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ABSTRACT

Hedge funds seek to achieve higher returns on investment in the stock market.

Typically, they purchase high-quality data at a high price and employ hundreds of

individuals working in isolated teams, leading to duplication of research efforts due to

secrecy. As such, the data cannot be shared publicly without risking their competitive

edge. Numerai is a hedge fund has developed a method for encrypting high-quality

stock market data without compromising its predictive power, allowing public shar-

ing of such data in a weekly data science tournament. This method enables anyone

to access the data, generate predictions, and submit them for consideration. Sub-

mitted predictions can influence Numerai’s allocation of capital in the global stock

market. The provided time-series data is cleaned and regularized, which comprises

millions of samples and 1191 features that has evolved since their inception. The task

in the tournament is to predict the probability of a given sample yielding positive

returns. The non-stationary nature of the features presents a significant challenge to

the participants. Additionally, participants aim to maintain stable predictions over

time. Using this data as a supervised regression learning problem, we focused on

improving the Sharpe ratio of correlation scores over time. Tree-based models have

demonstrated effectiveness in such tasks, while neural networks have shown potential

in computer vision and natural language processing. In this thesis, we investigated

the incorporation of deep learning methods to improve results through unsupervised

and supervised learning. Our findings indicated an improvement in Sharpe ratio over

the provided baseline model. We also examined the potential for generating synthetic

data using CTGAN.
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CHAPTER 1

Introduction

1.1 Overview

Public equity markets allow anyone to participate in capital investment. Entities, such

as hedge funds, utilize all kinds of data and information to gain a marginal edge in

the market. Their approaches include looking into historical prices of equities, buying

high-quality derivatives’ data, using automated bots for high-frequency trading, and

using satellite images in store parking yards to forecast sales to find the alpha [1]

which is the excess returns compared to a benchmark.

Some investors see using the stock market to attain higher returns on invest-

ments as gambling, while others see it as an opportunity to invest with their due

diligence and a hypothesis. Investors have conducted different types of research, such

as fundamental analysis (FA) and technical analysis (TA). FA involves looking at

a company’s balance sheet, earnings, and management. Alternately, TA uses can-

dlestick patterns, Open, High, Low, Close, Volume (OHLCV) data, and derivatives

data. It utilizes drawing patterns on charts and looking at the technical indicators,

such as simple moving average (SMA) and relative strength index (RSI), to build a

hypothesis about the company or market.

With the growth of technology, the number of people investing has also increased,

making stock-market investment more accessible and common. This change allowed

for the automation of trades. Thus, one can automate the trades if certain conditions

are met. For example, investors may buy $100 worth of stock if a promising stock price

1



1. INTRODUCTION

falls below 10% in a day. Based on this, institutional investors use high-frequency-

trading (HFT) backed by smart analysis and predictive technologies. Due to its

popularity and perceived effectiveness, HFT accounted for 52% of trading volume in

May 2019.

1.2 Research Motivation

The hedge funds use many techniques to find alpha for their investment strategies.

They employ talent from different backgrounds such as Physics, Math, Computer

Science, etc. These analysts often works in silos,leading to redundancy in research

and unimpressive performance. Furthermore, the data cannot be shared publicly as

a strategy would loses its edge if everyone is using it in the market. So, secrecy plays

a critical role in achieving success.

Numerai Inc. (numer.ai) is a hedge fund that instrumented a way to encrypt the

stock market data without losing its predictive structure. This allows them to share

their high-quality data publicly without worrying of their secret data being used by

anyone else. Numerai make this data publicly available so data scientists across the

world can load it, do modelling, and generate predictions. These predictions are

then collected by Numerai to make an ensemble model called “The Meta-Model”.

This ensemble model of predictions is then used to make trades in the global equity

market. The meta model is a stake weighted ensemble of all predictions submitted

on time. Stake refers to the confidence the data scientists have in their respective

model. The staking mechanism allows data scientists (users) to stake Numeraire

cryptocurrency on their predictions. The stake is either rewarded or destroyed based

on the performance of individual predictions.

2



1. INTRODUCTION

Fig. 1.2.1: Numerai’s market-neutral fund performance. [2]

The idea is that an ensemble of predictions from thousands of data scientists

should outperform traditional hedge funds. Fig. 1.2.1 shows the effectiveness of this

approach of crowd sourcing predictions in the market.

The participants or the data scientists do not need to share their models or code in

order to participate in this tournament. They only need to generate predictions using

the updated weekly data and submit them. However, if everyone submits the same

predictions, then the ensemble would not be diverse enough. Thus, the incentives are

to be good and unique than others at the same time. This data science tournament

is a weekly tournament. Each week, a new round starts with new data to generate

and submit predictions upon.

In this thesis, we used the data provided by Numerai, to achieve the primary

goal of combining different set of models using Deep Learning that can add valuable

information to the provided example model. Observing the effect of synthetic data is

also briefly discussed.

3



1. INTRODUCTION

1.3 Research Contribution

Tree based models have been performing well on tabular data in supervised setup.

We used deep learning to extract meaningful information from the inputs. Adding

this to tree based model helps making the model generalize well and achieve a higher

Sharpe ratio. This means, having higher returns per risk.

The main contributions of this thesis are,

• Using de-noising auto-encoder to generate robust latent representations

• Constraining the latent representations to be orthogonal

• Training tree-based models on these latent representations to generate diverse

set of predictions

• Thus, a robust framework to combine neural networks and tree-based models.

1.4 Thesis Organization

Chapter 1 outlines the overview, research motive and contributions.

Chapter 2 describes the literature review of how machine learning is mostly

applied on stock market data, machine learning on tabular data along with

some deep learning ideas related to this thesis.

Chapter 3 explains the dataset, it’s previous versions and characteristics.

Chapter 4 discusses machine learning methodologies used in the research and

talks about the performance measures used to evaluate the models.

Chapter 5 talks about the proposed methodology with cross-validation strat-

egy and custom loss function.

Chapter 6 states the experimental setup, and results from multiple experi-

ments.

4



1. INTRODUCTION

Chapter 7 concludes the research description and provides future research

directions.

5



CHAPTER 2

Literature Review

This chapter discusses some of the significant publications that directed our work.

We first discuss about how Machine Learning is applied on stock market data mostly

with tree-based models. Then we discuss how diverse machine learning approaches

are applied on tabular data as stock market data, at its core is tabular. Followed by

related deep learning approaches. We also discuss some of the approaches used on

Numerai’s previous datasets.

2.1 Machine Learning on stock market data

The use of machine learning to precisely predict the movements of a single stock

or a group of stocks has been the subject of numerous studies. To predict various

timescales of 1, 2, 5, 10, 15, 20, and 30 days, Nabipour et al. [3] studied and evaluated

various tree-based and deep learning algorithms. On the Tehran Stock Exchange, four

market segments were chosen: diversified financials, petroleum, non-metallic minerals,

and basic metals. Technical indicators were used to generate the features. The daily

open, high, low, close, and volume values of these tickers were used to calculate 10

technical indicators, which were then used as features.

In their experiments for tree-based models, Bagging, Random Forest, AdaBoost,

Gradient Boosting, and XGBoost were all used. Each one is tuned according to a

range of potential parameter values for the number of trees, maximum depth, and

learning rate. For deep learning models, Artificial Neural Networks (ANN), Recurrent

6



2. LITERATURE REVIEW

Neural Networks (RNN), and Long Short-Term Memory (LSTM) were utilized, each

tuned with a variety of potential parameter values as well. The 2600-day dataset was

divided into training and testing data at random.

To evaluate their experiments Nabipour et al. [3] used Mean Absolute Percentage

Error (MAPE), Mean Absolute Error (MAE), Relative Root Mean squared error,

and Mean Squared Error (MSE) as evaluation metrics to compare the performance of

various models over time. The decision tree performed poorly due to its non-ensemble

nature, but it is the quickest to train. Other tree-based models were outperformed

by the AdaBoost regressor. Among the neural network models, LSTM performed the

best, while ANN performed the worst. Overall, LSTM performed best, but it has the

disadvantage of having the longest runtime due to its sequential processing nature.

The authors were impressed by both the tree and neural models and suggested that

they be tested on other stock markets in the future.

