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ABSTRACT 

Accurate equilibrium scour depth and width estimations are essential to both safe and 

economic designs of bridge foundations. Review of current scour estimation methods 

demonstrate that the empirical equations produce scour values that are overestimated, resulting 

in uneconomical designs. In the current investigation, artificial neural networks (ANNs) were 

optimized and applied to scour data under laboratory conditions, field conditions, and a 

combination of the two conditions. Additionally, physics-based parameters – in place of 

empirical parameters (e.g., shape factors) – and parameters incorporating blockage effects were 

introduced as input parameters to the ANNs in an attempt to improve scour predictions. Finally, 

ANNs were applied to scour width estimations to investigate the applicability of machine 

learning tools to scour width prediction. For each of the ANNs developed, a sensitivity analysis 

was conducted to ensure each of the input parameters selected had significant value on the 

prediction models. Sensitivity analyses also allow for a further understanding of each of the 

parameters’ influence on the models. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

It is important that engineering infrastructure, such as bridges, are monitored and investigated 

as they reach the end of service life and/or potential failure. Understanding the main causes of 

bridge failure is also imperative to the design of new structures to ensure that these issues be 

mitigated in future designs. Aside from safety concerns that arise from bridge failure, there are 

various other implications to consider. The failure, and subsequent reconstruction, of bridge 

structures can have negative economic, environmental, and societal impacts. Through multiple 

investigations, it has been established that scour and scour-related complications are the leading 

cause of bridge failure in North America, as well as other areas of the world, with over 50% 

percent of bridge failures being attributed to scour and scour-related complications. Table 1.1 

summarizes results from five separate investigations of bridge failures, where cases of bridge 

failure and their causes were investigated (Cook, 2014; Garg et al., 2022; Miroff, 2007; Shirole 

& Holt, 1991; Wardhana & Hadipriono, 2003). 

Scouring around of bridge piers is an ongoing concern, with a Canadian bridge collapsing as 

recently as November 2021, after a flood event caused extensive damage of the bridge 

foundation. The bridge was located along British Columbia’s Coquihalla Highway at Juliet 

Creek. The flood caused many other infrastructure issues along the highway, causing the 

highway to be completely shut down. This caused many residents, truck drivers and others to 

take alternate routes, increasing travel time by as much as four hours and fuel costs. Residents 
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and travelers in some near-by towns were even stranded and cut-off from the rest of the province 

(Braich & Mendoza, 2022). 

Table 1.1: Bridge failures due to scour 

Resource Year Location 
Bridges 

surveyed 
Failures caused by scour 

Shirhole and Holt 1991 North America 823 

60%                                                       

(scour and scour-related 

complications) 

Wardhana and Hadipriono 2003 North America 500+ 
53%                                                      

(flood and scour) 

Briaud (as quoted by Miroff) 2007 North America 1502 
60%                                                      

(scour around foundation) 

Cook 2014 North America 691 

55% 

(scour and scour-related 

complications) 

Garg, Chandra and Kumar 2022 India 2010 
51% 

(flood and scour) 

Scour refers to the erosion or removal of bed material in a natural flow system due to the 

acceleration of flowing water. Scour is generally categorized into two types: general and 

localized scour. General scour is the movement of sediment due to environmental or seasonal 

changes to the velocity of flow (i.e. regardless of the presence of infrastructure or change in 

channel geometry). Localized scour occurs when an obstruction to the flow – bridge piers, 

abutments, etc. – causes an increase in flow velocity and erosion of sediment and can be further 

divided into contraction and local scour. Contraction scour is caused when there is a contraction 

of the channel, whether from a natural narrowing or from a bridge. The current research focusses 

on local scour which is the removal of bed material directly induced by the presence of a bridge 

pier.  

Currently, bridge foundation design is based on approved code-specified methods with 

respect to bridge pier scour. These methods are typically empirical equations developed by 

curve-fitting to experimental data, obtained from laboratory experiments. There have been many 
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cautions proposed for the estimation of equilibrium scour depth, especially when extrapolating to 

field situations. Recent research shows that there are several deficiencies with current prediction 

equations, including unnecessarily high estimates (Williams et al., 2013). These high scour depth 

estimations could lead to over-engineered and uneconomical foundation designs. Such designs 

would require excessive materials and add to the construction cost. Many challenges arise in 

developing an accurate equation with curve-fitting methods with laboratory data. These 

challenges include the complexity of the scour mechanism, the inability to quantify all scour 

influences, and the limitations of geometric and flow conditions. One method of mitigating these 

challenges is the use of artificial neural networks (ANN) – mathematical machine-learning 

models that are derived from an analogy to brain cells and biological networks. Additionally, 

scale effects of hydraulic modelling create difficulty in obtaining relevant experimental data to 

investigate real-world situations; experimental results do not necessarily carry over to field 

observations. The ability to develop an accurate scour prediction model based on field 

measurements, such as with an ANN, would help this issue. 

When developing machine learning models, it is valuable to include input parameters that 

have physical meaning. Although the underlying physics of the problem does not need to be 

known when developing a neural network, the addition of physics-based parameters aids the 

network in learning the training data provided. The inclusion of physics-based parameters would 

allow the model to train more accurately and efficiently, reducing the computational 

requirements while producing more favourable results.   

Recent research at the University of Windsor, conducted by Williams (2016) included 

developing a new scour estimation model which accounts for the densimetric Froude number and 

blockage effects, as it was discovered that both these parameters have a significant effect on the 
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scour depth. Additional research was carried out by Kharbeche (2022) to expand this research to 

also include pier shape and aspect ratio (L/D) effects. However, the scour estimation methods 

that were proposed by these researchers were created by fitting empirical equations to data 

obtained from laboratory experiments. These new estimation methods were also not evaluated 

for real-world use in field applications. It is important that the scour depth prediction models be 

accurate for field use, as those are the values utilized in bridge foundation design. There is also a 

need to analyse the parameters used to develop a scour prediction model, to ensure that the 

parameters being used in the methods are producing the most accurate results possible.  

In addition to scour depth estimation methods, scour width estimation methods are also 

essential to bridge foundation design, especially in the design of scour countermeasures, such as 

the use of riprap. Knowledge of scour width also aids in other aspects of bridge foundation 

design – i.e., when there are more than one bridge piers in proximity to one another, it is 

important to determine if the scour holes will overlap with each other. Hence, there is also a need 

for accurate scour width estimations.  

1.2 Objectives 

This research will further investigate the feasibility of creating scour prediction methods 

based on field-obtained data, and not entirely relying on lab-run experiments. The efficacy of 

current parameters utilized, as well as new ones, on bridge pier scour prediction will be 

evaluated. The objectives of this thesis include: 

• To evaluate current parameters used in pier scour prediction models and investigate 

application of physics-based inputs. 
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• Improve scour predictions to be used in practice through utilizing a combination of 

laboratory and field data. 

• Investigate applicability of neural networks on scour width predictions.  

1.3 Scope of Work 

The current research consists of analysing data to improve scour depth and width estimation 

methods. Multiple artificial neural networks were developed using PyTorch Lightning in 

Google’s Collaboratory workspace. Of the networks developed, two models were selected as 

final scour prediction models. The scope of work for this research did not involve investigation 

of the physics of flow around bridge piers.  

1.4 Organization of Thesis 

The thesis is divided into five chapters. Chapter 2 contains a literature review of the scour 

process, current prediction methods, and artificial neural networks. An outline of the 

methodology used for scour data collection and analysis is presented in Chapter 3. Neural 

networks are introduced in Chapter 4, followed by a discussion of the scour prediction model 

development and evaluation. The fifth chapter presents the results and analysis of the research. 

Finally, Chapter 6 includes the conclusions, recommendations and discussion of future work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1  The Scour Process 

Scour is defined as the movement or erosion of channel bed sediment due to flowing water 

and can be divided into three types – general, contraction, and local scour. The current research 

focusses on local scour around bridge piers, which can be defined as the erosion of bed material 

induced by the change of flow due to the presence of a bridge pier. Local scour may also occur 

around other structures, common examples include abutments, sluice gates and spillways. The 

scouring mechanism around a bridge pier is complex. The flow field consists of a horseshoe 

vortex around the pier, downflow on the upstream surface of the pier, trailing vortices, wake 

vortices, or any combination of these. Initiation of the scour process occurs at the pier sides when 

the flow acceleration around the sides of the pier results in a pressure decrease around the pier in 

the downstream direction. A ring of scoured material is then created along the sides of the pier as 

the scour increases in the upstream direction, until the upstream face of the pier is reached (Guo, 

2012). The downward flow velocity increases, caused by the downward pressure gradient that is 

created at the pier face. This increase in downward flow velocity induces the scouring action. 

The horseshoe vortex is created when this downflow curls up and around itself, getting trapped 

in the scour ring and causing a rapid removal of sediment (Guo, 2012). The bed material 

continues to erode until an equilibrium scour depth (dse) is reached. 

The state of equilibrium scour varies with the conditions of the scouring taking place. The 

conditions can be either clear-water – when the bed material is at rest – or live-bed – when bed 

material is being transported by the approach flow. In clear-water conditions, the equilibrium 
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state is reached at the point in time when bed material is no longer being removed from the scour 

hole, as the velocity of the circulating flow in the hole is no longer capable of doing so (Chiew, 

1984). This occurs when the critical shear stress of the bed material at the bottom of the scour 

hole is equal to the shear stress caused by the horseshoe vortex (Deng & Cai, 2010). For live-bed 

conditions, the equilibrium condition can be defined as the scour depth at which the rate of 

sediment transport out of the scour hole is equal to the rate of sediment transport into the hole 

(Chiew, 1984).  

The equilibrium scour depth around a bridge pier is an important parameter in the design of 

bridge foundations. Accurate scour depth estimates are essential to not only safe, but economic 

bridge pier designs. An underestimation of equilibrium scour depth will result in the bridge pier 

placed at an insufficient depth, in which case the pier may be undermined from scour, causing 

the bridge to fail.  If the equilibrium scour depth is overestimated, the bridge foundation may be 

over-engineered, resulting in an uneconomical design of the bridge piers. In addition to scour 

depth estimations, accurate scour width estimations are also significant, especially with the 

design of scour countermeasures and situations where piers are in proximity to one another or to 

an abutment. Knowledge of the width of the scour hole aids in the determination of the extent of 

scour countermeasure (e.g. riprap) required. It is also critical to ensure that the local scour holes 

do not overlap with one another. Furthermore, accurate estimations of scour width are essential 

from a waterway standpoint, as the high turbulence in these regions affects water vehicles 

(Pandey et al., 2017). 

2.2 Parameters Affecting Scour 

The equilibrium scour depth around a bridge pier is influenced by many different parameters. 

A majority of these parameters can be categorized into three general groups: flow properties, bed 
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sediment characteristics, and pier geometry (Melville & Chiew, 1999). The flow properties may 

be further divided into fluid specific and flow specific parameters. Since scour is a temporal 

process, time is another parameter that should be considered, however, it does not fit into the 

three aforementioned categories. The following is a breakdown of the parameters affecting 

equilibrium scour depth: 

• Flow properties:  

o Fluid: density (ρ), dynamic viscosity (μ), temperature 

o Flow: flow depth (h), energy slope, near-bed shear stress (τ), angle of incidence 

(θ), mean flow velocity (U) 

• Bed sediment characteristics: sediment density (ρs), median sediment size/diameter (d50), 

uniformity of particle size distribution (σg), cohesiveness, shape factor (kb), angle of 

repose (φ), fall velocity, and critical velocity of the bed material (Uc).  

• Pier geometry: pier diameter or transverse width (D), length (L), shape (α), surface 

condition, pier orientation (β), and debris accumulation. 

A schematic of local scour around a bridge pier is shown in Figure 2.1. 

