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ABSTRACT 

 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality with numerous 

applications due to its flexible contrast and high resolution. Recent improvements in computation 

power have enabled optimizations which were previously out of reach. This has led to 

improvements in image reconstruction and experiment design. 

Compressed sensing (CS) allows for images to be reconstructed using less data than is 

normally required leading to faster image acquisitions. In this thesis, CS is applied to 

experiments tracking individual cells in time lapse MRI. The faster image acquisition with CS 

reduces blurring from cell motion, improving the Contrast-to-Noise ratio (CNR) of moving cells 

and allows faster cells to be detected. 

Pi Echo Planar Imaging (PEPI) is an MRI pulse sequence that allows high resolution 

images to be acquired quickly with relatively low gradient duty cycle. Low field applications 

benefit significantly from low gradient duty cycle as it reduces concomitant magnetic field 

artifacts, so PEPI is an attractive option for affordable low field scanners. However, there are 

challenges in implementing PEPI, due to its high requirement on the flip angle of the π RF 

pulses. Deviation of the flip angle causes coherence pathway artifacts restricting PEPI to small 

samples in the homogeneous region of the RF coil and preventing 2D slice selective experiment. 

In this thesis, the coherence pathway artifacts are addressed using an optimized phase cycling 

scheme, reducing the flip angle sensitivity, and enabling a slice selective PEPI sequence.  
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Table 1. The contrast to noise ratio for each cell in each reconstruction of the 

simulated phantom experiment in Fig. 3-3. The inner two cells (< 5 µm/s) in each 

spoke are considered slow, while the outer three (> 5µm/s) are fast. Contrasts greater 

than 0.25 are categorized as high contrast, while the cells below 0.25 are low 

contrast. 
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Table 2. The number of pixels for each cell along the 0.4 contrast spoke. It was 

evaluated by manually selecting a region around the cell. The number of pixels was 

determined by a threshold, which was a weighted average of the minimum intensity 

(X 0.4) and the background intensity (X 0.6). 
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Fig. 2-1. The pulse sequence diagram for a 2D GRE. A slice select gradient (𝐺𝑠) and 

RF pulse are used to excite signal in a plane. Frequency and phase encoding gradients 

(𝐺𝑓  and 𝐺𝑝 ) are used to encode the remaining two directions. The excitation is 

repeated with different phase encoding gradient strengths until the full Cartesian k-

space is covered. 
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Fig. 2-2. The pulse sequence diagram for a 2D SE. A slice selective excitation pulse 

is used to excite signal in a plane similar to a GRE. A slice selective refocusing pulse 

is then applied to create a spin echo. The spatial encoding is applied similar to a GRE 

and the timing is set so the gradient echo and spin echo align. 
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Fig. 2-3. The pulse sequence diagram for a 2D FSE. The experiment is similar to an 

SE except that a chain of refocusing pulses is used instead of one. This generates a 

train of echoes with different spatial encodings. The gradients are balanced within 

each echo interval so that the net phase accumulation is 0. 
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Fig. 2-4. The pulse sequence diagram for a 3D PEPI. The first phase encoding gradient 

is applied before every other echo. The second phase encoding gradient is applied 

only after the excitation RF pulse. The 180֯ refocusing RF pulse changes 𝑘 to −𝑘. 

Other k-space trajectories are possible. 
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Fig. 3-1. Variable density sampling scheme. (a) 2D k-space is divided into bins of 

high frequency lines and a low frequency portion (orange) which is acquired in the 

center of the fully sampled data. Each of the high frequency groups is sampled in a 

short time interval, as indicated by the same color, and provides a high undersampling 

ratio frame with a relatively uniform incoherent k-space coverage. Sets of neighboring 

frames can be combined for reconstructions with (b) a lower undersampling ratio or 

(c) a fully sampled k-space. 
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Fig. 3-2. Example atoms of simulated cell features (top 2 rows), trained contour 

features (middle 2 rows), and trained brain features (bottom 2 rows). 
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Fig. 3-3. Simulations using the variable density sampling scheme. A stationary 

phantom (a) was simulated containing cells represented by hypointense spots of 

varying contrasts as indicated at each spoke. The phantom was then rotated along the 

isocenter at a frequency of 2.93 ∙ 10−4  rotations/second to create different linear 

velocities (1.7 µm/s, 3.5 µm/s, 5.2 µm/s, 7.0 µm/s, 8.7 µm/s at the five radial positions 

of the hypointense spots, respectively). The variable Cartesian sampling k-space data 

was processed to reconstruct the fully sampled (1X) image (b), 2.4X (c) and 4.8X (d) 

undersampled images. CNR for all cells in each reconstruction are listed in Table 1. 

Cells with various velocities and contrasts are highlighted for comparison showing 

blurring for fast-moving cells as well as reduction of the “T” shaped artifact and 

improvement in contrast in the accelerated reconstructions. 
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Fig. 3-4. Rotating phantom experiments with the variable density sampling scheme. 

An agarose phantom with embedded MPIOs was scanned in a stationary position (a) 

as a reference and for a rotation of 2.93 ∙ 10−4  rotations/second mimicking cells 

which speeds of up to 9.2 µm/s. In the rotational case, the k-space data was processed 

to reconstruct the fully sampled (1X) image (b), 2.4X (c) and 4.8X (d) undersampled 

images. Zoomed image details with adjusted window/level settings and the coil 

sensitivity corrected show examples of particles with various velocities and contrasts. 

They demonstrate temporal blurring of fast-moving particles and improvement in 

contrast using undersampled reconstructions. 
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Fig. 3-5. Comparison of particle CNR in the fully sampled (1X) and 4.8X 

undersampled reconstructions in the rotating phantom experiment. Single data points 

represent individual particles with the intensity being particle velocity (µm/s) in (a) 

and CNR in the stationary reference image in (b). Almost all cells are above the 45° 

dashed line, indicating increased CNRs in the undersampled image. Fast-moving 

particles and those with high initial contrast in the stationary phantom benefitted to a 

greater extent from undersampling. 

 

 

 

 

 

 

 

32 

Fig. 3-6. Velocity dependent improvement of particle CNR from the rotational 

phantom experiment. The percentage improvement is calculated as the difference in 

CNR, between the 4.8X undersampled and fully sampled images, divided by the 

average CNR of the two methods. Individual data points represent single particles, 

and the solid line is a linear regression. The positive slope shows an average of 6.1% 

increase in contrast per µm/s. 
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Fig. 3-7. In vivo single cell tracking with the variable density sampling scheme. In 

exemplary slices at different positions in the mouse brain (1st column), image details, 

indicated by the red rectangle, show representative examples of cells which were only 

detectable using the undersampled reconstruction (marked with red arrowhead).  Fully 

sampled images (1X; 2nd column) are compared with the undersampled 

reconstructions. The k-space data of 2.4X reconstructions (3rd column) corresponded 

to one of the frames in Fig. 1b, which were further accelerated to reconstruct two 4.8X 

images (4th and 5th columns). Line profiles corresponding to the marked lines in the 

image details are shown in the 6th column. SNR were improved in the undersampled 

reconstructions. Improved contrast in one of the 4.8X frames indicated the cells were 

present for a short duration leading to their absence when the temporal blurring was 

severe. 
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Fig. 3-8. In exemplary slices at different positions in the mouse brain (1st column, 

same as in Fig. 3-7), image details, indicated by the red rectangle, show representative 

examples of cells which were only detectable using the DLLR undersampled 

reconstruction. Cells are not visible in the fully sampled images (2nd column, same 

as in Fig. 3-7). However, the cells are easily visible in the 4.8X DL + Low Rank 

reconstruction (3rd column, same as in Fig. 3-7), while the 4.8X Wavelet + TV 

reconstruction (4th column) did not enhance the cell contrast sufficiently for it to be 

detectable. Line profiles corresponding to the marked lines in the image details are 

shown in the 5th column. 
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Fig. 4-1. The pulse sequence diagram for 2D PEPI. The phase encoding gradient is 

applied after every other refocusing pulse. The frequency encoding gradient is also 

unbalanced. 
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Fig. 4-2. An example output of the optimized phase cycling scheme. Each coloured 

line shows the RF phases of one average. The proposed method has random like 

oscillations compared to the XY-16 phase cycling in black. 
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Fig. 4-3. The PEPI experiments on a phantom (a) were simulated with Bloch equation 

with 160° refocusing pulses and 16 ETL. The CPMG phase scheme (b) resulted in 

substantial banding artifacts along the phase encoding direction. The CPMG with 

composite refocusing pulses (c) slightly reduced the artifact. An XY-16 phase scheme 

(d) led to low intensity artifacts in the phase encoding direction. Each repetition from 

the optimized phase cycling scheme is shown in (e), where the artifacts varied with 

different RF phases. The average (f) of the complex images in (e) is comparable to 

(a) with the artifacts mostly removed. 
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Fig. 4-4. 3D PEPI experiments (16 ETL and 4 averages) with varying refocusing flip 

angles were performed with the proposed phase cycling scheme (1st row) and XY-16 

(2nd row). The first phase encoding direction with blips applied every second echo is 

horizontal while the second phase encoding direction is vertical. The image quality 

was good at a nominal 180° for both methods (1st column). With a 170° nominal flip 

angle, coherence pathway artifacts were apparent in the XY-16 image (e), while the 

optimized method (b) remained relatively artifact free. A 160° refocusing pulse 

resulted in significant artifacts in both images (3rd column). The XY-16 image (f) 

quality was extremely degraded. 
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Fig. 4-5. 2D PEPI experiments (16 ETL and 4 averages) with varying refocusing flip 

angles were performed with the proposed phase cycling scheme (1st row) and XY-16 

(2nd row). The phase encoding direction is horizontal while the second phase 

encoding direction is vertical. The image quality was good at a nominal 180° for the 

optimized method (a), while low intensity artifacts are observed with XY-16 (d). With 

a 170° nominal flip angle, coherence pathway artifacts were significant in the XY-16 

image (e), while the optimized method (b) shows only minor artifacts. A 160° 

refocusing pulse resulted in artifacts in both images (3rd column) where the artifacts 

were of much higher intensity in the XY-16 (f). 
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xiv 
 