Basak et al. [4] examined the performance of tree-based models on the stock

market. Technical indicators were used as features in their machine learning models

in order to accurately predict stock price movement over medium to long term time

frames. Price data till 3rd February 2017 for a diverse set of companies was used.

Relative Strength Index, Stochastic Oscillator, Williams percentage range, Moving

Average Convergence Divergence (MACD), Price Rate of change (PRoC), and On-

Balance Volume (OBV) were used as features with a brief description of their reason-

ing behind selecting specific parameters for these technical indicators. They generated

binary targets for multiple windows of 3, 5, 10, 15, 30, 60, and 90 days based on the

returns over multiple time frames.

Random forests and XGBoost implementation of Gradient boosted decision trees

were compared in their experiments. RoC-AUC was used as the primary metric for

evaluation and compared the accuracy of other published methods in a comparative

study. The Random Forest model outperformed the XGBoost model in most time-

frames. It achieved 78% accuracy compared to 56% and 67% accuracies in research

done on Korean and Taiwanese markets respectively. Their reason for random forest

outperforming the gradient boosting tree is the extensive use of voting to build forests

7



2. LITERATURE REVIEW

in random forests which results in decision trees that are significantly de-correlated.

As it carefully investigates the feature space to improve decisions on which class to

finalize as the predicted outcome, this course of action is quite ideal for the stock

data and associated classification.

Lopez De Prado in the book ”Advances in Financial Machine Learning,” [5] sug-

gests that K-fold cross-validation fails in finance because the observations aren’t nec-

essarily Independent and Identically Distributed (IID). It is possible to have serially

correlated features, which means that two consecutive samples may have very similar

information and, thus, overlap. Labels can be inherently correlated because they are

associated with overlapping data points. Putting them in two separate splits may im-

prove the model’s out-of-sample predictions, but it’s just over-fitting on very similar

in-sample data. As a result of this label leakage, sample features become irrelevant,

and researchers may obtain incorrect results.

“Purging” and “Embargoing” are proposed solutions by Lopez De Prado to handle

this problem. We can have data where the labels of training data overlap with the

labels of test set samples. Purging is the process of removing these overlapping

samples from the training set. In addition, features can have serial correlation, in

which case, we should remove a set of samples from the training set that immediately

follows a sample in the test set. Some common ML failures in finance were discussed

as well.

2.2 Machine Learning on Tabular data

Arik et al. [6] proposed a new deep learning-based architecture for tabular data.

Tabular data may contain different types of data. It is an encoder-decoder model

utilizing attention mechanism. TabNet [6] can be used for both supervised learning

and unsupervised pre-training. It also emphasizes on interpretability of the model.

It uses Transformer encoder-decoder built on attention mechanism [7]. The en-

coder processes the input using a feature transformer, an attentive transformer and

masking. The learnable mask helps the attention mechanism to focus on useful fea-

8



2. LITERATURE REVIEW

tures on each step. This mask also seconds as global feature importance tool for

model interpretation. It is often practiced selecting a subset of features. The authors

argued that the TabNet can perform well without explicit feature selection. It can

utilize all available features to make the most learning from the data. The feature

transformer uses a 4-layer network such that 2 are shared and 2 are independent for

a particular decision step. It makes extensive use of Batch Normalization and Gated

Linear Unit.

The unsupervised pre-training uses explicit masking of input cells for encoder and

allowing the model to learn the relationship using adjacent cells at decoder stage

in order to re-construct the original input. The authors tested this architecture on

multiple real world and synthetic datasets and compared it with many tree-based

tabular data learning methods. The authors concluded that the TabNet was able to

outperform tree-based models

Shwartz-Ziv et al. [8] commented that some studies have recently shown that

deep neural networks such as TabNet [6], NODE [9], DNF-Net [10], and 1D-CNN [11]

could perform better than tree-based models. There is no standard benchmark in

tabular data, so each method used different sets of datasets unlike Computer vision

having “ImageNet” [12]. The authors compared multiple tree-based methods like

CatBoost [13] and XGBoost [14] against a variety of proposed deep neural networks

with the goal of a fair comparison. It was found that the deep learning models were

outperformed by XGBoost without much tuning. However, an ensemble of XGBoost

with neural networks outperformed both model when compared to individual models.

The dataset used in this thesis is tabular. We found some research on very early

versions of Numerai’s dataset. Thakur et al. [15] used CTree models on Numerai

dataset with following techniques in the model: multivariate regression, ordinal re-

gression, censored regression, and recursive binary partitioning. Singh et al. [16]

experimented with Partial Least Square Regression in similar manner. They found

that a neural network would achieve similar performance but would take longer to

train and argued that tuning a neural network could propose a big challenge. Arti-

ficial neural networks were used by Jeipratha et al. [17] on an older version of the

9



2. LITERATURE REVIEW

Numerai dataset when metrics and targets were different than the latest one with

only 21 features. They used grid search cross validation to tune the parameters on

the Binary cross entropy metric. They utilized batch normalization and dropouts

for regularization. This research focused more on tuning the neural network param-

eters using 80/20-train/test split rather than comparing Neural networks to other

tree-based methods and suggested that other methods like Support Vector Machine

(SVM) and Random Forests can also be used.

Singh et al. [18] used another version of the Numerai dataset which had 310

features and 1 target named “target kazutsugi“ with about 558 thousand samples.

They did not require much pre-processing on this data as it had no missing values

and outliers. For feature selection, they used correlation between features to drop

eliminate correlated features from the dataset using a threshold. Thus, using 166

features for training. They used a neural network architecture with Batch Normal-

ization [19] and Dropout [20] layers in Keras. Multiple performance metrics were

used for evaluation which includes Mean Absolute Error, Mean Squared Logarithmic

error, Mean Squared Error, Root Mean Squared Error, Max Error and R2 as primary

metric.

Random Search Cross-Validation was used to optimize the parameters of network.

A higher R2 score would suggest better generalization. The tuned model achieved

an R2 score of 0.8683 which was significantly higher than other methods tested by

the authors. The other methods were Two-Stream Gated Recurrent Unit Network,

Hybrid time series predictive neural network, LSTM, Multi Layer Perceptron (MLP),

and Decision Trees.

Another approach towards this dataset was shared in the post titled “AutoEncoder

and multitask MLP on new dataset(from Kaggle Jane Street)” by the user jrai [21].

The author suggests using de-noising auto-encoder and concatenating latent space to

noisy inputs for training regression model.
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2.3 Deep Learning related to the research

Zhang et al.[22] experimented with multiple tests to inspect the reasons for general-

ization in deep neural networks. Generalization gap refers to the difference between

model’s performance metrics on training and unforeseen testing data. It is argued

that understanding the differentiating factor between the neural networks that gen-

eralize well and the ones that do not, would allow to build more explainable neural

networks as well as introduce new systematic approach to robust model architectures.

Multiple randomization tests were performed to see if neural networks can fit ran-

dom data. Varying levels of label corruption to images of ImageNet [12] and CIFAR10

[23] labels were applied where the model achieved 0 training error. Furthermore, they

replaced images with completely random noise and the model was still able to overfit

on the random images.

They also experimented with the effect of regularization on the neural network

training. Most of the experiments were performed without explicit regularization.

Here, explicit regularization refers to Data Augmentation, Weight Decay, and Dropout.

They concluded that it may help but is not necessary for lower generalization error.

Zhang et al. [22] presented a framework to estimate the “effective capacity” of

the model. They concluded that a model with more parameters than the sample size

can be represented by a two-layer network.

Vaswani et al [7] introduced the scaled dot-product attention along with the Trans-

former architecture. TabNet [6] utilized Transformer architecture and attention mech-

anism. This approach allowed the sequential data to be processed parallelly unlike

LSTM which processes data one step at a time. This architecture is the foundation on

then state-of-the-art models like BERT [24], GPT [25]in natural language processing

tasks. It is also being used in Computer Vision models with Vision Transformer [26].

The transformer is an encoder-decoder model where input is combined with positional

encoding and masks. Both the encoder and decoder blocks contain multiple layers

of Multi-Head Attention (MHA), a feed forward layer, normalization layers and skip

connections. It uses key, query and value pairs to learn there to attend. Multi-Head
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Attention has multiple heads and linear mappings to learn where to attend to the

input.

