶𝑂𝐸𝑚𝑎𝑥 − 𝐿𝐶𝑂𝐸𝑖 (35) 

where LCOEmax is the maximum value of the LCOE in the all solutions. 
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2) The normalization for the decision matrix 

𝑧𝑖𝑗 = 𝑥𝑖𝑗/√∑𝑥𝑖𝑗
2

𝑝

𝑖=1

 

(36) 

where, p is number of the alternatives, and here, based on the results of the ξ-constraint 

method, the value is 21.  

3) Definition for the positive (Z +) and negative (Z -) ideal solution 

𝑍+ = [𝑍1
+, 𝑍2

+, … , 𝑍𝑚
+ ]

= [max(𝑧11, 𝑧21…𝑧𝑝1) , max(𝑧12, 𝑧22…𝑧𝑝2) , … ,max(𝑧1𝑚, 𝑧2𝑚…𝑧𝑝𝑚)] 

(37) 

𝑍− = [𝑍1
−, 𝑍2

−, … , 𝑍𝑚
− ]

= [min(𝑧11, 𝑧21…𝑧𝑝1) ,min(𝑧12, 𝑧22…𝑧𝑝2) , … ,min(𝑧1𝑚, 𝑧2𝑚…𝑧𝑝𝑚)] 

(38) 

In this study, there were two criteria, which are exergy efficiency and LCOE, 

respectively. Therefore, the value of m is 2. 

4) Separation calculation of each alterative from the positive (d +) and negative (d -) ideal 

solution based on the Euclidean distance 

𝑑𝑖
+ = √∑(𝑍𝑗

+ − 𝑧𝑖𝑗)
2

𝑚

𝑗=1

 

(39) 

𝑑𝑖
− = √∑(𝑍𝑗

− − 𝑧𝑖𝑗)
2

𝑚

𝑗=1

 

(40) 

5) Relative closeness calculation (Si) 

𝑆𝑖 =
𝑑𝑖
−

𝑑𝑖
+ + 𝑑𝑖

− 
(41) 

6) Ranking for the all alternatives based on their value of Si from the minimum to the 

maximum 
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The results analyzed by the TOPSIS method are displayed in Table 3.6. According to the rank 

of Si, the TOPSIS ideal solution can be obtained. The TOPSIS ideal solution and the configuration 

relating the working conditions and geometrical structure of the TEG can be found in Table 3.7.  

Table 3.6. Analysis results based on TOPSIS method 

ηx 

% 

LCOE 

$/kWh·m2 

LCOEmax-

LCOE 

$/kWh·m2 

Normalized  

Nηx 

Normalized 

NLCOE+ 

d + d - Si Rank 

2.05 1.93 11.0 0.017 0.373 0.223 0.373 0.626 10 

14.4 2.48 10.4 0.119 0.354 0.122 0.368 0.751 5 

22.2 3.02 9.88 0.183 0.336 0.067 0.375 0.848 1 

23.8 3.57 9.33 0.197 0.317 0.070 0.364 0.838 2 

25.1 4.12 8.78 0.207 0.298 0.081 0.354 0.814 3 

26 4.66 8.24 0.215 0.280 0.096 0.343 0.781 4 

26.7 5.21 7.69 0.221 0.261 0.113 0.331 0.746 6 

27.2 5.76 7.14 0.225 0.243 0.131 0.319 0.709 7 

27.6 6.3 6.60 0.228 0.224 0.149 0.308 0.674 8 

27.9 6.85 6.05 0.231 0.206 0.167 0.296 0.639 9 

28.2 7.4 5.50 0.233 0.187 0.186 0.286 0.606 11 

28.4 7.94 4.96 0.235 0.169 0.204 0.275 0.574 12 

28.5 8.49 4.41 0.236 0.150 0.223 0.265 0.543 13 

28.6 9.04 3.86 0.236 0.131 0.242 0.256 0.514 14 

28.7 9.58 3.32 0.237 0.113 0.260 0.247 0.488 15 

28.8 10.1 2.80 0.238 0.095 0.278 0.241 0.464 16 

28.9 10.7 2.20 0.239 0.075 0.298 0.234 0.440 17 

28.9 11.2 1.70 0.239 0.058 0.315 0.229 0.421 18 

28.9 11.8 1.10 0.239 0.037 0.335 0.225 0.402 19 

29 12.3 0.60 0.240 0.020 0.352 0.224 0.388 20 

29 12.9 0.00 0.240 0.000 0.373 0.223 0.374 21 
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Table 3.7. TOPSIS ideal working conditions and geometric structure configurations of the TEG 

module 

Exergy efficiency  

(%) 

LCOE  

($/kWh·m
2
) 

T
h
  

(K) 

T
c
  

(K) 

R
L
  

(Ω) 

L  

(m) 

F 

22.3 3.02 340 300 0.142 0.000595 0.9 

 

According to the TOPSIS ideal solution, the exergy efficiency and LCOE of the TEG are 

22.2%, and 3.02 $US/kWh·m2, respectively. 

3.5 Conclusions 

    In this paper, an exergoecnomic analysis was completed for a TEG module with 199 pairs of 

couples through a one-dimensional steady-state thermodynamic model. After that, two objective 

functions were established, which are the exergy efficiency and LCOE. Meanwhile, many 

parameter combinations were tested for the algorithm in order to demonstrate its effectiveness for 

the optimization problem. Additionally, the Pareto solutions can be acquired through the ξ-

constraint with M-PSO algorithm when conducting the multi-objective optimization of the exergy 

efficiency and LCOE. Finally, these alternatives were ranked by the TOPSIS method to get an 

ideal solution. The conclusions of this work are as follows: 

1) The relevant research indicated that the MPSO algorithm is an effective method to 

optimize the exergy efficiency and LCOE of a TEG module. The effects of parameters 

mainly focus on the convergence speed and accuracy. A higher mutation factor has a 

positive effect on the accuracy, however, slowing down the convergence speed. Moreover, 

the accuracy can be improved through increasing particle numbers.  

2) Through the single-objective optimizations under a constrain condition: the optimal 

exergy efficiency and LCOE of the TEG module were 29.0% and 1.93 $US/kWh·m2, 

respectively, under a maximum temperature difference of 40 K. 

3) As a kind of multi-criteria decision-making strategy, the ξ-constraint with the M-PSO 

algorithm can be used to conduct the multi-objective optimization, making it possible to 

obtain a series of Pareto solutions for the exergoeconomic performances of the TEG 

module. Then, the TOPSIS method was adopted to rank these alternatives, and an ideal 

solution was determined. As for the TOPSIS ideal solution, the corresponding exergy 
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efficiency and LCOE of the TEG module reached 22.2% and 3.02 $US/kWh·m2, 

respectively. 
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CHAPTER 4 

USING DUAL MUTATION PARTICLE SWARM METHOD TO OPTIMIZE THE 

VARIABLE CROSS-SECTION OF A THERMOELECTRIC GENERATOR BASED 

ON A COMPREHENSIVE THERMODYNAMIC MODEL 

4.1 Introduction 

In the past decades, rapid economic development has created an increasing demand for energy. 

The energy demand experienced a surge from 5,519 million tons of oil equivalent (Mtoe) in 1971 

to 14,282 Mtoe in 2018 [1]. Fossil fuels continue to play a dominant role in modern society 

despite recent increases in renewable energy such as solar and wind power. According to the 

statistics from the International Energy Agency (IEA) [1], in 2018, the energy produced from 

fossil fuels (oil, coal, and natural gas) made up around 80% of the world’s total energy supply. 

The carbon dioxide (CO2) produced from fossil fuel combustion has become a severe global issue, 

which is linked to global warming [2-3]. Therefore, it is necessary to take measures to curb 

carbon emission. Increasing energy efficiency is a potent means to decrease CO2 emissions. A 

report from IEA [4] indicated that the global energy-related emissions were reduced by 3.5 

gigatons (Gt) during the period between 2015 and 2018 due to the technical efficiency 

improvements. To this end, thermoelectric generators (TEGs), a kind of solid-state energy 

convertor, are becoming the focus of researchers’ concern as they can convert wasted, and/or 

readily available heat into electricity, making it possible to improve the overall efficiency of 

energy systems. Compared with traditional energy systems, the superiority of TEG technology is 

due to zero-emissions while working [5]. Overall, with the continuous advancement of TE 

materials, TEG technology will have wide developmental prospects. 

Theoretically, there is a huge potential to improve TEG performance, which has attracted 

many researchers’ attention in recent years. Other than exploiting advanced TE materials and heat 

transfer technology, a reasonable geometric design plays an important role in the improvement of 

TEG performance. Limited by the processing technology, the design of the constant cross-

sectional TE semiconductor element can be seen in common commercial TEG modules [6]. In 

X. Wang, P. Henshaw, and D. S-K Ting, “Using dual mutation particle swarm 

method to optimize the variable cross-section of a thermoelectric generator based on 

a comprehensive thermodynamic model,” Cleaner Engineering and Technology, 

Under Review 
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this way, the early studies were mainly focused on the effects of the traditional TE element 

structure on its performance. Du et al. [7] used a thermodynamic model to analyze the effect of 

the aspect ratio (ratio of the cross-sectional area of TE element and its length) on a TEG’s 

performance under a temperature difference of 200 K. The results indicated that with the increase 

of the aspect ratio, there was an obvious improvement in the output power while the efficiency 

experienced a slow decrease [7]. In addition, through a three-dimensional TEG model, Jang et al. 

[8] found that there is a positive effect on the power output as the cross-sectional area of the TE 

element was enlarged [8]. A similar result can be found in the research from Wang et al. [9]. 

Meanwhile, by comparing the performances of rectangle-TEG (R-TEG) and circle-TEG (C-TEG), 

they verified the TEG performances are affected by cross-sectional area, rather than shape [9].  

The effect of a variable cross-sectional area along the length of the TE semiconductor element 

was first studied by Hoyos et al. [6, 10]. Their study indicated that compared with a traditional 

constant cross-section TE element, the TEG with variable cross-sectional area design has better 

thermoelectric conversion. In the following decades, technologies of semiconductor manufacture, 

such as Additive Manufacture (AM), Selective Laser Sintering/Melting (SLS/SLM), and Spark 

Plasma Sintering (SPS), have been developed, making it possible to produce and even 

commercialize a TE element with complexed structural design [11]. In this way, an increasing 

number of researchers paid more attention to exploit TE materials’ potential further through a 

variable cross-sectional area structural design. Sahin et al. [12] made a simulation for a TEG with 

a linearly variable cross-sectional area. They found that increasing the shape parameter, 

describing the changing rate of the cross-sectional area, can improve the TEG efficiency [12]. 

Additionally, Shi et al. [13] utilized nominal power density analysis to compare the effects of 

three kinds of variable cross-sectional area functions: linear, quadratic, and exponential on a 

TEG’s performance. The results indicated that both the power generation and efficiency of the 

linear variable TE element was top among the three [13]. Moreover, the non-constant cross-

sectional area TE element can be used to improve multi-stage TEG modules. Through a three-

dimensional model, Wu et al. [14] analyzed the performance of a three-stage TE element with 

variable cross-sectional design. The TE element consisted of three kinds of segmented TE 

materials and worked at a temperature range of 300 K-1000 K [14]. Through changing the cross-

sectional area for each local thermoelectric segment, the efficiency of the N-type pin was 

improved from 12.2% to 21.7%, and that of the P-type pin was increased from 22.9% to 25.7% 

[14]. Liu et al. [15] utilized COMSOL Multiphysics to analyze a two-stage TEG. They found that 

the variable cross-section asymmetric design had a positive effect on the TEG power generation. 
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Compared to taking a linear variable cross-section design for the P-type pin, the overall output 

power increased 4.21% by introducing the segmented design [15]. Similarly, Karana et al. [16] 

analyzed a two-stage TE element with an exponentially varying cross-section. They verified that 

the influence of the geometric parameter ‘a’ (which are the coefficients of the exponential cross-

section equation) on the TEG performances cannot be ignored. When the parameter ‘a’ is 3, the 

overall efficiency of the two-stage TEG module was improved by 5% [16]. 

However, the manufacture of TEGs is a complicated process. Normally, many factors, such as 

geometry, working temperature, and loading resistance, should be considered in designing a TEG 

module in order to exploit its performance fully. Besides, the effects of these factors on the TEG 

performance are not always monotonic and independent. For instance, through analyzing for a 

segmented TEG with exponential area variation in the element, Ali et al. [17] verified that there is 

an optimal exponential function making the TEG reach the maximum efficiency. Meanwhile, the 

specific optimal exponential function may vary across the load resistance [17]. In this way, some 

researchers consider the TEG optimization a combinatorial problem and try to use an algorithm to 

solve it. Meng et al. [18] applied a simplified conjugate-gradient method (SCGM) to adjust 

semiconductor element number, length, and filling factor for a TEG module simultaneously, 

improving the power generated from 0.14 W to 1.39 W at a current of 0.5 A [18]. Likewise, the 

SCGM algorithm was used to optimize a two-stage TEG module by Liu et al. [19]. The algorithm 

found an optimal combination of geometric structure (element length of the lower stage and 

cross-sectional area ratio of P&N pins in the lower and upper stages), making the output power 

increase by 30.6% under a temperature of 680 K [19]. Under a temperature difference of 500 K, 

Ranjan et al. [20] applied Taguchi and ANOVA methods to search for the optimal combination of 

the element length, cross-sectional area, and load resistance for a TEG module, which improved 

its efficiency to 12.8% [20]. One of the popular algorithms, the genetic algorithm (GA), also has 

become the focus of researchers’ concern. Zhu et al. [21] optimized a two-stage TE couple in a 

five-dimensional variable searching space (including geometric structure and load resistance). 