Fig. 4-6. 2D PEPI image of a mouse brain using the optimized phase cycling scheme 

(1st column) and XY-16 (2nd column). The 1st row is the slice at the gradient 

isocenter and the 2nd row is offset 2mm from the isocenter. Significant coherence 

pathway artifacts are present in XY-16. 2D FSE images (3rd column) had reduced 

quality. Additional blurring away from the gradient isocenter was observed, as 

highlighted in (f), due to the concomitant magnetic field, while features close to the 

gradient isocenter were less degraded, such as highlighted in (c). 
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Fig. A1-1. A pulse sequence diagram for the first three pulses in a PEPI experiment 

with non-ideal refocusing pulses. Numbers (1-9) indicate time points of interest at 

which the coherence pathways are calculated with the partition method. 
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CHAPTER 1 

Introduction 

1.1 Overview of Work 
 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality which 

provides high resolution images with a flexible soft tissue contrast. There is a wide variety 

of MRI applications, such as cell tracking and porous media imaging. The MRI image 

properties, including contrast and resolution, are determined by the sequence and timing of 

radiofrequency (RF) and magnetic field gradient pulses, termed the MRI pulse sequence. 

A mathematical operation is required to transform the MRI signals to image domain. This 

thesis focuses on optimization problems in both MRI pulse sequence design and image 

reconstruction. 

Recent increases in computation power have enabled new MRI techniques, such as 

Compressed Sensing (CS) [1]. CS allows data to be sampled below the Nyquist criteria 

leading to faster image acquisition [1]. CS could increase the temporal resolution, which is 

especially important for systems with motion. One example is cell tracking, in which cells 

are tagged with Iron Oxide Nanoparticles (ION), distorting the magnetic field around the 

cells allowing individual cells to be tracked [2]. A long acquisition time results in motion 

blurring so that it is difficult or impossible to detect fast moving cells. Cell tracking can 

benefit from CS. Choosing an appropriate regularizer and maintaining low contrast features 

are two major challenges in CS. Chapter 3 explores an adaptive regularizer for cell tracking 

MRI. A variable undersampling ratio cartesian sampling scheme is proposed to ensure low 

contrast stationary cells are visible in the CS reconstruction. 
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 The MRI pulse sequence design can be considered as an optimization problem. The 

Pi Echo Planar Imaging (PEPI) pulse sequence improved upon the Fast Spin Echo (FSE) 

sequence with more efficient use of gradients, reducing concomitant magnetic field and 

eddy current effects [3,4]. These are particularly advantageous for high resolution and/or 

low magnetic field imaging. Low field MRI scanners have the potential to reduce cost and 

improve accessibility. Current PEPI experiments require a very high quality π pulse to 

prevent coherence pathway artifacts [3]. This has limited past PEPI experiments to samples 

restricted to the homogeneous region of the RF coil. In Chapter 4, a phase cycling scheme 

is determined by solving an optimization problem to minimize the coherence pathway 

artifacts. This leads to good quality images with non-ideal refocusing RF pulses. The slice 

selective PEPI experiment is enabled with this phase cycling scheme. 

1.2 Summary of Master’s Work 
 

During my master’s, I programmed, tested, and debugged MRI pulse sequences on 

a 1T Aspect M2 small animal scanner using a MATLAB interface. The relevant sequences 

for this thesis were a 2D and 3D PEPI experiments as well as a 3D FSE. In addition, I 

created a 3D multi-echo-spin echo (3DMESE) and a Gradient And Spin Echo (GRASE). I 

also collaborated on creating our Carr-Purcell-Meiboom-Gill (CPMG), Saturation 

Recovery (SR), SR-CPMG and inversion recovery (IR) sequences.  

I wrote a Python script to generate the gradient table in Chapter 3, as well as Matlab 

and python code to reconstruct and process the images. I performed the phantom 

simulations in Matlab (motion artifacts) and Python (Bloch equation) in Chapters 3 & 4. I 

developed the cost function in Chapter 4 and wrote a Python code to execute the 
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optimization of coherence pathway cancellation. In addition to the work included in this 

thesis, I also programmed an optimized 𝑇2 mapping script which processed the 𝑇2 mapping 

experiment data in an order of magnitude less time than our previous script. I included a 

simple modulation transfer function (MTF) correction for 𝑇2  mapping with FSE 

experiments. I also collaborated on a 𝑇2 mapping algorithm which used an optimization for 

MTF correction. 

I have presented my work at many conferences including Canadian Association of 

Physicists (CAP) conference, Imaging Network Ontario (ImNO), International Society for 

Magnetic Resonance in Medicine (ISMRM) Annual Meeting and Magnetic Resonance in 

Porous Media (MRPM). 

1.3 Thesis Outline 
 

Chapter 1 introduces the work performed for this thesis. 

Chapter 2 provides an overview of MR physics and the basic imaging experiments. 

Chapter 3 presents the CS method developed for improving the temporal resolution of cell 

tracking MRI. 

Chapter 4 describes the optimized phase cycling algorithm and its application to PEPI 

experiments. 

Chapter 5 summarizes the work and discusses future research directions for these projects. 
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CHAPTER 2 

Magnetic Resonance Imaging Basics 

2.1 Nuclear Magnetic Resonance 
 

This chapter mostly follows the reference [5] and considers non-interacting 1H 

nuclei. 

Nuclear magnetism originates from the microscopic magnetic fields associated 

with nuclear spin. These magnetic moments are vector quantities which, in the presence of 

an external magnetic field 𝑩0, precess about the field at a frequency 

 𝜔0 = 𝛾𝐵0, (2.1) 

where 𝛾 is a physical constant for the chosen nuclei. The macroscopic bulk magnetization 

is a vector 𝑴 summed over all nuclear magnetic moments. At thermal equilibrium, the bulk 

magnetization aligns in the direction of the static field 𝑩0, which is conventionally in the 

z-axis (𝑀𝑧 = 𝑀, 𝑀𝑥 = 𝑀𝑦 = 0). 

  The 𝑀𝑧  component of the magnetization is difficult to measure, while the 

transverse component (𝑀𝑥𝑦 = 𝑀𝑥 + 𝑖𝑀𝑦) precesses at a rate defined by Eqn. 2.1. The 

precession induces a voltage in a pickup coil, which is the MR signal. To generate a 

nonzero 𝑀𝑥𝑦 magnetization, an RF pulse is applied to rotate the thermal magnetization 

from the z-axis into the xy-plane. Consider a circularly polarized magnetic field with 

carrier frequency 𝜔𝑟𝑓 = 𝜔0 (on-resonance) and phase 𝜑: 

 𝑩1(𝑡) = 𝐵1
𝑒(𝑡)[cos(𝜔𝑟𝑓𝑡 + 𝜑)𝒊 − 𝑠𝑖𝑛(𝜔𝑟𝑓𝑡 + 𝜑)𝒋], (2.2) 
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where 𝐵1
𝑒(𝑡) is the envelope function or amplitude of the RF field over time. In a reference 

frame rotating at 𝜔𝑟𝑓 about the z-axis, the RF magnetic field is stationary and in the xy-

plane with its direction defined by 𝜑. This results in a rotation of the bulk magnetization 

about an axis in the xy-plane. The creation of 𝑀𝑥𝑦 from thermal equilibrium is termed 

signal excitation. 

 The frequency of rotation under an RF pulse can also be described by Eqn. 2.1, 

replacing 𝐵0 with 𝐵1
𝑒(𝑡), which is generally time dependent 

 𝜔1(𝑡) = 𝛾𝐵1
𝑒(𝑡). (2.3) 

The total angle of the rotation 𝛼 from an RF pulse of duration t, and envelope 𝐵1
𝑒(𝑡′), can 

be calculated by the integral 

 𝛼 = 𝛾 ∫ 𝐵1
𝑒(𝑡′)𝑑𝑡′

𝑡

0
. (2.4) 

𝛼 is often called flip angle. Consider the magnetization immediately after an 𝛼 degree RF-

pulse. The z-component is 𝑀𝑧(0) = 𝑀0 cos(𝛼), while the amplitude of the transverse 

component is |𝑀𝑥𝑦(0)| = 𝑀0 sin(𝛼). There are two relaxation times which describe how 

the magnetization returns to thermal equilibrium. The 𝑇1 describes the longitudinal or 𝑀𝑧 

component 

 
𝑀𝑧(𝑡) = 𝑀0 − (𝑀0 − 𝑀𝑧(0))𝑒

−
𝑡

𝑇1. 
(2.5) 

𝑇2  describes the magnitude of the transverse or 𝑀𝑥𝑦  magnetization as it returns to 

equilibrium 

 
|𝑀𝑥𝑦(𝑡)| = |𝑀𝑥𝑦(0)|𝑒

− 
𝑡

𝑇2. 
(2.6) 
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Note that the precession frequency can vary slightly due to ∆𝐵0, including static magnetic 

field inhomogeneity, susceptibility, etc. 𝜌(𝜔)  is the frequency distribution of the 

magnetization density, called spectral density. The term isochromat is used to describe all 

spins precessing at the same frequency. The signal 𝑆(𝑡) is an integral over spectral density 

with a phase term to account for the precession frequency: 

 
𝑆(𝑡) = sin(𝛼)∫ 𝜌(𝜔)𝑒−𝑖𝜔𝑡𝑒

− 
𝑡

𝑇2𝑑𝜔
∞

−∞
. 