Deep Generative models like Variational Auto-encoders (VAE) [27], Generative

Adversarial Networks (GAN) [28] have shown impressive performance in producing

realistic data especially in Computer Vision. The synthetic data can be used to

overcome the shortage of training data. While the VAE uses real data to train,

the GAN uses an adversarial set-up of a Generator and a Discriminator. Thus, the

generator does not need to look at real data. There have been many variations of

GAN framework like W-GAN [29], Conditional GAN [30], CTGAN [31]. CTGAN is

a conditional GAN used to generate synthetic tabular data. Xu et al. [31] claimed

that the CTGAN approach performed better than other deep learning approaches.

They mentioned multiple challenges in generating synthetic tabular data like dif-

ferent data types, non-Gaussian distributions, multi-modal data, and sparse and im-

balanced data. Mode-specific normalization was introduced, which uses Gaussian

Mixture Models (GMM) to estimate the number of modes and then normalize based

on that. Unlike traditional GAN, where the generator does not account for imbal-

anced data, Conditional GAN uses conditions on the generator to generate data close

to the distribution of real data. Combined with this, they introduced training-by-

sampling to account for imbalance in the categories of training data.

Python library Synthetic Data Vault [32] has implemented this model, along with

other statistical methods like Gaussian Copula.

2.4 Latent Representation

Auto Encoder consists of an encoder and a decoder where the encoder tries to com-

press the input to a much lower dimensional intermediate representation and the

decoder learn to reconstruct the input from this latent vector representation. This

unsupervised pre-training is often used to improve the training process during task

specific fine-tuning. It can be beneficial to generative models as well.

Vincent et al. [33] proposed an approach to improve the robustness of these latent
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representations. Before passing the input to the autoencoder, the input is corrupted,

and the decoder is trained to reconstruct the original uncorrupted input in an end-

to-end model. Vincent et al [33] argued that these denoising autoencoders can then

be used for initializing other deep models.

MNIST [34] and different variations of it were used to test the effectiveness of this

approach. Some transformations applied on the MNIST image classification dataset

were, but not limited to, rotation, randomizing background, and combinations of

these transformations. The trained stacked denoising autoencoder with 3 hidden

encoder layers was used as initialization for the classifier and compared against SVM

with Gaussian and polynomial kernels, Deep Belief Networks. A simple auto-encoder

without input corruption was also trained, and it was found that the stacked denoising

autoencoder outperformed other approaches by a significant margin.

We discussed auto-encoders and their effective use as feature extractors. The

latent representations learned using unsupervised pre-training can provide good ini-

tialization for the fine-tuning task. Introduced by Chen et al., SimCLR [35] uses

contrastive learning to improve the latent representations. It augments the images

using multiple transformations and tries to generate embeddings using a non-linear

projection layer. The representations from the augmented images using ResNet-50

are optimized to be similar; On the other hand, representations from different image

pairs are optimized to be different. Cosine similarity is used as a similarity measure

for latent representations. It uses NT-Xent loss to train on the image pairs. On

ImageNet, it performed better than earlier self-supervised techniques.

To summarize, We found that tree-based models perform satisfactorily on most

tabular data. Some studies claim that deep learning is catching up with tree-based

models in this aspect. However, the transformers have presented a way to process

the time series data in a parallel manner, unlike RNN, which does that sequentially.

Deep learning provides the flexibility of a custom loss function and techniques like

auto-encoders to reduce the data to a lower dimension. De-noising auto-encoders can

help in improving latent representations of noisy data.

Ensemble of prediction is another approach that can combine predictions from

13



2. LITERATURE REVIEW

multiple predictors. A smart ensemble of multiple predictions often outperforms

underlying models on multiple metrics.
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CHAPTER 3

The Data

The dataset used for this thesis is from the Numerai weekly data science competition.

The competition went through multiple changes in the last few years. There is a new

round opening each week where new live data is released. The latest, as of November

5, 2022, is round 347.

The data is encrypted historical data of the stock market with anonymous feature

names. Since the predictive structure is not lost in the encryption process, it is

possible to find patterns and learn from the data. It is a time-series data with samples

grouped into “eras”. Eras suggest relative timing of samples. Meaning era 1 is older

than era 2 and so on. There have been multiple versions of the data starting from

21 features and 5 targets to 1191 features and 20 targets in the latest version. This

chapter discusses the structure of this time-series data and the progression from the

second version to the latest version to get a clear understanding of the data and the

competition.

The only unique values in all the versions of this dataset are from the set {0.0, 0.25,

0.5, 0.75, 1.0} for all features and targets except some targets in version 4; however,

their distribution changes. For ease of processing, each feature name starts with

the prefix “feature ” and targets with the prefix “target ”. Apart from the features

and the target columns, there are three more columns: id, era, and data type. The

described statistics of the datasets are calculated till round 347’s data when we have

a total of 1051 eras in total.

Three primary splits in the data are training, validation and live. Training and
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validation sets are used for training the models. Each week, a new round opens, and

a new live set, without targets, is made publicly available. The participants make

predictions on the live set and submit it back to Numerai. Over the course of next

four weeks, these predictions are evaluated in the global stock market. Based on

the performance of those predictions, the participants get scored. The performance

metrics are discussed in the next chapter.

The primary scoring function is Spearman’s ranked correlation between predic-

tions and the live market situation. If the predictions are positively correlated, the

participants get positive score and negative if otherwise. In this thesis, we used the

latest version of the data which is also the largest one.

3.1 Second iteration of the dataset

The second iteration of the dataset, V2, was released in late 2019 and is called the

“Legacy Dataset”. It had 310 features and one target. Here, all the unique values are

from the set {0.0, 0.25, 0.5, 0.75, 1.0}. Some of the anonymized feature names were as

follows: {‘feature constitution40’, ‘feature wisdom38’, ’feature constitution111’, ’fea-

ture wisdom15’, ’feature constitution7’, ’feature constitution101’, ’feature charisma41’,

’feature constitution45’, ’feature strength24’, ’feature strength8’,. . . }.
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(a) Training

(b) Validation

Fig. 3.1.1: Sample tables from V2

This data is split into four types, namely training, validation, test, and live. Only

the train and validation split have targets. The test data is used for the purpose

of back-testing after submitting predictions to the tournament, and live is the latest

era for which we need to make predictions. The training and validation splits are

static, while live data is appended to test data after the new round. There are 501808

samples in the training data with 314 columns, of which 310 are features, 1 target and

the other three are id, era, and data type, respectively. It is divided into 120 eras.

Era 55 has 4893 samples which is the highest sample per era in training data. The

lowest sample size of any era is in era 2. The average samples per era are 4181.73. The

validation split has 28 eras and 137779 samples. In the Validation split, the maximum

number of samples of any era is 5227 at era 210, while the minimum is on era 121
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with 4573 samples. The test split has 2130083 samples with 310 features without

associated targets, so it cannot use that split for the purpose of training. Fig. 3.1.2

shows the number of samples per era for training and validation data, respectively.

(a) Training (b) Validation

Fig. 3.1.2: Samples per era in training and validation splits in version 2 of the dataset

3.2 Third iteration of the dataset

The third iteration of the dataset, V3, is called the “Super Massive Dataset” and was

released in September 2021. It introduced major changes in the dataset format with

more features, targets, and samples within more eras. This supermassive dataset is

split into three parts: training, validation and live. Only the training data is static.

After each round, live data is appended to the validation data once the live targets

are calculated. This means the validation data keep expanding over the course of

time.
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(a) Training (b) Validation

Fig. 3.2.1: Samples per era V3

It has 1050 features, 20 targets, and 2412105 samples grouped into 574 eras in

training data. This is a significant increment over the previous version regarding

the information available. The maximum samples in any training era are 237 with

4896, and the least in era 1 with 2070. The average samples per era increased by 21

samples. The validation split has 105 eras.