The result indicated that the optimum efficiency can reach 9.15% under a temperature difference 

of 350 K [21]. Yusuf et al. [22] ran a GA program to deal with a discrete optimization problem. 

When the TEG was operated in the temperature range of 300 K-800 K, they acquired a maximum 

output power of 30.1 W in a four-dimensional searching space related to element number and its 

geometric structure [22].  

Numerous algorithms have been utilized in TEG optimization; meanwhile, premature or poor 

convergence are the main challenges for these methods [18, 23-24]. In particular, when using an 
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algorithm, such as GA or SCGM to deal with a complicated problem, it is normally necessary to 

spend lots of time on trial-and-error calculations or parameter tuning for algorithms, such as 

initial guesses and crossover probability [18, 25]. As a kind of bionic algorithm, particle swarm 

optimization (PSO) is equipped with outstanding performances in convergence and conciseness 

[25-26]. Meanwhile, through adding a subprogram, like mutation or differential evolution, the 

premature convergence for the PSO algorithm can be avoided effectively [26]. Due to the 

distinctive advantages of the PSO algorithm, many researchers tried to apply it to engineering 

systems. In order to balance the hybrid system’s economy and efficiency under different electrical 

loads, Yang et al. [27] utilized the PSO method to optimize the proportion of power generation 

from solar input to the system. Using a hybrid PSO algorithm, the performances and emissions of 

a biodiesel engine were optimized by Zhang et al. [26]. They also verified the optimum and 

converging processes of the hybrid PSO algorithm are better than that of the GA method [26]. 

Therefore, the PSO algorithm was taken as a basic tool to analyze and optimize a TEG module in 

this study. 

In this paper, a new variable cross-sectional function, which is a kind of hyperbolic function, 

was introduced to design a TE element. Based on a comprehensive thermodynamic model, the 

reason why the performances of variable cross-sectional TEG are better than that of traditional 

were determined. Meanwhile, the main non-dimensional design parameters (cross-sectional 

changing rate, loading resistance ratio, and temperature ratio, etc.) were taken to be a multi-

variable searching space of the TEG performance optimization.  Moreover, the review in most of 

the previous literature related to the TEG optimization took a simplified thermodynamic model to 

be an objective function. Namely, the temperature difference across the sides of a TE element 

remained constant during the optimizing process. In practice, affected by the variation of Joule 

heat and Peltier heat, the temperature difference is unlikely to remain unchanged [27]. Besides, 

through an experimental validation, Gomez et al. [27] verified the results of a comprehensive 

thermodynamic model (considering effects of Joule heat and Peltier heat) are closer to the real 

working performances of a TEG compared to that of the simplified model. In this way, one of the 

motivations in this paper is to apply an algorithm to conduct the optimization for a TEG based on 

a comprehensive thermodynamic model, making it possible for the optimal scheme to be suitable 

for real working conditions. In order to conduct the optimization for the TEG based on the 

comprehensive thermodynamic model, an improved PSO method, named Dual-PSO, was 

introduced into this study. First, using the PSO algorithm, the governing equations for the TEG 

were solved, which determined the exact temperature difference between the ends of the TE 
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element. After that, the TEG’s output power and efficiency were optimized through running the 

PSO method for the second time. Meanwhile, in order to avoid premature convergence, a 

subprogram, mutation, was embedded into the PSO program, which increased the randomization 

in the algorithm.  

4.2 Thermodynamic Analysis for a TEG  

Based on the 1st law of thermodynamics, two control equations can be established for a TEG 

module consisting of 199 pairs of variable cross-sectional couples. These equations can be solved 

by an MPSO algorithm to acquire the real temperature difference across the semiconductor 

elements. The evaluation and optimization for the TEG’s performances can be conducted after the 

working temperature is calculated. 

The thermodynamic model was established based on some simplifying assumptions. In this 

paper, the total volume of the TE elements keeps constant in different shape designs, which 

means that there is no obvious difference in the volume of the gap between the TE elements. 

Meanwhile, the air, which is the filling material in the gaps, is always equipped with a high 

thermal resistance [19]. In this way, the heat loss in the gaps was ignored in this TEG model. 

Besides, in order to simplify the model, the substrate and contact thermal resistance were ignored, 

which can be also found in other studies about TEG optimization [16-18]. 

4.2.1 Thermoelectric theory for a variable cross-sectional TEG module 

A TEG module typically consists of three basic elements: cascaded TE couples (semiconductor 

elements in P-N pairs), conductors, and substrates, as shown in Figure 4.1-(a). The Seebeck effect 

indicates that the voltage produced by TE couples is proportional to the temperature difference at 

its ends. In this way, the open-circuit voltage of a TEG can be calculated from Eq. (1) [29]. 

𝑉 = 𝑆(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟 (1) 

where Npair is the number of cascaded TE couples, Th and Tc are the hot and cold temperatures. The 

overall Seebeck coefficient, S, is related to the Seebeck coefficients of P and N semiconductors, SP 

and SN, as 

𝑆 = 𝑆𝑃 + |𝑆𝑁| (2) 

When a TEG’s positive and negative anodes are connected to a load resistance, the output 

power can be generated from the system. The output power (P) can be calculated through Ohm’s 

law [30], that is, 
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𝑃 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝐿 =
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖 × (1 + 𝑟𝑥)
2

𝑟𝑥 
(3) 

where, Ri and RL represent the internal and load resistance. rx is the ratio of load resistance (𝑅𝐿) to 

internal resistance (𝑅𝑖).  

The internal resistance is the sum of the resistance of the TE couples (rteg) and conductors (rc) 

[31], that is,  

𝑅𝑖 = 𝑟𝑡𝑒𝑔 + 𝑟𝑐 (4) 

According to the mathematical nature of resistance, the resistance of the P and N elements is 

proportional to their lengths and inversely proportional to their cross-sectional areas. For an 

infinitesimal length for a TE couple, dx, its electrical resistance can be calculated as in Eq. (5) [13, 

16]. 

𝑑𝑟𝑡𝑒𝑔 = [
1

𝜎𝑃𝐴𝑃(𝑥)
+

1

𝜎𝑁𝐴𝑁(𝑥)
]𝑑𝑥 

(5) 

where A, and 𝜎 represent the cross-sectional area and electrical conductivity. The subscripts P and 

N represent the P-type and N-type semiconductors, respectively.  

The resistance of the entire TE elements can be obtained via integration along with the length 

of the element (L), as shown in Eq. (6) [13, 16], 

𝑟𝑡𝑒𝑔 = 𝑁𝑝𝑎𝑖𝑟∫ [
1

𝜎𝑃𝐴𝑃(𝑥)
+

1

𝜎𝑁𝐴𝑁(𝑥)
]𝑑𝑥

𝐿

0

 
(6) 

The resistance of the conductors can be calculated in a similar manner. Meanwhile, conductors 

are connected to semiconductors by welding balls. Hence, considering the resistance of the 

welding balls, the total conductors’ resistance can be deduced from Eq. (7). 

𝑟𝑐 = (
𝐿𝑐
𝜎𝑐𝐴𝑐

) (2𝑁𝑝𝑎𝑖𝑟 + 1) + 𝑟𝐶𝑡 × 4𝑁𝑝𝑎𝑖𝑟 
(7) 

where, Ac, Lc, and 𝜎𝑐  represent the conductor’s cross-sectional area, length, and electrical 

conductivity, respectively. 𝑟𝐶𝑡 is the welding resistance. A low value for the welding resistance is 

desirable, for it can decrease the negative effects of the welding resistance on the power 

generation of a TEG. Moreover, the welding resistance may vary across to the geometric structure 

and manufacturing technique. In this way, a low value can decrease the source of uncertainty 
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from the changing welding resistance in the geometric optimization for a TEG to some extend. 

Referring to the research from Gomez et al. [28], a welding resistance of 3.41× 10−10 Ω·m was 

used in this paper. 

A new cross-sectional function (a kind of hyperbolic function) was introduced in this study. In 

order to make the research results comparable, it is necessary to keep the total volume of a TE 

couple the same (the total volume of a TE couple is A0L) for both the traditional and new design 

shapes. Therefore, two hyperbolic functions were established (as shown Eqs. (8)-(9)) to control the 

variation of the cross-sectional area for the P and N-type semiconductors respectively. Defined by 

the two equations, the volume of a pair of the hyperbolic elements can remain the constant at A0L.   

𝐴𝑃(𝑥) =
𝐴0
1 + 𝜇

+
2𝛽𝐴0𝑙𝑛2

1 + 𝜇
−

2𝛽𝐴0𝐿

(𝑥 + 𝐿)(1 + 𝜇)
 

(8) 

𝐴𝑁(𝑥) =
𝜇𝐴0
1 + 𝜇

+
2𝛽𝜇𝐴0𝑙𝑛2

1 + 𝜇
−

2𝛽𝜇𝐴0𝐿

(𝑥 + 𝐿)(1 + 𝜇)
 

(9) 

where, 𝛽 is the shape parameter (a ratio of the subtraction between the maximum and minimum 

areas in a TE element to the average area). The shape parameter describes the cross-sectional area 

gradient in a TE element (𝛽>0 means the cross-sectional area decreases from the hot side to cold; 

𝛽 = 0 means the cross-sectional area is constant; 𝛽 < 0 means the cross-sectional area decreases 

from the cold side to hot). µ represents the ratio of the average cross-sectional areas of the N and 

P-type semiconductor. 𝐴0  is the total average cross-sectional area of the P and N-type 

semiconductor. In this study, 𝐴0 was kept constant of 8 mm2.  
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                                            (a)                                                                                 (b) 

Figure 4.1. Schematic diagram of a variable cross-section TEG module, (a) cutaway view of the 

TEG module arrangement, and (b) geometric structure of a TE element with variable cross-

section shapes 

4.2.2 Material properties of the TEG module 

As for a TEG module with a specific structure, its performance is mainly decided by the TE 

semiconductor materials’ properties, involving the Seebeck coefficient (S), electrical conductivity 

(σ), and thermal conductivity (k). It is acknowledged that there are relationships between these 

material’s properties and the working temperature, to the point that the TEG’s performances can 

be considered as functions of the Seebeck coefficient, electrical conductivity, thermal 

conductivity, and temperature. In this way, a non-dimensional parameter, figure of merit (ZT), 

was first derived by Ioffe [32] to evaluate the quality of a TE material comprehensively. The 

figure of merit can be expressed as in Eq. (10) [32-34]  

𝑍𝑇 =
𝑆2𝜎

𝑘
𝑇 

(10) 

The figure of merit describes the relative magnitude of a TE material’s capacity in the power 

generation and thermal conduction at a specific temperature [35]. An effective TE material should 

satisfy, commonly, three characteristics [33, 36]. First, a TE material should be equipped with an 

excellent Seebeck coefficient, maximizing the conversion of electrical power from heat. In order 

to decrease energy dissipation in the form of internal Joule heat, it is necessary to improve the TE 
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material’s electrical conductivity as far as possible. Conversely, a low thermal conductivity can 

alleviate thermal conduction for a material, making it possible to enlarge the temperature 

difference across the TE element. Therefore, based on Eq. (10), an excellent TE material is 

always characterized by a high value of the figure of merit.  

In this paper, modified bismuth telluride was introduced into the thermodynamic model as the 

TE semiconductor material, of which the properties can be found in Table 4.1. 

Table 4.1. Material properties of modified bismuth telluride [16, 37] 

Material 

properties 

P-type modified bismuth telluride  N-type modified bismuth telluride  

Seebeck coefficient  

(𝜇V/K) 

−188.2 + 2.2411𝑇

− 3.0075 × 10−3𝑇2

+ 2.4914 × 10−7𝑇3 

443.49 − 4.5121𝑇

+ 9.4424 × 10−3𝑇2

− 5.8362 × 10−6𝑇3 

 

Thermal 

conductivity 

 (W/m·K) 

−1.8067 + 5.7529 × 10−3𝑇

−
64.639

𝑇

+
1.3395 × 105

𝑇2
 

 

−4.6205 + 9.9277 × 10−3𝑇

+
833.7

𝑇
+
235636

𝑇2
 

Electrical 

conductivity  

(S/cm) 

−473.1 + 0.86507 × 𝑇

+ 𝑒(16.637−1.6942ln (𝑇)) 

 

−2139.4 + 2.5778 × 𝑇

+ 𝑒(12.795−0.89092ln (𝑇)) 

 

 

According to Eq. (10), the figure of merit of the TE materials can be calculated at various 

temperature, as shown in Figure 4.2. The results indicate that the ZT of P-type material is much 

higher than that of N-type under a temperature range between 300 K and 600 K. In this way, the 

performance of P-type material is better than that of N-type material in this temperature range. 
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Figure 4.2. Figure of merit of the P&N-type materials 

Additionally, in order to reflect the influence of temperature on the TEG performances, the 

average values of the TE material properties were taken into the model. Mathematically, the 

average value of the material’s properties can be calculated by the mean value theorem of integrals 

along with the temperature. In this way, the general formula of the average values of the TE 

material properties can be shown in Eq. (11). 

