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Table 4: Available historical imagery and supplementary UAV surveys taken during this study alongside water 

level and breach width at HB. Data represented in Figure 30. 

Year Water Level Breach Width 

1973 174.74 0 

1974 174.69 0 

1975 174.62 0 

1976 174.57 0 

1980 174.52 0 

1988 174.26 20 

1989 174.23 23 

2009 174.25 0 

2012 174.13 0 

2016 174.41 15 

2017 174.58 31 

Mar-19 174.65 68 

Sep-20 174.83 320 

Nov-20 174.65 299 

Mar-21 174.1 270 

Jul-21 174.35 305 

Nov-21 174.02 277 

 

7.2 Discussion 

The stability of a breach is dependent on the consistency of strong waves and the strength 

of the longshore transport (Kraus, 2003). In this study, alongside the aforementioned drivers, water 

levels are considered to play a main role in barrier breaching in lacustrine environments. Water 

levels are the control on longshore transport and the waves impacting the barrier. At EB, barrier 

initiation and closure have been found to follow a four-step cycle of breaching (Figure 31, 32):  
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Figure 31: Four-step cycle of barrier breaching of a shoreline with no coastal structures and adequate sediment supply. 

(I) Large increase in lake water levels causes the barrier beach to breach in the middle of the barrier. (II) Increased 

wave action erodes sediment from sides of barrier and is then carried to the centre, decreasing breach width. (III) 

Water levels drop, exposing low elevation of the breach. (IV) Further drop in water levels fully closes the beach.   
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I) Large increase in lake water levels that exceeds the elevation of the barrier beach causes 

 it to breach in the middle of the barrier, at the weakest point. At this point, barrier elevation 

 is the lowest, width is the narrowest, and vegetation is sparse or non-existent. At EB this 

 occurred at lake levels of 174.84 m, and a breach width of 76.5 m.  

II) Further increase in lake water levels, with a small decrease in breach width. As water 

 levels continue to increase during this step, increased wave action erodes sediment away 

 from the stronger sides of the barrier where elevation is high. Through alongshore 

 transport, this sediment is carried to the centre of the barrier, slightly beginning to fill in 

 the breach. At EB, this was observed when there was a 0.11 m increase in lake water level, 

 but the breach decreased to 42 m wide.  

III) Decrease in lake water levels, and further decrease in breach width. The breached part 

 of the barrier has a naturally low elevation, therefore when water levels begin to drop, the 

 sand becomes exposed again. At EB, the breach drastically decreases to 15 m wide after 

 merely a 0.08 m drop in water level.  

IV) Decrease in lake water levels (0.28 m) causes the breach to close. 

 The ability of a barrier beach to fully recover after breaching relies on it’s ability to recover 

in width and elevation prior to the next storm event or period of water level rise. Historically, EB 

has exceeded the water levels that caused it to breach in 2019, but while in the recovery phase 

following the first breaching event, the barrier became vulnerable to breaching at lower water 

levels (Figure 26). 
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Figure 32: Conceptual model visualizing barrier breaching of a shoreline with no coastal structures and adequate 

sediment supply. 

It is reasonable to expect that under natural circumstances (a barrier beach without adjacent 

coastal structures) HB would also follow this cycle. However, after a revetement was put in place, 

the rate of growth is much faster than the rate at which the breach closes (Figure 34). The patterns 

of barrier breaching at HB show a trend identified as a hysteresis loop. Defined as a time-lag 

response by Cho, Suzuki & Nakamura (2010), hysteresis is seen in barrier breaching as breach 

initiation and growth is occurring at a faster rate than breach closure and recovery. HB is a starved 

system due to the Wheatley Harbour Jetty trapping alongshore sediment transport and the 

installation of a revetment only starved it further as coastal structures can disrupt longshore drift, 

cut off sediment supply, and disrupt normal processes of wind, wave, and current movement 

(Vaidya et al., 2015; Airoldi et al., 2005; Figure 33). Cutting off sediment supply in turn controls 

barrier inertia (how rapidly a barrier can be reorganized in response to external forces), restricting 

the response time of a barrier to external forces (Cooper et al., 2018).  
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Figure 33: Barrier breaching of a modified shoreline. (I) Increase in water levels cause the barrier beach to breach. 