3.3 Fourth iteration of the dataset

The latest version, V4, is the largest one, with 574 training eras and more than 4

times the increment in the validation eras. It was released in April 2022. It has 1191

features. Target columns are the same in both V3 and V4. As the validation data

keeps expanding, we decided to use validation data until era 1030.
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(a) Training (b) Validation

Fig. 3.3.1: Samples per era in V4

(a) Training

(b) Latest Validation

Fig. 3.3.2: Sample tables from V4

Fig. 3.3.3 compares the number of eras in each split between different versions.
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Fig. 3.3.3: Comparison of number of training and validation eras in three versions.

Version Train and validation eras Release Features Targets

V2 148 Late 2019 310 1

V3 679 September 2021 1051 20

V4 1030 April 2022 1191 20

Table 3.3.1: Comparison of data versions.

Fig. 3.3.4 shows the distribution of values in the dataset. Unlike most machine

learning problems where data needs heavy cleaning before it’s usable, this dataset is

very clean. The values are already scaled without any null values. The features are

distributed uniformly across those discrete values. The primary scoring target, ‘tar-

get nomi v4 20’ is very similar to a gaussian distribution. Another target variable,

‘target paul v4 20’ has seven unique values in similar distribution. Due to the huge

size of rows and columns, the dataset comes with lists of two feature sets namely:

‘small’ and ‘medium’ to train on machines with relatively lower compute capabili-

ties. The small and medium sets contain feature subsets with 38 and 472 features
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respectively.

Due to the huge size of this dataset, another files are also provided with integer

format to save memory. This integer format converts float values {0.0, 0.25, 0.5, 0.75,

1.0} to integers {0, 1, 2, 3, 4}.

(a) Features (b) target nomi v4 20

(c) target paul v4 20

Fig. 3.3.4: Distribution of features and targets in data V4

Although the dataset is cleaned for modelling, what makes it complex is the

nature of the features and size of the data. The features do not follow the same

importance over time. Fig. 3.3.5 (a) shows the Spearman’s correlation between a

feature ‘feature fourieristic allied mugwumpery’ and the target column. It should be
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noticed that this feature does not follow the exact correlation to target across time.

So, a simple Linear regression may not be able to capture this complexity of features.

Not only features to target correlation, the correlation between features also changes

over time as shown in Fig. 3.3.5 (b).

(a) Feature to target correlation

(b) Feature to feature correlation

Fig. 3.3.5: Spearman’s correlation calculated amongst features and targets
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Fig. 3.3.6: Per-era correlation of some features to target

Some features may have similar correlation with targets in some eras and have

no similarity in other eras. Fig. 3.3.6 shows the correlation between some features

and target across the training eras. Thus, a naive model relying on some features can

result into poor generalization on out-of-sample data leading to poor performance. In

this competition, a model that is robust and generalizes well on out-of-sample data

is desirable due to this dynamic nature of features.
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CHAPTER 4

Machine Learning methods

utilized

This chapter gives an overview about machine learning and the approaches that we

used in the thesis. The simplest way to imagine machine learning is, an unknown

function that maps two data points. Here, the task is to approximate that function

using data. However, the key is to let the algorithm learn from the data rather than

a human being manually fixing it. Over the course of iterations, the algorithm tunes

itself to reduce the overall error and eventually converges to the point of estimation.

Thus, it is possible to imagine it as an iterative process to reduce the error.

Machine Learning is a subset of a large research area called Artificial Intelligence

(AI). It is broadly divided into three primary types based on the way an algorithm

learns: Supervised learning, Unsupervised learning, and Reinforcement Learning.

4.1 Overview of Machine Learning

4.1.1 Supervised Learning

As the name suggests, Supervised learning is where we have a target (label) for every

data point (sample) which we want to predict using a model. The learning process

happens by first making a prediction and calculating how far the prediction is from

the true target using a loss function. Then the model tries to reduce this error value
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based on its learning method. The dataset we have is best suited for a supervised

learning method as we have features and associated targets. Linear regression is one

of the simplest supervised learning algorithms.

Fig. 4.1.1: Illustration of a Simple Linear regression

We start with a random parameter of a line and calculate the distance between

prediction and target values. Ideally, we would like to reach to the state where error

is zero, but it may not be possible in this case with linear regression as shown in Fig.

4.1.1. So, our goal is to reach to global minima of the loss value. Based on the targets

available, it is possible to divide the supervised learning further into Regression and

Classification. In the case of linear regression, we want to output a continuous value

as prediction. So it falls under regression. Classification is where the prediction is

expected to be one of many classes. The targets are often discrete such as in {0, 0.1,

0.2, 0.5}, {“car”, “truck”, “bike”}, {0, 1}.
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4.1.2 Unsupervised Learning

While supervised learning algorithms learns by approximating the relationship be-

tween inputs and targets, unsupervised learning methods do not explicitly need labels

to learn the patterns in the data. Clustering is an intuitive example of this. We let

the model group the data into clusters where similar samples are assigned coordinates

closer to each other. It is also useful in dimensionality reduction where the model

tries to extract maximum information available in original input and compresses into

a relatively smaller vector representation.

Fig. 4.1.2: Illustration of clustering on random data points

4.1.3 Reinforcement Learning

Reinforcement learning consists of a dynamic agent and environment setup where

the agent interacts with the environment and receives feedback. The agent has an

incentive in the form of a reward. If the agent performs as expected, it gets positive

feedback in the form of a reward; this framework allows for training models with great

degrees of freedom, such as robotic arms, genetic algorithms, simulations, etc.
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4.2 Tree-based learning

Trees are an important data structure. They are hierarchical and have nodes and

edges connecting the nodes. The very first node is called the “root” node. If two

nodes are connected via an edge in two adjacent levels, the node at a higher level is

called the “parent,” and the lower-level node is called the “child” node. Except for

the root node, all other nodes must have a parent node. The end nodes without child

nodes are called “leaf” nodes. This is where that branch of the tree ends.

Decision trees [36], as the name suggests utilizes tree structure to learn decision

making by asking question to the input on each node. The hierarchical nature allows

the tree to add multiple queries and generate a decision on the leaf node in the end.

Fig. 4.2.1 illustrates a simple Decision tree.

Fig. 4.2.1: Illustration of a Simple Linear regression

Tree models have become popular amongst ML practitioners. Their hierarchical

decision-making nature makes them intuitive and easily interpretable. It is possible

to inspect each node to understand which factors led to a specific prediction.

Ensemble learning is a way to combine multiple predictors to make the final pre-

diction more accurate and robust. This also helps in generalized predictions. Two

primary methods to build an ensemble of trees are Bagging and Boosting. Bagging is

where each tree is built parallelly with subsample of data with replacement. On the

28



4. MACHINE LEARNING METHODS UTILIZED

other hand, Boosting builds the ensemble sequentially. Each new tree is built upon

to improve the predictions till last tree. Bagging aims to reduce overfitting while

Boosting tries to reduce underfitting [37].

(a) Bagging

(b) Boosting

Fig. 4.2.2: Illustration of Bagging and Boosting

Random forest [38] is an ensemble method that uses multiple decision trees to

build the final predictor. It uses random sampling of data while training. Some

popular methods utilizing boosting are XGBoost [14], CatBoost [13], LightGBM [39],

etc. They are highly optimized for big data handling and have huge community

support.
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4.2.1 XGBoost

XGBoost [14] is an open-source tree-based algorithm that was created in 2016 at the

University of Washington as part of a research effort. Extreme Gradient Boosting is

the methodology behind it, which is reflected in its name. The areas of regression,

classification, ranking and custom prediction challenges are just some of the places

where XGBoost may be used. Since that time, it has gained widespread adoption in

the ML community. It has been a contributing factor in the victories of a significant

number of Kaggle competitions throughout the years. It is compatible with various

programming languages, including Python and Java, amongst others.

In addition, it supports a range of parameters like L1, and L2 regularization, tree

depth, variations of boosting, and many more. It can utilize multiple cores on the

CPU and GPU, thus training faster. Support for null values (NaN) values is also

out-of-the-box.