∆̅=
∫ 𝛿(𝑇) ∙ 𝑑𝑇
𝑇ℎ
𝑇𝑐

(𝑇ℎ − 𝑇𝑐)
 

(11) 

where, ∆̅  represents the average values of the Seebeck coefficient, thermal conductivity, and 

electrical conductivity. The temperature related value of each of these properties is marked as 

δ(T).  

4.2.3 Control equations of the TEG module 

Normally, the thermal source is attached to the hot side of a TEG via a contact pad, and the 

thermal energy dissipates through a heat sink located on the other side of the TEG (as shown in 

Figure 4.3) [28]. From the figure, it can be found that there are three kinds of thermal energy 
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passing through the interior of TE couples, which are Fourier heat (�̇�𝐹), Peltier heat (�̇�𝑃), and 

Joule heat (�̇�𝐽). 

 

Figure 4.3. Thermal transfer processes of a variable cross-section TEG module 

As for a TE couple, the Fourier heat is proportional with the temperature difference at its ends 

and net thermal conductance. In this way, the Fourier heat of TE couples is shown in Eq. (12) [13, 

16]. 

�̇�𝐹 = �̅�(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟 (12) 

in which, �̅�  is the average net thermal conductance of a TE couple. As for a variable cross-

sectional TE couple, the value of �̅� can be calculated from 

�̅� =
𝑘𝑃̅̅ ̅

∫
1

𝐴𝑃(𝑥)
𝑑𝑥

𝐿

0

+
𝑘𝑁̅̅̅̅

∫
1

𝐴𝑁(𝑥)
𝑑𝑥

𝐿

0

 
 (13) 

where, 𝑘𝑃̅̅ ̅ and 𝑘𝑁̅̅̅̅  are the average thermal conductivity of the P&N TE materials. 

The Peltier heat for a TE couple is mainly decided by the current passing through the junction 

and the Peltier coefficient. The Peltier coefficient can be considered as a product of the local 
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temperature at the junction and the Seebeck coefficient. As for a TEG module, the Peltier heat can 

be calculated by Eq. (14) [13, 16]. 

�̇�𝑃 = 𝑆̅𝑇[
𝑆̅(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟

𝑅𝑖 + 𝑅𝐿
]𝑁𝑝𝑎𝑖𝑟 = 𝑆̅

2𝑇
(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟

2

𝑅𝑖 × (1 + 𝑟𝑥)
 

(14) 

in which, 𝑆̅ is the average net Seebeck coefficient. T is the temperature of the hot side or cold side 

of the TEG module. 

Moreover, it is acknowledged that the Joule heat is proportional to the square of the current and 

the internal resistance. As for a TEG module, the expression of the Joule heat is displayed in Eq. 

(15) [13, 16]. 

�̇�𝐽 =
𝑆̅2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

(𝑅𝑖 + 𝑅𝐿)
2

𝑅𝑖 =
𝑆̅2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖(1 + 𝑟𝑥)
2

 
(15) 

It is noticeable that as for a kind of internal thermal source, it can be assumed that only half of 

Joule heat is absorbed by the hot temperature side of a TEG, and another half is dissipated into the 

cold temperature side [38-39]. 

Based on Figure 4.3, it is also found that there are two kinds of external thermal energy. The 

one is absorbed by the hot side of a TEG, named as energy input (�̇�𝑖𝑛𝑝𝑢𝑡). Another is energy 

dissipation (�̇�𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛), transferred to the surroundings through its cold side. In this way, based 

on the 1st law, the energy balance can be established for both the ends of a TEG, respectively 

(shown as the following two equations) [28, 31].  

�̇�𝑖𝑛𝑝𝑢𝑡 = �̇�𝐹 + �̇�𝑃,ℎ −
1

2
�̇�𝐽 

(16) 

�̇�𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 = �̇�𝐹 + �̇�𝑃,𝑐 +
1

2
�̇�𝐽 

(17) 

Additionally, the energy input and dissipation can be calculated through the temperature and 

thermal resistance in both the ends of the TEG module. Therefore, Equations (16)-(17) can be 

rewritten by Eqs. (18) and (19) [28, 31]. 

𝑇𝑆 − 𝑇ℎ
𝜓ℎ

= �̇�𝐹 + �̇�𝑃,ℎ −
1

2
�̇�𝐽 

(18) 
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𝑇𝑐 − 𝑇∞
𝜓𝑐

= �̇�𝐹 + �̇�𝑃,𝑐 +
1

2
�̇�𝐽 

(19) 

where, T and ψ are the temperature and thermal resistance. The subscripts (c, h, S, and ∞) 

represent the cold side, hot side, thermal source, and ambient. According to the research from 

Gomez et al. [28], the thermal resistance of the hot side can be assumed as 1 K/W. Meanwhile, 

considering the cost-effectiveness and reliability of the TEG system, a passive cooling device was 

used as the heat sink for the cold side. According to the radiator’s configuration from the 

manufactory, the thermal resistance of the cold side is 5.5 K/W [40].  

Substituting Eqs. (12, 14-15) into the two control equations, the formulas (18) and (19) can be 

rearranged to the following two non-linear equations.  

𝐴1𝑇ℎ
2 + 𝐴2𝑇𝑐

2 + 𝐴3𝑇ℎ𝑇𝑐 + 𝐴4𝑇ℎ + 𝐴5𝑇𝑐 = 𝐴6 (20) 

𝐵1𝑇ℎ
2 + 𝐵2𝑇𝑐

2 + 𝐵3𝑇ℎ𝑇𝑐 + 𝐵4𝑇ℎ + 𝐵5𝑇𝑐 = 𝐵6 (21) 

in which, Ai and Bi are mainly decided by TE material properties and geometric structure, as 

shown in Table 4.2. As for a specific TEG module, they are constant. 

Table 4.2. Expressions of the constant Ai and Bi in the two control equations 

Subscript A B 

1 𝑁𝑝𝑎𝑖𝑟
2 𝑆2𝜓ℎ(1 + 2𝑟𝑥)

2𝑅𝑖(1 + 𝑟𝑥)
2

 
𝑁𝑝𝑎𝑖𝑟
2 𝑆2𝜓𝑐

2𝑅𝑖(1 + 𝑟𝑥)
2
 

2 
−
𝑁𝑝𝑎𝑖𝑟
2 𝑆2𝜓ℎ

2𝑅𝑖(1 + 𝑟𝑥)
2
 −

𝑁𝑝𝑎𝑖𝑟
2 𝑆2𝜓𝑐(1 + 2𝑟𝑥)

2𝑅𝑖(1 + 𝑟𝑥)
2

 

3 
−
𝑁𝑝𝑎𝑖𝑟
2 𝑆2𝜓ℎ𝑟𝑥

𝑅𝑖(1 + 𝑟𝑥)
2

 
𝑁𝑝𝑎𝑖𝑟
2 𝑆2𝜓𝑐𝑟𝑥

𝑅𝑖(1 + 𝑟𝑥)
2

 

4 𝑁𝑝𝑎𝑖𝑟𝐾𝜓ℎ + 1 𝑁𝑝𝑎𝑖𝑟𝐾𝜓𝑐 

5 −𝑁𝑝𝑎𝑖𝑟𝐾𝜓ℎ −(𝑁𝑝𝑎𝑖𝑟𝐾𝜓𝑐 + 1) 

6 𝑇𝑆 −𝑇∞  

(Remained constant with 300 K in this 

paper) 
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4.2.4 Methodology for the solution of the control equations based on MPSO 

algorithm 

In this study, the specified temperature boundary conditions were taken into the TEG model. 

Namely, the temperature of the thermal source and ambient are specified values. Under these 

conditions, the parameters in the control equations (Ai and Bi) are constant for a specific TEG 

module. At this moment, the control equations can be considered as a binary quadratic system. 

Thereinto, the unknown parameters are the real temperature of both the ends of the TEG module 

(Th and Tc). Therefore, the Th and Tc can be acquired through solving the system using the MPSO 

algorithm, making it possible to evaluate the TEG performances. 

MPSO method evolved by adding a subprogram ‘mutation’ for the PSO algorithm. As for a 

kind of bionic algorithm, the PSO algorithm imitates how a bird flock searches for food. During 

the process of the foraging, every individual in the bird flock should change their velocity 

continuously. Normally, the variation of the velocity is affected by the inertia, each individual’s 

cognitive, and social information sharing. In this way, the expression of the velocity (Vi) updating 

equation is displayed in Eq. (22) [41-42]. 

𝑉𝑖+1 = 𝑤𝑉𝑖 + 𝐶1𝑅1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝐶2𝑅2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖) (22) 

where, w is the inertia weight, utilized to adjust the influence of the velocity of the previous 

generation particle. C1 and C2 are the cognitive and social parameters which are positive 

acceleration constants. R1 and R2 are random numbers ranging from 0 to 1. The local and global 

best positions are marked with the Pbest and Gbest, respectively. 

Considered the unit time, the individual’s position varies with its velocity. It means that the 

new position is vector sum of the updated velocity and previous position as shown in Eq. (23) [41-

42]. 

𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖+1 (23) 

The calculating process of the MPSO method is displayed in Figure 4.4. According to the 

main sequence shown in the diagram, the objective function should be created to make sure of the 

optimal direction (searching the maximum or minimum value?) before applying the algorithm. 

Firstly, equation (20) can be rewritten into a function format through moving the right item to the 

left (shown as Eq. (24)). 
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𝑓ℎ(𝑇ℎ, 𝑇𝑐) = 𝐴1𝑇ℎ
2 + 𝐴2𝑇𝑐

2 + 𝐴3𝑇ℎ𝑇𝑐 + 𝐴4𝑇ℎ + 𝐴5𝑇𝑐 − 𝐴6 (24)  

Similarly, equation (21) can be rearranged to Eq. (25). 

𝑓𝑐(𝑇ℎ, 𝑇𝑐) = 𝐵1𝑇ℎ
2 + 𝐵2𝑇𝑐

2 + 𝐵3𝑇ℎ𝑇𝑐 + 𝐵4𝑇ℎ + 𝐵5𝑇𝑐 − 𝐵6   (25) 

In order to make sure that the values of the two functions are zero simultaneously, an 

objective function (fun1) was built through connecting the two functions using the absolute value 

operation (as shown in Eq. (26)). Then, utilizing the MPSO algorithm to search the minimum 

value for the objective function. Meanwhile, the real temperature on both the ends of the TEG 

module can be solved from the control equations.  

𝑓𝑢𝑛1 = min (|𝑓ℎ(𝑇ℎ, 𝑇𝑐)| + |𝑓𝑐(𝑇ℎ, 𝑇𝑐)|) (26) 

in which, the variable searching spaces for the temperature of the thermal source and ambient are 

shown in Eqs. (27) and (28), respectively. 

𝑇∞ ≤ 𝑇ℎ ≤ 𝑇𝑆  (27)  

𝑇∞ ≤ 𝑇𝑐 ≤ 𝑇𝑆  (28) 

Based on the basic idea of the algorithm, the particles should adjust their velocity and location 

during the searching process. Therefore, it is necessary to define the relevant parameters in the 

updating equations (Eqs. (20) and (21)), involving C1 and C2, etc. As for the cognitive and social 

parameters (C1 and C2), the values can be set arbitrarily sometimes; however, the two values 

always sum up to 4 [23]. Moreover, some research from algorithm engineers indicated that the 

recommendation for the inertia weight (w) ranges from 0.4 to 0.9, which can allow the particle to 

move freely enough [23]. Differing from the traditional PSO method, it is also needed to set a 

mutation factor (mu) for the MPSO algorithm to control the probability of the mutation being 

triggered. Our previous study has proven that the premature convergence in the MPSO method 

can be avoided effectively when the mutation factor is 0.05 [43]. Hence, the mu=0.05 is 

recommended in this paper. Overall, the parameter selection for the MPSO algorithm in this 

paper can be found in Table 4.3. The calculated result indicates that the accuracy can reach 

0.000001 under the parameter selection for the MPSO method. 
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Table 4.3. Parameter selections for the MPSO algorithm 

Parameter Value 

cognitive parameter (C1) 2.0 

social parameter (C2) 2.0 

Particle population(Popsize) 100 

Mutation factor (mu) 0.05 

Inertia weight (w) 
Random number in  

[0.4 to 0.9] 

For the next step, after generating the initial particle swarms’ velocity and position vectors, the 

fitness for each particle can be evaluated by the objective function, which can acquire the local 

best and global best position for later generations. Meanwhile, if the iteration step is lower than 

the maximum step, each new generation particles’ position and velocity will be created by the 

updating equations. 

Start

Input objective function, 
variables and relevant  
constant values

Initialization for particle 
swarm

Fitness evaluation for 
each particle

Rand. < threshold value ?

Individual and global 
best position updating

i>maxgen ?

Individual position and 
velocity updating

End 

Acquire mutation 
position

No

No

Yes

Yes

 

Figure 4.4. Flow chart of the M-PSO method 
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Additionally, the effect of the subprogram ‘mutation’ is to improve the randomization of the 

algorithm, making it possible to avoid the premature convergence [43-44]. According to the flow 

chart, the subprogram will work once the mutation condition (Rand. < threshold value) is 

triggered. The threshold condition can be expressed as in Eq. (29) 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = (1 − (𝑖 − 1) (𝑚𝑎𝑥𝑔𝑒𝑛 − 1)⁄ )
1
𝑚𝑢 

(29) 

in which, the maximum generations of particles and the mutation factor are marked as the maxgen 

and mu.  