(2.7) 

The additional phase term leads to dephasing and signal loss in addition to the 𝑇2 decay, 

reducing the signal lifetime to 𝑇2
∗. The signal can be acquired after the RF pulse, which is 

termed Free Induction Decay (FID). The signal loss due to ∆𝐵0 dephasing can be valuable 

in certain situations where contrast related to the field is desired. For example, in the cell 

tracking experiments in Chapter 3, ION tagged cells cause strong susceptibility effects 

around them resulting in rapid intravoxel dephasing so that they appear dark in the image. 

In other situations, a long signal lifetime is desirable, such as in PEPI experiments where 

refocusing RF pulses are employed to reverse the effects of dephasing, yielding a 1/𝑇2 

decay rate.  

2.2 Magnetic Resonance Imaging 

2.2.1 Slice Selection 

 MR measures signal proportional to the bulk xy-magnetization, but spatial 

information must be encoded to reconstruct an image. A magnetic field gradient 𝑮 creates 

a position dependent frequency. It is important to note that the gradient field is in the same 

direction as the static magnetic field. It is the magnitude of the gradient field which linearly 

varies over space. 
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At low flip angles, the frequency domain response of an RF pulse is related to the 

Fourier transform of the RF field. For example, an RF pulse with a sinc shaped envelope 

excites a box function in the frequency domain. By applying a gradient, the frequency 

varies linearly with spatial position. In 2D MRI imaging, a slice selection gradient is 

applied at the same time as an RF pulse to excite a range of frequencies and therefore a 

slice of the subject. A stronger slice selection gradient and/or a broader RF pulse can be 

used to select a narrower slice.  Another important consideration for slice selective pulses 

is the slice profile. In practice, a pulse cannot be infinitely long, so a true sinc pulse is not 

possible. As a result, a perfect box function in the frequency domain is not achieved and 

the flip angle varies across the slice. In the case of a truncated sinc pulse the slice profile 

is a box with ringing at the edges. For Shinnar–Le Roux (SLR) pulses [6] there is a flat top 

with a smooth transition to zero. For most experiments this is not an issue. For experiments 

that are highly sensitive to flip angle such as the PEPI to be discussed in Chapter 4, it is 

however very challenging to perform 2D slice selective experiments. 

2.2.2 Spatial Encoding 

 The precession frequency in the presence of a gradient field can be written as a 

function of position as: 

 𝜔(𝒓) = 𝛾(𝐵0 + 𝒓 ∙ 𝑮). (2.8) 

In the rotating frame of reference, the 𝐵0 term is removed. Ignoring relaxation effects and 

assuming all the magnetization is excited into the xy-plane, the signal can be written as 

 𝑆(𝒌) = ∫ 𝜌(𝒓)𝑒−𝑖2𝜋𝒓∙𝒌𝒅𝒓
∞

−∞
, (2.9) 
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where the gradient effect at time 𝑡 is defined by 

 𝒌 =
𝛾

2𝜋
∫ 𝑮(𝑡′)𝑑𝑡′

𝑡

0
. (2.10) 

Clearly the measured signal 𝑆(𝒌) is related to the proton density 𝝆(𝒓) by the Fourier 

transform relationship. The proton density can then be expressed in terms of the signal as: 

 
𝝆(𝒓) = ∫ 𝑆(𝒌)𝑒𝑖2𝜋𝒓∙𝒌𝒅𝒌

∞

−∞

. 
(2.11) 

This equation can be discretized, so an image with pixel intensity 𝝆(𝒓) can be obtained by 

appropriately sampling 𝑆(𝒌) and applying the inverse discrete Fourier transform. 

In practice, relaxation effects are present during imaging. As a result, the image 

reconstructed is generally not 𝝆(𝒓) but a certain combination of 𝝆, 𝑇1, and 𝑇2, determined 

by the MRI pulse sequence.  

2.2.3 K-space Trajectory 

 In 2D slice selective experiments, there are two spatial dimensions which need to 

be encoded with gradients. The frequency encoding gradient and phase encoding gradients 

are usually applied in orthogonal directions. The frequency encoding gradient stays on 

while k-space data points are being acquired. During the acquisition, the integrated area of 

the gradient increases, so that the 𝒌 value increases in the frequency encoding direction 

and a line of k-space is read out. The phase encoding gradient is applied prior to the 

acquisition setting the 𝒌  value in the phase encoding direction. Multiple acquisition 

windows are required to cover the 2D Cartesian k-space line by line. This is called spin 

warp imaging. In the case of 3D imaging, a second phase encoding gradient is added. 
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 The signal at each acquired point has some weighting of proton density and 

different relaxation effects. The image contrast is typically defined by the signal expression 

at 𝒌 = 𝟎 or the k-space center, so MRI has great flexibility in the contrast as the location 

of the k-space center can be chosen. The k-space trajectory is determined by the order the 

k-space points are acquired in. Based on the pulse sequence parameters and k-space 

trajectory, the amplitude modulation of k-space data (modulation transfer function) due to 

relaxations can lead to a low pass or a high pass filter in the image, corresponding to 

blurring and edge enhancement, respectively. The true image resolution is altered. The k-

space trajectory also affects the appearance of image artifacts, such as due to motion or 

unwanted coherence pathway. These artifacts will be discussed in detail in Chapters 3 & 

4. 

2.3 MRI Pulse Sequences 

2.3.1 Gradient Echo 

 A 2D GRadient Echo (GRE) pulse sequence is one of the simplest MRI experiments 

[7]. A slice selective RF pulse and slice select gradient (Gs) are applied simultaneously, as 

shown in Fig. 2-1. This excites the magnetization within a 2D plane which is then spatially 

encoded in the frequency and phase directions. The negative lobe of the frequency 

encoding gradient (Gf) brings the 𝒌  vector to −𝑘𝑚𝑎𝑥  along the frequency encoding 

direction so that a whole line is read out during the acquisition. At the same time a phase 

encoding gradient (Gp) is applied. The ladder shown in Fig. 2-1 indicates that different 

amplitudes are used when the RF pulse is repeated, so that different lines in k-space are 

read out. A frequency encoding gradient with a duration of twice the preparation gradient 
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is on while the k-space points are acquired. This reads out a line from  −𝑘𝑚𝑎𝑥 to 0 in the 

center and to 𝑘𝑚𝑎𝑥 at the end. The gradient echo occurs at the point where 𝑘𝑓 = 0. 

 

 

 The FID signal decays from 𝑇2 relaxation as well as dephasing due to ∆𝐵0, at a rate 

of 1/𝑇2
∗. The time between the RF pulse and the center of the acquisition block (𝒌 = 0) is 

called TE, because it is the “time to echo”. The 𝑇2
∗ contrast can be chosen based on TE. 

Increasing 𝑇2
∗ weighting can be useful in some experiments such as cell tracking, where 

the additional dephasing around ION tagged cells leads to lower signal compared to 

neighboring pixels. There is a trade-off in that the signal decreases with more 𝑇2
∗ decay, 

reducing Signal-to-Noise Ratio (SNR) and resulting in a grainier image. These 

considerations must be balanced carefully when choosing the optimal parameters. 

 There is also contrast from proton density and possible 𝑇1 relaxation. The signal 

excitation is repeated multiple times for the different phase encodings, with a delay time 

between repetitions called TR. The 𝑀𝑧 magnetization recovers at a rate of 𝑇1 during TR, 

which is generally not complete.  The flip angle, TR and 𝑇1 determine 𝑀𝑧 at the start of the 

next RF pulse and therefore the signal amplitude. 

Fig. 2-1. The pulse sequence diagram for a 2D GRE. A slice select gradient (𝑮𝒔) and RF pulse 

are used to excite signal in a plane. Frequency and phase encoding gradients (𝑮𝒇 and 𝑮𝒑) 

are used to encode the remaining two directions. The excitation is repeated with different 

phase encoding gradient strengths until the full Cartesian k-space is covered. 
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2.3.2 Spin Echo and Fast Spin Echo 

 A simple variation on the GRE is to add a refocusing pulse [8] as shown in Fig. 2-

2. The isochromats dephase due to Δ𝐵0 during a time period 
𝑇𝐸

2
 between the excitation and 

180 refocusing pulse. The 180 refocusing pulse flips the spins and they rephase 

generating a spin echo when the Δ𝐵0  dephasing is completely reversed at TE. The 

frequency encoding gradient is arranged so that the gradient echo and spin echo overlap.  

Since acquisition is centered on the spin echo, the image has a 𝑇2 contrast instead of a 𝑇2
∗ 

contrast. The TE and TR are defined similarly to the GRE. 

 

 

Fast spin echo (FSE) [4] modifies the SE sequence by adding a chain of 180 

refocusing pulses, where an echo occurs after each refocusing pulse, as shown in Fig. 2-3. 

This series of spin echoes is called an echo train. Typically, the CPMG phase scheme is 

used, where the phase of the refocusing pulse is offset by 90 from the excitation pulse. 