4.2.2 CatBoost

Developed in 2017, CatBoost [13] is another boosting algorithm that is open-source

and has wide community support. CatBoost claims to be very good at handling

categorical values, thus, it is named Categorical Boosting. Unlike other tree-based

ML libraries, CatBoost builds symmetric trees as it has some efficiency benefits. It

uses ordered boosting, with weak learners trained on a random subset of data, to

increase randomization and reduce overfitting. It is one of the first boosting libraries

to have built-in support for categorical columns meaning there is no need to explic-

itly convert categorical columns to numbers before feeding them to the model. An

impressive feature of CatBoost is the efficient utilization of GPU. This makes the

training significantly faster. It has support for multiple types of tabular problems

like Regression, Classification, and Ranking. It now also supports text data, so it is

possible to use text as input to the model. In our experiments, CatBoost performed

really well on GPU with maximum utilization, and more often than not, the default

parameters worked really well. It has excellent support for visualizing the model as
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well, which makes it very interpretable.

4.2.3 LightGBM

Like XGBoost and CatBoost, LightGBM [39] is also an open-source tree-based mod-

elling tool that was developed by Microsoft. Although it supports GPU for training,

its primary feature is the surprising training efficiency on multi-core CPU. Like Cat-

Boost, we can feed categorical data to LightGBM simply by specifying the column

index or casting it to the “Category” type. LightGBM uses Histogram based split-

ting and grows trees level-wise, unlike XGBoost, which grows trees leaf-wise. The

efficiency on a multi-core CPU makes it an ideal candidate for training and predict-

ing on any platform with or without GPU support.

4.3 Deep Learning

Deep Learning attempts to imitate the biological neural networks in the brain. It

has multiple layers of interconnected neurons where the information flows from the

input neuron to final neuron through the weighted connections. Perceptron [40] is a

simple neural network. It uses back-propagation to gradually update the connections

between the neurons in such a way that the final output is closest to the given target

in a supervised training set-up. This is done by first passing the input through model

and generating a prediction. An error value between the prediction and the actual

label is then calculated along with the gradients of weights with respect to the error

value. The weights are then updated in the direction of lower error value. An iteration

of this process over the entire set is often called an “epoch”. This requires all the

operations to be differentiable. It is called Deep Learning because of the number of

stacked layers in the model architecture, the more the layers, deeper the network.

Neural networks need the input in a numerical form. Thus, it adds an extra step

of manual numerification of input during pre-processing. Means the inputs like text,

images, must be converted to a numerical representation before feeding them to a

neural network.
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Fig. 4.3.1: Illustration of a simple Multi-layer Perceptron with two hidden layers

An impressive feature of neural networks is that they learn the function using the

weights and non-linearity and can find some very complex patterns in the data which

would otherwise not be possible with linear models. There are numerous studies

suggesting that neural network can approximate any function given enough capacity

as discussed in previous chapter [22]. However, due to this complex nature of the

learning process and representing information internally, neural networks are often

hard to interpret. With the availability of massive parallel computing, deep learning

has shown applications in variety of fields from Computer Vision, Natural Language

Processing, to even generating synthetic images, audio, and texts. In supervised pre-

training, a multi-layer neural network model M is trained on a task A. We can use

the trained model M’s initial few layers as an initialization for task B. This is called

transfer learning.
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Fig. 4.3.2: Illustration of a Convolutional neural network with linear layers at end

In unsupervised pre-training, usually, an encoder-decoder model is trained. The

encoder has multiple layers connected, which reduces the latent dimension size and

doubles as input to the decoder, as shown in Fig. 4.3.3. The decoder then tries to

reconstruct the input. Thus, the model is constrained to extract as much information

as it can into the smaller latent vector. Once trained, the encoder is often used as an

initializer to other models, or it can work as a dimensionality reduction step.
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Fig. 4.3.3: Denoising Auto-Encoder input and channels, with reconstructed output.

Another interesting direction of research is on latent space. Enhancing the latent

representations in neural networks is an ongoing active research topic. SimCLR [35],

Supervised Contrastive Learning [41] and similar techniques attempt to make latent

representations different for different classes and similar for similar classes. For exam-

ple, two images of similar-looking cats should have similar latent representations and

should not be similar to representations of dogs. This idea allows the model to learn

diverse patterns from the data. We built upon this idea of less similar representations

and de-noising auto-encoder.
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Fig. 4.3.4: Illustration of a de-noising auto-encoder

4.4 Performance Measures

In the iterative process of Machine Learning, we need a way to measure the progress

and quality of learning. ML algorithms have an objective function that is used to op-

timize the model’s parameters and is often referred to as the Loss function. However,

the loss function has a different purpose than performance metrics. While loss func-

tions are usually differentiable in nature, the metrics may not be. Different metrics

are used based on the nature of the problem. Some are suited better for classifica-

tion, and some for regression. Here, we discuss some metrics we used to measure and

compare models’ performance for regression.

4.4.1 Mean Squared Error

Mean Squared Error (MSE) is a popular objective function and metric used in opti-

mizing machine learning models. It is defined as the mean of squared error between

target and predicted values.
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MSE =
1

N

N∑
i=1

(xi − x̂i)
2 (1)

where:

N = Numer of samples

x̂i = Predicted value for sample on index i

xi = True value for sample on index i

where N is number of samples, x̂ is predicted value and x is true value.

It penalizes the predictions that are far away from the ground truth. The sign is

removed by taking the square of the difference. Thus, it results in a positive value.

Since it is differentiable, it can be used in optimizing neural networks.

4.4.2 Root Mean Squared Error

Root Mean Squared Error (RMSE) is simply the square root of MSE. While MSE

squares the error to penalize large differences and turn the values to positive, RMSE

takes the square toot of MSE to scale it down to original units from the squared

values. The ideal RMSE score is 0, which is unlikely unless the problem is simple. It

is often used in tree models as the default objective function.

4.4.3 Pearson’s correlation

Pearson’s correlation coefficient, also referred to as “the correlation coefficient,” is

a measure of linear correlation between two variables. It ranges between [-1, 1]. A

correlation coefficient of 1 suggests two perfectly positively linearly correlated vari-

ables, while a correlation coefficient of -1 suggests negatively correlated variables. It

is formulated as the ratio of covariance to the product of standard deviations of two

variables.
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ρ =
cov(X, Y )

σxσy

(2)

where:

cov = Covariance

X, Y = variable

Another formulation is as below.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(3)

where:

n = Sample size

xi, yi = Samples at index i

x, y = Mean of variables

Since this is differentiable, it is possible to use this function as an objective or loss

function to optimize a deep learning model.

4.4.4 Spearman’s correlation

While Pearson’s correlation measures the linear correlation between two variables,

the Spearman’s correlation coefficient measures the rank correlation between two

variables. It is calculated like Pearson’s correlation except that the variables are

ranked before calculating covariance and standard deviation. This operation of rank-

ing the variables is not differentiable which makes it not suitable for a loss function

in a neural network training.

rs = ρR(X),R(Y ) =
cov(R(X), R(Y ))

σR(x)σR(y)

(4)
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where:

cov(R(X), R(Y )) = covariance of ranked variables

σR(x), σR(y) = standard deviation of ranked variables

Another popular formula can be applied if all n are unique integers.

ρ = 1 − 6
∑

d2i
n(n2 − 1)

(5)

where:

di = R(Xi) −R(Yi) = covariance of ranked variables

n = number of samples

This is the primary metric in the dataset. The data is grouped into eras and

the Spearman’s correlation between target and ranked prediction is calculated. The

payouts in each round are based on this score.

Fig. 4.4.1: Illustration of per era correlation

38



4. MACHINE LEARNING METHODS UTILIZED

4.4.5 Maximum Drawdown

Maximum Drawdown indicates how much our portfolio can lose from the last peak

value [42]. Since, our returns are based on Spearman’s correlation. Maximum draw-

down is calculated as,

NumeraiMaxDD = max(
era corr − last peak corr

last peak corr
) (6)

4.4.6 Numerai Sharpe

Sharpe ratio measures the risk-free returns of the portfolio. Since our predictions are

used to build a portfolio by ranking the rows in an era, we can calculate how good

our model is based on the Sharpe ratio. The higher the ratio, higher the returns per

risk. This suggests the returns per risk. Sharpe ratio in Numerai’s context is defined

as:

NumeraiSharpe =
mean(per era correlations)

std dev(per era correlations)
(7)

where:

per era correlations = Spearman’s rank correlation between predictions and

targets in each era

The primary metric here is Spearman’s correlation, which is used for scoring

in the competition. It is also used to calculate the Numerai Sharpe ratio, which

suggests returns per risk, suggesting long-term performance. Thus, we aim to improve

performance on Numerai Sharpe while keeping a higher mean correlation across eras

with lower maximum drawdowns on out-of-sample eras.
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CHAPTER 5

Methodology

This chapter describes the architecture of the proposed framework for extracting

useful features from the input and using them on extended estimators to enhance the

provided baseline model. The training happens in two parts, first, is a neural network

de-noising auto-encoder trained end-to-end with different latent and regression heads.