When the subprogram ‘mutation’ is triggered, a set of position coordinates ranging from ‘ub’ 

and ‘lb’ can be generated by Eqs. (30) and (31).  

𝑙𝑏 = 𝑋𝑖 − 𝛿𝑥 (30) 

𝑢𝑏 = 𝑋𝑖 + 𝛿𝑥 (31) 

in which, 𝛿𝑥 is a floating value which can be calculated through Eq. (32). 

𝛿𝑥 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (32) 

However, the collection [𝑙𝑏 𝑢𝑏] should not exceed the limitation of the position as shown in 

Eq. (33). 

[𝑙𝑏 𝑢𝑏] ∈ [𝑋𝑚𝑖𝑛 𝑋𝑚𝑎𝑥] (33) 

Then, a mutation position will be generated in this collection randomly. Meanwhile, the new 

position will remain if its fitness is better than that of the old position.  

4.3 Performance evaluation for the variable cross-sectional TEG module 

In this paper, a comprehensive thermodynamic model was used to analyze the performances 

for a TEG with 199 cascade couples. The basic dimension for each TEG couple is 8 mm2 by 6.4 

mm. Keeping the volume of a TE couple unchanged, the TE element was redesigned to be in the 

shape of a variable cross-section using a hyperbolic function. Meanwhile, the control equations 

for the thermodynamic model were solved by the MPSO algorithm, making it possible to evaluate 

the performances of the TEG. The differences in the performance of the redesigned TEG and 

traditional one can also be contrasted through the comprehensive thermodynamic model. Besides, 

some non-dimensional parameters, such as temperature ratio, resistance ratio, and shape 
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parameter, etc., were introduced to analyze their influences on the variable cross-sectional TEG 

module’s performances. 

4.3.1 Thermoelectric theory for a variable cross-sectional TEG module 

The output power and efficiency were used to evaluate the performances of the TEG module. 

The output power can be calculated by Eq. (3), and the efficiency is a ratio of the output power 

and energy input, that is,  

𝜂 =
𝑃

�̇�𝑖𝑛𝑝𝑢𝑡
=

𝑃

𝑇𝑆 − 𝑇ℎ
𝜓ℎ

=
𝑃

𝜃 × 𝑇∞ − 𝑇ℎ
𝜓ℎ

 
(34)  

where, 𝜃 is the temperature ratio which is a ratio between the temperature of the thermal source 

and ambient (𝜃 =
𝑇𝑆

𝑇∞
).  

Based on the thermodynamic model, the output power and efficiency of the TEG modules can 

be acquired under different working conditions (the temperature ratio ‘𝜃’, and resistance ratio 

‘rx’). Figure 4.5 (a)-(b) displays the output power and efficiency of the variable cross-sectional 

TEG (its shape parameter (𝛽) and area ratio (µ) are 1) and traditional one (which is a TEG with 

constant cross-sectional area).  

  

(a) 
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                                                                            (b) 

Figure 4.5. Performances of the TEG with hyperbolic and traditional element shapes under 

different working conditions, (a) output power of the TEG modules and (b) efficiency of the TEG 

modules 

The results indicate that the performance of the variable cross-sectional TEG is higher than 

that of the traditional one. The power and efficiency can be increased by up to 10.59% and 

12.95%, respectively. In this way, through redesigning the TEG module using the hyperbolic 

function, its performance can be improved effectively. The calculated results show that under the 

same working conditions, the redesigned TEG is equipped with a higher temperature difference 

across the semiconductor element compared to the traditional one (displayed in Figure 4.6). The 

increased temperature difference is one of the reasons why the TEG performance can be 

improved by variable cross-sectional design. 
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Figure 4.6. Real temperature difference at the both ends of the TEG with hyperbolic and 

traditional element shapes under different working conditions 

In order to explore the reasons for the performance improvement further, it is necessary to 

calculate the internal thermal resistance and temperature distribution for the TE couple. The 

thermal resistance of the couple can be considered as two resistances in parallel. In this way, the 

total thermal resistance of a TE couple is actually a reciprocal of the sum of thermal conductance 

of the P and N-type elements (shown in Eq. (35)) [45].  

𝜓𝑇𝐸(𝑥) =  
1

1
𝜓𝑃(𝑥)

+
1

𝜓𝑁(𝑥)

=
1

𝑘𝑃(𝑇, 𝑥) × 𝐴𝑝(𝑥)
𝛥𝑥 +

𝑘𝑁(𝑇, 𝑥) × 𝐴𝑁(𝑥)
𝛥𝑥

 
(35)  

where, 𝜓 means the thermal resistance. The subscripts (TE, P, and N) represent the TE couple, P 

and N-type elements, respectively. 

Moreover, the Peltier heat just acts on the P and N junctions located at the two ends of a TE 

couple. Thus, the temperature distribution inside of a TE element can be modeled by the general 

differential equation of a one-dimensional steady-state thermal conductivity, shown as Eq. (36) 

[46].   

1

𝐴(𝑥)

𝑑

𝑑𝑥
[𝑘𝐴(𝑥)

𝑑𝑇

𝑑𝑥
] + �̇� = 0 

(36) 

in which, �̇� represents the source item. As for a TE element, the source item is produced from the 

Joule heat rate. 



 

92 
 

Through the finite difference method, the above differential equation can be discretized, 

making it possible to acquire the internal temperature distribution of a TE element. The 

discretized equation is expressed as Eqs. (37)-(39) [46]. 

As for i=1  

𝑓1 = 𝑇1 [
𝐴(𝑥2)𝑘(𝑇2)

∆𝑥
+
𝐴(0)𝑘(𝑇𝑐)

∆𝑥
] − [𝑇2 [

𝐴(𝑥2)𝑘(𝑇2)

∆𝑥
] + 𝑇𝑐 [

𝐴(0)𝑘(𝑇𝑐)

∆𝑥
] + �̇�𝐴(𝑥1)∆𝑥]

= 0 

(37) 

As for i=2 to n-1  

𝑓𝑖 = 𝑇𝑖 [
𝐴(𝑥𝑖+1)𝑘(𝑇𝑖+1)

∆𝑥
+
𝐴(𝑥𝑖−1)𝑘(𝑇𝑖−1)

∆𝑥
]

− [𝑇𝑖+1 [
𝐴(𝑥𝑖+1)𝑘(𝑇𝑖+1)

∆𝑥
] + 𝑇𝑖−1 [

𝐴(𝑥𝑖−1)𝑘(𝑇𝑖−1)

∆𝑥
] + �̇�𝐴(𝑥𝑖)∆𝑥] = 0 

(38) 

As for i=n  

𝑓𝑛 = 𝑇𝑛 [
𝐴(𝐿)𝑘(𝑇ℎ)

∆𝑥
+
𝐴(𝑥𝑛−1)𝑘(𝑇𝑛−1)

∆𝑥
]

− [𝑇ℎ [
𝐴(𝐿)𝑘(𝑇ℎ)

∆𝑥
] + 𝑇𝑛−1 [

𝐴(𝑥𝑛−1)𝑘(𝑇𝑛−1)

∆𝑥
] + �̇�𝐴(𝑥𝑛)∆𝑥] = 0 

(39) 

where, n is the number of nodes. �̇� is the Joule heat rate per unit volume, [W/m3]. ∆𝑥 is the unit 

length of a TE element.  

Based on Eqs. (37)-(39), a sum formula can be established (as in Eq. (40)), which can be 

considered as an objective function (fun2) for the MPSO algorithm. In this way, the unknown 

parameter, Ti, can be calculated by searching the minimal value of the objective function using 

the MPSO algorithm. 

𝑓𝑢𝑛2 = min (∑|𝑓𝑖|

𝑛

𝑖=1

) 
(40) 

In order to calculate thermal resistance conveniently, the TE couple was divided into 10 

portions, namely n=9. In this way, the unit length of the TE element (∆𝑥) was 0.64 mm. Figure 

4.7 shows the thermal resistance and temperature distribution into the variable cross-sectional TE 
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elements (its shape parameter (𝛽) and area ratio (µ) are 1) and traditional ones.  In the figures, the 

origin corresponds to the cold end of the TE couple. 

 

(a) 

 

(b) 

Figure 4.7. Internal thermal resistance and temperature distribution in the two different shapes of 

the TE couple 
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The results indicate (shown in Figure 4.7-(a)) that the thermal resistance of the hyperbolic 

couple is bigger than that of the traditional couple nearby the cold side, due to contraction of the 

area. Therefore, in the hyperbolic couple, the thermal energy is more difficult to transfer to the 

cold side compared to the traditional couple, making the cold temperature closer to the ambient as 

shown in Figure 4.7-(b). Meanwhile, it can be found from Figure 4.7-(b) that the hot temperature 

in the two TE shape designs is almost the same. In this way, the hyperbolic TE couple has a 

higher temperature difference and power output compared with the traditional couple, which is 

the basic reason why the TEG with non-constant area can have a higher performance. 

4.3.2 Effects of working conditions on the performance of the variable cross-

sectional TEG module 

TEG performance is very sensitive to the variations of the working conditions, such as 

temperature and load resistance. Using the comprehensive thermodynamic model, both the 

thermal and electrical processes of a TEG module vary according to the working conditions. 

Hence, it is necessary to analyze the effects of the working conditions on the TEG performance. 

There are two non-dimensional parameters related to the working conditions concerned in this 

study, the resistance ratio (rx) and temperature ratio (θ). First, the variation of the power and 

efficiency with the resistance ratio can be acquired through a slice of Figure 4.5 at a specific 

temperature ratio (Figure 4.8). The results indicate that the influences of the resistance ratio on 

the output power and efficiency of the TEG are non-monotonic. In a simplified TEG model (the 

hot and cold temperature are fixed), the TEG can be considered as a battery system, in which the 

relationship of the output power and resistance ratio is parabolic. Mathematically, when the 

resistance ratio is 1, the outpower will reach the maximum value. However, in the comprehensive 

TEG model, the output power of a TEG is normally decided by the electrical and thermal transfer 

processes because the real hot and cold temperature may vary across to the resistance ratio. When 

increasing the resistance ratio appropriately, the temperature difference at the two ends of a TEG 

can be enlarged, which has a positive effect on the output power. In this way, in the 

comprehensive TEG model, the optimal resistance ratio is ways greater than 1.  
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Figure 4.8. Variation of the output power and efficiency of the TEG with the load resistance ratio 

at a temperature ratio of 1.2 

Likewise, the variation of the TEG’s performances with the temperature ratio can be obtained 

through a slice of Figure 4.5 at a specific resistance ratio (Figure 4.9). The results show the 

performances of the TEG module can not be always improved through increasing temperature 

ratio only. There is a temperature ratio for maximum the power and efficiency of the TEG 

module.  

 

Figure 4.9. Variation of the output power and efficiency of the TEG with the temperature ratio at 

a resistance ratio of 1.5 
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The main reasons can be explained by Figure 4.10 which describes the variation of the real 

temperature at the ends of the TE couples with different temperature ratios. The real temperature 

difference at both the ends of the TEG experiences an obvious increase with the temperature ratio 

growth, which is the main reason for the TEG performance improvement at the early stage of 

Figure 4.9. Additionally, the temperature should match with the TE materials’ properties in order 

to fully develop their thermoelectric performance. According to Figure 4.2, the recommended 

temperature should be in the range of 300 K and 500 K due to the TE materials equipped with an 

excellent ZT value under the conditions. However, with the temperature ratio increasing further, 

the real temperature at both the ends of the TE couples gradually deviates from the recommended 

range, and ZT decreases (Figure 4.2). When the enlarged temperature difference fails to 

compensate for the decreasing ZT, the TEG’s performance will degrade.  

 

Figure 4.10. Variation of the real temperature at the ends of the TE element with different 

temperature ratios at a resistance ratio of 1.5 

4.3.3 Effects of geometric structure on the performance of the variable cross-

sectional TEG module 

Based on the study mentioned in section 3.1, the variation of the cross-sectional area can lead 

to a difference in thermal resistance at the ends of the TE couples, enlarging the temperature 

difference. This is the main reason why the TEG performances can be improved by the variable 

cross-sectional element design. According to Eqs. (8)-(9), the cross-sectional functions can be 

described by the two non-dimensional parameters: shape parameter (𝛽 ) and area ratio (𝜇 ). 
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Therefore, the studies focus on the influences of the shape parameter and area ratio on the TEG 

performances in the following part.  

Figure 11 displays the variation of the output power (Figure 4.11-(a)) and efficiency (Figure 

4.11-(b)) of the TEG with different shape parameters and area ratios (here, the temperature ratio 

and resistance ratio are 1.2 and 1.5). When the design for a cross-sectional TEG module, the 

minimum area should be greater than zero. Thereinto, considered the feasibility of the 

manufacture, the shape parameter (𝛽) should be in the range of -2.5 and 1.5. As can be seen, the 

variation of the cross-sectional area for a high absolute value of the shape parameter (|𝛽|) is more 

dramatic than in that of a low |𝛽|, thereby making the temperature difference enlargement more 

obvious. Therefore, as indicated in the results, when the absolute value of the shape parameter 

(|𝛽|) increases, both the power and efficiency of the TEG can be improved simultaneously. 