Typically, the above list of parameters is reduced to those which have the greatest influence 

on dse for analysis. Research has shown that  

dse = f(ρ, μ, U, Uc, h, ρs, d50, σg, g, D, L, α, β)                                                                            (2.1) 

where g is the gravitational acceleration. The number of parameters may be further reduced 

through dimensional analysis. Typically, the equilibrium scour depth is normalized by either the 
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flow depth or pier diameter. Using the pier diameter, the dimensionless form of the equation for 

equilibrium scour depth is presented as: 

 
dse

D
 = f (

U

Uc
,

U

√gh
,

h

D
,

D

d50
,

ρUD

μ
, 

L

D
, α) .                                                                                           (2.2) 

 
Figure 2.1: Schematic of local scour around a bridge pier 

2.2.1 Blockage Effects 

Channel blockage is often not considered as a governing parameter affecting equilibrium 

scour depth as it has been suggested that blockage effects are negligible when the blockage ratio 

is less than 10% (Chiew, 1984), where blockage ratio is defined as the pier diameter (D) divided 

by the channel width (B). However, recent research has shown that changes in scour geometry 

were observed with small changes in blockage ratio for D/B less than 10% (D’Alessandro, 2013; 

Hodi, 2009; Tejada, 2014). Hodi (2009) compared scouring around bridge piers for varying 

blockage ratios; blockage effects were detected when the blockage ratio (D/B) was in the range 

of 2.2 % < D/B < 5%. D’Alessandro (2013) investigated the effect of blockage ratio on local 

scour while maintaining identical flow conditions (i.e., blockage ratio was varied between tests 

while all other flow conditions remained the same). It was discovered that both equilibrium scour 

depth and scour width are affected by blockage ratio. Differences in scour geometry were 
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observed for small changes in blockage ratio, as demonstrated in Figure 2.2. Tejada (2014) 

conducted clear-water scour experiments with various cohesive materials and found that 

blockage ratio has “minimal” influence on local scour depth when the relative coarseness (D/d50) 

is less than 100. 

 
Figure 2.2: Scour hole and deposition centerline profiles for constant D/d50 (extracted from 

D’Alessandro, 2013) 

2.2.2 Pier Length 

In many scour prediction models, the length of the pier, or pier aspect ratio (L/D), is not 

considered when the incoming flow is inline with the pier (i.e. angle of attack of the approach 

flow is 0°). When developing a scour depth prediction model, Toth & Brandimarte (2011) stated 

“the pier length has no influence on the upstream scour when the attack angle is zero.” The HEC-

18 equation (Richardson & Davis, 2001) – which is used by a majority of jurisdictions in the 

United States – also follows this logic, as the pier aspect ratio is only considered within the 

correction factor for angle of attack of flow (K2). The equation to calculate the K2 correction 

factor is 

K2 = (cos θ + 
L

D
sin θ)

0.65

                                                                                                           (2.3) 

where it can be seen that the pier aspect ratio has no influence when the angle of attack is equal 
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to zero. Recent research at the University of Windsor investigated the role of aspect ratio on 

local scour (Kharbeche, 2022). Through this investigation, it was discovered that, for similar pier 

shapes, as the L/D ratio increased, the equilibrium scour depth decreased when the approach 

flow angle of attack was equal to zero. This is demonstrated in Figure 2.3, where the variation of 

equilibrium scour depth is plotted against pier aspect ratio for different pier shapes. The current 

research will include the pier aspect ratio in scour prediction models based on the results of the 

investigation conducted by Kharbeche (2022). Further analysis will be conducted to obtain a 

better understanding of the influence of the pier aspect ratio in the scour prediction model(s) 

developed and whether the parameter adds value to the scour estimates.  

 
Figure 2.3: Variation of equilibrium scour depth with pier aspect ratio and pier shape (extracted from 

Kharbeche, 2022) 

2.2.3 Pier Shape 

In practice, there are many different pier shapes that may be used in bridge design. There 

have been various investigations, both experimental and computational, on the effect of pier 

shape on scour depth (Al-Shukur and Obeid, 2016; Breusers et al., 1977; Chabert and 

Engeldinger, 1956; Ettema, 1980; Laursen & Toch, 1956; Tseng et al., 2000). It has been 

L/D 

d
se

/D
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discovered that the shape of the pier has an effect on the fluid-structure interaction at the 

upstream face of the pier, as well as the horseshoe and wake vortices. In an investigation using 

numerical simulations, Tseng et al. (2000) concluded that the extent of the wake and horseshoe 

vortices were larger and the position of the horseshoe vortex was further from the upstream face 

of the pier for square piers compared to circular cylinders. For sharp-nosed piers, no vorticity is 

created at the nose, although some vortex systems evolve, as expected around any bridge pier 

(Breusers et al., 1977). In scour depth estimation methods, pier shape is often taken into 

consideration by a pier shape factor (Ks). Multiple pier shape factors have been proposed in the 

literature, often derived using the ratio of scour depth of circular piers to other shaped piers. Al-

Shukur and Obeid (2016) took shape factors from different researchers, including Laursen and 

Toch (1956), Chabert and Engeldinger (1956), and Ettema (1980), and summarized their 

findings in one comprehensive table.  Table 2.1 outlines various shape factors that have been 

proposed for the use of scour depth estimations.  

Table 2.1: Shape factors proposed for various pier shapes 

Researcher(s) Circular Round-nosed Sharp-nosed Square-nosed 

Neill (1973) 2 2 3 1 

Froehlich (1988) 1.0 1.0 0.7 1.3 

Richardson and Davis (2001) 1.0 1.0 0.9 1.1 

Al-Shukur and Obeid (2016) 1 0.85 0.7 1.11 

The shape of the pier can also be characterized by the drag coefficient (CD), as CD is 

dependent on the geometry of the body that the flow is encountering. In recent research, 

(Coscarella et al., 2020) followed the methodology used in Manes and Brocchini (2015) of 

examining the physical phenomenology to derive a new formula for scour prediction which 

mitigates the lack of clear physical basis found in empirical-derived formulae. The resulting 

equation for clear-water scour prediction included CD as an input parameter and yielded more 

accurate scour estimations than those which did not include CD.  
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2.2.4 Flow Separation Velocity from Pier 

The flow separation velocity from the bridge pier, Us, is not typically included as an input 

parameter in the development of scour estimation models. However, scour action is initiated at 

the point of separation on the pier face, making this velocity highly influential on scour depth. At 

the point of separation, the flow velocity reaches a maximum value, known as Us. The flow 

separation velocity can be determined when the base pressure coefficient is known, as Us is a 

function of base pressure on the pier’s downstream face (Norberg, 1987; Roshko, 1961). 

Blockage effects can also be captured with the use of Us as the pressure distribution around the 

pier is amplified with increasing blockage (Ramamurthy & Lee, 1973). When developing a scour 

estimation method, Williams (2016) introduced Us as an input parameter to “describe the 

propensity of increased blockage to increase wall interference.” 

2.3 Scour Estimation Methods 

In current industry practice, foundation design is based on approved code-specified methods 

with respect to bridge pier scour. These methods are typically empirical equations, developed by 

curve-fitting to experimental data. Many cautions have been proposed for the estimation of 

equilibrium scour depth, especially when extrapolating to field situations. Recent research shows 

that there are several deficiencies with current prediction equations, such as producing 

unnecessarily high estimates (Williams et al. 2013). Many challenges arise in developing an 

accurate equation with curve-fitting methods. These challenges include the complexity of the 

scour mechanism, the inability to quantify all scour influences, and the limitations of geometric 

and flow conditions. Additionally, scale effects of hydraulic modelling create difficulty in 

obtaining accurate experimental data.  
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2.3.1 Scour Depth Estimation 

The current work will focus on four estimation methods, selected based on use in practice, 

applicability to current work and recentness of development. These equations include the 

Froehlich (1988) equation, HEC-18 (2001) equation, the Sheppard-Melville (2011, 2014) 

equation, and the Williams (2016) equation.  

2.3.1.1 Froehlich (1988) Equation: 

The Froehlich equation was developed through regression of over 70 field data points to 

account for pier shape and angle of attack of approach flow. The equation is one of few which 

utilized field data rather than laboratory data for development:  

dse

D
 = 0.32KSFFr0.2 (

Dp

D
)

0.62

(
h

D
)

0.46

(
D

D50
)

0.08

+1                                                                           (2.4) 

where DP is the projected width of the pier and KSF is the Froehlich pier shape factor. 

2.3.1.2 Colorado State University or HEC-18 (2001) Equation: 

The most commonly used equation in scour depth estimation was published in the 1993 

Hydraulic Engineering Circular No. 18 and is known as the Colorado State University (CSU) or 

HEC-18 equation. The original equation included three “K” factors to account for differing scour 

influences: angle of attack, bed condition and pier shape. The equation has since been modified 

by the inclusion of a fourth “K” factor to account for influence of bed material size causing an 

armoring condition:  

dse

D
 = 2.0KsK2K3K4(

h

D
)

0.35

Fr0.43                                                                                                   (2.5) 
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where Ks is the shape factor, K2 is the angle of attack factor, K3 is the bed condition factor and 

K4 is the armoring condition factor. 

2.3.1.3 Sheppard-Melville (2011, 2014) Equation: 

The Sheppard-Melville (S/M) equation was developed by melding and slightly modifying the 

Sheppard and Miller (2006) and Melville (1997) equations to form a new equation. The resulting 

equation accounts for interactions between structure, flow and sediment:  

dse

D
 = 2.5f1f2f3                                     (2.6a) 

f1 = tanh[(
h

D
)

0.4

]                                                                                                                       (2.6b) 

f2 = {1-1.2 [ln (
U

Uc
)]

2

}                                                                                                               (2.6c) 

f3 = [
(

D

D50
)

0.4(
D

D50
)

1.2

+10.6(
D

D50
)

-0.13]                                                                                                        (2.6d) 

2.3.1.4 Williams (2016) Equation: 

The Williams (2016) equation was recently developed at the University of Windsor by curve-

fitting to laboratory data. As previously mentioned, the flow separation velocity from the pier, 

Us, was introduced as an input variable to account for blockage effects. The equation also utilizes 

the densimetric Froude number, Fds – calculated with the separation velocity – which is 

representative of flow-sediment interactions: 

dse

D
 = 1.010(Fds)

-0.284 (
h

D
)

0.325

(
D

D50
)

0.059

                                                                                    (2.7a) 
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Fds = 
US

√g(SG-1)d50
                                                                                                                         (2.7b) 

where SG is the specific gravity of bed material. 

2.3.1.5 Evaluation of Methods 

Multiple researchers have investigated various common empirical equations used for scour 

prediction. Typically, these investigations result in indications that there is a need for an updated 

or improved equation for bridge foundation design (Ettema et al. 2011). Several investigations 

have compared the empirical formulae to experimental, or laboratory, data to evaluate their 

accuracy. Investigations have also taken place to investigate the accuracy of such equations with 

field data. Results from both types of investigations were reviewed for the current research.  

Ettema et al. (2011) reviewed existing leading methods for bridge pier scour depth 

estimations, including the HEC-18 (2001) and S/M (2011) equations discussed above. As a result 

of this investigation, it was found that the HEC-18 equation inadequately reflects certain aspects 

of the pier scour process. It was also determined that the equation provides unreasonably large 

estimates for wide piers and its upper-bound estimate for live-bed conditions is too extreme. 

Evaluation of the S/M equation indicated that the equation reflects the scour process better than 

the HEC-18 equation. However, the S/M equation was found to have its own limitations, and 

further investigation with its applicability to field use was recommended.  

An investigation of various scour depth prediction methods, including the Froehlich (1988), 

HEC-18 (2001) and S/M (2011) equations was conducted at the University of Windsor using 

graphical relations (Williams et al. 2013). It was found that, except for investigations which 

involved scale effects, each equation overpredicted the relative equilibrium scour depth. It was 

also concluded that the HEC-18 equation performed the best for large-scale tests. 
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Sheppard et al. (2014) gathered 23 scour estimation equations for evaluation with laboratory 

and field data, including all the equations discussed above, with the exception of the Williams 

(2016) equation. Results of this investigation indicated that some equations yielded negative or 

extremely large scour estimates which were considered “unreasonable”. It was concluded that 

the predictions from the S/M (2011) equation resulted in the least total error, as well as lower 

underprediction error when compared to the other equations evaluated. In addition, the HEC-18 

wide-pier correction factor was evaluated. It was concluded that, although the wide-pier 

correction factor lowered the unreasonably large scour estimates for wide piers, this led to an 

increased number of underpredicted scour measurements for both laboratory and field 

conditions.  

2.3.2 Scour Width Estimation 

Unlike scour depth estimation methods, there are only a few scour width estimation methods. 