Then the latent representation is concatenated to train a tree-based model. Tree-

based models have shown excellent performance on tabular data. The dataset used for

this thesis has a very high noise-to-signal ratio. Instead of comparing deep learning

approaches to tree-based models, we propose an architecture or a framework that

combines the best of both worlds to achieve diverse and good predictions.

5.1 Cross-Validation

Although we have millions of rows in the dataset, it is explicitly split into training

and validation data. For evaluating multiple models using cross-validation, only the

training split with 574 eras was used. The given validation split is used as a hold-

out set, often referred to as ‘test set‘ to measure out-of-sample performance. As

suggested by Lopez De Prado[5], the K-Fold cross-validation fails in finance mainly

for the reason of leaking of future data. So, we used an expanding window era splitting

approach as illustrated in Fig. 5.1.1 for generating training and evaluation folds for

cross-validation. Although we do not have a timestamp for each sample and era, the
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eras represent relative timestamps meaning era 1 is older than era 2 and so on.

Expanding window approach with dropping 12 eras between the train and evalua-

tion set was used. The training eras were split into 3 folds as illustrated in Fig. 5.1.1.

The reasoning behind 3 fold and an embargo of 12 eras was to have a higher number

of eras, and dropping 12 eras between splits suggests an approximate interval of 12

weeks, thus, resulting in balanced splits of the dataset.

Fig. 5.1.1: Illustration of cross-validation splits

5.2 Architecture

The architecture of the proposed framework is illustrated in Fig. 5.2.1. It consists of

a de-noising Auto-Encoder model with multiple regression heads and a custom loss

function.
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Fig. 5.2.1: Proposed model architecture

5.2.1 Input corruption

Instead of setting a fixed batch size for training, a dynamic batch size was chosen.

Each batch is based on era, thus, each training and validation era is used as a batch

for training and evaluation.

The input to the de-noising auto-encoder model is corrupted. For targets at the

decoder, input without corruption is used. For the corrupted input, randomly selected

features are inverted after each epoch. This helps in making the encoder-decoder

more robust. For example, a feature (column) with values [1, 0.25, 0.5, 1, 0] will

become [0, 0.75, 0.5, 0, 1]; thus, its correlation is inverted. This randomness in data

augmentation should suggest to the model not to over-fit on certain features. This

way, the model is expected to reconstruct the original input from the corrupted one

on the decoder. Similar to data augmentation in Computer Vision, this corruption

of input acts as regularization for the model.
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5.2.2 De-noising auto-encoder

The auto-encoder is a multi-layer fully-connected deep neural network. The encoder

has a decreasing number of neurons in each layer, while the decoder has an increasing

number of neurons as we go deeper into the network. The Encoder splits into two

separate layers LR1 and LR2. These layers’ representations are constrained to be

orthogonal to each other. The absolute value of Cosine similarity between them is

added to the final loss function of the model. Thus, we penalize the model if these

two representations are similar to each other for a given sample. The idea behind

this is that we create two ways for the data to flow in the deep neural network, but

they should be orthogonal, leading to unique latent representations from the same

encoder. This helps in generating diverse encoding. While being orthogonal to each

other, LR1 and LR2 are both constrained to learn orthogonal vectors individually as

well. The loss function between LR1 and LR2 is defined as,

latent similarity(x, y) =
1

N

N∑
i=1

|cos sim(xi, yi)| =
1

N

N∑
i=1

| xi · yi
||xi|| · ||yi||

| (1)

where:

cos sim(xi, yi) = Cosine similarity between xiandyi

xi, yi = Two latent representations for a sample at index i

These latent representations are then concatenated, generating a representation

CLR1LR2 or concat(LR1, LR2). This is used as the input to the decoder to recon-

struct original input. Mean Squared Error between original input and reconstructed

input is used as loss function for optimization. Along with decoder, the concat(LR1,

LR2) is fed to another MLP head as well. The model uses Batch normalization [19]

and Dropout [20] layers. The concatenated LR1, LR2 are concatenated with the noisy

input to generate CILR1LR2 or concat(corrupted input, LR1, LR2).

The loss function for the reconstruction head is the Mean Squared Error be-
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tween the original un-corrupted feature values and the reconstructed values at re-

construction head. The reason for selecting MSE is to get the reconstructed values

as close to original values as possible.

5.2.3 Regression heads

The four latent representations: LR1, LR2, CLR1LR2, and CILR1LR2 are used to

train regression heads on a given target. These neural network-based regression heads

are trained using a combination of MSE and Pearson’s correlation as a loss function.

The MSE between predictions and targets should be low, while Pearson’s correlation

should be high. The similarity between regression heads on top of LR1 and LR2 are

penalized using Pearson’s correlation if it exceeds a threshold. This should help in

generating diverse predictions as well as latent representations.

The same four latent representations are then used to train tree-based models.

Thus, a total of 8 predictions are generated with varied levels of diversity. These

predictions are then used to build an ensemble using a Random Forest model.

5.2.4 Loss function

With deep learning, it is possible to use a custom loss function depending on the

problem’s requirement. As long as the function is differentiable and it is possible

to calculate the gradients of weights with respect to the loss value, we can use any

arbitrary loss function for optimization.

The final loss function is a combination of multiple loss functions utilized to train

the neural network in an end-to-end manner. Since Pearson’s correlation is differen-

tiable, It is used in combination with MSE to train regression heads. In addition,

the regression heads RegLR1, RegLR2, RegCILR12 are trained using a combination of

MSE and correlation defined in the equation 2. This forces the model to reduce MSE

between predictions and targets while increasing correlation between them.
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regression heads loss = MSE(y true, y pred) − CorrP (y true, y pred) (2)

where:

CorrP = Pearson’s correlation between two variables

Thus, the final loss for the neural network becomes,

Loss = (latent similarity(LR1, LR2)+

Corr absP (RegLR1, RegLR2, Threshold)+

reconstruction loss+

regression heads loss)

(3)

where:

Corr absP = Absolute value of Pearson’s correlation between two

variables exceeding a threshold value

reconstruction loss = MSE between un-corrupted input and predicted

reconstruction at reconstruction head

regression heads loss = regression loss at heads RegLR1, RegLR2, RegCILR12

5.2.5 Ensemble predictions

The proposed system has 8 regression heads, out of which 4 are as shown in Fig. 5.2.1

while other 4 are tree-based regressors trained on latent representations. Another

meta-predictor is trained using these 8 regressor predictions. Thus, we end up with

10 predictions. However, the ones with most information are tree models trained on

concatenated latent representations of concat(LR1, LR2) and concat(corrupted input,

LR1, LR2) along with meta-predictor.
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CHAPTER 6

Experiments and Results

This chapter discusses the baseline model and experiments using the proposed method-

ology and briefly touches on the experiments with generative models. The proposed

methodology was evaluated using 3-fold validation using the splitting method ex-

plained in section 5.1. Between the training and evaluation split, a gap of 12 eras was

kept. The same models were then trained on the entire ‘training’ split and evaluated

on the ‘validation’ split on the ‘medium’ feature set to get a fair comparison with the

baseline model.

6.1 Experimental Setup

The results for all the experiments on the baseline model and proposed framework

were collected on the same hardware configuration. We’ve used a gaming laptop

equipped with a 2.30 GHz Intel Core i7-11800H octa-core processor, 64 GB system

RAM, a 4 GB NVIDIA GeForce RTX 3050 Laptop GPU, and Windows 10 operating

system.