Meanwhile, it is noticeable that when the value of |𝛽| stays the same, the power generation and 

efficiency of the TE element for a positive β are a little bit higher than that for a negative β. The 

main reason is that compared to a negative β, a positive β can make a TE element have a smaller 

minimum cross-sectional area (it can be proven through Eqs. (8) or (9)), which can enlarge the 

temperature difference further even under a same value of |𝛽|. 

 

(a) 
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 (b) 

Figure 4.11. Variation of the performance of the TEG with different shape parameters and area 

ratios at θ=1.2 and rx=1.5, (a) variation of the output power, and (b) variation of the efficiency 

Moreover, it can be seen from Figure 4.11 that the effects of the area ratio on the TEG’s 

performance are non-monotonic. Meanwhile, the optimal area ratio for both the power and 

efficiency of the TEG is below 1 which means that compared with N-type material, the P-type 

should have a larger proportion in a TE couple to make the power and efficiency reach the 

optimum. The ZT value of the P-type material is, in general, higher than that of the N-type as 

shown in Figure 4.2. Therefore, in order to fully develop the thermoelectric performances of this 

TE material combination, the proportion of P-type material should be more than that of N-type. 

4.4 Optimization the variable cross-sectional TEG module’s performances based on the 

Dual-MPSO algorithm 

The studies from the previous sections have indicated that the four non-dimensional 

parameters (temperature ratio (𝜃), resistance ratio (rx), shape parameter (β), and area ratio (µ)) 

have considerable, but non-monotonic influences on the variable cross-sectional TEG module’s 

output power and efficiency. Therefore, it is worthwhile to apply an algorithm to acquire the 

parameter combinations which can make the TEG module’s output power and efficiency reach 

optima, respectively. Since a comprehensive thermodynamic model was considered in this study, 

it is necessary to solve the control equations before evaluating the fitness by the objective 

function in every iteration during the optimizing process. In this way, a dual-MPSO algorithm (its 
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flow chart can be displayed in Figure 4.12) was used in this paper to optimize the TEG’s 

performance.   

 

Figure 4.12. Flow chart of the M-PSO method 

Based on the flow chart, in order to ensure correct optimizing direction and searching space, 

the objective functions, and the relevant variable ranges should be established before doing the 

research. The aims are to maximize the output power and efficiency for the variable cross-

sectional TEG module. In this way, according to the power calculating equation (Eq. (3)), the 

objective function for the power generation (𝑓𝑢𝑛𝑝𝑜𝑤𝑒𝑟) for the TEG module can be build as 

shown in Eq. (37). 

𝑓𝑢𝑛𝑝𝑜𝑤𝑒𝑟(𝛽, 𝜇, 𝜃, 𝑟𝑥) = max (
𝑆2(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖(1 + 𝑟𝑥)
2

𝑟𝑥) 
             

(37)  

Likewise, based on the efficiency calculating equation (Eq. (34)), the expression of the objective 

function for the efficiency (𝑓𝑢𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) for the TEG module is displayed in Eq. (38). 
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𝑓𝑢𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝛽, 𝜇, 𝜃, 𝑟𝑥) = max (
𝜓ℎ𝑆

2(𝑇ℎ − 𝑇𝑐)
2𝑁𝑝𝑎𝑖𝑟

2

𝑅𝑖(1 + 𝑟𝑥)
2(𝜃 × 𝑇∞ − 𝑇ℎ)

𝑟𝑥) 
(38) 

Meanwhile, the scopes of the variables in the two control equations can be found in Table 4.4. 

Table 4.4. Relevant variables and their value ranges 

Variable Value range 

Shape parameter (𝛽): −2.5 ≤ 𝛽 ≤ 1.5  

Area ratio (𝜇): 0.1 ≤ 𝜇 ≤ 4  

Temperature ratio 
(𝜃): 

1 ≤ 𝜃 ≤ 2.3  

Resistance ratio (𝑟𝑥): 0.1 ≤ 𝑟𝑥 ≤ 10  

 

After the initialization of the particle swarm, the 1st MPSO algorithm was applied to solve the 

control equations, which solved for the temperature (Th and Tc) at both the ends of the TE couple. 

Then, following the step of the 2nd MPSO method, the fitness was evaluated by the objective 

functions, making it possible to obtain the individual and global best position for later generations. 

Additionally, if the mutation condition (Rand. < threshold value) was triggered, a mutation was 

generated to improve the randomization for the algorithm. Finally, if the iteration step was lower 

than the maximum step, each new generation particles’ position and velocity was created by the 

updating equations. Meanwhile, the 1st MPSO was applied to calculate the Th and Tc in every 

iteration. 

The optimizing processes of the output power and efficiency of the TEG module are displayed 

in Figure 4.13. The results indicate that after 22 and 10 steps, the output power and efficiency 

converge at about 554 mW and 2.17%, respectively. The relevant configurations for the optimal 

power and efficiency can be found in Table 4.5.  
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Figure 4.13. Convergence of the output power and efficiency optimizations 

Table 4.5. Optimized working conditions and geometric structure configurations of the TEG 

Objective 
fun. 

Optimal 
value 

Shape 
parameter  

(𝜷) 

Area ratio  

(𝝁) 

Temperature ratio  

(𝜽) 

Resistance ratio  

(𝒓𝒙) 

Output 
power 

554.18 
mW 

-2.5 0.51 2.07 1.24 

Efficiency  2.17% -2.5 0.42 1.75 1..43 

 

Finally, it is noticeable that the single-objective optimizing results are anchor points of the 

Pareto frontier in the multi-objective problem. Therefore, the optimizing results in this paper will 

provide an important reference for the future research about the multi-objective optimization and 

technique for order preference by similarity to an ideal solution (TOPSIS) analysis for the 

hyperbolic TEG based on the comprehensive thermodynamic model. 

4.5 Conclusions 

In this paper, a hyperbolic function was introduced to design a variable cross-section TEG 

module.  Based on a comprehensive thermodynamic model, the two control equations were 

established for the ends of the TE couples. Through solving the control equations by the MPSO 
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algorithm, the real temperature at both ends of the TE couples were calculated, making it possible 

to evaluate the TEG performance. Then, the differences in the power generation and efficiency of 

the newly designed TEG and a traditional one were compared. The essences of the differences can 

be analyzed in depth through the aspect of the internal thermal resistance. Additionally, the 

research indicates that the four non-dimensional parameters, shape parameter (β), area ratio (μ), 

temperature ratio (θ), and resistance ratio (rx) have noticeable influences on the power generation 

and efficiency of the variable cross-section TEG module. In this way, the Dual- MPSO algorithm 

was applied to optimize the performances for the TEG module in the searching space consisting of 

the four parameters. The main conclusions of this work are as follows: 

1) Compared to the traditional shape, the hyperbolic TE element is an effective design to 

improve the power generation and efficiency of a TEG module. The thermal resistance 

analysis indicates that the changing cross-sectional area can lead to the variation of the 

thermal resistance, making it possible to enlarge the temperature difference across the TE 

couple. This is the main reason that the performance of the TEG module can be improved 

by the hyperbolic shape design.  

2) In the comprehensive thermodynamic model, the performance of the TEG failed to be 

improved through increasing the temperature ratio blindly. Initially, the real temperature 

difference between the two ends of the TE element can be enlarged with the temperature 

ratio growth, making it possible to improve the TEG performance. However, with the 

temperature ratio increasing further, the working temperature mismatch with the TE 

properties gradually to reduce the figure of merit (ZT). When the enlarging temperature 

difference fails to compensate for the performance loss due to the mismatch, the high-

temperature ratio will have negative influences on the TEG’s power generation and 

efficiency. 

3) The research also verifies that there is an optimal resistance ratio for the power generation 

and efficiency of the TEG. The optimal value of the resistance ratio for both the power 

generation and efficiency is more than 1. In the comprehensive thermodynamic model, the 

TEG performance can be determined by the electrical and thermal processes 

simultaneously. In this way, the TEG can not be considered as a pure battery only, which 

is the main reason for the optimal resistance ratio of more than 1. 

4) The effects of the shape parameter on the TEG’s performance cannot be ignored. 

Normally, the variation of the cross-sectional area will increase with the absolute value of 

the shape parameter growth, which can intensify the difference in the thermal resistance in 
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a TE element. In this way, based on the findings mentioned in the first point, the 

performance of the TEG can be improved by increasing the absolute value of the shape 

parameter. In addition, it is noticeable that when the |𝛽| has a same value, the positive β is 

more preferable, compared to the negative one. 

5) There is an optimal area ratio for the power generation and efficiency of the TEG, the 

value of which is below 1. When the length of a TE element remains unchanged, the area 

ratio actually represents the proportion of the P and N materials in the TEG system. The 

thermoelectric properties of the P-type material in this TEG module are superior to that of 

the N-type. It means that the TEG’s performances can also be improved by increasing the 

proportion of the P-type material appropriately. Therefore, the optimal area ratios for both 

the power generation and efficiency of the TEG are below 1. 

6) Finally, in order to conduct the optimization for the TEG based on the comprehensive 

model, it is necessary to solve the control equations in every optimizing iteration. In this 

way, the Dual-MPSO method was applied to this study. After the optimization, the 

optimal power and efficiency are about 554 mW and 2.17%, respectively. 
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CHAPTER 5 

USING A HYPERBOLIC STRUCTURE TO ENHANCE THE DYNAMIC 

PERFORMANCE OF A THERMOELECTRIC GENERATOR 

5.1 Introduction 

The rapid rise of energy-intensive industries in the world has led to a long-term trend of 

increasing energy demand in the past decades. There was almost a threefold increase in energy 

consumption during the period from 1971 to 2018 [1]. Most of the energy was provided through 

fossil fuel combustion in this period [2, 3]. Due to the emissions of greenhouse gases during the 

combustion processes, a series of environmental problems, such as global warming, are 

threatening the existence of humans [4, 5]. In order to tackle the environmental crisis, many 

governments in the world have reached a consensus on carbon neutrality by 2050 [6]. However, 

the relevant statistics from the International Energy Agency (IEA) indicate that in the scenario of 

carbon neutrality, it is necessary to limit the growth of energy usage to less than 0.9% per year to 

2030 [6]. In this way, except for energy mix changes, energy-saving technology, such as thermal 

recovery systems, also have become the focus of investment in recent years. Thermoelectrical 

generators (TEGs) are a kind of solid-state energy device, which can convert wasted heat to 

electrical power without producing any carbon emissions [7]. TEGs are considered as having a 

huge potential in the thermal recovery field, thereby, attracting the attention of many researchers. 

It is probably worthwhile to mention that most studies on TEG are steady state whereas this is 

seldom the case in reality [8, 9]. In other words, the dynamic behavior is important. Chen et al. 

[10] established a transient model to investigate a TEG’s performance under oscillating 

temperatures at the hot and cold sides. They found that the mean power output and efficiency of 

the TEG can be improved obviously through increasing delay between the temperature variations 

at the cold and hot sides [10]. Based on the transient model, Chen et al. [11] also verified that the 

amplitude of the oscillating temperature has a crucial effect on the power output [11]. According 

to the results, there is an 18% increase in the output power of the TEG when the temperature 

amplitude is raised from 0 K to 75 K [11]. 

X. Wang, P. Henshaw, and D. S-K Ting, “Using a hyperbolic structure to enhance the 

dynamic performance of a thermoelectric generator,” To be submitted 
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Additionally, a TEG’s performance under transient operation is not only affected by the 

variations of the source temperature, but is susceptible to its geometric structure. Jia et al. [12] 

built a transient model for a linear-shaped thermoelectrical generator (L-TEG), in which the P-

type leg and N-leg are placed horizontally. A shape parameter (θ), the ratio of the length of P-

type legs to the total length of TE legs, was used to describe the geometric characteristics of the 

L-TEG. In both the linear and exponential heating processes for the TEG, they found that a lower 

shape parameter can lead to a more obvious shock effect on the power output, and prolong the 

response time of the power to the heating process [12].  

It is worth noting that semiconductor processing technology has developed at an astounding 

pace, making it possible to produce TEG legs with complex shapes, such as variable cross-section 

structures [13]. Recently, research related to the variable cross-section TEG under a steady-state 

condition was reported. Through modeling for a tapered TEG, Sahin, and Yilbas [14] verified that 

the tapered structure had advantages in improving thermoelectrical conversion efficiency. 

Meanwhile, Shi et al. [15] found that both the power output and efficiency of a tapered TEG was 

the highest compared to two other shape designs: quadratic and exponential. In addition, Liu et al. 

[16] derived the efficiency expression for constant and variable cross-section TEGs under eight 

kinds of thermal boundary conditions. Based on the analytical expression, they found that the 

variable cross-section structure always has a higher conversion efficiency compared to the 

traditional design (constant cross-section structure) [16]. A TEG consisting of X-legs (where the 

cross-section decreases and then increases along the length) was introduced by Ibeagwu [17]. The 

results indicated that the TEG with X-legs can boost the output power by 19.13% over the 

traditional leg shape [17]. Moreover, the research from Doraghi et al. [18] reported that compared 

to the traditional leg, a diamond-leg can increase the TEG output voltage under the same thermal 

boundary condition [18]. 