One line of k-space is acquired on each echo, so that multiple lines are traversed with a 

single excitation leading to the faster image acquisition. The 𝑇2 decay along the echo train 

Fig. 2-2. The pulse sequence diagram for a 2D SE. A slice selective excitation pulse is used to 

excite signal in a plane similar to a GRE. A slice selective refocusing pulse is then applied to 

create a spin echo. The spatial encoding is applied similar to a GRE and the timing is set so the 

gradient echo and spin echo align. 
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results in an MTF in the phase encoding direction. The effect of the MTF depends on how 

the lines of k-space are arranged. The echo spacing (ES) is the time between two 

consecutive echoes, which is also the time between the excitation and first spin echo. The 

TE is the time between the excitation and the point where 𝑘𝑓 = 0 and 𝑘𝑝 = 0. This could 

happen at a later echo, where the TE and ES are not equal. 

In conventional FSE experiments balancing gradients are applied to return to the k-

space center prior to the next refocusing pulse as shown in Fig. 2-3. This is important to 

prevent artifacts from coherence pathways when the 180 refocusing pulse is imperfect, as 

will be discussed in detail in Chapter 4. 

 

 

 

2.3.3 PEPI 

 Some sequences, including BLIPPED and PEPI, have shown that gradients can be 

accumulated throughout the echo train if the refocusing pulses are sufficiently close to 

180° [3,9]. Since all phase effects are reversed, the 𝒌 vector changes to −𝒌. A 3D PEPI 

experiment is shown in Fig. 2-4. It has a similar structure of the FSE with a chain of 

Fig. 2-3. The pulse sequence diagram for a 2D FSE. The experiment is similar to an SE except 

that a chain of refocusing pulses is used instead of one. This generates a train of echoes with 

different spatial encodings. The gradients are balanced within each echo interval so that the 

net phase accumulation is 0. 
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refocusing pulses and spatial encoding for each echo. The slice selection has been replaced 

with a second phase encoding gradient, which is applied only after the excitation pulse. 

The phase 1 encoding gradient is applied before every other echo. The frequency encoding 

gradient is also unbalanced. Other k-space trajectories are also possible. Generally, it is 

preferred to avoid large jumps in the magnitude of each k-space coordinate so that only 

small amplitude gradients are required. 

 

 

 

Compared to FSE, PEPI reduces gradient switching, gradient amplitude, and 

gradient duty cycle. This can result in improved image quality due to the reduced eddy 

current and concomitant magnetic field effects. Concomitant magnetic fields are gradients 

in the transverse direction that create a spatially dependent frequency variation. This effect 

is particularly significant in the case of low field or high resolution as the frequency 

variation introduced is inversely proportional to 𝐵0  and grows quadratically with the 

magnetic field gradient [10]. The requirement for a near perfect 180° refocusing pulse in 

PEPI is however quite restrictive. The PEPI experiments can only be performed on small 

samples within the homogeneous region of the 𝑩1 field and slice selective 2D experiments 

have not been feasible. In Chapter 4, a method of reducing coherence pathway artifacts is 

explored to relax the constraint on the refocusing pulses. 

Fig. 2-4. The pulse sequence diagram for a 3D PEPI. The first phase encoding gradient is 

applied before every other echo. The second phase encoding gradient is applied only after 

the excitation RF pulse. The 180֯ refocusing RF pulse changes k to -k. Other k-space 

trajectories are possible. 
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CHAPTER 3 

Dynamic Cell Tracking MRI with Variable Temporal Resolution Cartesian 

Sampling 

3.1 Introduction 
 

Dynamic single cell tracking would be of great benefit to diagnostic imaging in 

inflammation or cancer.  Among the available imaging modalities for this purpose, MRI 

stands out, due to its non-invasiveness, absence of ionizing radiation, excellent soft tissue 

contrast and comparatively high spatial resolution [2,11,12]. However, for cellular 

resolution, MRI only affords limited contrast and sensitivity. This limitation makes a potent 

cell labeling mandatory, which can be achieved with high efficiency by using 

superparamagnetic iron-oxide nanoparticles (ION) [12–15]. Such labeling enables 

detection of single cells as hypointense spots in 𝑇2
∗ weighted images, both in vitro and in 

vivo [16–18]. Despite the need for scan times of several minutes, which are required to 

reach sufficiently high spatial resolutions to visualize individual cells, observation of 

motion of single cells in vivo with frame rates of down to eight minutes is possible by using 

time lapse MRI [19,20]. Since image contrast is determined by the peculiarities of k-space, 

feasible frame rates previously translated into a limit of detection of 1 µm/s for the speed 

of cells [20].  Faster moving cells could not be detected due to temporal blurring. While 

this speed limit was sufficient to resolve a basic inflammatory response in vivo [21], higher 

temporal resolution is required for more detailed insight into inflammatory processes.  

Temporal resolution in MRI can be improved by applying CS techniques [1] to 

reconstruct images with undersampled k-space data, which can be acquired in shorter scan 

times. CS reconstructs an image with data sampled below the Nyquist criteria by solving 
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an optimization problem which utilizes the sparsity of MR images. A fidelity term enforces 

consistency with the measurements, and additional regularization terms enforce sparsity in 

some domain or domains. A sparsifying transform can be adaptive such as Dictionary 

Learning (DL) [22] or generic like the wavelet transform and total variation (TV) [1]. 

Typically, one uses either an l1-norm [1] or an approximation of an l0-norm [23,24] to 

promote the transform sparsity [1].  

Recently, DL has been explored as an adaptive CS regularizer [23–25]. DL 

represents patches of an image using sparse combinations of so-called “atoms” in a 

dictionary [26,27]. This dictionary can be predefined or trained from the target image with 

K-Singular Value Decomposition (K-SVD) [26]. The sparse representation can be 

achieved through Orthogonal Matching Pursuit (OMP) [26]. DL can achieve a higher 

sparsity level than generic transforms, like wavelet, because it is trained to represent a 

certain class of images such as mouse brains, for example. Additionally, the dictionary may 

be overcomplete allowing a higher level of sparsity compared to orthogonal 

transformations. A higher sparsity level generally permits images to be reconstructed with 

a higher undersampling ratio. l2-norm regularization has been employed in DL CS [24]. 

Caballero [23] applied a 3D spatial-temporal dictionary for dynamic MR reconstructions 

with an l1 norm term on the derivative (total variation) along the temporal dimension. Real 

and imaginary parts of the images were processed separately using the same real-valued 

dictionary.  

Nuclear norm, the sum of singular values of a matrix, has also been explored to 

promote a low rank solution. This is of particular interest for dynamic MRI [28], where 
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redundancy in singular values is present in the spatial-temporal matrix. A nearly stationary 

subject can be approximated with a very low rank spatial-temporal image.  

 Since incoherent data acquisition is essential for CS, different sampling schemes 

[29–31] have been developed. The undersampling pattern is usually pre-defined based on 

the achievable acceleration ratio, which is determined by the sparsity, SNR and image 

feature contrast. Since these factors might change between subjects and scans, it is 

advantageous to employ a scheme that permits flexible retrospective undersampling. 

Recently, the golden angle radial scheme [32] was used for undersampling, by allowing an 

arbitrary number of radial spokes for each temporal frame [29]. However, radial trajectory 

does not cover the periphery of k-space with high density, where high spatial frequency 

features are encoded. Therefore, a radial scheme is suboptimal for single cell imaging that 

targets small signal voids which are only a few pixels in size.  

In this work, a variable density Cartesian sampling scheme has been developed, 

which permits the reconstruction of fully sampled images and images at various 

undersampling ratios simultaneously [33], using a DL and low rank CS reconstruction. 

Simulations of a rotating circular phantom with signal voids of different intensities were 

performed. The method was implemented for cell tracking in phantom and in vivo mouse 

experiments. Improved detection limits in time lapse MRI single cell tracking experiments 

were demonstrated.  
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3.2 Theory 

3.2.1 Flexible Sampling Scheme 

In the proposed sampling scheme, as shown in Fig. 3-1a, the 2D k-space is divided 

into a number of bins, determined by the highest acceleration factor. One random phase 

encoding line is sampled from each high frequency bin, combining with the central lines 

to form an undersampled frame with the highest acceleration factor. The low frequency 

central lines are acquired after half of the total number of frames. No duplicate phase 

encoding lines are sampled until the full k-space is covered. A smaller undersampling ratio 

can be chosen in the reconstruction stage by grouping a larger number of phase encoding 

lines, as shown in Fig. 3-1b. The undersampling ratio cannot be chosen arbitrarily with this 

scheme as the number of phase encoding lines is the number of central lines plus an integer 

multiple of the number of bins. However, it does allow sufficient flexibility, since the 

highest acceleration factor is chosen to be sufficiently large. Acquiring all the low 

frequency lines in the middle of the scan, rather than distributing them throughout the high 

temporal resolution frames, results in a reduced acquisition time for the high frequency 

dynamic frames. All lines can be combined to create a fully sampled image as shown in 

Fig. 3-1c. The phase encoding lines in each undersampled frame vary in successive fully 

sampled images, to ensure incoherence in the temporal dimension.  
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3.2.2 Dictionary Learning and Low Rank Regularized Compressed Sensing 

The DL CS method proposed in [23] was modified to enforce a solution which can 

be represented sparsely by a 2D spatial dictionary and is low rank along the temporal and 

phase encoding direction. 2D dictionary was chosen to reduce the computational burden. 

The flexible sampling scheme allowed a fully sampled image to be reconstructed for phase 

correction, so it was unnecessary to process the real and imaginary parts separately. 