The programming language Python with Anaconda distribution (3.8.13) is used

in Jupyter notebook format using Visual Studio Code IDE. Python library Pandas

(1.5.1) is extensively used for the purpose of reading the data and saving interme-

diate Python objects using Pickle format. Numerapi is used to download different

versions of the dataset and other helping files. Numpy and Joblib are used to perform
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vectorized operations and parallelization, respectively.

Python implementation of XGBoost (1.6.2), LightGBM (3.3.3) and CatBoost (1.1)

are used to build tree-based models. TensorFlow’s (2.9.0) Keras API is used to build

deep neural network models. For the experiments with generative models, Google

Colab was used since it provides better GPU resources.

6.2 Baseline Model

Along with the data, a baseline model script is also provided within the same folder.

The purpose of the baseline model is to allow users without much data science ex-

perience to train a model quickly. This script uses LightGBM to train a model on

the provided ‘medium’ feature set with 472 features. It trains on the entire training

data. The model with the same parameters is used as the baseline model in the

experiments.

6.3 Using Medium Feature set

For comparison with the baseline model, we used the provided ‘medium‘ feature set

to train and evaluate out methodology along with other tree-based models like His-

togram based Gradient Boosting Decision Trees, XGBoost, CatBoost, with similar

parameters to baseline and default parameters. We wanted to include all the fea-

tures in training and let the auto-encoder learn to compress the feature space. Our

methodology produces 8 predictions in total; 4 from regression heads and 4 from

tree models trained on latent representations. However, not all those predictions are

used here. ‘latent cated’ is a tree model trained on concatenated representations of

LR1 and LR2. ‘latent full’ is a tree model trained on concatenated representation of

the input, LR1 and LR2. ‘latent meta‘ is an ensemble of all the regression heads of

the proposed model. At the same time, ‘latent mean’ is a simple ranked average of

predictions.

For experiments, we performed 1) cross-validation on provided ‘training’ data of
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574 eras, 2) Trained on provided ‘training’ data of 574 eras, evaluated on provided

‘validation’ data which gives a performance on hold-out set, and 3) cross-validation

on entire data of all eras.

The metrics used to compare the performance are mean correlation across eras,

standard deviation of scores across eras, Numerai Sharpe ratio and maximum draw-

down. Maximum drawdown here represents how much lower our scores drops from

the last peak. Thus, a value of -0.15 means 15% drop in scores from last peak.

6.3.1 Cross-Validation on training split

In this particular experiment, we used the provided training split to perform cross-

validation with 3 folds. The data was divided using eras. The training eras were

divided into 3 folds with a gap of 12 eras between training, and evaluation splits as

illustrated in the Fig. 5.1.1. The Tables 6.3.1 and 6.3.2 show the performance of

tree-based models and our method on cross-validation in-sample and out-of-sample,

respectively.

Model Mean corr Std dev Sharpe Max DD

HistGBDT 0.189418 0.025533 7.585323 0

XGBoost 0.349072 0.024178 14.337692 0

CatBoost 0.359840 0.026125 13.753306 0

LightGBM (baseline) 0.233890 0.027003 8.717857 0

latent cated 0.153000 0.027090 5.662020 0

latent full 0.186672 0.027526 6.768404 0

latent meta 0.250943 0.026702 9.407828 0

latent mean 0.173153 0.028670 6.058977 0

Table 6.3.1: Cross-validation in-sample results on ‘medium’ set.
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Model Mean corr Std dev Sharpe Max DD

HistGBDT 0.046778 0.028989 1.631147 -0.098909

XGBoost 0.035191 0.022792 1.570647 -0.073783

CatBoost 0.044947 0.028983 1.596611 -0.120406

LightGBM (baseline) 0.052501 0.031142 1.726779 -0.108057

latent cated 0.040065 0.022423 1.824583 -0.026383

latent full 0.043760 0.023761 1.887324 -0.045384

latent meta 0.051127 0.030027 1.749567 -0.105935

latent mean 0.044029 0.024543 1.819415 -0.036795

Table 6.3.2: Cross-validation out-of-sample results on ‘medium’ set.

Amongst the tree-based models in cross-validation, it can be seen that tree models

have way higher in-sample performance compared to out-of-sample predictions. This

suggests significant over-fitting. XGBoost and CatBoost showed higher in-sample

performance. Proposed methodology achieves similar results with better generaliza-

tion.

6.3.2 Provided training and validation sets

To further evaluate our method on hold-out data, we trained all the models on pro-

vided training data and evaluated on provided validation set. This is similar to a

typical machine learning evaluation strategy where data is split into training, evalua-

tion and testing. Here, validation split acts as testing split to measure the performance

on completely unforeseen data.
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Model Mean corr Std dev Sharpe Max DD

HistGBDT 0.124669 0.028011 4.450723 0

CatBoost 0.249026 0.025345 9.825329 0

XGBoost 0.234253 0.022418 10.449129 0

LightGBM (baseline) 0.150411 0.028289 5.316921 0

latent cated 0.116180 0.025239 4.603227 0

latent full 0.135838 0.025492 5.328647 0

latent meta 0.164361 0.027402 5.998104 0

latent mean 0.127138 0.027036 4.702624 0

Table 6.3.3: Scores on provided training set

Model Mean corr Std dev Sharpe Max DD

HistGBDT 0.024348 0.029351 0.829548 -0.236339

CatBoost 0.027780 0.027273 1.018587 -0.178210

XGBoost 0.022055 0.025950 0.849884 -0.180163

LightGBM (baseline) 0.027577 0.030875 0.893178 -0.217328

latent cated 0.026456 0.027107 0.975971 -0.204608

latent full 0.027079 0.027147 0.997512 -0.199861

latent meta 0.027267 0.029717 0.917552 -0.202845

latent mean 0.027606 0.028596 0.965363 -0.214069

Table 6.3.4: Scores on provided validation set
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Fig. 6.3.1: Cumulative Correlation scores on validation data

6.3.3 Cross-validation on full set

Extending our cross-validation experiments, we concatenated both training and vali-

dation sets to create a full set for cross-validation. The baseline model and predictions

from proposed methods were compared. Similar results were noticed where proposed

method with ‘latent full’ outperformed baseline model on the basis of Sharpe ratio

in out-of-sample performance with slight drop in mean correlation across eras and

lower max drawdown. This suggests a robust, relatively better generalized model

over baseline.
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Model Mean corr Std dev Sharpe Max DD

LightGBM (baseline) 0.173102 0.027760 6.352010 0

latent cated 0.123497 0.026481 4.658308 0

latent full 0.148048 0.026704 5.528855 0

latent meta 0.173695 0.027697 6.383770 0

latent mean 0.135429 0.027505 4.933936 0

Table 6.3.5: Cross-validation on full data: In-sample

Model Mean corr Std dev Sharpe Max DD

LightGBM (baseline) 0.038567 0.030702 1.246133 -0.213263

latent cated 0.032886 0.026182 1.269613 -0.164400

latent full 0.035233 0.026838 1.315669 -0.165907

latent meta 0.038500 0.030691 1.244406 -0.211854

latent mean 0.034459 0.027260 1.281429 -0.165843

Table 6.3.6: Cross-validation on full data: Out-of-sample

6.4 Synthetic data generation

Along with latent feature concatenation, we briefly experimented with synthentic

data generation. To generate synthetic eras, CTGAN [31] was used. Due to the

large number of feature columns, the provided ‘small‘ feature set was used which

has 38 features. To further reduce compute overhead, every fifth eras was sampled

from training data. After training CTGAN model for 500 eras, It did not show

any significant improvement in out-of-sample performance. ‘preds extended full‘ is

trained on synthetic data along with provided training data while ‘preds baseline‘

is trained only on provided training data. It is noticeable that the synthetically

generated when concatenated to the original data did not help in improving the
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performance.