(II) Installation of hard coastal structure. (III) Shoreline begins to retreat due to cut off sediment supply. (IV) Rapid 

shoreline retreat continues; breach expansion occurs at a much faster rate than closure. 
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Figure 34: Conceptual model visualizing barrier breaching of a modified shoreline, and three potential future 

scenarios. 

Theuerkauf and Braun (2021) attribute abrupt changes in water levels during storm events 

as the driving force of erosion and overwash. Climate change in the Great Lakes is projected to 

increase the variability of water level fluctuations, increasing the frequency and intensity barrier 

breaching (Theuerkauf and Braun, 2021). While water levels are a driving force, both Hillman 

Beach and East Beach respond differently to variations in water levels (Figure 35, 36), despite 

being in close proximity, and this is attributed to sediment supply. EB still has sediment supply 

coming in from the north and south, along the rest of the eastern shoreline of Point Pelee, and 

through offshore currents (potentially sand bars). EB is a self-healing coastal system due to an 

adequate amount of sediment supply, HB is a permanent scar that is likely to never recover 

naturally, unless a significant drop in water levels occur, and will need some form of intervention. 

During breaching periods at EB, wave action caused the spits to migrate landwards, and after the 

breach closed, the barrier as a whole was retreated (Figure 37, 38). Due to an inadequate amount 

of sand at HB, the fate of the breach is completely controlled by water levels, and the small 

decrease observed this year may be responsible for the slight decrease in breach width. Despite the 



69 
 

future of Hillman Beach being unknown, three potential scenarios can be hypothesized (Figure 

34). In the first scenario (3a), water levels drop below the elevation of the breached part of the 

barrier, sediment is exposed, and the beach slowly starts to repair itself. In the second scenario 

(3b), water levels drop but due to a lack of sediment, it can not recover to its prior potential. In the 

third scenario (3c), water levels increase, and the size of the breach increases with it. This study 

helped bridge the gap in current breaching literature that focused on marine and tidal environments 

and introduced lacustrine environments.  

 

Figure 35: Breach widths plotted against water levels at both EB (blue) and HB (red), displaying much larger scale 

breaching at HB. Data from Table 3 and 4. 
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Figure 36: Conceptual model of barrier breaching at an unmodified shoreline with adequate sediment supply, and a 

modified shoreline with limited sediment supply. Stylized model of Figure 35. 

7.3 Conclusion on Breach Recovery 

 The ability of a barrier to withstand breaching depends on its sediment budget and 

alongshore transport. Barrier beaches with a steady sediment supply and no obstructions in 

alongshore transport respond to high water levels and increased wave action in a four-step cycle. 

When water levels surpass a critical elevation, or waves scour a trough through a barrier, a breach 

is initiated, and will continue to increase in width as water levels increase. Once the weakest point 

of a barrier is breached, wave action starts to erode the sides of the barrier – providing sediment to 

the breach in a self-repairing cycle. The breach closes when it receives enough sediment and/or 

water levels drop. In the presence of a modified shoreline and limited sediment supply, barriers 

follow a hysteretic model in which breach initiation occurs at a faster rate than closure and 

recovery, which will only occur if water levels drop below elevation of breach inlet. Coastal 

structures cut off sediment supply and rapidly erode the barrier at a rate where natural sediment 

supply can not repair. 
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Figure 37: First UAV survey of this project (conducted in August 2020), compared to latest shoreline digitization 

(survey from July 2022). 

 

Figure 38: Last UAV survey of this project (conducted in July 2022), compared to first shoreline digitization 

(survey from August 2020). 
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8. Conclusion and Future Research 

 This study focused on quantifying historical and modern shoreline retreat alongside breach 

initiation, expansion, and closure at East Beach (EB) and Hillman Beach (HB), on the Point Pelee 

Foreland. Lake level fluctuations were examined on a decadal to centennial scale to establish the 

controls on barrier transgression and breaching. This was done by gathering previously published 

reports and aerial photographs, digitizing shorelines of every available year in ArcGIS, quantifying 

retreat by calculating EPR and LRR, and conducting UAV surveys to continue monitoring 

breaching on a monthly basis to monitor breaching on a smaller scale as historical imagery was 

only done annually. Previous studies most often studied the initiation of breaches due to tidal 

events, rather than episodic and storm induced breaching. This project introduced barrier breaching 

in non-tidal, freshwater environments. 