 The dictionary learning and low rank (DLLR)-CS method is formulated as: 

 
min

𝑋,𝑋𝐿𝑅,𝜏
𝜆1 ∑‖𝑅𝑖𝑗𝑋 − 𝐷𝛼𝑖𝑗‖2

2

𝑖𝑗

+ 𝜆2‖𝑋 − 𝑋𝐿𝑅‖2
2 + ‖𝑦 − 𝐹𝑢𝑋‖2

2 

 𝑠. 𝑡.  ‖𝛼𝑖𝑗‖0
≤ 𝑇   ∀𝑖𝑗,  𝑟𝑎𝑛𝑘(𝑋𝑗𝑘,𝐿𝑅) ≤ 𝑟   ∀𝑗𝑘, 

 

 

(3.1) 

where 𝑋 is the image to be reconstructed, and 𝑦 is the acquired data in k-space. 𝐹𝑢 is the 

undersampled Fourier transform operator. The indexes 𝑖, 𝑗, and 𝑘 denote the frequency, 

Fig. 3-1. Variable density sampling scheme. (a) 2D k-space is divided into bins of high 

frequency lines and a low frequency portion (orange) which is acquired in the center of the 

fully sampled data. Each of the high frequency groups is sampled in a short time interval, as 

indicated by the same color, and provides a high undersampling ratio frame with a relatively 

uniform incoherent k-space coverage. Sets of neighboring frames can be combined for 

reconstructions with (b) a lower undersampling ratio or (c) a fully sampled k-space. 
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phase, and temporal dimensions, respectively. Rij is the operator which extracts a 2D patch 

ij in the frequency and phase encoding dimensions. D is the dictionary, and 𝜏 = {𝛼𝑖𝑗} is 

the set of coefficients for all patches. 𝑋𝐿𝑅 is the low rank approximation of the image. 

𝑋𝑗𝑘,𝐿𝑅 is a slice of the low rank image along the phase and temporal dimensions. 𝜆1 and 𝜆2 

are parameters which determine the weighting of the DL and low rank regularizers, 

respectively. 

The first term in Eqn. 3.1 and the first constraint enforce that the image patches 

have a sparse representation with T or fewer atoms under the predefined DL transform. The 

second term minimizes the difference between the image and 𝑋𝐿𝑅, a stack of rank no larger 

than r spatial-temporal matrices 𝑋𝑗𝑘,𝐿𝑅, as enforced by the second constraint. The third term 

enforces consistency of the image with the measurements. An adaptive regularizer was 

used along the spatial dimensions to ensure that image features corresponding to the tagged 

cells and mouse brain structure were well represented under the sparsifying transform. 

Example cells from the trained dictionary are shown in Fig. 3-2. The temporal dimension 

is much simpler as the brain is stationary, which should be approximately constant except 

for where a moving cell is present. Therefore, the low rank approximation was used along 

the temporal and phase encoding directions, which was also more computationally efficient 

than DL. 

In this work, a pretrained dictionary was used, in contrast to optimizing the 

dictionary for each reconstruction, as each mouse was imaged in the same orientation 

leading to only little variation in mouse brain features.  With the pretrained dictionary, one 

can be certain that the features corresponding to tagged cells are well represented, 

preventing them from being removed by the regularization. 
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Eqn. 3.1 is solved by alternating minimization with respect to each variable while 

holding the others constant. The minimization w.r.t 𝜏 is: 

 
min

𝜏
∑‖𝑅𝑖𝑗𝑋 − 𝐷𝛼𝑖𝑗‖2

2

𝑖𝑗

     𝑠. 𝑡.  ‖𝛼𝑖𝑗‖0
≤ 𝑇   ∀𝑖𝑗, 

(3.2) 

which is simply the dictionary learning problem with fixed dictionary. This is efficiently 

solved using the greedy OMP algorithm [26]. 

Minimization w.r.t 𝑋𝐿𝑅 yields: 

 𝑚𝑖𝑛‖𝑋 − 𝑋𝐿𝑅‖2
2     𝑠. 𝑡.  𝑟𝑎𝑛𝑘(𝑋𝑗𝑘,𝐿𝑅) ≤ 𝑟   ∀𝑗𝑘, (3.3) 

where each 𝑋𝑗𝑘,𝐿𝑅 is approximated by the truncated SVD of 𝑋𝑗𝑘. 

Minimization with respect to 𝑋 results: 

 min
𝑋

𝜆1 ∑ ‖𝑅𝑖𝑗𝑋 − 𝐷𝛼𝑖𝑗‖2

2
𝑖𝑗 + 𝜆2‖𝑋 − 𝑋𝐿𝑅‖2

2 + ‖𝑦 − 𝐹𝑢𝑋‖2
2. (3.4) 

 

Fig. 3-2. Example atoms of simulated cell features (top 2 rows), trained contour features 

(middle 2 rows), and trained brain features (bottom 2 rows). 
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This problem is convex and can be solved by setting the first derivative to zero: 

 
𝜆1 ∑𝑅𝑖𝑗

𝑇 (𝑅𝑖𝑗𝑋 − 𝐷𝛼𝑖𝑗)

𝑖𝑗

+ 𝜆2(𝑋 − 𝑋𝐿𝑅) − 𝐹𝑢
H(𝑦 − 𝐹𝑢𝑋) = 0, 

(𝜆1 ∑𝑅𝑖𝑗
𝑇 𝑅𝑖𝑗

𝑖𝑗

+ 𝜆2𝐼 + 𝐹𝑢
H𝐹𝑢)𝑋 = 𝜆1 ∑𝑅𝑖𝑗

𝑇 𝐷𝛼𝑖𝑗

𝑖𝑗

+ 𝜆2𝑋𝐿𝑅 + 𝐹𝑢
H𝑦 

(𝜆1𝐹 ∑𝑅𝑖𝑗
𝑇 𝑅𝑖𝑗

𝑖𝑗

𝐹𝐻 + 𝜆2𝐼 + 𝐹𝐹𝑢
H𝐹𝑢𝐹𝐻)𝐹𝑋

= 𝜆1𝐹 ∑𝑅𝑖𝑗
𝑇 𝐷𝛼𝑖𝑗

𝑖𝑗

+ 𝜆2𝐹𝑋𝐿𝑅 + 𝐹𝐹𝑢
H𝑦 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.5) 

In the last step, 𝐹𝐻𝐹  (the identity matrix) was inserted between (∑ 𝑅𝑖𝑗
𝑇 𝑅𝑖𝑗𝑖𝑗 +

𝜆𝐹𝑢
H𝐹𝑢) and X, and 𝐹 was multiplied on both sides to bring the expression into the Fourier 

domain. 𝐹𝐹𝑢
H𝐹𝑢𝐹𝐻 is a diagonal matrix, with 1 corresponding to sampled k-space locations 

and 0 corresponding to unsampled points.  ∑ 𝑅𝑖𝑗
𝑇 𝑅𝑖𝑗𝑖𝑗  yields the identity matrix so that Eqn. 

3.5 is trivially invertible. ∑ 𝑅𝑖𝑗
𝑇 𝐷𝛼𝑖𝑗𝑖𝑗  is the patch averaged DL reconstruction, denoted by 

𝑋𝐷𝐿. One obtains the update step for 𝑋: 

 

 

(3.6) 

 This result is similar to that presented by Caballero et al [23], with the weighted 

average performed on the DL reconstruction and the low rank approximation, instead of 

DL and temporal gradient reconstructions. 
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The initial guess for the image was chosen to be the nearest fully sampled 

magnitude image with added noise. Gaussian noise was used with a standard deviation of 

1/15th the max pixel intensity of the fully sampled image. This improved the chances that 

a slow-moving cell detectable in the fully sampled images would remain in the 

undersampled images, while the added noise allowed additional cells to be detected. It also 

prevented coherent artifacts in the undersampled image, should the undersampling scheme 

have insufficient incoherence. Coherent artifacts such as banding tend to be difficult to 

remove by regularization with small size dictionary atoms. 

3.3 Methods 

3.3.1 Simulations using a Virtual Phantom 

To reproduce different contrasts and velocities observed in in vivo experiments, 

four classes of cells were simulated: fast-moving (> 5 µm/s) high-contrast (> 0.25) cells, 

fast-moving low-contrast (< 0.25) cells, slow-moving (< 5 µm/s) high-contrast cells, and 

slow-moving low-contrast cells. A virtual circular phantom with 10 spokes of cell feature 

was simulated, to test the methods ability to detect these different types of cells. The 

phantom had an intensity of 1 and the signal voids representing single cells had contrasts 

ranging from 0.1 to 0.4. Five cells were equally spaced on each spoke, as shown in Fig. 3-

3a. The phantom was rotated at a rate of 2.93 ∙ 10−4  rotations/second resulting in the 

velocities listed in Table 1. The phantom was simulated with four times higher resolution 

in each dimension to preserve partial volume effects in the rotation and downsampled onto 

a 180x192 grid. With a resulting voxel size of 73 × 73 𝜇𝑚2, the farthest cell had a linear 

velocity of 8.7 µm/s. These parameters were chosen to match the phantom experiments 
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described in the next section. Noise was added to achieve an SNR of 50, leading to a 

Contrast-to-Noise ratio (CNR) range of 5 to 20 for the cell features. The k-space data was 

simulated with a TR of 649 ms. The central 32 lines were acquired in the middle of each 

fully sampled k-space data set. The remaining 160 phase encoding lines were divided into 

8 high frequency bins resulting in acceleration factors of 9.6, 4.8, or 2.4, depending on how 

many lines per bins were combined in the reconstruction. As the low frequency lines were 

used in multiple frames, the undersampling ratio was defined as the total number of lines 

divided by the number of high frequency lines. To quantify the reconstruction quality, the 

number of pixels of each cell was evaluated by selecting a region around the void and 

thresholding the pixel values below a weighted average of the minimum value and the 

background intensity.  