The most commonly used estimation method is an equation developed by Richardson and Abed 

(1993) and published in the Hydraulic Engineering Circular No. 18: 

ws = dse(Kws+ cot φ)                                                                                                                  (2.8) 

where ws is the top width of the scour hole from each side of the pier, dse is the scour depth, Kws 

is a factor relating the bottom width of the scour hole to the scour depth and φ is the angle of 

repose of the bed material (ranging from about 30° to 44°). However, for practical applications in 

water, a simplified equation was suggested:  

ws = 2.0dse
.                                                                                                                                  (2.9) 
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2.3.2.1 Evaluation of Method 

As previously mentioned, accurate scour width predictions are important for many different 

reasons when it comes to bridge foundation design. The accuracy of the scour width estimation 

equation was evaluated by plotting the predicted versus observed scour width values, which is 

presented in Figure 2.4. The estimated scour width was calculated for cases in which the scour 

depth value was known and unknown from laboratory results conducted by various researchers. 

In the case in which the scour depth is unknown, the value was estimated using the HEC-18 

equation. As can be seen in the plot, the prediction equation (2.9) is fairly accurate when the 

scour depth is known. However, when the scour depth is not known, the equations accuracy is 

severely decreased, resulting in unnecessarily high estimates. Although the equation can predict 

the expected scour width well when the scour depth is known, design engineers are more 

interested in how the equation performs when the depth is unknown. This is due to the fact that 

the scour depth measurement is not known when foundation design is taking place. The 

inaccuracy of the HEC-18 scour depth equation is propagated and amplified when estimating the 

expected scour width.  

 
Figure 2.4: Predicted versus measured scour width values 
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2.4 Artificial Neural Networks (ANN) 

ANNs are mathematical models that are devised from an analogy to brain cells and biological 

neural networks. As an artificial intelligence (AI) tool, ANNs can be applied in various fields 

and are capable of solving intricate problems such as optimization, simulation, estimation, and 

prediction, as well as model complex problems. Generally, ANN models consist of an input 

layer, hidden layer or layers, and an output layer. Nodes, also called neurons, make up each of 

these layers, with the number of nodes varying, depending on the development of the model. 

Both the number of nodes in the hidden layer(s) and number of hidden layers used are typically 

selected through trial and error. A general schematic of an ANN is illustrated in Figure 2.5. Input 

signals are received and summed (perhaps weighted) by the nodes, the sum is then passed 

through an activation function f and an output is generated. The output signals are then sent out 

to other nodes in the network. The resulting output variables of ANNs are produced by merging 

the connection weights with each input node after passing through an activation function.  

 
Figure 2.5: General schematic of an artificial neural network 

 

Hidden/Output Nodes 
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Two data sets are used in the development of a neural network, a training data set and a 

validating data set. Typically, the training data set is larger than the validation set, but this is not 

necessary. The training data set is first used by the ANN to train the network; the network learns 

on this data to fit the model (i.e., weights and biases). Next, the validation data set is used to 

assess the performance of the network (i.e., the accuracy of the scour predictions). The 

performance of the networks is evaluated using a user-defined loss function which assesses the 

accuracy of the output(s) of the ANN. The validation data set provides an unbiased evaluation of 

the model fit while the model hyperparameters are being tuned. Finally, the testing data set can 

be used to evaluate the final, tuned network using data independent of that which it was trained 

on.  

ANNs are composed of various hyperparameters that are manually set and must be tuned or 

optimized to ensure peak performance of the models. The model hyperparameters differ from the 

model parameters, as the parameters are automatically estimated from the data being used. ANN 

hyperparameters include number of hidden layers, number of nodes within the hidden layers, 

activation function, learning rate, optimizer, batch size and epochs.  

Activation functions can be used to introduce non-linearity to the model. Three common 

activation functions applied to the scour problem are the sigmoid function, the hyperbolic 

tangent (tanh) function, and the rectified linear unit (ReLU) function, represented respectively as: 

 f(x) = 
1

1+exp(-x)
                                                                                                                           (2.10) 

f(x) = 
(ex-e-x)

(ex+e-x)
                                                                                                                            (2.11) 

f(x) =  max(0,x)                                                                                                                       (2.12) 
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where x is the known input vector. 

Since ANNs employ a gradient descent algorithm, the learning rate is the step size taken to 

reach the minimum of the objective function. The learning rate is typically between zero and one 

and is evaluated and updated based on the behaviour of the loss function. The learning rate is one 

of the most important hyperparameters in a neural network. Learning rates that are too large can 

overshoot the minimum and can result in an unstable training process, while too small of a value 

can increase the length of the training process greatly and get stuck in a local minimum.  

Epochs can be defined as the number of passes of the training data set the algorithm has 

completed or the number of trials the learning algorithm takes to learn from the input data. Batch 

size is the number of training data that is processed by the learning algorithm before the internal 

model parameters (i.e. weights and biases) are updated. The total number of iterations the model 

works through is the number of epochs multiplied by the number of batches. The ANN learns by 

reading the input data and applying various weights and calculations repeatedly, utilizing the 

results from the previous trials.  

2.4.1 ANNs and Scour Predictions 

Since the use of ANNs is a data-driven approach to solving problems, there are advantages to 

its use in the application of scour prediction over curve-fitting and linear regression. One main 

advantage is that no relationship between the input and output variables is assumed. 

Furthermore, the underlying physics of the problem does not need to be known. These aspects 

are favourable for the scour problem because of the complexity of the scour mechanism – despite 

the considerable body of work in this area over the past several decades, the scour process is not 

fully understood.  
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Many different approaches to development of ANNs for predicting equilibrium scour depth 

have been reported in literature. The development of the models varies by the types of ANNs, 

learning algorithms applied, and architecture of the network. Typically, the networks developed 

were simple back-propagation neural networks – ANNs with one hidden layer and limited 

hidden nodes employing a backpropagation learning algorithm. Backpropagation learning 

algorithms compute the gradient of the loss function from a forward pass and propagates it 

backward through the network to update the model. In general, the input parameters utilized in 

developing the ANN models have been based on governing parameters previously defined in the 

literature.  

Choi and Cheong (2006) investigated the applicability of ANNs to predict local scour around 

bridge piers. The model was composed of normalized input parameters and trained on 64 sets of 

data from laboratory experiments. The model was tested with laboratory and field data 

separately. It was found that when tested on laboratory data, the model’s predictions were fairly 

accurate. However, this accuracy was severely decreased when tested with field data. In an 

attempt to increase the accuracy of field estimations, the model was re-trained using field data. 

This model’s accuracy was only increased slightly. In both cases, the model predictions were 

more accurate than the five empirical formulae they were tested against, thus concluding that 

ANNs can be applicable to the scour problem.  

Bateni et al. (2007) evaluated an ANN model against an adaptive neuro-fuzzy inference 

system (ANFIS) and a radial-basis function network (RBF) for both equilibrium and time-

dependent scour depth predictions. The neural network consisted of two hidden layers with 15 

nodes within those layers and a tanh activation function. The input parameters were both 

normalized and scaled to a zero to one scale. The model was trained on 180 data sets from 
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laboratory experiment. It was concluded that, although the RBF network trained better and faster 

than the ANN, the ANN produced more accurate results compared to the ANFIS and RBF 

network.  

In an investigation conducted by Toth and Brandimarte (2011), the influence of the 

experimental setting and sediment transportation mode on scour prediction with ANNs was 

analysed. The input variables for the models were dimensional and scaled so that the mean was 

equal to 0 and the variance was equal to one. Two large data sets were collected from field 

measurements and lab experiments. The data sets were then divided into subsets with increasing 

specialization degree, as shown in Figure 2.6. A network was developed for each set of data, 

totalling seven ANNs. Each network consisted of one hidden layer, with the number of nodes 

within the layers being optimized for each model. It was concluded that for the field data, there 

was no improvement in accuracy with increasing specialization, while an increase in accuracy 

with data set specialization was observed for the laboratory data, especially when going from all 

data to laboratory data only. Conversely, when tested with field data, the model trained on the 

full data set performed slightly better than the model trained on field measurements only.  

 

Figure 2.6: Division of data sets in Toth and Brandimarte (2011) investigation 

Pal (2019) used a field data set to explore the applicability of deep neural networks (DNN) in 

bridge pier scour prediction. A DNN is a neural network with two or more hidden layers having 
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a large number of nodes and using sophisticated mathematical modelling. The model was 

developed using the ReLU activation function, dimensional input parameters and the adaptive 

moment estimation-based optimization algorithm (Adam). The resulting ANN consisted of three 

hidden layers with a varying number of nodes within each of the layers. When compared to a 

simple back-propagation neural network, the DNN produced more accurate results. A DNN with 

dropout layers was also developed, however there was no significant increase in accuracy 

between the DNN with and without dropout layers.  

In an investigation conducted by Amini et al. (2020), the ability of an ANN to predict scour 

around complex bridge piers was evaluated. The model was developed using data from 

laboratory experiments and dimensional input parameters. The ANN consisted of one hidden 

layer with 3 nodes within that layer. When compared with the HEC-18 equation and the scour 

depth prediction equation for composite piers published in the Florida State Department of 

Transportation, the ANN produced more accurate scour estimations.  

Since different approaches have been taken in the literature to reduce the data set, different 

input variables are taken for each prediction model. Table 2.2 outlines the input variables utilized 

in the investigations previously discussed. The table also consists of the input parameters from 

additional sources which developed field-trained neural networks. Although those ANNs which 

were trained on field data contained data for piers with varying shapes and L/D ratios, of the 

literature reviewed, only Toth and Brandimarte (2011) considered both shape factor and L/D in 

their model development. It is also important to note that none of the ANNs in the studies 

reviewed considered blockage effects in the development of the prediction models based on 

laboratory experiments. The inclusion of blockage ratio in such models may improve the 

performance of ANNs in predicting equilibrium scour depth.  
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Table 2.2: Input parameters utilized in literature for development of ANNs 

Investigator(s) Field Model Inputs 
Laboratory-trained model 

Inputs 

Choi and Cheong (2006) Fr, D/h, d50/h Fr, D/h, d50/h 

Bateni et al. (2007) N/A d50, D, U, h, Uc 

Lee et al. (2007) U/Uc, Fr, h/D, d50/D, σg N/A 

Toth and Brandimarte (2011) D, U, h, d50, K2, Ns
a  D, U, h, d50 

Bonakdari and Ebtehaj (2017) Fr, d50/h, D/h, L/h, σg N/A 

Pal (2019) Ks, D, θ, U, h, d50, σg N/A 

Shamshirband et al. (2020) Fr, D/h, d50/h, U/Uc σg, D/h, d50/h, U/Uc 
a Neill shape factor   

In some cases, models were trained separately on field data and laboratory data. In each of 

the studies, the error values for the models trained on field data were significantly higher than 

those trained on laboratory data. There have been various rationales to the large variance in error 

values proposed. These include an increase of variation and paucity of field data compared to 

laboratory data. Field data tends to contain more noise which affects the training, and therefore 

the accuracy, of the models. There are many factors contributing to the noisiness of scour data 

obtained in field conditions, such as the uncontrolled nature of the field environment. When 

conducting scour experiments in a laboratory setting, the measurements are taken in a highly 

controlled environment. This type of control is not able to be replicated in the field. In addition, 

in laboratory conditions, the flume is typically emptied of the water before taking scour 

measurements. This allows for less interference while taking the measurements, as well as a clear 

indication of where the points of maximum scour depth and width are located, which is not 

achievable in field conditions. The channel itself may also have characteristics that are not able 

to be captured in the measurements, such as a bend in the channel upstream of the bridge pier(s). 

There lies a need for further research to increase the accuracy of field trained ANNs.  
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CHAPTER 3 

SCOUR DATA 

3.1 Overview 

As outlined in Section 2.4, machine learning models require a database to train, validate, and 

test the models. To develop a sufficient artificial neural network (ANN) to predict scour depth 

and width, existing scour data needs to be collated. For the current research, data from both 

laboratory experiments and field measurements were collected. The current chapter provides 

details of how the data was collected and analysed, and a discussion of the resulting data sets 

used to develop the networks.  