 Despite close proximity and experiencing similar water levels, EB and HB have responded 

differently, this study attributes this difference to sediment supply. EB has steady sediment supply 

from the north and the south; however HB is starved from the north due to the Wheatley harbour 

and attached jetty, and from the south as a result of the rock revetement. At EB, barrier initiation 

and closure have been found to follow a four-step cycle of breaching: 1) A large increase in lake 

water levels causes the barrier to breach at the weakest point, 2) continuing increase in water levels 

erodes the sides of the barrier, transporting sediment to the centre, decreasing the width of the 

breach, 3) decreasing water levels expose lower elevation sediments, decreasing the breach width, 

and 4) a final decrease in lake levels closes the breach. In the presence of a modified shoreline, 

such as HB, high water levels or a particularly strong storm event initiate a breach, and weak 

longshore transport and limited sediment supply prevent it from being able to close.  
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 For future research, continuous monitoring of these two sites is essential to confirm the 

proposed four-step model. Completing a historical analysis of additional breached barriers around 

the Great Lakes (Table 1) will further strengthen our understanding of this process. Further 

research on the removal of hard coastal structures along with the implementation of nature-based 

solutions can help begin recovery projects at Hillman Beach. Sand nourishment is needed to add 

more sediment into the budget, after removing hard structures that are trapping sediment. Though 

it is possible that the HB breach can close, the barrier has migrated and indented in a way that has 

not been seen anywhere else, and this will prevent it from returning to its old position. Natural 

breaching has been found to be important to the ecological integrity of Point Pelee, this process 

can be maintained by increasing the amount of available sediment and slowing down wave energy 

to ensure breaching does not reach the extreme scenario seen at HB. More numerical modelling 

on breaching in non-tidal, freshwater environments are needed, including hydrodynamic 

modelling of inshore and offshore wave movement. Barrier beaches provide essential protection 

to inshore environments and habitats through wave energy dissipation and protection against storm 

damage. These environments have become increasingly vulnerable as these services are threatened 

by climate change. Climate change threatens the existence of Point Pelee (Zuzek, 2021), along 

with its cultural and ecological significance. 
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Appendix 

 

Table 5: Minimum barrier width, maximum barrier width, and average barrier width for each available year at East 

Beach. 

Year Minimum Barrier Width 
(m) 

Maximum Barrier Width 
(m) 

Average Barrier Width 
(m) 

1931 79.60 177.51 117.02 

1959 45.88 155.54 87.82 

1973 44.47 153.99 82.03 

1977 31.96 130.20 66.70 

1985 10.03 119.52 63.22 

1990 18.23 116.63 61.65 

2000 40.17 129.60 78.75 

2004 32.89 123.59 77.17 

2006 26.37 117.87 71.92 

2010 25.42 127.79 72.67 

2013 33.73 122.44 73.38 

2015 28.96 121.16 73.66 

2016 19.37 123.90 72.97 

2017 26.72 121.40 72.15 

2018 25.70 122.60 71.69 

2019 21.63 102.16 68.19 

2020 12.40 95.62 50.80 

2021 24.12 99.69 58.57 
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Table 6: Barrier width standard deviation, barrier length, and vegetation cover for each available year at East Beach. 

Year Barrier Width Standard 
Deviation 

Barrier Length (m)  Vegetation Cover (%) 

1931 30.54 1044.45 30.27 

1959 31.05 1049.82 43.65 

1973 33.34 1044.46 44.15 

1977 32.64 1049.05 39.31 

1985 29.88 1062.15 29.88 

1990 27.79 1054.24 0.00 

2000 24.03 1047.73 39.53 

2004 25.58 1050.37 34.49 

2006 24.51 1063.95 37.75 

2010 26.87 1055.84 50.08 

2013 24.93 1063.91 82.12 

2015 26.22 1061.56 78.32 

2016 29.61 1048.34 84.10 

2017 26.73 1041.85 52.60 

2018 27.21 1042.59 52.78 

2019 25.71 1061.09 62.19 

2020 26.17 1081.13 13.70 

2021 19.34 1075.43 34.97 
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Table 7: Annual maximum ice cover, back bay area, and median fetch distance for each available year at East 

Beach. 