3.3.2 In Vitro Phantom Experiments 

A cylindrical phantom (2-mL Eppendorf cap) was created, with microparticles of 

iron oxide (MPIOs; COMPEL™, Bangs Laboratories; mean diameter 8.2 µm; 5000 

particles/ml) suspended in agar gel (1%). The iron particles produced signal voids with 

contrast similar to the contrast of labeled immune cells both in vitro and in vivo in the 

mouse brain [20,21]. The agar was doped with 2 mmol/l gadolinium (Gadovist, Bayer AG, 

Germany) to achieve a similar SNR to the mouse brain images. As a reference, the phantom 

was first scanned in a stationary position. To create an in-plane velocity distribution of the 

iron particles based on the radial distance, the phantom was rotated along the cylindrical 

axis during the MR acquisition. The low rotation frequency of 2.93 ∙ 10−4 Hz, leading to 

a velocity range of 0-9.2 µm/s, was achieved by a custom-made device, driven by a stepper 

motor (ST4209S1006-B, Nanotec, Germany) with mounted planetary gear (GPLE40-3S-
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512, Nanotec, Germany). Particle velocities were calculated based on the radial distance 

from the axis of rotation in the stationary image. For the rotating phantom, images were 

reconstructed using the fully sampled k-space data as well as for acceleration factors of 

2.4, 4.8 and 9.6. A percentage improvement in particle CNR was calculated as the 

difference in CNR between the accelerated and fully sampled images divided by the 

average of the CNR for the two methods. Linear regression was performed using the 

linregress function in scipy’s stats module [34]. 

3.3.3 In Vivo Experiments 

Animal experiments were carried out according to local animal welfare guidelines 

and were approved by local authorities (ID: T81-02.04.2020.A194). Female BALB/c mice 

(n = 9) were obtained from Charles River Laboratories (Sulzfeld, Germany) and housed 

under a 12 h light-dark cycle and provided with food and water ad libitum. 

In vivo time-lapse MRI of the brain was performed 24h after in vivo labeling of 

cells by i.v. injection of 3 mL per kg body weight Ferucarbotran (Resovist, Bayer AG, 

Germany) via the tail vein. Mice were anesthetized with 1-1.5% isoflurane in 1 L per 

minute of oxygen and compressed air (20:80) under continuous respiratory and temperature 

monitoring. To avoid body cooling, mice were kept at physiologic temperature by a 

custom-designed animal heating device. Pronounced reduction of body temperature or 

breathing frequency despite lowering of anesthetic dose were stop criteria for the 

measurements. First, n = 8 mice were scanned to optimize MR acquisition and establish 

the variable sampling scheme. In vivo time-lapse MRI analysis was then performed on the 

optimized data for n = 1 mice. 
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Images were again reconstructed using the fully sampled k-space data and at acceleration 

factors of 2.4, 4.8 and 9.6 using DLLR reconstruction and of 4.8 for wavelet reconstruction 

for comparison.  

3.3.4 MRI Acquisition 

MRI was performed on a 9.4 T Biospec (Bruker Biospin, Ettlingen, Germany) using 

a cryogenic probe. A 𝑇2
∗   weighted gradient echo sequence was used with these scan 

parameters: TR: 649 ms, TE: 8 ms, FA: 60°, averages: 1, frequency encodings: 180, phase 

encodings: 192, in-plane resolution: 61 × 73 μm2, slices 38, slice thickness: 300 μm, scan 

time per fully sampled image: 2 min 6 s. 20 fully sampled timeframes were acquired for 

each in vivo experiment and 5 for each phantom experiment. In both phantom and in vivo 

measurements, individual cells were identified as hypointense spots. In addition, in vivo 

detected cells were categorized according to their motion behavior into short-term (one or 

two consecutive fully sampled timeframes), long-term short-range (three or more 

consecutive fully sampled timeframes) and long-term long-range cells (three or more 

consecutive fully sampled timeframes with in-plane motion of more than 1.5 pixels) [21]. 

3.3.5 Reconstruction 

The DLLR-CS algorithm was programmed in Python. DL was performed using the 

scikit-learn minibatch dictionary learning module [35]. The DLLR-CS algorithm used a 

dictionary composed of 50 dot atoms for the cell feature, 200 brain atoms, and 100 residual 

atoms representing the contour of brain features. Fig. 3-2 shows some examples of these 

atoms. This combined dictionary was tested with mouse brain images containing tagged 

cells and the 100 most infrequently used atoms were removed from the dictionary. Using 
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4 atoms for the DL fit and 4 threads, the reconstruction took 5 hours 17 minutes with an 

Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz and 16GB of RAM. The weightings of the 

DL term 𝜆1 and LR term 𝜆2 were 0.05 and 0.01, respectively. A rank 5 (r) SVD was used. 

For the wavelet + TV reconstruction, weightings for the wavelet and TV terms were 0.1 

and 0.05, respectively. High pass filters were applied on the phantom and in vivo images 

after the DLLR-CS reconstruction. The filter was of the form 1 − 𝐴𝑒𝑥𝑝[−(𝑘𝑓
2 + 𝑘𝑝

2)], 

where 𝑘𝑓 and 𝑘𝑝 were linearly spaced from -0.5 to 0.5. 𝐴 = 0.87 for 2.4X phantom and 

𝐴 = 0.95 for all the other reconstructions. 

3.4 Results 

3.4.1 Simulations 

Simulated images of the virtual phantom were reconstructed with fully sampled and 

undersampled k-space data. The fully sampled image (1X) is shown in Fig. 3-3b, where 

the low-contrast fast-moving cells, such as the one highlighted in green (CNR 1.4), were 

not visible. The high-contrast cells in motion were distorted, such as highlighted in blue, 

which had a strongly reduced CNR of 4.2 compared to in the stationary image (CNR 20, 

Fig. 3-3a). An elongation of the cell in the phase encoding direction (horizontal) was 

observed in addition to the elongation in the direction of linear motion, if they differed, 

resulting in a “T” shape artifact (blue circle in Fig. 3-3b). A slow-moving low-contrast cell 

is highlighted in red, which was barely visible in the fully sampled image (CNR 2.9). CNR 

values for all simulated cells and all undersampling factors are listed in Table 1. The CNR 

was generally improved with CS, even when the stationary contrast was so low that the 

cells were virtually not discernible. 
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Stationary Contrast Velocity (µm/s) Fully Sampled CNR 2.4X CNR 4.8X CNR 

0.40 1.7 7.3 9.2 11.0 

0.40 3.5 4.7 7.2 10.6 

0.40 5.2 5.0 5.0 7.4 

0.40 7.0 4.1 5.7 6.5 

0.40 8.7 4.1 4.8 4.2 

0.37 1.7 8.3 8.7 9.0 

0.37 3.5 5.7 6.4 7.5 

0.37 5.2 4.1 4.1 6.8 

0.37 7.0 4.2 4.0 6.1 

0.37 8.7 4.1 3.7 5.7 

0.33 1.7 7.3 7.4 8.1 

0.33 3.5 5.1 5.2 8.3 

0.33 5.2 4.7 3.6 6.0 

0.33 7.0 3.8 4.0 5.7 

0.33 8.7 3.2 3.8 4.5 

0.30 1.7 5.8 6.5 9.1 

0.30 3.5 5.8 5.4 7.2 

0.30 5.2 3.8 4.1 6.2 

0.30 7.0 3.4 3.8 5.6 

0.30 8.7 3.0 3.5 4.3 

0.27 1.7 4.7 6.7 7.5 

0.27 3.5 3.7 4.6 5.5 

0.27 5.2 4.1 2.5 5.3 

0.27 7.0 3.4 2.9 6.1 

0.27 8.7 3.0 3.1 3.9 

0.23 1.7 4.8 5.1 6.2 

0.23 3.5 3.3 3.6 4.7 

0.23 5.2 2.6 3.9 5.4 

0.23 7.0 3.0 3.1 4.9 

0.23 8.7 1.4 2.5 6.6 

0.20 1.7 4.0 3.9 5.0 

0.20 3.5 4.2 3.5 3.9 

0.20 5.2 3.2 2.5 4.3 

0.20 7.0 2.6 2.4 4.6 

0.20 8.7 2.4 1.9 3.2 

0.17 1.7 2.9 4.8 4.0 

0.17 3.5 2.7 3.1 3.8 

0.17 5.2 2.5 2.4 3.4 

0.17 7.0 2.8 2.9 3.6 

0.17 8.7 N/A 1.5 2.4 

1.33 1.7 3.3 2.0 2.7 

1.33 3.5 2.6 3.0 2.9 

1.33 5.2 1.8 1.0 2.2 

1.33 7.0 2.9 2.0 5.7 

1.33 8.7 N/A N/A N/A 

0.10 1.7 2.7 1.9 4.2 

0.10 3.5 1.9 1.3 2.9 

0.10 5.2 N/A N/A N/A 

0.10 7.0 N/A N/A N/A 

0.10 8.7 N/A N/A N/A 

 

Table 1. The contrast to noise ratio for each cell in each reconstruction of the simulated 

phantom experiment in Fig. 3-3. The inner two cells (< 5 µm/s) in each spoke are considered 

slow, while the outer three (> 5µm/s) are fast. Contrasts greater than 0.25 are categorized as 

high contrast, while the cells below 0.25 are low contrast. 
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The “T” shaped motion artifact was reduced in the 2.4X undersampled DLLR-CS 

reconstruction (Fig. 3-3c) and further reduced in the 4.8X reconstruction (Fig. 3-3d). As a 

measure to assess the artifact size, the number of pixels of the cell feature in the 0.4 contrast 

spoke are compared for all the reconstructions in Table 2. Each void in the stationary image 

had 4 pixels. The number of pixels increased with increasing speed for all but the last void 

in the fully sampled image due to the significant reduction in contrast. Generally, the shape 

of moving cells was improved in the CS reconstruction where the cells spread over fewer 

pixels. 