3.2 Laboratory Data 

3.2.1 Data Collection 

To generate the laboratory database, data was collected from various sources around the 

world who have conducted scour experiments around bridge piers. The database consists of data 

which was extracted from publications, ranging from the years 1983 to 2021, and includes 70 

data sets from the University of Windsor. A summary of resources and number of data sets from 

each source is outlined in Table 3.1. Data was obtained only from clear-water conditions around 

circular cylinder piers. In situations where the critical velocity of the bed material was not 

reported, the values were determined using the following formula (Melville & Sutherland, 1988):  

Uc

u*c
 = 5.75 log (5.53

h

d50
) .                                                                                                             (3.1) 
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Here u*c is the critical shear velocity, calculated using the following relationship (Melville, 

1997): 

u*c = {
0.0115+0.0125(d50)

1.4,                       0.1 mm < d50 < 1 mm

0.0305(d50)
0.5-0.0065(d50)

-1,            1 mm < d50 < 100 mm
                                         (3.2) 

Table 3.1: Laboratory data resources 

Investigator(s) Year 
Number of 

Data 
Investigator(s) Year 

Number of 

Data 

Raudkivi and Ettema 1983 12 Simarro et al. 2011 5 

Yanmaz and Altinbilek 1991 32 Khwairakpam et al. 2012 12 

Dey et al. 1995 18 Kothyari and Kumar 2012 3 

Johnson and Torrico 1995 9 Lanca et al.  2013 34 

Ahmed and Rajaratnam 1998 4 D’Alessandro 2013 19 

Ettema et al.  1998 6 Tejada 2014 19 

Melville and Chiew 1999 3 Aksoy and Eski 2016 28 

Ting et al.  2012 5 Al-Shukur and Obeid 2016 3 

Mia and Nago 2003 23 Williams 2016 22 

Sheppard et al.  2004 12 Aksoy et al. 2017 16 

Raikar and Dey 2005 20 Pandey et al.  2017 3 

Grimaldi et al.* 2005 3 Khaple et al. 2017 2 

Ettema et al. 2006 6 Link et al. 2019 14 

Sheppard and Miller 2006 4 Pandey et al. 2020b 18 

Lee and Strum 2009 3 Valela et al. 2021 6 

Hodi 2009 9    

*cited by Lanca et al. (2013)   

Similarly, in cases where the Froude number was not reported, the values were determined 

using the equation: 

Fr = 
U

√gh
.                                                                                                                                     (3.3) 

Since an aspect of the current research is to explore the applicability of the flow separation 

velocity from the bridge pier as a potential velocity scale, it was required to determine the values 

of the flow separation velocity from the bridge pier for each case. The separation velocity was 

determined using a relationship proposed by Williams (2016):  
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k  =  2.0649(D/B)2 + 0.5264(D/B) + 1.4                                                                                    (3.4) 

where k is the ratio of separation velocity to approach flow velocity (i.e. Us/U). The resulting 

separation velocity values calculated were also applied to equation (2.7b) to calculate the 

densimetric Froude number (Fds) incorporating Us. 

3.2.2 Resulting Database  

The resulting laboratory database consists of 373 data points. A summary of the data 

collected can be found in Table 3.2. Matrix plots for the laboratory database are presented in 

Figure 3.1 for the dimensionless parameters presented in the summary table. Such plots allow for 

the visualization of the distribution of data and illustrates where data gaps may exist. A 

logarithmic scale was applied to the relative coarseness (D/d50) to achieve a clearer picture of the 

data distribution. A majority of the data falls between Froude numbers of 0.2 to 0.3, with 

significantly less data above a Froude number of 0.4. In terms of blockage ratio, a large 

percentage of the data falls below 10%; this is significant, as it has been previously reported that 

blockage effects do not affect scour below this threshold. Little data is present for flow 

shallowness (h/D) over 3.5, with a significant data gap existing between h/D values of 10 to 15. 

The flow intensity values generally fall above a value of 0.8. In terms of relative coarseness, a 

majority of the data falls below 200, which is a value that is very rarely seen in field conditions 

unless the channel is a cobble- or boulder-bed stream. There is very little data with D/d50 values 

larger than 500, and there are many data gaps between a value of 500 and the maximum value of 

4136. This distribution of relative coarseness values is one of the leading causes of scale effects 

in laboratory experiments of scour. The dse/D values mostly fall between the values of 0.8 to 1.8, 

and generally follow a normal distribution.  
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Table 3.2: Statistical parameters for non-dimensional laboratory data  
Fr D/b  h/D U/Uc D/d50 dse/D 

Minimum 0.044 0.0094 0.17 0.11 2.2 0.12 

Maximum 0.75 0.25 16 0.99 4136 2.7 

Mean 0.27 0.096 2.7 0.82 134 1.3 

Standard Deviation 0.12 0.049 2.3 0.15 253 0.49 

 
Figure 3.1: Pair-wise plots for non-dimensional laboratory data 
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3.2.3 Scour Width Data 

Scour width data is not as commonly reported in the literature as scour depth values. As such, 

the scour width database consists of data only from the laboratory database which had complete 

data for scour width estimations. The resulting database consists of 110 data sets, including 70 

sets from experiments conducted at the University of Windsor. A summary of the scour width 

database can be found in Table 3.3.  

Table 3.3: Statistical parameters for non-dimensional laboratory scour width data 
 Fr D/b h/D U/Uc D/d50 dse/D wse/D 

Minimum 0.15 0.011 0.74 0.49 12 0.29 0.53 

Maximum 0.55 0.25 10 0.94 236 2.4 6.4 

Mean 0.27 0.10 2.3 0.77 85 1.1 1.9 

Standard Deviation 0.094 0.055 1.7 0.13 54 0.42 1.0 

3.3 Field Data 

3.3.1 Data Collection 

The field database consists of field measurements collected from the United States 

Geological Survey (USGS) pier scour data (Benedict & Caldwell, 2014). The complete database 

includes data from 23 states and six other countries, including Canada, China, New Zealand, 

Nigeria, Russia and Yugoslavia. Although not all data includes the date on which the data was 

taken, of the dates that were recorded, the measurements have been obtained between the years 

of 1926 and 2007. The complete USGS pier scour database is quite expansive and includes data 

for a variety of conditions. Data from conditions which were not applicable to the ANN being 

developed here was discarded. This included data from grouped piers, piers at an angle to the 

approach flow, cohesive bed conditions, conditions with debris effects and measurements taken 

post flood. After these conditions were eliminated, the remaining data consisted of some 
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incomplete data sets (e.g. pier geometry information missing), which were also discarded from 

the database if the data was unable to be found elsewhere. Unlike the laboratory data, both live-

bed and clear-water conditions were retained for the field database, as Toth and Brandimarte 

(2011) concluded that there was not an improvement in accuracy with increasing specialization 

of data (i.e. separation of live-bed and clear-water conditions).  

Similar to the laboratory database, the Uc and Us values were also calculated for the field data 

sets. The Uc values were determined using equation (3.1) presented in Section 3.2.1. The field 

data contained pier shapes other than round-nosed piers, so the separation velocity could not be 

obtained using equation (3.4), as the equation is only applicable to round-nosed piers. Hence, 

plots of k versus D/b for sharp-nosed, square-nosed, and round-nosed piers presented by 

Williams et al. (2019), as shown in Figure 3.2, were utilized to determine Us values. The Fds 

values were not calculated for the field database as the specific gravity of bed material was not 

reported, and it is unrealistic to assume the channel bed material is sand for all field conditions. 

In cases in which blockage information was not available, it was assumed that blockage effects 

were negligible. In cases in which the uniformity of particle size distribution (σg) was not 

reported, it was assumed the bed material was uniform.  
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Figure 3.2: Variation of k parameter with blockage ratio and pier shape (extracted from Williams et al., 

2019) 

3.3.2 Final Database 

The final database is made up of 329 data points. Table 3.4 outlines a summary of the non-

dimensional parameters that make up the database. To further analyse the distribution of data, 

matrix plots for the field database are presented in Figure 3.3. A majority of the data sets have a 

Froude number of 0.375 or lower, with very few points having a Froude number greater than 0.5. 

Similar to what was observed with the laboratory data, a majority of the field data lies between 

h/D values of 1 and 3, with little data above a value of 6, with a data gap existing between the 

values of 10 and 15. Because both live-bed and clear-water conditions were retained for the field 

data, there is a much larger range of U/Uc values in the field data than the lab data. This will 

allow the network to be more versatile for field use. Within the field data, a larger number of 

data points with large D/d50 values are observed. The distribution of relative coarseness values is 

bimodal, with little data existing between the values of 100 and 700. The L/D values are left-

skewed with little data existing over a value of 12, and a significant data gap exists between the 

values of 26 and the maximum value of 50. A majority of the σg values fall below 3, with many 

data gaps existing between the values 4 and 10. As was observed in the laboratory data, the 
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relative scour depth generally falls between the values of 0.8 and 1.8, with little data existing 

outside of this range.  

 
Figure 3.3: Pair-wise plots for non-dimensional field data 
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Table 3.4: Statistical parameters for non-dimensional field data 
 Fr h/D U/Uc D/d50 L/D σg dse/D 

Minimum 0.03 0.18 0.24 8.1 1.00 1.2 0.10 

Maximum 1.1 13 7.5 3657 50 9.4 5.4 

Mean 0.29 3.2 1.7 2302 9.6 2.8 0.72 

Standard Deviation 0.19 2.4 1.5 4345 6.1 1.5 0.63 

3.4 Combined Dataset  

A third database was also created using a combination of the laboratory and field databases 

outlined in Sections 3.2 and 3.3. However, the two databases were not simply combined to create 

one large database. Both the field and laboratory databases were analysed and reduced based on 

the D/d50 values. Field data with D/d50 values less than 200 were removed to eliminate cases of 

cobble-bed streams. Laboratory data were refined using the same minimum D/d50 value of 200, 

as this value does not exist in field conditions with sand or gravel bed material, and all laboratory 

experiments were conducted with either sand or gravel. As a result, 126 field sets and 313 lab 

sets were eliminated from the combination database.  

3.4.1 Final Database 

The finalized combination database consists of 263 data sets, with 203 coming from field 

measurements and 60 from laboratory experiments. A summary of statistical parameters of the 

normalized parameters is outlined in Table 3.5. Matrix plots for the combination database were 

also created and are presented in Figure 3.4. Although some ranges of data are more populated 

than others within each parameter, there are no significant data gaps existing for the input values. 

One exception to this is at high (i.e. > 5) gradation of particle size distribution values. The data 

gap that was present in the field database for relative scour depth also exists for the combination 

database.  
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The datasets outlined in the current chapter are to be applied to various scour prediction 

models in attempt to produce accurate scour depth and/or width estimations. A thorough 

understanding of the data being used in network development is important when generating an 

ANN, as ANNs require sufficient data to properly train and produce meaningful results. 

Knowledge of the databases being used to train a network is also crucial in understanding the 

limitations a model may have when applying it to data independent of the development dataset.  

 
Figure 3.4: Pair-wise plots for non-dimensional combination data 
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Table 3.5: Statistical parameters for non-dimensional combination data 
 Fr h/D U/Uc D/d50 L/D σg dse/D 

Minimum 0.027 0.17 0.25 212 1 1.1 0.11 

Maximum 0.50 13 7.5 36576 30 8.0 5.4 

Mean 0.19 3.5 2.0 2960 7.0 2.3 0.93 

Standard Deviation 0.010 2.7 1.5 4648 5.9 1.6 0.68 
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CHAPTER 4 

MODEL DEVELOPMENT AND EVALUATION 

4.1 Model Development 

The neural networks used in the current research were developed, trained, and tested using 

the PyTorch Lightning framework. The optimization algorithm selected was the adaptive 

moment estimation-based optimization algorithm (Adam) presented by Kingma and Ba (2017). 

Adam is used in place of classical stochastic gradient decent, as it computes individual adaptive 

learning rates for different parameters (Kingma & Ba, 2017), rather than maintaining a learning 

rate for each network weight. Adam is an effective and computationally efficient algorithm that 

is beneficial for noisy problems. The loss function for the ANNs was selected to be the mean 

squared error (MSE), given by the equation:  

MSE = 
1

n
∑ (y

i
-ŷ

i
)

2n
i=1                                                                                                                   (4.1) 

where n is the number of data points, yi is the observed/actual value, and  ŷi is the predicted 

value. 

To become more familiar with the framework and optimization algorithm, a fictitious 

database was created based on equation (2.7), the scour depth prediction equation proposed by 

Williams (2016). The equation was used to develop a database similar to that which makes up 

the laboratory database and consisting of the same number of data sets as the laboratory 

database. Trial and error tests were run using the fabricated database to set some model 

hyperparameters, including batch size, number of epochs, and the train/validation/test data split. 