Year Annual Max Lake Ice 
Cover (%) 

Back Bay/ Lagoon Area 
(m2) 

Median Fetch Distance 
(m) 

1931 
 

1486299.77 - 

1959 
 

1482629.85 - 

1973 95.7 1485701.21 - 

1974 88.5 - - 

1975 80.1 - - 

1976 95.4 - - 

1977 99.8 1493123.98 - 

1978 100 - - 

1979 100 - - 

1980 93.4 - - 

1981 96 - - 

1982 99.1 - - 

1983 40.8 - - 

1984 95.7 - - 

1985 96 1485136.02 174795.83 

1986 95.5 - - 

1987 88 - - 

1988 91.5 - - 

1989 91.6 - - 

1990 72.8 1462377.29 22941.81 

1991 35.1 - - 

1992 89.8 - - 

1993 94.3 - - 

1994 96.7 - - 

1995 94 - - 

1996 100 - - 

1997 99.6 - - 

1998 5.4 - - 

1999 74.8 - - 

2000 90.7 1452330.42 64738.78 

2001 94 - - 
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2002 14.4 - - 

2003 95.7 - - 

2004 95.4 1453460.83 64738.78 

2005 93 - - 

2006 21.9 1453019.01 64738.78 

2007 95.8 - - 

2008 93.4 - - 

2009 95.5 - - 

2010 93.1 1452344.97 64738.78 

2011 95.8 - - 

2012 13.9 - - 

2013 83.7 1450702.98 174795.83 

2014 96.1 - - 

2015 98.1 1452798.52 64738.78 

2016 78.7 1452492.21 174795.83 

2017 35.5 1452366.50 174795.83 

2018 95.1 1452316.07 174795.83 

2019 94.3 1448459.31 174795.83 

2020 15.9 1429350.59 64738.78 

2021 85.7 1425697.86 - 

2022 93.8 - - 
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Table 8: Wind speed, wind direction based on the circular mean, wind direction based on fetch, and wave height for 

each available year at East Beach. 

Year Wind Speed (m/s) Wind Direction 
(Circular Mean) 

Wind Direction 
(Fetch) 

Wave Height 
(m) 

1985 4.19 176.29 93.54 0.44 

1990 5.63 251.91 79.70 0.54 

2000 5.47 168.13 96.99 0.46 

2004 5.57 180.57 95.37 0.52 

2006 5.55 195.58 96.29 0.48 

2010 5.18 236.10 96.89 0.45 

2013 5.06 200.87 96.23 0.38 

2015 5.39 216.43 98.05 0.46 

2016 5.12 205.17 94.15 0.43 

2017 5.50 202.79 95.91 0.49 

2018 5.51 179.24 94.28 0.51 

2019 5.45 203.01 94.47 0.49 

2020 5.91 220.33 101.55 0.53 
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Table 9: Nearshore slope of breached barrier beaches around the Great Lakes. 

East Beach, Point Pelee National Park (Lake Erie) 0.01175 

Hillman Beach, Hillman Marsh Conservation Area (Lake Erie) 0.01239 

Conneaut Park, Conneaut, Ohio (Lake Erie) 0.00065 

Elk Creek, Erie County, Pennsylvania (Lake Erie) 0.01143 

Talbot Creek, Elgin County, Ontario (Lake Erie) 0.00909 

Tyrconnell Beach, Tyrconnell, Ontario (Lake Erie) 0.00897 

North Bar Lake, Empire Township, Michigan (Lake Michigan) 0.01992 

Petobego Pond, Grand Traverse County, Michigan (Lake Michigan) 0.03513 

Lakeside Park, Ajax, Ontario (Lake Ontario) 0.00988 

Lynde Creek, Durham, GTA, Ontario (Lake Ontario) 0.01089 

Petticoat Creek, Pickering, Ontario (Lake Ontario) 0.01155 

Turtle/Sheridan Creek, Clarkson, Mississauga, Ontario (Lake Ontario) 0.01008 

Wild Beach, Whitby, Ontario (Lake Ontario) 0.01034 

Aquasabon River, Terrace Bay, Thunder Bay District, Ontario (Lake Superior) 0.04692 

Lightfoot Bay, Skanee, Michigan (Lake Superior) 0.01825 
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