Fig. 3-3. Simulations using the variable density sampling scheme. A stationary phantom (a) 

was simulated containing cells represented by hypointense spots of varying contrasts as 

indicated at each spoke. The phantom was then rotated along the isocenter at a frequency of 

𝟐. 𝟗𝟑 ∙ 𝟏𝟎−𝟒 rotations/second to create different linear velocities (1.7 µm/s, 3.5 µm/s, 5.2 µm/s, 

7.0 µm/s, 8.7 µm/s at the five radial positions of the hypointense spots, respectively). The 

variable Cartesian sampling k-space data was processed to reconstruct the fully sampled (1X) 

image (b), 2.4X (c) and 4.8X (d) undersampled images. CNR for all cells in each reconstruction 

are listed in Table 1. Cells with various velocities and contrasts are highlighted for comparison 

showing blurring for fast-moving cells as well as reduction of the “T” shaped artifact and 

improvement in contrast in the accelerated reconstructions. 
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Velocity (µm/s) Fully Sampled Pixels 2.4X Pixels 4.8X Pixels 

1.7 8 6 7 

3.5 18 18 10 

5.2 25 20 14 

7.0 27 17 23 

8.7 15 11 19 

 

Contrast of the slow-moving cells was generally enhanced in the undersampled 

reconstructions. The implicit denoising also contributed to the CNR increase. This was true 

for low-contrast cells like the one highlighted in red in Fig. 3-3c, d, which had a CNR of 

4.2 and 4.0 with 2.4X and 4.8X acceleration, respectively, as well as for high-contrast cells, 

especially with high acceleration ratio such as the cell in blue in Fig. 3-3c, d (CNR 4.9 in 

2.4X and 10.2 in 4.8X). The constrained reconstruction effectively reduced the temporal 

blurring in the proximity of high contrast features. The fast-moving cells with sufficient 

contrast benefitted from the higher acceleration, including the relatively low contrast green 

cell in Fig. 3-3c, d (CNR 2.1 in 2.4X, CNR 3.1 in 4.8X). The 9.6X acceleration 

reconstruction results did not have a sufficient quality to allow for further analysis and is 

therefore not shown. 

3.4.2 Phantom Experiments 

The sampling scheme was applied in phantom measurements. Hypointensities over 

a few pixels similar to iron-labeled cells originated from micron sized iron particles 

suspended in agar gel. An image of the stationary phantom was acquired as reference, 

shown in Fig. 3-4a. The phantom was mechanically rotated at constant angular velocity, 

Table 2. The number of pixels for each cell along the 0.4 contrast spoke. It was evaluated by 

manually selecting a region around the cell. The number of pixels was determined by a 

threshold, which was a weighted average of the minimum intensity (X 0.4) and the background 

intensity (X 0.6). 
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and images were acquired with the variable density Cartesian scheme. Reconstructions 

were performed with the fully sampled k space data and varying undersampling ratio data. 

An acceleration factor of 9.6X led to poor quality reconstructions (results not shown). The 

fully sampled, and 2.4X and 4.8X undersampled images are shown in Fig. 3-4b, c, and d, 

respectively. The nonlinear CS reconstruction implicitly denoised the images, as a result 

of the regularization. High pass filters were applied to the undersampled images to 

compensate the blurring from DL patch averaging.  

 

 

 

 

 

Fig. 3-4. Rotating phantom experiments with the variable density sampling scheme. An agarose 

phantom with embedded MPIOs was scanned in a stationary position (a) as a reference and 

for a rotation of 𝟐. 𝟗𝟑 ∙ 𝟏𝟎−𝟒 rotations/second mimicking cells which speeds of up to 9.2 µm/s. 

In the rotational case, the k-space data was processed to reconstruct the fully sampled (1X) 

image (b), 2.4X (c) and 4.8X (d) undersampled images. Zoomed image details with adjusted 

window/level settings and the coil sensitivity corrected show examples of particles with various 

velocities and contrasts. They demonstrate temporal blurring of fast-moving particles and 

improvement in contrast using undersampled reconstructions. 
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Some banding artifacts were observed while the phantom was rotating. The “T” 

artifacts, as observed in the simulations, were apparent in the fully sampled image. They 

were visually reduced in the undersampled images, similarly to the simulation results 

shown in Fig. 3-3.  

A few areas are highlighted in the enlarged view with different window/level 

displays. The void in blue in Fig. 3-4 is one example of a relatively low-contrast high-

linear-velocity void which was invisible in the 1X image (Fig. 3-4b, CNR 1.9, velocity 5.3 

µm/s). It was improved in 2.4X (Fig. 3-4c, CNR 3.0) and visible in 4.8X (Fig. 3-4d, CNR 

3.5). The void in yellow in Fig. 3-4 is an example of a high-contrast high-velocity cell 

which was visible in the fully sampled image (CNR 2.0, velocity 5.3 µm/s), although the 

shape was severely distorted. The CNR showed a slight improvement in 2.4X (CNR 2.2) 

and a large improvement in 4.8X (CNR 3.1). In red in Fig. 3-4, a low-velocity low-contrast 

void is highlighted. This was visible in 1X (CNR 2.5, velocity 0.4 µm/s) and had a CNR 

increase in 2.4X (CNR 3.3) due to the denoising. The void also had some CNR increase in 

4.8X (CNR 3.1). In green in Fig. 3-4, two cells are observed in the stationary image (right 

velocity 3.8 µm/s, left velocity 3.9 µm/s). However, the two features cannot be 

distinguished in the fully sampled rotating image due to the severe “T” motion artifact 

(resulting void CNR 3.6). The motion artifact was reduced in 2.4X and two separate cells 

were discernable (right CNR 1.6, left CNR 3.4). The artifact was further reduced in 4.8X 

and the two separate voids could be identified more easily (right CNR 2.1, left CNR 5.5).   

The CNR of cell features in different reconstructions were evaluated. Comparisons 

of CNR in 1X and 4.8X images are shown in Fig. 3-5. The intensity of individual data 

points indicates the cell velocity in Fig. 3-5a and CNR of stationary cells in Fig. 3-5b. 
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Almost all cells, except for one with very low contrast and velocity, had higher CNR in 

4.8X than in 1X. Generally larger improvements were observed for the high velocity cells, 

agreeing with the severe temporal blurring in 1X. Low-contrast cells benefitted to a lesser 

degree in the CS reconstruction, as revealed in Fig. 3-5b. The fastest cell observed was at 

7.0 µm/s with a CNR of 10.0 in the stationary image and a CNR of 3.2 in 4.8X, which was 

not visible in the fully sampled image. 

 

 

 

A significant percentage increase in CNR was observed for the 4.8X undersampled 

reconstruction at each velocity (Fig. 5, p = 0.0021, R2 = 0.42). There were substantial 

variations in the degree of improvement for cells at similar velocities, which explained the 

low R2. Generally, more significant improvements were achieved for particles with higher 

stationary CNR. Yet, an average improvement of 6.1% / (µm/s) was obtained. 

Fig. 3-5. Comparison of particle CNR in the fully sampled (1X) and 4.8X undersampled 

reconstructions in the rotating phantom experiment. Single data points represent individual 

particles with the intensity being particle velocity (µm/s) in (a) and CNR in the stationary 

reference image in (b). Almost all cells are above the 45° dashed line, indicating increased 

CNRs in the undersampled image. Fast-moving particles and those with high initial contrast 

in the stationary phantom benefitted to a greater extent from undersampling. 
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3.4.3 In Vivo Experiments 

The method was applied to in vivo cell tracking experiments. Fully sampled images 

as well as 2.4X and 4.8X accelerated reconstructions clearly showed individual cells with 

different motion behavior as hypointense spots. Overall, in one mouse brain a total of 245 

cells were detected in the fully sampled images, out of which 92 (37.6 %) were short-term, 

102 (41.6 %) long-term short-range, and 51 (20.8 %) long-term long-range cells. In both 

accelerated reconstructions the total number of cells remained nearly constant (244 in 2.4X; 

242 in 4.8X). However, fewer long-term short-range and long-term long-range cells were 

observed (85 and 25 in 2.4X, 88 and 23 in 4.8X, respectively). Mainly small low-contrast 

cells could not be detected in the undersampled images anymore. On the other hand, the 

number of short-term cells increased (134 in 2.4X; 131 in 4.8X). Examples of these cells 

which were only visible using the undersampled reconstructions are shown in Fig. 3-7. 

Here, the fully sampled images appeared noisy, with no obvious cell features as shown in 

Fig. 3-6. Velocity dependent improvement of particle CNR from the rotational phantom 

experiment. The percentage improvement is calculated as the difference in CNR, between the 

4.8X undersampled and fully sampled images, divided by the average CNR of the two methods. 

Individual data points represent single particles, and the solid line is a linear regression. The 

positive slope shows an average of 6.1% increase in contrast per µm/s. 
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the zoomed view in the 2nd column in Fig. 3-7. In the retrospectively 2.4X accelerated 

reconstructions, 3rd column, cells were discernible in the top two images but virtually 

absent in the bottom two images. SNR was improved in the undersampled reconstructions 

due to the regularization. In the 4.8X reconstructions (columns 4 and 5 in Fig. 3-7) that 

correspond to the same k-space data of column 3, a cell was visible in one of the frames 

for each image. The line profiles are shown to demonstrate the contrast differences. 