Through these tests, it was determined that a batch size of one produced the most accurate 

results, along with 150 epochs. It was also concluded that a random data split of 80% of the total 
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database used for training, 10% used for validation, and the remaining 10% used for testing was 

optimal. Based on these results, these hyperparameters were set for further development of the 

ANNs. It was also concluded that the default values for user-defined parameters within Adam 

were sufficient for the scour application, with the exception of the initial learning rate, which is 

to be optimized.  

4.1.1 Optimization of Hyperparameters 

The remaining hyperparameters to be tuned were optimized using the automatic 

hyperparameter software framework, Optuna (Akiba et al., 2019). Optuna differs from learning 

algorithms (i.e., Adam) as its purpose is to optimize the architecture of a network, while learning 

algorithms are used to train and update the network. When applying Optuna to an ANN, the use 

of a learning algorithm is required for the network to learn the dataset and update the model’s 

weights and biases accordingly. The Optuna framework conducts studies of multiple trials to 

determine the optimal set of hyperparameter values. Within the Optuna framework, a study is 

defined as an optimization based on an objective function and a trial is defined as a single 

execution of the objective function. Each study conducted in the current research consisted of 50 

trials, which was deemed sufficient for the current application. Two main user-defined 

parameters are required to run the optimization software: the sampler and pruning algorithm. 

Samplers are the algorithms used to continually narrow down the search space using the record 

of suggested parameter values and evaluated objective values, rather than utilizing a random 

search. Pruners automatically stop unpromising trials in the early stages of training to save 

computational costs. It was determined that the default parameters for the sampler were 

sufficient for the current application. The pruner selected to be utilized was the median pruner, 

which stops a trial when the best intermediate result is worse than the median of intermediate 
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results of previous trials. The pruner was applied such that it would not be enabled until after 30 

epochs (i.e., 20% of total) had been completed to ensure each trial had sufficient time to train 

before being deemed unpromising. The hyperparameters optimized within the Optuna 

framework are outlined in Table 4.1, the range of values in which the hyperparameters were 

optimized were determined through a review of the literature and common practice in similar 

cases.  

Table 4.1: Hyperparameters optimized using Optuna framework 

Parameter Range Search Type 

Number of hidden layers 1-5 Integer 

Number of nodes within hidden layers 1-15 Integer 

Learning rate 1 x 10-5 – 1 Log Uniform 

Activation function ReLU, Sigmoid, Tanh Categorical 

Scaling methods for the input parameters were also investigated and validated in model 

development. Two different scaling methods, along with no scaling, were tested. The first 

scaling method resulted in each parameter’s values falling withing a range of zero to one. The 

second method resulted in each input parameter having a mean value of zero and a standard 

deviation of one. Respectively, the equations used to achieve the scaling are:  

XiN
 = 

Xi-Xmin

Xmax-Xmin
                                                                                                                            (4.2) 

XiN
 = 

Xi-X̅

σ
                                                                                                                                   (4.3) 

where Xi is the input value, Xmin is minimum value of X, Xmax is the maximum value of X, XiN is 

scaled input value, X̅ is the mean of X values, and σ is the standard deviation of X values. To 

determine which scaling method, if any, was optimal for each model, Optuna studies were 

conducted with each set of input parameters. The study which resulted in the lowest error value 

was selected for further analysis. Other hyperparameters, such as number of epochs, that were 
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selected based on the practice runs with a fictitious data set were verified and updated if 

necessary, once the optimized model was selected.  

4.1.2 Sensitivity Analysis 

Sensitivity analysis was conducted on each of the optimized models to get an understanding 

of the influence of each individual input parameter on the models. The sensitivity analyses were 

conducted by repeating the model training process with each input parameter excluded (e.g., if a 

model originally has five input variables, it goes through the training process five additional 

times, each with a different input parameter missing). An example of the databases/input 

parameters that may be used in a sensitivity analysis is outlined in Table 4.2. The results from 

the model with parameters missing gives an understanding of how each parameter affects the 

model. Conducting a sensitivity analysis also allows for the selection of only the most effective 

parameters to be included in the model, improving the efficiency of the model. 

Table 4.2: Example input parameters used to conduct sensitivity analysis 

Run Missing Parameter Input Parameters 

1 None Fr, L/D, h/D, U/Uc, D/d50 

2 D/d50 Fr, L/D, h/D, U/Uc 

3 U/Uc Fr, L/D, h/D, D/d50 

4 h/D Fr, L/D, U/Uc, D/d50 

5 L/D Fr, h/D, U/Uc, D/d50 

6 Fr L/D, h/D, U/Uc, D/d50 

4.2 Model Evaluation 

For each of the databases discussed in Chapter 3, a set of testing data was created and utilized 

for all evaluation of the respective models developed using the different databases (i.e., the same 

data set was used for all evaluations of the laboratory-trained model, while a separate set of test 

data was utilized to conduct all the evaluations for the field-trained model). The accuracy of the 

ANN model predictions is primarily evaluated with the utilization of scatterplots of the predicted 
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versus measured scour values, as was done in Section 2.3.2.1 to evaluate the performance of the 

scour width prediction equation. These scatter plots include an exact-match line (i.e., the 

predicted value is the same as the measured value) and 20 percent error bounds. Error bounds of 

20 percent was selected based on the evaluation of scour predictions and error bounds utilized in 

literature. Using the scatter plots, the performance of the models is assessed by how close the 

points fall to the exact-match line, how many points fall within the 20 percent error bounds and 

whether the scour parameters are being underestimated. However, additional statistical 

parameters were also used to aid in the evaluation of the models. These error values include the 

MSE (equation (4.1)), correlation coefficient (R), mean absolute percent error (MAPE), and 

mean absolute error (MAE). The formulae used to calculate these values are: 

R = 
∑ (yi-y̅)

n
i=1 (ŷi-y̅̂)

√∑ (yi-y̅)
2n

i=1 ∑ (ŷi-y̅̂)
2n

i=1

                                                                                                              (4.4) 

MAPE = 
1

n
∑

|yi-ŷi
|

yi

n
i=1 ×100                                                                                                          (4.5) 

MAE = 
1

n
∑ |y

i
-ŷ

i
|n

i=1                                                                                                                    (4.6) 

where y̅ is the mean observed value and y̅̂ is the mean predicted value. 
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CHAPTER 5 

RESULTS 

5.1 Laboratory-trained Model 

The first model developed in this research was a laboratory-trained model, trained on the 

laboratory database. The main purpose of developing a laboratory-trained model was to validate 

the procedures used in the current research for ANN development. As observed in various 

literature, neural networks are a good tool for scour prediction since no mathematical model 

needs to be assumed a priori and the exact relationship between variables does not need to be 

known, among other reasons. ANNs are able to produce relatively accurate scour estimations, 

particularly in laboratory applications. The results of a laboratory-trained model, developed 

using the methodology outlined in Chapter 4, can be used to validate the model development 

methods. The laboratory-trained model was also utilized to evaluate the inclusion of blockage 

effects as an input parameter for scour prediction models. 

The input parameters selected for the model development were chosen based on those 

considered to have the greatest influence on equilibrium scour depth: 

dse

D
 = f (Fr,

D

B
,

h

D
,

U

Uc
,

D

d50
 ) .                                     (5.1) 

Parameters such as pier shape, pier length, and pier orientation were not considered as input 

parameters since all laboratory data consisted of circular cylinders where the incoming flow is in 

line with the pier.  

Once the optimization process was completed, the resulting ANN consisted of three hidden 

layers with five hidden nodes within those layers and a learning rate of 2.0x10-2. It was also 
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concluded that the sigmoid activation function and scaling of the inputs such that the inputs fall 

within a range of zero to one produced the most accurate results. A plot of the predicted versus 

measured relative equilibrium scour depths can be found in Figure 5.1. As can be seen in the 

figure, a majority of the data falls within the 20% error bounds, with some points falling directly 

on the exact-match line. This indicates that the ANN is able to produce accurate scour 

estimations, validating the model development process. 

 
Figure 5.1: Predicted vs. observed dse/D for laboratory-trained model 

5.1.1 Inclusion of Blockage Effects 

In addition to validating the model development methodology, the laboratory network was 

utilized to analyse the inclusion of blockage effects in scour prediction. Initially, the model was 

re-trained and tested without the inclusion of blockage ratio as an input parameter. To analyse 

the influence of blockage effects, the optimization process was repeated without the input 

parameter D/B. Since the original network was optimized with D/B as an input parameter, 

simply removing the input from the model may not give a full understanding of how the 

blockage ratio affects the scour prediction in general. However, this method will give an idea of 

1 

1 

line 
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how the blockage ratio affects the specific model that was originally developed. Repeating the 

optimization process allows the model to produce the most optimal results when blockage effects 

are not considered. The results from this analysis are presented in Table 5.1, where the minimum 

and maximum test error were determined using equations (5.2) and (5.3), respectively. As can be 

seen from the table, both the total loss and maximum error values increased with the exclusion of 

blockage effects.  

Table 5.1: Results from laboratory-trained ANNs including and excluding blockage effects 

Model 
Test Loss 

(MSE) 
% Change 

Min. Test 

Error 

Max. Test 

Error 

With D/B 0.0724 - 4.411x10-5 0.5140 

No D/B 0.1000 +38% 3.460x10-4 0.5624 

Re-optimized No D/B 0.0978 +35% 5.184x10-5 0.5364 

Min. Test Error = min ((y
i
-ŷ

i
)

2
)                                                                                               (5.2) 

Max. Test Error = max ((y
i
-ŷ

i
)

2
)             (5.3) 

In addition to analysing the error values, the predicted versus measured relative equilibrium 

scour depth values were plotted and are presented in Figure 5.2. In both cases, the model was not 

able to make predictions as well as the model which included blockage effects. The models 

which did not include blockage effects had more points outside of the 20% error bounds and a 

small number of points on the exact-match line. It was also observed that the quality of 

estimations was decreased as the model gave the same prediction for various input conditions. 

The predictions from the models not including blockage effects may be less accurate because of 

the influence blockage effects have on scour hole geometry. As previously mentioned, even 

small changes in blockage can affect both the width and the depth of the scour hole. When 

blockage effects are not included in the model development, the model is missing an influential 
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parameter, potentially decreasing the ability of the scour prediction model to produce accurate 

results. These results validate previously mentioned investigations (D’Alessandro, 2013; Hodi, 

2009; Tejada, 2014) which indicate that blockage effects have a significant effect on the 

equilibrium scour depth. As a result, blockage effects should be considered as an input variable 

when developing a scour prediction model for laboratory conditions. 

 
Figure 5.2: Predicted vs. measured dse/D for laboratory ANN (a) excluding D/B and (b) re-optimized 

without D/B 

5.1.2 Sensitivity Analysis 

Results from the sensitivity analysis conducted on the laboratory-trained model are reported 

in Table 5.2. It was observed that the total error value increased with the exclusion of each input 

parameter. This indicates that each parameter selected had significant influence on the model. 

The flow intensity had the greatest influence, as the testing error increased the most when the 

U/Uc parameter was removed. Conversely, the flow shallowness value had the least influence on 

the model, as the error only increased by 18% after h/D was removed. It was also observed that 

the Fr, D/B, and D/d50 parameters each had relatively the same impact on the prediction model. 

Results of the sensitivity analysis indicate that each input parameter that was initially selected 

has significant influence on the scour predictions and should be retained in the model. 

line line 

1 

1 1 
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Table 5.2: Sensitivity analysis results for laboratory-trained ANN 

Missing 

Parameter 

Test Loss 

(MSE) 
% Change Min. Test Error 

Max. Test 

Error 

None 0.0724 - 4.411x10-5 0.5140 

Fr 0.1008 +39% 1.543x10-8 0.7165 

D/B 0.1000 +38% 5.095x10-5 0.5361 

h/D 0.0853 +18% 4.731x10-5 0.4281 

U/Uc 0.1542 +113% 4.517x10-7 0.8070 

D/d50 0.0998 +38% 1.354x10-4 0.5164 

5.1.3 Comparison to Prediction Equations 

Further analysis on the accuracy of the ANN’s equilibrium scour depth predictions was 

conducted with a comparison to the predictions using the equations discussed in Chapter 2, using 

the error values outlined in Chapter 3. A summary of these values is presented in Table 5.3. In 

each of the error values calculated, the ANN produced the most favourable result. It was 

observed that the error values from the ANN were significantly more favourable than the HEC-

18 equation, which is the equation most commonly used in practice. Plots of predicted versus 

measured relative equilibrium scour depth values were also created for analysis and are 

presented in Figure 5.3. From these plots it is evident that the equilibrium scour depth 

predictions produced from empirical formulae do not achieve the same level of accuracy as the 

ANN. Each of the equations produced a higher percentage of data falling outside of the 20% 

error bounds than the current ANN model. It is also observed that the S/M (2011) equation 

produced the least accurate predictions, while the Williams (2016) equation produced the most 

accurate results.  