However, the research about the performance of a variable cross-section TEG under a 

dynamic thermal process, especially with a periodic heat source, is rarely reported. Moreover, the 

periodic thermal source can be found in many industrial processes, such as the Stirling engine and 

batch-type combustor in an incineration system [19, 20]. The temperature in these processes 

always oscillate periodically, which can be described by a sinusoidal function [19, 20]. In this 

way, there are practical significances to studying a variable cross-section TEG’s performance 

under an oscillating thermal source temperature, which is the motivation for this research. 
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In this paper, a hyperbolic function was introduced as a variable cross-section TEG, while a 

sinusoidal varying thermal source was considered. Based on a transient model built in 

SIMULINK, differences in the transient performances between the hyperbolic and traditional 

TEGs under the oscillating source temperature were simulated. The mechanism causing the 

performance differences was explored by analyzing the hot and cold temperature variations of the 

two kinds of TEGs. Besides, some literature indicates that the features of the dynamic source 

temperature and the TEG’s geometric structure have crucial influences on the TEG’s 

performances [10-12]. In this way, this study investigated the hyperbolic TEG’s performances, 

such as the mean power output and overall efficiency, under different periods of the oscillating 

temperature and TEG leg shape parameters. 

5.2 TEG model established in SIMULINK 

The working principle of a TEG is that the temperature difference causes the migrations of 

electrons and holes in the N and P semiconductors to form the current [21, 22]. In this way, a 

TEG model always consists of two different parts: thermal network structure and electrical 

network structure. A periodic thermal source, where the source temperature oscillates as a 

sinusoidal function, was considered as a thermal boundary condition for the TEG model. 

5.2.1 Electrical network structure 

Cascaded TE elements, conductors, and substrate are the basic components of a TEG module, 

as shown in Figure 5.1-(a). A TEG can produce a voltage under a temperature difference due to 

the migrations of electrons and holes in the semiconductors [21, 22]. When connecting a load, a 

current will be generated in the loop of the TEG system. In this way, the electrical process of a 

TEG can be simplified as a general DC power supply [23]. Figure 5.1-(b) is a sketch of the 

electrical network structure established in SIMULINK. 

 

                                                                              (a)                                                                                 
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                                                                              (b) 

Figure 5.1. Schematic diagram of a TEG module, (a) cutaway view of a TEG module 

arrangement, and (b) equivalent circuit diagram of a TEG 

According to the thermoelectric effect, a TEG’s Seebeck voltage (V) is proportional to the 

temperature difference at its ends, which can be calculated from Eq. (1) [23-25].  

𝑉 = 𝑆(𝑇ℎ − 𝑇𝑐)𝑁𝑝𝑎𝑖𝑟 (1) 

where Npair is the number of TE couples, which is 199 pairs in this study.  The hot and cold 

temperatures are presented as Th and Tc. S is the overall Seebeck coefficient. Due to the empty 

holes and electronics equipped with positive and negative charges, the Seebeck coefficients of P-

type and N-type materials have a positive and negative values, respectively. In this way, the value 

of S, which is used to evaluate the overall Seebeck effect, is a sum of the absolute values of the 

two materials’ Seebeck coefficients, shown as Eq. (2).    

𝑆 = 𝑆𝑃 + |𝑆𝑁| (2) 

where SP and SN are the Seebeck coefficients of P and N semiconductors, respectively. 

The power supply process of a TEG is also consistent with Ohm’s law. Thus, the current (I) in 

the loop is a ratio of the Seebeck voltage and the total resistance, that is, 

𝐼 =
𝑉

𝑅𝑖 + 𝑅𝐿
=
𝑆𝑁𝑝𝑎𝑖𝑟(𝑇ℎ − 𝑇𝑐)

𝑅𝑖(1 + 𝑟𝑥)
 

(3) 
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The output power is proportional to the square of the current and the load resistance (𝑅𝐿) [23-

25], 

𝑃 = 𝐼2(𝑟𝑥𝑅𝑖) =
𝑆2𝑟𝑥(𝑇ℎ − 𝑇𝑐)

2𝑁𝑝𝑎𝑖𝑟
2

𝑅𝑖(1 + 𝑟𝑥)
2

 
(4) 

in which Ri is the internal resistance of a TEG, and rx is the ratio of the load and internal resistance. 

Normally, the internal resistance (Ri) of a TEG mainly consists of two different parts: the 

resistances of conductors (rc) and TE couples (rteg). For the resistance of conductors, their electrical 

resistance is proportional to the length and reciprocal of the cross-section area. Meanwhile, the 

welding resistances were considered in the TEG model. Thus, the total resistance of conductors 

can be calculated by Eq. (5) 

𝑟𝑐 = (
𝐿𝑐
𝜎𝑐𝐴𝑐

) (2𝑁𝑝𝑎𝑖𝑟 + 1) + 𝑟𝐶𝑡 × 4𝑁𝑝𝑎𝑖𝑟 
(5) 

where the conductor’s cross-sectional area and length are symbolized as Ac, Lc. 𝑟𝐶𝑡 and 𝜎𝑐 are the 

welding resistance and conductor’s electrical conductivity.  

The junction between the conductor and TE leg can be simplified in the model as an extra 

homogeneous layer, as shown in Figure 5.2-(a) [26]. In this way, Equation (6) can be used to 

evaluate the welding resistance [26]. 

𝑟𝐶𝑡 =
𝐻𝐶𝑡
𝜎𝐶𝑡𝐴𝐶𝑡

 
(6) 

in which 𝐻𝐶𝑡 and 𝐴𝐶𝑡 are the thickness and cross-section area of the extra homogeneous layer. 

The electrical conductivity of the extra homogeneous layer is symbolled as 𝜎𝐶𝑡. Based on the 

research of Qing et al. [26], value of 𝜎𝐶𝑡 can be affected by the heat sink at the cold side of a 

TEG. As for a TEG system with a passive cooling format, the value is suggested to be 1.03×103 

S/cm [26]. 

Similarly, the resistance of the semiconductor is proportional to the length and a reciprocal of 

the cross-section area. The resistance for an infinitesimal length for a TE couple is 

𝑑𝑟𝑇𝐸𝐺 = [
1

𝜎𝑃𝐴𝑃(𝑥)
+

1

𝜎𝑁𝐴𝑁(𝑥)
]𝑑𝑥 

(7) 
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The total resistance can be obtained by integration along with the length of the element (L), [15, 

27], 

𝑟𝑇𝐸𝐺 = 𝑁𝑝𝑎𝑖𝑟∫ [
1

𝜎𝑃𝐴𝑃(𝑥)
+

1

𝜎𝑁𝐴𝑁(𝑥)
]𝑑𝑥

𝐿

0

 
(8) 

in which the cross-section area of the P-type and N-type elements are presented as 𝐴𝑃(𝑥) and 

𝐴𝑁(𝑥). 𝜎𝑃 and 𝜎𝑁 are the electrical conductivities of the P-type and N-type materials. 

In this study, a novel variable cross-section TEG was defined by a hyperbolic function. The 

cross-section area of this TE element can be described as 

𝐴(𝑥) =
𝐴0
2
+ 𝛽𝐴0𝑙𝑛2 −

𝛽𝐴0𝐿

𝑥 + 𝐿
 

(9) 

The volume of a pair of the hyperbolic elements can be held constant at A0L, while studying 

the effect of the shape (β).  

where 𝐴0  is the total average cross-sectional area of the P and N-type semiconductors, kept 

constant at 8 mm2 in this study. In the hyperbolic TEG leg model, the minimum area should be 

greater than zero. Meanwhile, considering the feasibility of the manufacture, the shape parameter 

(β) was limited to the range of -2.5 and 1.5 in this study. 

It is worth noting that the shape parameter, β, is used to describe the geometry of the TEG. 

According to Figure 5.2-(b), when the cross-sectional area decreases from the hot to the cold side, 

the value of β is bigger than zero. β = 0 means the cross-sectional area is constant. When the 

cross-sectional area increases from the hot to the cold side, the value of β is lower than zero. 
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Conductor

Extra homogeneous 
layer 

 

(a) 

 

(b) 

Figure 5.2. Schematic diagram of the variable cross-section TE legs, (a) isometric view, and (b) 

longitudinal section 
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5.2.2 Thermal network structure 

A transient heat transfer process in the TEG model was also simulated in SIMULINK by 

using an electrothermal analogy. Namely, a thermal transfer problem can be solved as an 

electrical circuit through this method. The electrothermal analogy can assist to understand many 

thermal processes visually through presenting them in circuit terms [23]. Meanwhile, due to the 

mathematical equivalence, a transient behavior in a thermal process can be solved and recognized 

by a circuit simulator [23]. Recently, some studies have been reported applying the electrothermal 

analogy to evaluate performance for a TEG [28-30]. 

The transient thermal transfer process of a TEG can be described by the general formula (as 

shown Eq. (10)) [31] 

�̇�𝑥 − �̇�𝑥+∆𝑥 + �̇�𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
∆𝐸𝑒𝑙𝑒𝑚𝑒𝑛𝑡

∆𝑡
 

(10) 

in which ∆𝐸, �̇�, and �̇� represent the energy content variation rate, heat conduction rate, and heat 

generation rate. 

There are three items in the general formula, which are heat flux item, heat generation item, 

and heat capacity item. In the electrothermal analogy, these three items are equivalent to current, 

DC current supply, and capacitor. Besides, the other two important elements in a thermal process, 

temperature and thermal resistance correspond to potential and resistance in the circuit. 

The transient thermal model for the TE elements is displayed in Figure 5.3. In the model, the 

TEG is divided into n parts along the leg length direction. The local thermal resistance of each 

part is symbolled as 𝜓𝑇𝐸(𝑥𝑖), which can be evaluated by Eq. (11) [15, 27] 

𝜓𝑇𝐸(𝑥) =
1

𝑁𝑝𝑎𝑖𝑟(
𝑘𝑃̅̅ ̅

∫
1

𝐴𝑃(𝑥)
𝑑𝑥

𝑥+∆𝑥

𝑥

+
𝑘𝑁̅̅̅̅

∫
1

𝐴𝑁(𝑥)
𝑑𝑥

𝑥+∆𝑥

𝑥

)

 
  (11) 

where 𝑘𝑃̅̅ ̅ and 𝑘𝑁̅̅̅̅  are the average thermal conductivity of the P&N materials, respectively.  

A TE element mainly consists of junction and inside parts shown as in Figure 5.3. For the 

junction parts, there are three kinds of thermal energy, which are the Fourier heat, Peltier heat, 

and Joule heat. The Fourier heat (�̇�𝐹) can be considered as a ratio of the temperature difference 

and thermal resistance, shown as Eq. (12) [31] 
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�̇�𝐹(𝑥) =
𝑇(𝑥 + ∆𝑥) − 𝑇(𝑥)

𝜓𝑇𝐸(𝑥)
 

  (12) 

The current may cause a heat absorption or dissipation at a TE junction, which is named as 

Peltier heat (�̇�𝑃). The Peltier heat is normally absorbed at the hot side, but released at the cold 

side of a TE element [23]. Equation (13) is the general expression of the Peltier heat [23] 

�̇�𝑃 = 𝑆𝐼𝑇(𝑥)𝑁𝑝𝑎𝑖𝑟 (13) 

Meanwhile, when a current passes through a conductor or semiconductor, thermal energy will 

be produced due to its resistance, which is the Joule heat (�̇�𝐽). The Joule heat can be calculated 

by Eq. (14) 

�̇�𝐽(𝑥) = 𝐼
2𝑅𝑖(𝑥) (14) 

In this way, based on Eq. (10), the transient thermal process at the junctions of a TE element 

can be described by the following equation (Eq. (15)) 

𝑑�̇� = �̇�𝐹(𝑥) − �̇�𝐹(𝑥 + 𝑑𝑥) = 𝐶𝑇𝐸(𝑥)
𝑑𝑇(𝑥)

𝑑𝑡
− 𝐼2𝑅𝑖(𝑥) ± 𝑆𝐼𝑇(𝑥)𝑁𝑝𝑎𝑖𝑟 

(15) 

in which, 𝐶𝑇𝐸(𝑥) is the local heat capacity, which can be calculated by Eq. (16) 

𝐶𝑇𝐸(𝑥) = 𝜌𝑇𝐸𝑉𝑇𝐸(𝑥)𝑐𝑡ℎ (16) 

where 𝑐𝑡ℎ and 𝜌𝑇𝐸 are the specific heat and density of the TE elements, which are 155 J/kg∙K and 

8160 kg/m3, respectively [32]. 𝑉𝑇𝐸(𝑥) represents the local of the TE elements’ volume. 

The Peltier effect just acts on the TE junctions. Therefore, the thermal energy movement 

inside of a TE element mainly consists of the Fourier heat and Joule heat. Equation (17) is used to 

control the transient heat process of internal TE elements [33] 

𝑑�̇� = �̇�𝐹(𝑥) − �̇�𝐹(𝑥 + 𝑑𝑥) = 𝐶𝑇𝐸(𝑥)
𝑑𝑇(𝑥)

𝑑𝑡
− 𝐼2𝑅𝑖(𝑥) 

(17) 
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Figure 5.3. Schematic diagram of the thermal model for the TEG in the SIMULINK 

Additionally, during the processes of absorbing energy from a thermal source and dissipating 

energy to the surroundings for a TEG, the heat energy may pass through several non-

thermoelectric parts, such as the substrate and radiator. In order to improve the quality of the 

transient TEG model, some thermal resistances were considered in this paper. The thermal 

network of the non-thermoelectric parts in the SIMULINK is displayed in Figure 5.4.  