Model Mean corr Std dev Sharpe Max DD

preds extended full 0.220256 0.027911 7.891242 0.0

preds baseline 0.283448 0.025786 10.992122 0.0

Table 6.4.1: Results on training set for synthetic data

Model Mean corr Std dev Sharpe Max DD

preds extended full 0.014463 0.024344 0.594137 -0.292441

preds baseline 0.017773 0.023060 0.770695 -0.217692

Table 6.4.2: Results on validation set for synthetic data
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CHAPTER 7

Conclusion and Future Work

Our results indicate that unsupervised learning used to extract and compress infor-

mation from complex tabular data can be used to enhance the performance of a

tree-based baseline model. With a slight reduction in mean correlation, a noticeable

improvement in the Sharpe ratio suggests higher returns per given risk with a reduc-

tion in the drawdown as well. We have demonstrated that the proposed framework

surpasses the baseline on both in-sample and out-of-sample performance validated

through cross-validation. To extend this framework, the learned feature vector can

be used to train a multitude of models for the ensemble as well. For example, there

can be multiple Latent heads instead of two trained on a custom loss function. An

extension of this system can be multiple regression heads constrained to reduce the

correlation between each other to generate a diverse base for a smart ensemble.

One drawback of our approach is the computation, as we need to train a neural

network in an end-to-end manner with a complex loss function. However, as the

training data is static, we need to train the system only once.

Our experiments to generate synthetic eras using a smaller feature set using CT-

GAN did not show any significant improvement. For future work, better generative

models like Diffusion models can be tested for the purpose of data generation using

more computing.
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[6] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021,

pp. 6679–6687.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L.

Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural in-

formation processing systems, vol. 30, 2017.

[8] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you

need,” Information Fusion, vol. 81, pp. 84–90, 2022.

55

https://www.investopedia.com/ask/answers/102714/whats-difference-between-alpha-and-beta.asp
https://www.investopedia.com/ask/answers/102714/whats-difference-between-alpha-and-beta.asp
https://numer.ai/fund
https://numer.ai/fund


BIBLIOGRAPHY

[9] S. Popov, S. Morozov, and A. Babenko, “Neural oblivious decision ensembles

for deep learning on tabular data,” arXiv preprint arXiv:1909.06312, 2019.

[10] L. Katzir, G. Elidan, and R. El-Yaniv, “Net-dnf: Effective deep modeling of

tabular data,” in International Conference on Learning Representations, 2020.

[11] b., Github - baosenguo/Kaggle-MoA-2nd-Place-Solution, [accessed 2022-11-17],

2021. [Online]. Available: https://github.com/baosenguo/Kaggle- MoA-

2nd-Place-Solution.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition, Ieee, 2009, pp. 248–255.

[13] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Cat-

boost: Unbiased boosting with categorical features,” in Advances in Neural In-

formation Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grau-

man, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31, Curran Associates, Inc.,

2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/

file/14491b756b3a51daac41c24863285549-Paper.pdf.

[14] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, 2016, pp. 785–794.

[15] S. Thakur, S. Sharma, et al., “Forecasting stock price using conditional inference

tree,” in 2018 International Conference on Advances in Computing, Communi-

cation Control and Networking (ICACCCN), IEEE, 2018, pp. 591–595.

[16] S. Singh and S. Sharma, “Forecasting stock price using partial least squares

regression,” in 2018 8th International Conference on Cloud Computing, Data

Science & Engineering (Confluence), IEEE, 2018, pp. 587–591.

[17] B Vasudevan et al., “Effective implementation of neural network model with

tune parameter for stock market predictions,” in 2021 2nd International Confer-

56

https://github.com/baosenguo/Kaggle-MoA-2nd-Place-Solution
https://github.com/baosenguo/Kaggle-MoA-2nd-Place-Solution
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf


BIBLIOGRAPHY

ence on Smart Electronics and Communication (ICOSEC), IEEE, 2021, pp. 1038–

1042.

[18] K. Singh, R. Tiwari, P. Johri, and A. A. Elngar, “Feature selection and hyper-

parameter tuning technique using neural network for stock market prediction,”

Journal of Information Technology Management, vol. 12, no. Special Issue: The

Importance of Human Computer Interaction: Challenges, Methods and Appli-

cations. Pp. 89–108, 2020.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International conference on machine

learning, PMLR, 2015, pp. 448–456.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” The

journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[21] jrai, Autoencoder and multitask MLP on new dataset (from Kaggle Jane Street),

https://forum.numer.ai/t/autoencoder-and-multitask-mlp-on-new-dataset-from-

kaggle-jane-street/4338, [Online; accessed 2022-11-17], 2021.

[22] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep

learning requires rethinking generalization, 2016. doi: 10.48550/ARXIV.1611.

03530. [Online]. Available: https://arxiv.org/abs/1611.03530.

[23] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny

images,” 2009.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[25] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving lan-

guage understanding by generative pre-training,” 2018.

57

https://doi.org/10.48550/ARXIV.1611.03530
https://doi.org/10.48550/ARXIV.1611.03530
https://arxiv.org/abs/1611.03530


BIBLIOGRAPHY

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is

worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint

arXiv:2010.11929, 2020.

[27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, “Generative adversarial networks,” Communications

of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[29] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017. doi: 10.

48550/ARXIV.1701.07875. [Online]. Available: https://arxiv.org/abs/

1701.07875.

[30] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv

preprint arXiv:1411.1784, 2014.

[31] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling

tabular data using conditional gan,” Advances in Neural Information Processing

Systems, vol. 32, 2019.

[32] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,” in

2016 IEEE International Conference on Data Science and Advanced Analytics

(DSAA), IEEE, 2016, pp. 399–410.

[33] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings of the

25th international conference on Machine learning, 2008, pp. 1096–1103.

[34] L. Deng, “The mnist database of handwritten digit images for machine learning

research [best of the web],” IEEE signal processing magazine, vol. 29, no. 6,

pp. 141–142, 2012.

58

https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875


BIBLIOGRAPHY

[35] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for

contrastive learning of visual representations,” in International conference on

machine learning, PMLR, 2020, pp. 1597–1607.

[36] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,

pp. 81–106, 1986.

[37] soumya7, Bagging vs Boosting in Machine Learning - GeeksforGeeks, [accessed

2022-11-17], 2019. [Online]. Available: https://www.geeksforgeeks.org/

bagging-vs-boosting-in-machine-learning.

[38] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[39] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.

Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances

in neural information processing systems, vol. 30, 2017.

[40] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,

1958.

[41] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C.

Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in Neural

Information Processing Systems, vol. 33, pp. 18 661–18 673, 2020.

[42] A. Hayes, Maximum Drawdown (MDD) Defined, With Formula for Calculation,

[accessed 2022-11-22], 2022. [Online]. Available: https://www.investopedia.

com/terms/m/maximum-drawdown-mdd.asp.

59

https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning
https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning
https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp
https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp


Vita Auctoris

NAME: Surajsinh Prakashchandra Parmar

PLACE OF BIRTH: Navsari, Gujarat, India

YEAR OF BIRTH: 1999

EDUCATION:

Gujarat Technological University, B.E. in
Computer Engineering, Surat, India, 2020

University of Windsor, M.Sc in Computer
Science, Windsor, Ontario, 2022

60



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

30248257

2023


	Utilizing Deep Learning for Enhancing Performance on Encrypted Stock Market Data
	Recommended Citation

	DECLARATION OF ORIGINALITY
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview
	Research Motivation
	Research Contribution
	Thesis Organization

	Literature Review
	Machine Learning on stock market data
	Machine Learning on Tabular data
	Deep Learning related to the research
	Latent Representation

	The Data
	Second iteration of the dataset
	Third iteration of the dataset
	Fourth iteration of the dataset

	Machine Learning methods utilized
	Overview of Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Tree-based learning
	XGBoost
	CatBoost
	LightGBM

	Deep Learning
	Performance Measures
	Mean Squared Error
	Root Mean Squared Error
	Pearson’s correlation
	Spearman's correlation
	Maximum Drawdown
	Numerai Sharpe


	Methodology
	Cross-Validation
	Architecture
	Input corruption
	De-noising auto-encoder
	Regression heads
	Loss function
	Ensemble predictions


	Experiments and Results
	Experimental Setup
	Baseline Model
	Using Medium Feature set
	Cross-Validation on training split
	Provided training and validation sets
	Cross-validation on full set

	Synthetic data generation

	Conclusion and Future Work
	Bibliography
	Vita Auctoris