Table 5.3: Comparison of laboratory ANN to empirical formulae 

Model ANN 
Froehlich 

(1988) 
HEC-18 (2001) S/M (2011) 

Williams 

(2016) 

MSE 0.0724 0.1771 0.4226 0.4442 0.2024 

MAE 0.2023 0.3441 0.4916 0.5749 0.3381 

MAPE 18% 33% 44% 56% 22% 

R 0.7877 0.4905 0.3784 0.3963 0.5161 
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Figure 5.3: Predicted versus observed dse/D for the (a) Froelich (1988) equation, (b) HEC-18 equation, 

(c) S/M (2011) equation, and (d) Williams (2016) equation applied to laboratory data 

5.1.4 Field Estimations 

The final analysis conducted on the laboratory-trained ANN was to evaluate the model’s 

applicability to field scour estimations. To complete this analysis, the field data which fit the 

criteria on which the laboratory database was created (e.g., circular cylinders) were retained and 

applied to the model. The results of the predicted versus measured dse/D values from the field 

line 

line 

line 

line 

1 

1 
1 

1 

1 

1 1 

1 



 

48 

 

data are presented in Figure 5.4. It is evident from this plot that the laboratory-trained model is 

unable to produce meaningful scour estimations from field data. This supports the idea that scour 

prediction models developed solely on laboratory data do not translate well to field use. There 

are many reasons why a laboratory-trained model would be ineffective in field use, including the 

scale effects that are present during laboratory experimentation. There are also parameters that 

occur in the field that lie outside of the range that is achievable through laboratory 

experimentation, leaving aspects of field scour development out of consideration when 

developing these scour prediction models. This reiterates the need for an accurate scour 

prediction model developed from field-based data.  

 
Figure 5.4: Predicted vs. measured dse/D for field scour estimations produced from the laboratory-

trained ANN 

5.2 Field Model 

Similar to the laboratory-trained model, a field-trained model was developed following the 

procedure outlined in Chapter 4, with a set of input parameters selected based on those which 
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have greatest influence on equilibrium scour depth. For the field-trained model, the specific set 

of input parameters for the ANN are chosen as: 

dse

D
 = f (Fr,

h

D
,

U

UC
,

D

d50
,

L

D
,KS,σg)                                                                                                   (5.4) 

where KS is the HEC-18 shape factor. Since the field database is made up of data from 

conditions in which the pier is in line with the approach flow, the pier orientation was not 

considered an input variable. Unlike the laboratory data, the field database also consists of non-

circular piers with varying aspect ratios (L/D), leading to the inclusion of both a pier shape factor 

and L/D as input parameters. The field data also consist of data for conditions in which the bed 

material is not uniform (i.e., σg > 1.5), hence the inclusion of σg as an input parameter.  

 
Figure 5.5: Predicted vs. actual dse/D for field-trained ANN 

The optimized ANN consisted of one hidden layer with 13 nodes within that layer and a 

learning rate of 2.8x10-3. The network utilized the sigmoid activation function and a scaling 

method in which the mean of the inputs is equal to zero with a variance of one. It was also 

observed that increasing the number of epochs from 150 to 200 resulted in more accurate 
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predictions. Increasing the number of epochs any further resulted in some negative values for the 

scour predictions. A plot of predicted versus measured dse/D values from the optimized model is 

shown in Figure 5.5. From this plot it is observed that although the estimations are relatively 

accurate, a larger percentage of the data falls outside of the 20% error bounds than what was 

observed in the laboratory estimations. 

5.2.1 Shape Factors 

As discussed in Section 2.2.3, there have been many different pier shape factors proposed for 

scour predictions, typically derived by using the ratio of scour depth for circular piers to other 

shaped piers. As previously discussed, the pier shape could be characterized by the drag 

coefficient (CD), which was introduced to the scour problem to improve the physical basis of 

scour prediction models (Coscarella et al., 2020). In an effort to improve the field equilibrium 

scour depth estimations, an ANN was optimized with the physics-based parameter, CD. 

Additionally, ANNs were optimized with the Neill (1973) shape factors and Al-Shukur and 

Obeid (2016) shape factors (A&O), outlined in Table 2.1, for comparison. The results from these 

models are presented in Table 5.4. From this table, it can be seen that the total test error was 

decreased by 10% with the model using CD as opposed to the HEC-18 shape factor. It is also 

evident that other empirical shape factors proposed do not improve the accuracy of scour 

predictions. To further analyse the applicability of CD, the predicted versus measured relative 

equilibrium scour depth plot from this model is presented in Figure 5.6. The predicted versus 

measured dse/D plots for the Neill and A&O models can be found in Appendix B. As evident 

from the plot, the scour predictions are closer to the agreement line than as seen with the HEC-18 

model. It is also observed that the outlier point also falls closer to the exact-match line, indicating 

that the CD model performs better for a wider range of data. These results indicate that physics-
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based parameters, such as the pier drag coefficient, are more valuable than empirical values 

when applied to scour prediction models. Due to its benefits over the HEC-18 model, the CD 

model was retained for further analysis. This ANN has the same structure as the HEC-18 model, 

with the exception of the learning rate, which was optimized as 3.3x10-3. 

 
Figure 5.6: Predicted vs. observed dse/D for field-trained ANN with CD 

 

Table 5.4: Results from applying different shape factors to the field-trained ANN 

Shape Factor Test Loss % Change Min. Test Error Max. Test Error 

HEC-18 0.0891 - 1.298x10-4 0.4455 

CD 0.0803 -10% 6.618x10-6 0.6228 

Neill 0.0899 +1% 3.087x10-5 0.3946 

A&O 0.1028 +15% 2.375x10-6 3.9447 

5.2.2 Inclusion of Flow Separation Velocity 

The applicability of Us was also evaluated as a velocity scale for field-based scour prediction 

models. A new model was optimized with the flow separation velocity being introduced to the 

model in the form of the k value, where k is the flow separation velocity divided by the approach 

flow velocity (i.e., k = Us/U). A second model was optimized with the separation velocity 
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divided by the critical velocity of the bed material (i.e., Us/Uc). The results of these models, 

compared to those from the model utilising U/Uc as the velocity scale, can be found in Table 5.5. 

It is observed that the total error increases with the two different input parameters incorporating 

Us compared to the model which uses U/Uc as the velocity input. This indicated that the flow 

intensity is the most efficient velocity scale parameter to apply to a scour prediction model based 

on field data. The separation velocity may not have a significant impact on the field-trained 

model as Us was introduced to scour prediction by Williams (2016) to incorporate blockage 

effects. However, it was assumed that blockage is minimal in the field environment, making 

blockage effects negligible. The predicted versus measured dse/D plots for the models including 

Us can be found in Appendix B. 

Table 5.5: Comparison of field-trained ANNs with varying velocity scales 

Velocity Scale Test Loss (MSE) % Change Min. Test Error Max. Test Error 

U/Uc 0.0803 - 6.618x10-6 0.6228 

k = Us/U 0.1023 +27% 3.891x10-4 0.8839 

Us/Uc 0.0893 +11% 1.099x10-5 0.6193 

5.2.3 Sensitivity Analysis 

The results obtained from the sensitivity analysis conducted on the field-trained ANN are 

presented in Table 5.6. From this table, it is observed that the error value increases with the 

exclusion of each of the input parameters, indicating that all parameters selected had a beneficial 

effect on the model. The h/D, D/d50, L/D and σg input parameters all have significant value to the 

model, as the error increased by over 100% after each of these input parameters were removed. 

Of these parameters, the flow shallowness had the most significant impact on the model, with the 

largest increase in error. It is important to note that the L/D parameter had the second largest 

increase in error when excluded, although all data consisted of conditions where the pier is in 

line with the flow. This contradicts assertations in the literature that the aspect ratio does not 

have an effect on scour depth in these conditions. It is also observed that the maximum error 
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increases significantly with the exclusion of the h/D, U/Uc, D/d50, L/D and σg parameters, further 

emphasizing the importance of these parameters in this model. Additionally, the CD parameter 

had the least impact on the model, with an increase of only eight percent, and a decrease in 

maximum error. However, the increase in total error value indicates that, although not as 

significant as the other parameters, the CD parameter does add value to the model.  

Table 5.6: Sensitivity analysis results for field-trained ANN 

Missing 

Parameter 

Test Loss 

(MSE) 
% Change Min. Test Error 

Max. Test 

Error 

None 0.0803 - 6.618x10-6 0.6228 

Fr 0.1515 +89% 1.543x10-4 0.8549 

h/D 0.1806 +125% 1.592x10-4 1.1426 

U/Uc 0.1263 +57% 8.305x10-7 1.6571 

D/d50 0.1689 +110% 1.820x10-8 1.3541 

L/D 0.1769 +120% 2.737x10-5 1.4882 

CD 0.0869 +8% 3.964x10-5 0.5001 

σg 0.1697 +111% 5.531x10-5 1.1757 

5.2.4 Comparison to Equations 

Similar to the laboratory-trained model, the predictions produced from the field-trained ANN 

were compared to those from commonly used formulae. The results of this analysis is outlined in 

Table 5.7.  It is evident from the error values that the ANN produces the most accurate 

equilibrium scour depth estimations compared to each of the equations. Each of the MSE, MAE 

and MAPE values are significantly reduced in the ANN model compared to the HEC-18 

equation. Additionally, the R value of the ANN model is approximately four times better than 

that of the HEC-18 equation. In addition to the error values, the predicted versus measured 

relative equilibrium scour depth values were plotted and presented in Figure 5.7. As observed 

with the laboratory scour predictions, it is apparent from the plots that the equations are not able 

to predict equilibrium scour depth to the same degree of accuracy of the neural network. It is 

observed that application of the equations to field data results in poorer equilibrium scour depth  
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Figure 5.7: Predicted versus observed dse/D for the (a) Froelich (1988) equation, (b) HEC-18 equation, 

(c) S/M (2011) equation, and (d) Williams (2016) equation applied to field data 

predictions than when applied to laboratory data. It is important to note that application of the 

S/M (2011) equation to the data resulted in some non-physical negative scour depth estimations 

which are not pictured in the plot. Although the error values and general predictions are 

significantly improved using the ANN compared to the empirical equations, there remains a 

desire for more accurate estimations. There is a larger percentage of datapoints falling outside of 
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the 20% error bounds on the field-trained plot than the laboratory plot, and there is a significant 

increase in MSE and MAPE values. 

Table 5.7: Comparison of error values from field ANN against empirical formulae 

Error ANN 
Froelich 

(1988) 

HEC-18 

(2001) 
S/M (2011) 

Williams 

(2016) 

MSE 0.0803 0.3123 1.281 1.893 0.5360 

MAE 0.2064 0.3442 1.059 1.018 0.5692 

MAPE 48% 77% 300% 200% 176% 

R 0.8756 0.3806 0.2263 -0.4374 -0.0727 

5.3 Combined Model 

In attempt to increase the accuracy of the field predictions, a model was trained on the 

combination database discussed in Section 3.4. This database is mainly composed of field data 

(77%), but also includes laboratory data to assist the ANN in learning and developing a more 

accurate scour prediction model. The input parameters used for this model were selected to be 

the same as those used in the field model (Equation (5.4)), with the exception of the pier shape 

factor. The drag coefficient was selected as the parameter to describe pier shape based on the 

results from the field-trained model. The optimized ANN was made up of one hidden layer with 

eleven nodes within that layer and a learning rate of 6.7x10-3. This structure is very similar to 

that which was optimized for the field-trained model, with the learning rate being doubled. The 

optimal activation function was determined to be the sigmoid function and the optimal scaling 

method was that which results in the inputs falling within a range of zero to one. Similar to that 

observed with the field-trained network, the current network performed optimally with 200 

epochs, rather than the originally selected 150 epochs. The plot of predicted versus measured 

dse/D values is presented in Figure 5.8, where 77% of the data comes from field measurements. 