+

-

+

-

TS T 

TEG
Module

 

Figure 5.4. Schematic diagram of the thermal model for the non-thermoelectric parts in the 

SIMULINK 
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In the transient model, the thermal resistance of the substrates, heat reservoirs, and interfaces 

are presented as 𝜓𝑠𝑢𝑏, 𝜓ℎ/𝑐, and 𝜓𝐶𝑡, respectively. Based on the theory of thermal conductivity, 

the thermal resistance of the substrate layer can be evaluated by Eq. (18) 

𝜓𝑠𝑢𝑏 =
𝐻𝑠𝑢𝑏

𝑘𝑠𝑢𝑏𝐴𝑠𝑢𝑏
 

(18) 

where 𝐻𝑠𝑢𝑏 and 𝐴𝑠𝑢𝑏 are the thickness and cross-section area of the substrate layer. The thermal 

conductivity of the substrate layer is marked as 𝑘𝑠𝑢𝑏. 

For a TEG, the hot side is attached to a thermal source [34]. Based on the research from 

Gomez et al. [34], the thermal resistance of the hot side (𝜓ℎ ) can be assumed as 1 K/W. 

Meanwhile, the heat sink on the cold side is a passive cooling format due to its cost-effectiveness 

and reliability. The radiator’s configuration from the manufacturer indicates that the thermal 

resistance of the cold side is 5.5 K/W [35].  

As it’s known, there is a contact thermal resistance at every interface between adjacent 

materials. In a TE leg, these contact thermal resistances are connected in a series along with the 

heat transfer direction. In this way, these interfaces can be equivalent to an extra homogeneous 

layer at the hot and cold sides, respectively [26]. The contact thermal resistance (𝜓𝐶𝑡) on the layer 

can be calculated by Eq. (19) 

𝜓𝐶𝑡 =
𝐻𝐶𝑡
𝑘𝐶𝑡𝐴𝐶𝑡

 
(19) 

where the equivalent thermal conductivity of the extra homogeneous layer is denoted as 𝑘𝐶𝑡 . 

Referring the research of Qing et al. [26], the value of 𝑘𝐶𝑡 is 2.18 W/m·K. 

5.2.3 Boundary conditions and physical qualities 

This study mainly focuses on the transient behaviors of the hyperbolic TEG under a periodic 

temperature fluctuation. The source temperature (𝑇𝑆) is varied by a sinusoidal function as shown 

Eq. (20) 

𝑇𝑆(𝑡) = 𝑇𝑆,0 + 𝐴𝑆 sin (
2𝜋𝑡

𝜆𝑆
) 

(20) 

in which 𝐴𝑆 , 𝑇𝑆,0 , t, and  𝜆𝑆  are the temperature of the amplitude, offset distance, time, and 

period. Thereinto, the values of 𝐴𝑆, 𝑇𝑆,0, and 𝜆𝑆 were 50 K, 423 K, and 60 mins, respectively. 
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Meanwhile, a constant temperature was used as the boundary condition at the cold reservoir, 

shown as Eq. (21) 

𝑇∞(𝑡) = 300 𝐾 (21) 

where 𝑇∞ is the ambient temperature. 

Additionally, in the transient heat transfer problem, its initial temperature of the TEG is the 

same as the ambient temperature.  

In addition, the two indices, the mean output power, and overall efficiency were introduced to 

evaluate the transient performance of the hyperbolic TEG under the oscillating source 

temperature. The mean power (�̅�) can be calculated by the total work and time (a total time of 

18000 s was considered in the study) as shown in Eq. (22) [10, 11]. The overall efficiency (𝜂) is 

defined by the ratio of the mean power output and mean input heat rate (�̇�𝑖𝑛𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ ), which is 

displayed by Eqs. (23) and (24) [10, 11] 

�̅� =
∫ 𝑃(𝑡)𝑑𝑡
3600𝑠

0𝑠

∫ 𝑑𝑡
3600𝑠

0𝑠

 
(22) 

�̇�𝑖𝑛𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅ =

∫
𝑇𝑠(𝑡) − 𝑇ℎ(𝑡)

𝜓ℎ + 𝜓𝑠𝑢𝑏 + 𝜓𝐶𝑡
𝑑𝑡

3600𝑠

0𝑠

∫ 𝑑𝑡
3600𝑠

0𝑠

 

(23) 

𝜂 =
�̅�

�̇�𝑖𝑛𝑝𝑢𝑡
̅̅ ̅̅ ̅̅ ̅̅

=
∫ 𝑃(𝑡)𝑑𝑡
3600𝑠

0𝑠

∫
𝑇𝑠(𝑡) − 𝑇ℎ(𝑡)

𝜓ℎ + 𝜓𝑠𝑢𝑏 + 𝜓𝐶𝑡
𝑑𝑡

3600𝑠

0𝑠

 
(24) 

in which 𝑇ℎ(𝑡) represents the temperature at the TEG’s hot side. 

5.2.4 Material properties 

There are three important material properties related to the thermoelectric conversion 

performance, which are the Seebeck coefficient (S), electrical conductivity (σ), and thermal 

conductivity (k). 

In this paper, the thermoelectric material for the TEG was modified bismuth telluride, for 

which the properties can be found in Table 5.1. 
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Table 5.1. Material properties of modified bismuth telluride [27, 36] 

Material 

properties 

P-type modified bismuth telluride  N-type modified bismuth telluride  

Seebeck 

coefficient  

(𝜇V/K) 

−188.2 + 2.2411𝑇

− 3.0075 × 10−3𝑇2

+ 2.4914 × 10−7𝑇3 

443.49 − 4.5121𝑇

+ 9.4424 × 10−3𝑇2

− 5.8362 × 10−6𝑇3 

 

Thermal 

conductivity 

 (W/m·K) 

−1.8067 + 5.7529 × 10−3𝑇 −
64.639

𝑇

+
1.3395 × 105

𝑇2
 

 

−4.6205 + 9.9277 × 10−3𝑇

+
833.7

𝑇
+
235636

𝑇2
 

Electrical 

conductivity  

(S/cm) 

−473.1 + 0.86507 × 𝑇

+ 𝑒(16.637−1.6942ln (𝑇)) 

 

−2139.4 + 2.5778 × 𝑇

+ 𝑒(12.795−0.89092ln (𝑇)) 

 

 

In order to reflect the influence of temperature on the TEG performances, the average values of 

the TE material properties were taken into the model. Mathematically, the average value of the 

material’s properties can be calculated by the mean value theorem of integrals along with the 

temperature. In this way, the general formula of the average values of the TE material properties 

can be shown in Eq. (25) 

∆̅=
∫ 𝛿(𝑇) ∙ 𝑑𝑇
𝑇ℎ
𝑇𝑐

(𝑇ℎ − 𝑇𝑐)
 

(25) 

where ∆̅  represents the average values of the Seebeck coefficient, thermal conductivity, and 

electrical conductivity. The temperature-related value of each of these properties is marked as 

δ(T).  

5.3 Modelling validation 

Before conducting the research, it is necessary to validate the transient TEG model. In this 

way, work in the modeling validation is divided into two different parts. In the first part, under a 

steady-state, the TEG model was validated by the experimental data from the study of Chen et al. 

[37]. In their experiment, a TEG with 127 pairs of elements were tested under a constant 

temperature boundary condition [37]. Therefore, the same case was simulated by our model in 
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SIMULINK. Besides, In the SIMULINK model, the TEG was divided into n parts, and the 

branch thermal resistances of the n parts are in series. Three kinds of values of n were tested in 

the modelling validation. Table 5.2 displays the simulation results and the experimental data from 

Chen et al. [37].  From the table, it can be found that the simulation results are close to the 

experimental data. Meanwhile, under the steady-state operation, the effects of the value of n on 

the TEG’s output results can be ignored because the total thermal resistance of the TEG keeps the 

same in the different values of n.  

Table 5.2. Comparison between experiment and steady-state model for the TEG (Th=423 K and 

Tc= 303 K) 

Quantity Experimental 

data [38] 

Results of the 

model (n=2) 

Results of the 

model (n=4) 

Results of 

the model 

(n=8) 

Input heat rate (W) 70 71 71 71 

Output power (W) 2.51 2.78 2.78 2.78 

Current (A) 0.86 0.91 0.91 0.91 

Efficiency (%) 3.6 3.9 3.9 3.9 

 

In order to validate our TEG model under a dynamic operation, the simulation results from 

Meng et al. [38] were referred in another part. In the study of Meng et al. [38], they mainly focus 

on a pair of TE elements’ transient behaviors under stepped and linear changes in temperature, 

respectively. The same cases were simulated by our model in SIMULINK. The results are 

displayed in Figure 5.5. In the transient problem, the response time is defined as the time required 

to reach a new steady-state (99% of the final value) after the input ends changing [38]. Table 5.3 

indicates the response times of Meng et al. [38] and the TEG model in this study. 
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(a) 

 

(b) 

Figure 5.5. Comparison between previous and present transient TEG models, (a) results from 

Meng et al. [38], and (b) results from the present TEG model with n=4 
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Table 5.3. Comparison between experiment and steady-state model for the pair of TE elements 

Quantity Meng et al. 

[39] data 

Results of this 

model (n=2) 

Results of this 

model (n=4) 

Results of this 

model (n=8) 

Response 

time (s) 

Step change 0.042 0.037 0.039 0.040 

Linear change 0.026 0.023 0.024 0.025 

 

Under the hot temperature varied with the step decrease, the power converges to 0.0083 W, 

and the response time is 0.042 s in the research of Meng et al. [38]. For our result with n=4, the 

converged power and response time are 0.0085 W and 0.039s, respectively, which are within 10% 

of the literature values. 

With the hot temperature decreasing linearly, the converged power is the same as that of the 

step-change in the research of Meng et al. [38] and in this simulation. The response time of the 

linear change is 0.0026 s for Meng et al. [38] and 0.0024 s in this study with n=4. In this way, 

when n is 4, the transient result of the model in this study is very close to that of Meng et al. [38] 

under both the hot temperature step change and linear change. 

5.4 Transient performances of the hyperbolic TEG under the periodic source 

temperature 

In the study, the shape designs with β=0 and 1.5 were taken as examples to compare the 

differences in the hyperbolic and traditional TEG transient behaviors under the oscillating source 

temperature. Meanwhile, the resistance ratio (rx) was kept constant at 1.5 in the two cases. Before 

conducting the study, it was also necessary to select a time step (Δt) for the transient problem. Six 

levels of time step were tested for the TEG with β=0. The results are displayed in Table 5.4. 
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Table 5.4. Comparison in different time steps for a TEG (β=0) 

Quantity  Δt=2 s Δt=1 s Δt=0.1 s Δt=0.01 s Δt=0.001 s Δt=0.0001 s  

Mean power [W] 0.1216 0.1217 0.1220 0.1220 0.1220 0.1220 

Mean input heat 

rate [W] 

16.49 16.50 16.51 16.51 16.51 16.51 

Overall 

efficiency [%] 

0.7374 0.7376 0.7389 0.7389 0.7389 0.7389 

 

From Table 5.4, when the time step reached 0.1 s, the results, involving the mean power 

output, mean input heat rate, and overall efficiency, remained stable. Therefore, 0.1 s were used 

to be the time step for the following study. 

The temperature variations at the hot side and cold side of the two leg geometries are displayed in 

Figures 5.6-(a) and (b). It took a couple of cycles for the simulation to reach steady state, 

producing repeatable sinusoidal signals that represent the real cycles. As such, the first 60 

minutes of the simulated results were discarded. 

The results indicate that there are similar temperature profiles on the hot side for the two 

geometries. As for the cold side, the hyperbolic TEG have a lower cold side temperature, 

compared to the TEG consisting of traditional elements (shown as Figure 5.6-(b)). The main 

reason it the hyperbolic design can amplify the thermal resistance under the same volume shown 

as Figure 5.6-(c).  
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(a) 

 

(b) 
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(c) 

Figure 5.6. Comparison in the temperature and thermal resistance variations of the hyperbolic and 

traditional TEG, (a) hot temperature, (b) cold temperature, and (c) thermal resistance 

The temperature difference of the TEG is calculated by a subtracting the hot temperature from 

the cold temperature. In this way, except for the initial stage, the hyperbolic shape design can also 

increase the temperature difference over most of the TEG in a cycle as shown in Figure 5.7.  

 

Figure 5.7. Comparison in the temperature difference variations of the hyperbolic and traditional 

TEGs 
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Figure 5.8 displays the power variations of the two kinds of TEGs under the sinusoidal 

thermal source. Similar to the tendency in the temperature difference, the hyperbolic TEG can 

output more electric work during the total time. In this way, the mean output power of the 

hyperbolic TEG in a cycle is higher than that of the traditional one. 