From this figure, it is observed that a majority of the data falls within the 20% error bounds, with 
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multiple points falling on the line of exact match. In general, the predictions from the current 

model are significantly more accurate than those from the field-trained model.  

 
Figure 5.8: Predicted vs. measured dse/D for combination ANN 

5.3.1 Shape Factors 

To validate the selection of CD as the parameter to incorporate pier shape, models were also 

optimized using the HEC-18, Neill and A&O shape factors. The results from these models are 

presented in Table 5.8. The predicted versus measured dse/D plots from the models with 

empirical shape factors can be found in Appendix B. As evident in the table, the total loss 

increases by at least 100% from the model with CD to the models with the empirical shape 

factors. It is also observed that in all cases, especially those of the Neill and A&O shape factors, 

the maximum error also increases significantly. This large increase in maximum error resulted 

from the models being unable to accurately predict the scour depth for the outlier point (i.e., 

measured dse/D = 4.7), indicating that these models cannot perform for a range of data over 
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which the CD model is capable of. This further supports the selection of the parameter CD to 

describe pier shape in the scour prediction models.  

Table 5.8: Results of applying various shape factors to combined-trained model 

Shape Factor Test Loss (MSE) % Change Min. Test Error Max. Test Error 

CD 0.0724 - 1.943x10-4 0.7964 

HEC-18 0.1580 +118% 1.025x10-4 1.5349 

Neill 0.3424 +373% 7.110x10-7 4.8017 

A&O 0.3503 +384% 3.697x10-4 5.1352 

5.3.2 Inclusion of Flow Separation Velocity 

Models were also optimized with different velocity scales including the flow separation 

velocity from the pier. The parameters selected to be tested were the same as those used in the 

field model analysis. The results of these results, compared to the original optimized model, are 

outlined in Table 5.9. The total error and maximum error values increased with the introduction 

of k (i.e. Us/U) in the scour prediction models. Conversely, the error values decreased when      

Us/Uc was used as the velocity scale. This indicates that the critical bed material velocity has a 

significant impact on the scour predictions. The plot of predicted versus measured relative 

equilibrium scour depth for the Us/Uc model can be found in Figure 5.9. Although a majority of 

the points have similar scour estimations as in the original model, an increase in error is evident 

in the higher dse/D values, where the points lie closer to the exact-match line. The plot of 

predicted versus measured dse/D for the model incorporating k as an input parameter can be 

found in Appendix B. 

Table 5.9: Comparison of combined ANNs with varying velocity scales 

Velocity Scale Test Error (MSE) % Change Min. Test Error Max. Test Error 

U/Uc 0.0724 - 1.943x10-4 0.7964 

k 0.1094 +51% 2.237x10-5 1.1378 

Us/Uc 0.0684 -6% 8.907x10-6 0.7484 
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Figure 5.9: Predicted vs. actual dse/D for combination ANN with Us/Uc 

The benefit of using the input parameter Us/Uc over U/Uc or k is that it incorporates both of 

these parameters into one value. With the utilization of Us/Uc, the approach flow velocity, 

blockage effects and critical bed material velocity are all taken into consideration. The inclusion 

of flow separation velocity from the bridge pier has a beneficial effect on the combined database, 

contrary to the field database, since blockage effects have a greater impact on laboratory data. 

This is due to the fact that the blockage ratio in laboratory experiments is typically higher than 

what is experienced in the field. Since the combined database contains data from both the field 

and laboratory conditions, blockage effects should be considered. The updated ANN, with Us/Uc 

as the velocity scale instead of U/Uc, consists of two hidden layers with ten nodes within each 

layer and a learning rate of 6.5x10-3. 

5.3.3 Sensitivity Analysis 

As with the laboratory-trained and field-trained models, the model trained on the 

combination database underwent a sensitivity analysis to validate the selection of input 

parameters and investigate their impact on the model. The results from the sensitivity analysis 
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are presented in Table 5.10. As can be observed from the table, each of the input parameters 

selected had valuable impact on the model, as the error increased significantly with the exclusion 

of each parameter. The largest increase of error was observed when σg was left out of the model, 

indicating that it has the greatest influence on the model. All other parameters, other than the 

relative coarseness of bed material, showed an increase in error between 100% and 200%, 

suggesting that the influence of these parameters is approximately the same. This includes the 

pier aspect ratio, further supporting the results from the field-trained network that L/D has an 

impact on the equilibrium scour depth even when the pier is in line with the approach flow. 

When D/d50 was excluded from the model, the error experienced an increase of 78%, the lowest 

increase of all the inputs. This indicating that, although the relative coarseness of bed material 

adds significant value to the network, it is not as influential as the other parameters.  

Table 5.10: Sensitivity analysis results for combined-trained ANN 

Missing 

Parameter 

Test Loss 

(MSE) 
% Change Min. Test Error 

Max. Test 

Error 

None 0.0684 - 8.907x10-6 0.7484 

Fr 0.1682 +146% 2.442x10-6 2.6333 

h/D 0.1477 +116% 3.991x10-4 1.1788 

Us/Uc 0.1531 +124% 3.725x10-4 1.5766 

D/d50 0.1216 +78% 5.468x10-5 1.2037 

L/D 0.1727 +152% 2.689x10-4 2.3161 

CD 0.1904 +178% 9.796x10-5 1.1405 

σg 0.8565 +1150% 3.927x10-4 16.718 

5.3.4 Comparison to Other Prediction Models 

Since the current ANN presented was proven to produce the most accurate scour depth 

estimations for field use out of the models developed, it is useful to compare the current model to 

empirical formulae as well as ANNs developed in literature. The ANNs that the current model is 

compared against are only those which were also developed for the purpose of field scour 
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estimates. Any models that were developed solely for the purpose of laboratory predictions were 

not considered.   

5.3.4.1 Prediction Equations 

The combined ANN results were compared to those from empirical equations as was done 

for both the laboratory and field models. Table 5.11 outlines the error values from the 

combination-trained ANN and empirical formulae. Similar to what was observed for the first two 

ANNs developed, the predictions from the current model show significant improvement over any 

of the empirical equations. It is also observed that the correlation coefficient is very close to 

unity, indicating a strong linear relationship between the predicted and measured relative 

equilibrium scour depth values. The predicted versus measured dse/D values were plotted for 

each of the empirical formulae and are presented in Figure 5.10. 

As was observed with both the laboratory-trained and field-trained models, the combination-

trained ANN produced relative equilibrium scour depth predictions with a higher degree of 

accuracy than each of the empirical formulae. This is evident since only a small percentage of 

the data falls within the 20% error bounds in each of the plots produced from the formulae. The 

Froelich (1988) equation severely underpredicted a majority of the scour depths, which could 

result in unsafe bridge foundation designs. Conversely, the HEC-18 (2001) and S/M (2011) 

equations both overestimated most of the scour depths. This overestimation results in bridge 

foundation designs that are not economical. Similar to the results with the field data, the S/M 

(2011) equation produced unrealistic negative dse/D values. Negative scour depth estimations are 

harmful in bridge foundation design, as the design engineer has no indication of the scour that is 

expected to occur. The Williams (2016) equation both under and overestimated the relative 

equilibrium scour depths. However, this equation was developed mainly for laboratory 
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applications, therefore accurate field estimations were not anticipated. It is also important to note 

that none of the empirical equations were able to accurately predict the expected dse/D value for 

the outlier point (i.e., measured dse/D = 4.7). In fact, this point was significantly underestimated 

with each of the equations. This suggests that the ANN is applicable to a larger range of scour 

data than the empirical equations.   

 
Figure 5.10: Predicted versus observed dse/D for the (a) Froelich (1988) equation, (b) HEC-18 equation, 

(c) S/M (2011) equation, and (d) Williams (2016) equation applied to combination data 
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Table 5.11: Comparison of error values from combined ANN against empirical formulae 

Error ANN 
Froelich 

(1988) 

HEC-18 

(2001) 
S/M (2011) 

Williams 

(2016) 

MSE 0.0684 1.2727 1.0389 3.4945 0.9849 

MAE 0.1871 0.7181 0.8120 1.2241 0.7212 

MAPE 44% 68% 204% 130% 149% 

R 0.9618 0.3441 0.4221 -0.1661 0.0432 

5.3.4.2 ANNs in the Literature 

The proposed ANN models were also compared to those found in the literature. Since the 

ANNs developed in the literature were not evaluated on the same test data as the current ANN, 

and the exact models are not available to apply the current test data set to, the comparisons to 

these models cannot be exact. To give a general comparison of how the models perform 

compared to one another, the error values reported in the literature are compared to those 

calculated in the current research. Many of the ANNs in the literature utilized the correlation 

coefficient and/or mean absolute percent error to evaluate the models’ performance. The reported 

R and MAPE values from ANNs in the literature are presented in Table 5.12, along with the 

error values from the ANN developed in the current research.  

Table 5.12: Comparison of present ANN to others found in literature 

ANN R MAPE 

Present Study (Combined-trained) 0.962 44% 

Choi and Cheong (2006) - 65% 

Lee et al. (2007) 0.956 - 

Kaya (2010) 0.926 59% 

Toth and Brandimarte (2011) - 58% 

Bonakdari and Ebtehaj (2017) - 69% 

Pal (2019) 0.962 - 

Shamshirband et al. (2020) 0.880 - 

As can be seen from the table, the current ANN has the most favourable R and MAPE values 

compared to those found in the literature. An exception to this is the model proposed by Pal 

(2019), where the R value is equal to that calculated from the current model. However, the model 

proposed by Pal (2019) is considerably more computationally expensive, with 10,000 epochs, 3 
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hidden layers consisting of 100, 80, and 50 nodes, and dropout layers, allowing the model to 

produce results similar in accuracy to the current model. The structure and computational 

requirements of the ANN from the current study is significantly simpler. The current ANN 

utilizes physics-based parameters to allow the model to train on the data with less computational 

expense. The model proposed by Lee et al. (2007) also produces an R value that is relatively 

close to that produced by the current model. However, similar to the case with Pal (2019), the 

computational costs are significantly greater. Although the structure of the model presented by 

Lee et al. (2007) is simpler than the current model, with one hidden layer and six nodes within 

that layer, the model requires 10,000 epochs to train. Both the models presented by Pal (2019) 

and Lee et al. (2007) were able to produce scour estimates with similar accuracy as the current 

proposed model, however they require 50 times the number of epochs to produce these results.  

5.4 Scour Width Model 

The final model developed was the scour width prediction model, which was created to 

predict both equilibrium scour depth and width. Due to the lack of scour width data available for 

field measurements, a scour width model was trained exclusively on laboratory data. As a result, 

the model developed would be applicable to laboratory conditions only, while the 

implementation of the model for field conditions is unknown. However, development of a scour 

width model with the use of laboratory data allows for evaluation of the feasibility of a model 

developed with field data.  

The input parameters selected for the model were the same as the set used to develop the 

laboratory-trained model, as presented in equation (5.1). The optimized network consisted of one 

hidden layer with six nodes within that layer and a learning rate of 1.1x10-3. It was found that the 

model performance was optimized with the inputs being scaled on a range of zero to one and 
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with the use of the sigmoid activation function. The predicted versus measured relative 

equilibrium scour width and depth values are plotted in Figure 5.11. From this figure, it is 

evident that the model is able to produce both accurate scour depth and width values, with only a 

few data points falling outside of the 20% error bounds. Additionally, a majority of the scour 

width points, along with a significant amount of the scour depth points lie in close proximity to 

the exact-match line. 

 
Figure 5.11: Predicted vs. measured dse/D and ws/D for scour width model 

5.4.1 Inclusion of Blockage Effects 

As was done with the laboratory-trained model, the optimization process was repeated 

excluding the blockage ratio to analyse its effects on the scour width predictions. The results 

from the model without D/B compared to the model including D/B are presented in Table 5.13. It 

is observed that the total loss increases by 109%, indicating that, like the scour depth, the 

blockage ratio also has significant influence on the scour width. The maximum test error also 

increases significantly with the exclusion of D/B, further re-iterating the importance of blockage 
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effects on scour development in laboratory conditions. The plot of predicted versus measured 

scour values for the model without D/B is found in Appendix B.  

Table 5.13: Results of blockage effects investigation on scour width model 

Model 
Test Loss 

(MSE) 
% Change 

Min. Test 

Error 

Max. Test 

Error 

With D/B 0.0726 - 1.724x10-3 0.3458 

Re-optimized No D/B 0.1519 +109% 5.755x10-4 1.1466 

5.4.1.1 Flow Separation Velocity 

Since the blockage effects can also be integrated into the model with the flow separation 

velocity from the pier, ANNs were also optimized with input parameters incorporating Us, to 

evaluate their applicability to the scour width prediction model. The results of the models 

including Us, compared to the results of the original model, can be found in Table 5.14. Since the 

scour width model is based on laboratory data, the densimetric Froude number, calculated with 

Us, (equation (2.7a)) was also considered.  This value was not considered for field data, as the 

specific gravity of the bed material is required, and this value is rarely reported for field data. It 

is observed that the total error as well as the maximum error increase with the inclusion of k as 

an input parameter. Conversely, both of these error values are decreased when Us/Uc is 

considered as an input. For the model including Fds as an input parameter, the total error 

increased slightly, while the maximum test error decreased.   

Table 5.14: Comparison of scour width ANNs with varying velocity scales 

Velocity Scale Test Loss (MSE) % Change Min. Test Error Max. Test Error 

U/Uc 0.0726 - 1.724x10-3 0.3458 

k 0.1279 +76% 4.718x10-4 0.5922 

Us/Uc 0.0472 -35% 9.599x10-4 0.1565 

Fds 0.0793 +9% 2.450x10-3 0.2640 

To further evaluate the applicability of the Us/Uc parameter, the plot of predicted versus 

measured relative scour values is presented in Figure 5.12. From this figure it is evident that, 
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although the error values are decreased, the quality of the scour estimations have decreased. In 

Figure 5.12 there is a lower percentage of data points lying in close proximity to the exact-match 

line than what was observed in Figure 5.11. However, the values that were heavily overpredicted 

in the original model now fall closer to the 20% error bounds, while still not falling within them. 

The increase in accuracy of these values is likely what causes the overall test error value to 

decrease. After evaluating the predicted versus measured scour value plots, the original model 

was selected for further analysis, as the model was more accurate for a larger percentage of the 

test data set. The plot of predicted versus measured ws/D and dse/D values for the models with k 

and Fds as input parameters can be found in Appendix B.  

 
Figure 5.12: Predicted vs. actual dse/D and ws/D for scour width ANN with Us/Uc 

5.4.2 Sensitivity Analysis 

A sensitivity analysis was conducted to validate the selection of input parameters and 

evaluate their influence on the scour prediction model. Table 5.15 outlines the results from this 

analysis. It is observed that all error values decreased when the Froude number was excluded 

from the model. This indicates that the inclusion of the Froude number as an input parameter did 
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not add significant value to the prediction model. The Froude number may not have had a 

meaningful influence on the scour width estimations as the scour database used in the training of 

the model only consisted of data from seven separate laboratory investigations. Additionally, in 

many of these investigations, the Froude number was held constant throughout each experiment 

conducted. As a result, there is not a significant amount of variation of Froude number in the 

scour width database. To further investigate the effect of Fr on the model, the dse/D and ws/D 

estimates were evaluated separately.  In this investigation, it was found that although the scour 

width estimations improved with the removal of Fr, the scour depth estimations reduced in 

accuracy. The results of the sensitivity analysis also suggest that the scour prediction model 

heavily weighs the influence of flow intensity, with an error increase of 100%, while the 

exclusion of all other parameters resulted in an increase of less than 10%. This indicates that 

although the D/B, h/D and D/d50 parameters add value to the prediction model, their impact is 

not significant compared to that of U/Uc. Subsequent analysis of the ANN was conducted 

without the inclusion of the Froude number as an input parameter, as this model produced the 

most accurate scour estimations.  

Table 5.15: Sensitivity analysis results for scour width ANN 

Missing 

Parameter 

Test Loss 

(MSE) 
% Change Min. Test Error 

Max. Test 

Error 

None 0.0726 - 1.724x10-3 0.3458 

Fr 0.0619 -15% 3.538x10-4 0.2936 

D/B 0.0754 +4% 9.808x10-4 0.3582 

h/D 0.0788 +9% 3.079x10-3 0.3905 

U/Uc 0.1452 +100% 1.267x10-3 0.8047 

D/d50 0.0737 +2% 1.670x10-3 0.3346 

5.4.3 Comparison to Prediction Equation 

Since the model predicts both scour depth and scour width values, the model was compared 

to two different sets of equations. First, the scour width predictions from the model were 
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compared to those from the HEC-18 scour width equation. As discussed in Section 2.3.2., there 

is a significant difference in the performance of the HEC-18 scour width prediction equation if 

the dse value is known versus unknown. For the sake of comparison, the ws equation was applied 

to both situations. However, in practice, when designing bridge foundations, the scenario in 

which the dse value is not known would be the only case which would occur. Various error 

values calculated from the scour width predictions are presented in Table 5.16. From the table it 

is evident that the scour width predictions from the ANN are significantly more accurate than the 

estimations made with the equation. The improvement from the predictions as a result of 

applying the equation with dse unknown to the predictions from the ANN is especially 

substantial. For further analysis, plots of predicted versus measured ws/D values are presented in 

Figure 5.13. When comparing this plot to Figure 5.11, it is evident that the ANN is able to 

predict ws/D values with more accuracy than the HEC-18 equation when the dse is either known 

or unknown. For the case in which the dse values are not known, none of the predictions fall 

within the 20% error bound and the predictions are considerably overestimated.  These high 

estimates of expected scour width values can negatively effect bridge foundation design, 

especially when piers are in close proximity to one another.  

Table 5.16: Comparison of error values from scour width model to HEC-18 (2001) scour width equation 

Error ANN Equation – dse known Equation – dse unknown 

MSE 0.0988 0.3148 2.8159 

MAE 0.1942 0.4097 1.5579 

MAPE 18% 44% 147% 

R 0.8624 0.7858 0.3724 
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Figure 5.13: Predicted vs. observed ws/D for HEC-18 (2001) scour width equation, with dse/D values 

known and unknown 

Table 5.17 outlines the comparison of the ANN relative equilibrium scour depth estimations 

to those from empirical formulae. It is observed that, similar to the scour width predictions, the 

ANN produces the most favourable error values for each of the errors calculated. This indicates 

that the model is able to produce more accurate relative equilibrium scour depth measurements 

than the equations proposed in the literature. Plots of predicted versus measured dse/D values 

were also created and are presented in Figure 5.14. These plots further re-iterate the results that 

have been observed among all other models compared to the empirical equations. Once again, 

the present model was able to produce the most accurate dse/D predictions when compared to 

empirical equations. Results from the current model indicate that it is feasible to develop an 

ANN that is able to predict both equilibrium scour width and equilibrium scour depth values for 

use in foundation design practice if the data required becomes available.  
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Table 5.17: Comparison of error values from scour width model to various empirical dse/D equations 

Error ANN 
Froelich 

(1988) 

HEC-18 

(2001) 
S/M (2011) 

Williams 

(2016) 

MSE 0.0250 0.2627 0.3253 0.4261 0.4621 

MAE 0.1367 0.4474 0.5197 0.5990 0.6142 

MAPE 18% 61% 65% 63% 62% 

R 0.8223 0.7254 0.7006 0.8539 -0.5224 

 

 
Figure 5.14: Predicted versus observed dse/D for the (a) Froelich (1988) equation, (b) HEC-18 equation, 

(c) S/M (2011) equation, and (d) Williams (2016) equation applied to depth data within scour width 

database 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary  

Accurate scour depth and width (dse/D and ws/D) estimations are crucial for safe and 

economical bridge foundation designs. Current design practice employs the use of empirical 

formulae, typically developed by curve-fitting to laboratory data. These equations tend to be 

limited to certain geometric and flow conditions and extrapolating to field situations should be 

done with caution. Recently, investigations into the applications of artificial neural networks 

(ANNs) to the pier scour problem have been conducted. ANN can be used to mitigate some of 

the major shortcomings that arise through curve-fitting. These investigations have resulted in 

improved accuracy of scour depth estimations for both laboratory and field use. However, the 

laboratory ANN estimations have a significantly higher degree of accuracy than those in field 

conditions.  

The current investigation involved exploring the use of physics-aware parameters and a 

combination of laboratory and field data in an attempt to improve field scour estimations with 

ANNs. The applicability of ANNs for scour width predictions was also investigated. A total of 

four final neural networks were developed and compared to empirical formulae. A summary of 

the networks is presented in Table 6.1, with the combination network being optimal for field 

scour prediction. 
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Table 6.1: Summary of ANNs developed 

ANN 

No. of 

hidden 

layers 

No. of 

hidden 

nodes 

Learning 

rate 

No. of 

Epochs 

Input 

scaling 

method 

Activation 

function 

Laboratory 3 5 2.0x10-2 150 [0,1] Sigmoid 

Field 1 13 3.3x10-3 200 XN
̅̅ ̅̅ =0, σN=1 Sigmoid 

Combination 1 11 6.7x10-3 200 [0,1] Sigmoid 

Width 1 6 1.1x10-3 150 [0,1] Sigmoid 

 From this investigation, the following conclusions can be drawn:  

• When applied to field conditions, laboratory-trained models are unable to produce scour 

depth estimations with the same level of accuracy as in the laboratory predictions.  

• The accuracy of field scour depth estimations increases when the model is trained on a 

data set composed of mainly field data with some laboratory data to support the training 

process.  

• Introducing CD, a physics-based parameter, to a network to incorporate pier shape as 

opposed to empirical shape factors results in more accurate dse/D predictions. 

• For models trained on laboratory data, the error produced from dse/D estimates is 

decreased by including Us as a physics-based parameter to incorporate blockage effects in 

the model. 

• The agreement of dse/D and ws/D predictions from the scour width ANN with measured 

values indicate the viability of a single ANN for both dse/D and ws/D predictions. 

• All the ANNs developed produced significantly more accurate scour estimations and 

were applicable to a larger range of data than the presently used empirical equations.  
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6.2 Recommendations 

Recommendations for future studies include the investigation of restraining underprediction 

for ANN scour estimates. Although ANNs are able to produce more accurate scour predictions 

than empirical formulae, the models cannot distinguish between under and overestimations.  The 

ability to ensure no predictions are underestimated would be a valuable asset to a scour 

prediction model. It is also recommended that more diverse laboratory data (e.g., varying pier 

shapes and pier aspect ratios) be collected to support the training of the combined model. An 

increase in accuracy of the combined model may result from more diverse data, as laboratory 

data used to support the training of the ANN was restricted to circular cylinders alone. Providing 

a wider range of supporting data may aid the model in predicting scour at varying piers for field 

applications. Finally, the collection of scour width data, for the purpose of model training is 

recommended. As observed from the scour depth model, ANNs trained solely on laboratory data 

do not necessarily translate well to field use. The collection of sufficient scour width data from 

the field would allow for the development of a scour width ANN to be used in practice for 

foundation design.  
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APPENDICES  

Appendix A: Software Acknowledgements 

The following open-source codes were used in this work: 

• PyTorch (Paszke et al., 2019) 

• Pytorch Lightning (Falcon et al., 2020) 

• Optuna (Akiba et al., 2019) 

• Seaborn (Waskom, 2021) 

• Matplotlib (Hunter, 2007) 
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Appendix B: Additional Results 

Field Model Results 

 
Figure B.1: Predicted vs. observed dse/D for field ANN with Neill shape factor 

 

 
Figure B.2: Predicted vs. observed dse/D for field ANN with A&O shape factor 
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Figure B.3: Predicted vs. observed dse/D for field ANN with k 

 

 
Figure B.4: Predicted vs. observed dse/D for field ANN with Us/Uc 
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Combination Network 

 
Figure B.5: Predicted vs. observed dse/D for combination ANN with HEC-18 shape factor 

 

 
Figure B.6: Predicted vs. observed dse/D for combination ANN with Neill shape factor 
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Figure B.7: Predicted vs. observed dse/D for combination ANN with A&O shape factor 

 

 
Figure B.8: Predicted vs. observed dse/D for combination ANN with k 
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Scour Width Network 

 
Figure B.9: Predicted vs. observed dse/D and ws/D for scour width ANN re-optimized without D/B 

 

 
Figure B.10: Predicted vs. observed dse/D and ws/D for scour width ANN with k 
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Figure B.11: Predicted vs. observed dse/D and ws/D for scour width ANN with Fds 
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