 

Figure 5.8. Comparison in the output power of the hyperbolic and traditional TEGs, (a) output 

power variations, and (b) mean output power 

Additionally, in order to further verify the effects of variable cross-section design on the 

TEG’s performance under a periodic thermal source, the hyperbolic TEG was modeled with 

different shape parameters and resistance ratios. It is noted that a shape parameter (β) of zero 

means the TE element is untapered; namely, it is a traditional TEG. The results shown in Figure 

5.9-(a) indicate that the hyperbolic shape design can be used to improve the mean output power 

of the TEG under different resistance ratios. Meanwhile, since the hyperbolic shape design can 

enlarge the thermal resistance compared to the traditional TEG, there is a lower mean input heat 

rate for the hyperbolic TEG compared to the traditional one as shown in Figure 5.9-(b). The 

overall efficiency is a ratio between the mean output power and mean input heat rate. In this way, 

the overall efficiency of the hyperbolic TEG is higher than that of the traditional one as shown in 

Figure 5.9-(c). The results also disclose that there are obvious increases in both mean output 

power and overall efficiency with the absolute value of the shape parameter growth. Compared to 

the traditional TEG, the hyperbolic one designated by β=-2.5 can increase the mean power output 

and overall efficiency by 35.5% and 86.6%, respectively. Besides, there is almost the same power 
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output by the hyperbolic TEG designed by a positive and negative value of β. However, 

compared to a negative value of β, the shape parameter with a positive value may enlarge the 

thermal resistance further, making a lower mean input heat rate in the TEG with a positive value 

of β. Therefore, when the value of |β| stays the same, the overall efficiency of the TEG with β>0 

is a little bit better than that with β<0 under the dynamic condition. 

 

(a) 

 

(b) 
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(c) 

Figure 5.9. Transient performances of the hyperbolic TEG with different shape parameters and 

resistance ratios, (a) variation of the mean output power, (b) variation of the mean input heat rate, 

and (c) variation of the overall efficiency 

Due to the thermal inertia, the temperature variations at the hot and cold sides of the TEG are 

not synchronous. In this way, it is possible for the oscillating period of the heat source 

temperature to have an important influence on the temperature difference between the two ends of 

the TEG. It also means that the oscillating period may play an important role in the TEG’s 

performance. In order to illustrate the effect of the oscillating period on the TEG’s performance, a 

hyperbolic TEG with β=1.5 was modeled under different oscillating periods (𝜆𝑆 ) and offset 

distances (𝑇𝑆,0 ). The thermoelectrical conversion performances of the hyperbolic TEG are 

displayed in Figure 5.10, involving the mean input heat rate, mean power output, and the overall 

efficiency. The results indicate that the mean input heat rate mainly depends on the offset distance 

of the source temperature rather than the oscillating period (shown as Figure 5.10-(a)). However, 

it can be seen in Figure 5.10-(b) that a shortened oscillating period can always increase the mean 

output power of the hyperbolic TEG no matter what is the offset distance of the source 

temperature. Combining the variations of the mean input heat rate and output power, decreasing 

the oscillating period can also improve the overall efficiency of the hyperbolic as shown in Figure 

5.10-(c). 
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(a) 

 

(b) 
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(c) 

Figure 5.10. Transient performances of the hyperbolic TEG with different source periods and 

offset distances, (a) variation of the mean output power, (b) variation of the mean input heat rate, 

and (c) variation of the overall efficiency 

Additionally, in order to investigate the mechanism of the mean power improvement in a short 

oscillating period, the transient data for the temperature difference and power output at 𝑇𝑆,0=423 

K were extracted, shown as Figure 5.11. For a TEG, the response to the variation of the source 

temperature at the hot side is faster than that at the cold side due to the thermal inertia. With a 

shortened period of the oscillating source temperature, the lag effect becomes more obvious, 

making it possible to enlarge the oscillating amplitude of the temperature difference between the 

hot and cold side of the TEG (as shown in Figure 5.11-(a)). The output power of a TEG is a 

function of the temperature difference squared. Increasing temperature difference amplitude can 

lead to the larger the power at the crest compared to the valley (as shown in Figure 5.11-(b)), 

making it possible to increase the total electrical work. In this way, decreasing the period may 

have a positive effect on the mean power output of the TEG. 
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(a) 

 

(b) 

Figure 5.11. Comparison in the temperature difference and output power variations of the 

hyperbolic TEG under different source periods, (a) temperature difference variations, and (b) 

output power variations 
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5.5 Conclusions 

In this paper, a hyperbolic shape design was introduced to improve a TEG’s performance 

under a periodic thermal source. Based on the electrothermal analogy, a transient TEG model was 

established in SIMULINK. In this model, the source temperature oscillates with a sinusoidal 

function, and the ambient temperature is kept constant at 300 K. The TEG model was validated 

under steady-state and dynamic operation. Then, it was used to show differences in the transient 

behaviors of hyperbolic and traditional shaped TEGs under the periodic thermal source. 

Meanwhile, based on the TEG model, the two important parameters, the shape parameter, and 

source temperature period, were verified to have considerable effects on the transient 

performances of the hyperbolic TEG. The main conclusions of this work are as follows: 

1) Due to the thermal inertia, there is a higher power output of the traditional TEG 

compared to that of the hyperbolic one at the initial stage. However, the hyperbolic 

design can enlarge the thermal resistance under the same volume of a TE element. 

With lower heat transfer, the hyperbolic TEG ends up with a higher temperature 

difference than that of the traditional one, making it possible to produce more power 

for most of the cycle. In this way, under a continuously oscillating source temperature, 

the hyperbolic shape design can be used to improve the mean output power and 

overall efficiency of a TEG. 

2) Additionally, the shape parameter, β, is used to describe the geometry of the 

hyperbolic TEG. Increasing the absolute value of the shape parameter (|β|) makes the 

TE element’s shape more tapered, which can enlarge the thermal resistance further. 

Therefore, a high value of |β| has positive effects on the transient performances of the 

hyperbolic TEG. 

3) Finally, there is a delay in the temperature variations from the hot to the cold side of 

the TEG. A shortened period of the source temperature oscillation can increase the 

amplitude in the oscillating temperature difference at two ends of the TEG, thereby, 

having a positive effect on the mean power output. The result indicates that the effect 

of the period on the input heat can be ignored. In this way, decreasing the period can 

also improve the overall efficiency of the TEG. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

The main objective in this study is to enhance a TEG’s performance through novel geometric 

structures and optimized working conditions. The contributions are mainly focused on two 

aspects, which are the improvement of the TEG optimization algorithm, and variable cross-

section shape design. The main conclusions are summarized in this chapter. 

6.1.1 Improvement of TEG optimization algorithm 

A mutation subprogram was used to improve the PSO method when the TEG’s performance is 

optimized by this algorithm. The mutation is an effective method to avoid premature convergence 

for the PSO algorithm. Besides, the mutation can decrease the need for trial-and-error 

calculations or tuning parameters in the optimization. 

The results also demonstrated that the optimal configurations of the geometric structure and 

working conditions may vary with different performance indices of a TEG. It is necessary to 

conduct multi-objective optimization for a TEG in order to balance the design based on different 

performance indicators. The weighted approach can be introduced in the M-PSO algorithm to 

solve the multi-objective optimization for a TEG. However, the selection of the weighting factor 

is arbitrary. This drawback can be avoided through introducing the epsilon-constraint method into 

the M-PSO algorithm. A series of solutions that satisfy the constraints can be acquired by this 

method. It was demonstrated that an ideal solution can be selected from the set of solutions 

through applying the technique for order preference by similarity ideal solution (TOPSIS) method. 

Additionally, there is a limitation on the M-PSO algorithm when a TEG is optimized based on 

a comprehensive thermodynamic model where the temperatures at the ends of a TEG are 

unknown. This limitation can be overcome through loop nesting of the M-PSO algorithm (which 

is named as Dual-MPSO). 

Overall, the M-PSO is an effective algorithm to optimize a TEG’s performance. Meanwhile, 

through using the epsilon-constraint and TOPSIS method cooperatively, a reasonable optimal 

configuration for a TEG in the multi-objective optimization can be acquired by the M-PSO 

algorithm. Besides, the M-PSO method was utilized twice when optimizing a TEG based on a 

comprehensive thermodynamic model. This method is called the Dual-MPSO algorithm. 
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6.1.2 Hyperbolic shaped design for a TEG 

A hyperbolic structure was used to optimize a TEG’s performance. The results indicated that 

under a steady-state operation, the hyperbolic TEG has a higher output power and efficiency 

compared to the constant cross-section TEG (traditional TEG). According to the thermal 

resistance analysis, the changing cross-sectional area can lead to the variation of the thermal 

resistance, making it possible to enlarge the temperature difference across the TE couple. This is 

the main mechanism by which the performance of the TEG module is improved in the hyperbolic 

shape design. Besides, the shape parameter (β), used to describe the geometric feature of the 

hyperbolic TEG, has considerable effects on the TEG’s performance. With the increasing of the 

|𝛽|, the output power and efficiency of the hyperbolic TEG can be improved. It is also noticeable 

that when the |β| has the same value, the positive β is more preferable, compared to the negative 

one (i.e., narrowing the hot end of the TEG is more effective than narrowing the cold side). 

The hyperbolic structure can not only be used to increase the power output and efficiency 

under a steady-state operation, but it has positive effects on the dynamic performance of a TEG. 

Under a periodically oscillating source temperature, the mean output power and overall efficiency 

of the hyperbolic TEG are higher than that of the traditional one. The mean power output and 

overall efficiency of the hyperbolic TEG can be improved further through enlarging the value of 

the |𝛽|. Besides, under dynamic operation, the effects of the oscillating period of the source 

temperature on the hyperbolic TEG’s dynamic performance should not be ignored. The results 

disclosed that decreasing the oscillating period results in enhancements in the mean power output 

and overall efficiency of the hyperbolic TEG. 

6.1.3 Limitations 

Although the MPSO algorithm can be used to optimize a TEG in many applications, there are 

some limitations to the variable range selections in these studies. Firstly, the TE materials in this 

thesis are bismuth telluride and modified bismuth telluride. The relevant literature indicated that 

these materials are suitable for waste heat recovery at a medium temperature range, meaning the 

source temperature is normally between 503 K and 923 K [1, 2]. In this way, the temperatures in 

this thesis range from 273 K to 900 K. Additionally, in the optimization, the load resistance is in a 

range between 0.01 Ω to 10 Ω, and the internal resistance of the TEG depends on the materials’ 

properties, temperature and structure. The optimization algorithm is independent of the load 

resistance, and the power and efficiency depend on the load resistance. However, based on Ohm’s 

law, when the load resistance is roughly equal to the internal resistance, the TEG will reach its 

optimal performance (in the thesis, the variation of the internal resistance of the TEG is between 
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0.09 Ω to 8.81 Ω under different temperatures and geometric structures). In this way, the range of 

the load resistance should cover the internal resistance variations, which is the main reason why 

the load resistance ranges from 0.01 Ω to 10 Ω. 

6.2 Recommendations 

For the research about the TEG’s performance optimization, there are two aspects which 

should be improved further: the TEG model and algorithm. Firstly, based on the practical 

application, it is necessary to establish a detailed model for a TEG system, involving the TEG 

module and cooling devices, making it possible to conduct a comprehensive optimization for a 

TEG system. Moreover, a segmented TEG model, consisted of two or three different TE 

materials, should be focused in future studies, which is a useful way to improve the TEG’s 

performance under a high temperature environment. Specially, some complicated geometric 

structures, such as diamond structure or X-shaped structure, can be used to design and optimize 

the segmented TEG’s performance.  

Additionally, an increasing number of novel bionic algorithms, such as the Student 

Psychology-Based Optimization (SPBO) and Poor and Rich Optimization (PRO), etc., have been 

proposed in recent years. These algorithms improve the convergence. In this way, it is worthwhile 

to apply novel algorithms in the TEG optimization research, to further avoid premature 

convergence, and decrease the processes of trial-and-error calculations or tuning parameters. 

Finally, from the dynamic research, it is difficult for a TEG to output power at its optimal state 

continuously since the surroundings are always changing. Thus, similar to other renewable energy 

systems, like solar power systems, it is required for a TEG to develop a Maximum Power Point 

Tracking (MPPT) system, making it possible to output the maximum power continuously. 

However, the algorithm failure caused by premature convergence is still one of the main 

challenges for the MPPT system. In this way, improving the algorithm for the MPPT system is 

also a popular topic in future studies. 

References 

[1] R. Ovik, B. D. Long, M. C. Barma, M. Riaz, M. F. M. Sabri, S. M. Said, and R. Saidur, ‘A 

review on nanostructures of high-temperature thermoelectric materials for waste heat 

recovery’, Renewable and Sustainable Energy Reviews, vol. 64, pp. 635–659, July 2016. 

[2] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, ‘Bulk nanostructured 

thermoelectric materials: current research and future prospects’, Energy & Environmental 

Science, vol. 2 (5), pp. 466–479, February 2009. 



 

141 
 

   



 

142 
 

APPENDICE  

Appendix A Permissions of the chapters 2 and 3 from the publishers 

 

 

  



 

143 
 

 

VITA AUCTORIS  

 

 

NAME:  Xi (William) Wang 

PLACE OF BIRTH: 

 

Beijing, China 

YEAR OF BIRTH: 

 

1990 

EDUCATION: 

 

 

 

Beijing the 31st Middle School, Beijing, China, 2008 

Chang’an University, B.Sc., Xi’an, China, 2013 

Chang’an University, M.Sc., Xi’an, China, 2016 

University of Windsor, Windsor, ON, 2022 

 

 


	Enhancing Thermoelectric Generator Performance
	Recommended Citation

	tmp.1675375347.pdf.72wvM