Improved contrast in one of the 4.8X frames indicated the cells were present in the slice 

plane for a short duration, leading to their absence when the temporal blurring was severe. 

The additional cells detected could be a result of cells moving quickly in the through-plane 

direction, or cells moving in-plane with variable velocity that were only sufficiently slow 

to be detected in one subframe. 
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The same data set was processed with spatial wavelet and spatial-temporal TV as 

the sparsifying transform, as shown in Fig 3-8. The cells highlighted in Fig. 3-7 were not 

detected, confirming the significance of a proper constraint in the CS reconstruction.  

 

Fig. 3-7. In vivo single cell tracking with the variable density sampling scheme. In exemplary 

slices at different positions in the mouse brain (1st column), image details, indicated by the red 

rectangle, show representative examples of cells which were only detectable using the 

undersampled reconstruction (marked with red arrowhead).  Fully sampled images (1X; 2nd 

column) are compared with the undersampled reconstructions. The k-space data of 2.4X 

reconstructions (3rd column) corresponded to one of the frames in Fig. 1b, which were further 

accelerated to reconstruct two 4.8X images (4th and 5th columns). Line profiles corresponding 

to the marked lines in the image details are shown in the 6th column. SNR were improved in 

the undersampled reconstructions. Improved contrast in one of the 4.8X frames indicated the 

cells were present for a short duration leading to their absence when the temporal blurring 

was severe. 
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3.5 Discussion 

A variable temporal resolution Cartesian sampling scheme was developed for the 

single cell tracking experiments. An improvement in the cell detection has been achieved 

compared to the conventional data sampling. 

In the simulation and phantom experiments, most fast-moving cells appeared as a 

“T” shape in the fully sampled image due to motion artifacts. This did not significantly 

reduce the discernibility of cell features in the phantom images. However, severe negative 

Fig. 3-8. In exemplary slices at different positions in the mouse brain (1st column, same as in 

Fig. 3-7), image details, indicated by the red rectangle, show representative examples of cells 

which were only detectable using the DLLR undersampled reconstruction. Cells are not visible 

in the fully sampled images (2nd column, same as in Fig. 3-7). However, the cells are easily 

visible in the 4.8X DL + Low Rank reconstruction (3rd column, same as in Fig. 3-7), while the 

4.8X Wavelet + TV reconstruction (4th column) did not enhance the cell contrast sufficiently 

for it to be detectable. Line profiles corresponding to the marked lines in the image details are 

shown in the 5th column. 
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effects are expected in brain images, where the “T” artifact is likely to overlap with or be 

mistaken for other brain features. These distortions in the fully sampled image may bring 

challenges in the potential development of an automated detection algorithm as more cell 

shapes, depending on the motion, should be considered. In the CS images, artifacts were 

reduced, and the contrast of most cells was improved.  

The phantom experiments showed an additional banding artifact caused by high-

frequency translational motion when the motor was on. This was not present in the in vivo 

images, and hence not considered in the design of the sampling scheme. If motion of the 

subject is severe, the k=0 line can be acquired in each of the highest acceleration frames to 

estimate and correct the motion.  

Effects of the CS reconstruction were substantially different for the four classes of 

cells. The low-velocity high-contrast cells were visible in both the undersampled and fully 

sampled images, as demonstrated in the simulation and phantom experiments. These 

generally had a slight increase in CNR in the undersampled images due to denoising in the 

regularized reconstruction. The high-velocity high-contrast cells, which were challenging 

to detect in the fully sampled image due to severe temporal blurring, were more easily 

identified in the undersampled images. On the contrary, the low-velocity low-contrast cells 

were likely to be detected in the fully sampled images. Simulated results showed only 

minor CNR improvements for these cells. This is because little benefit was expected from 

the improved temporal resolution for the near stationary features. Further, CS tends to 

remove low-contrast features, as for example in the in vivo experiments, where the 

relatively complex brain structure increased the challenge of reconstructing cells. In 

preliminary attempts with a density compensated IFFT for the initial guess, these low-
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contrast low-velocity cells were more likely to be removed. The flexible undersampling 

ratio was important for providing the CS reconstruction with a high-quality initial guess. 

This mitigated the loss of slow-moving features in the undersampled reconstruction. The 

CNR improvements helped identify fast-moving high-contrast features, although the high-

velocity low-contrast cells remained challenging in both the fully sampled and 

undersampled images. 

Single cell tracking is a very challenging problem that is different from most CS 

applications targeting large scale structures. The cells appear as small signal voids similar 

to impulse noise, which is removed by many conventional CS regularizers. It is therefore 

very important to choose an appropriate constraint. Additional cells were detected in the 

undersampled images using the DLLR-CS method in both simulation and the experiments. 

However, the wavelet plus TV regularized method was not effective at detecting additional 

cells and some cells present in the fully sampled and DLLR were removed as shown in Fig. 

3-8. In DL, atoms with cell features can be manually added to the dictionary to ensure that 

the feature of interest is well represented by the regularizer. In the temporal dimension, a 

low rank model was chosen, instead of TV. Sparse features are low rank so it is less likely 

to remove cells visible in only a few time frames, which may be removed by TV since they 

are similar to impulse noise. 

False positives rarely occurred in the CS reconstruction in the simulation and 

phantom experiments. It is impossible to evaluate all false positives in the in vivo 

experiments, since the ground truth was not available. We have observed empirically that 

the DL regularizer could compress features into a smaller size. For example, a section of 
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vein that should be a thin line might result in a void. These can be easily identified by 

comparing with the fully sampled reconstruction.  

The golden angle radial sampling also provides flexible undersampling ratios [29]. 

One major advantage of the golden angle radial scheme is robustness against motion. In 

our study, the mouse brain is approximately stationary leading to minor motion artifacts. 

The periphery of k-space contains information on the cells, and therefore should not be 

assigned a lower density as in the radial sampling. The golden angle radial scheme has a 

greater flexibility than the proposed Cartesian undersampling scheme, as the number of 

lines in the reconstruction is not restricted. However, with a high undersampling ratio, 

sufficient flexibility can be provided by the Cartesian scheme. Additionally, the Cartesian 

method is very easy to implement as it simply requires modification of a gradient table. 

The recent development of deep learning-based image reconstruction and feature 

detection may be applied to the single cell tracking MRI. A large data set is generally 

required to train a neural network. The challenges of small cell features that are similar to 

noise remain. No matter how powerful a data processing method is, it can only recover the 

information that is contained within the acquired data. The k-space sampling scheme to 

optimally capture the cell features and the effectiveness of deep learning will be 

investigated in future work.  

3.6 Conclusion 

A flexible Cartesian sampling scheme has been proposed to simultaneously acquire 

the fully sampled and accelerated images and applied to the challenging problem of real-

time single cell tracking MRI. The DLLR-CS reconstruction effectively improved the cell 
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CNR and recovered the high velocity cells with sufficient contrast, at virtually no cost. The 

T-shaped distortion of fast cells has been visibly reduced with the improved temporal 

resolution. Improved cell detection has been achieved in simulation, phantom and in vivo 

experiments. Based on the phantom experiments, the detection limit for cells moving in-

plane has been increased and cells with velocities of up to 7.0 µm/s could be detected. The 

method is easy to implement as long as the gradient table is accessible. 
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CHAPTER 4 

Optimized Phase Cycling for Coherence Pathway Selection in PEPI 

Experiments 

4.1 Introduction 

The Pi Echo-Planar Imaging (PEPI) sequence [3] employs multiple 180° refocusing 

RF pulses for an efficient readout and rapid data acquisition. The long echo train is similar 

to that in Fast Spin Echo (FSE) [4], but the spatial encoding gradients do not satisfy the 

CPMG condition, i.e., a net phase occurred within each echo cycle. The phase accumulates 

throughout the echo train, so that minimal phase encoding gradient is required on each 

echo. The reduction in gradient amplitude and absence of rewind gradient significantly 

reduced gradient duty cycle, eddy currents and concomitant magnetic fields. High spatial 

resolution could be achieved beyond the limit permitted by the gradient hardware with 

conventional sequences, such as FSE [3,9]. This is also advantageous for low field imaging 

where the concomitant field is more significant [10] and the low SAR permits numerous 

high flip angle RF pulses [36]. 

The major limitation of PEPI is the requirement of a sufficiently high-quality 180° 

refocusing pulse, which should reverse all the phase introduced by spatial encoding 

gradients. Otherwise, coherence pathway artifacts occur. BLIPPED [9], the pure phase 

encoding version of PEPI, is subject to the same constraint. Composite pulses have been 

used to achieve the highest possible quality of refocusing pulse [9,37]. The XY-16 phase 

cycling scheme, instead of CPMG phase, has been employed to prevent cumulative pulse 

errors since the CPMG condition is not satisfied without rewind gradients. Even with 

composite pulses and XY-16 phase cycling, the sample must be confined to the 
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homogeneous region of the RF coil [9,37]. Artifact-free, slice-selective experiments have 

not been possible as imperfect slice profiles result in a range of flip angles. 

Coherence pathway selection has been a research topic in MR experiments. When 

the desired pathway is the FID signal, relatively simple solutions, such as spoiling gradients 

and RF spoiling can be applied [38]. Crusher gradients [39] can be applied to select the 

echo signal. Phase cycling schemes have also been used in NMR experiments to eliminate 

all unwanted coherence pathways [40], which requires many repetitions and may be too 

time consuming for some imaging experiments.  

The extended phase graph (EPG) formalism has been used previously for 

calculating echo amplitudes in FSE experiments [41]. Several works have also used the 

partitioning method to keep track of the phase and amplitude of each coherence pathway 

independently [42,43].  Kaffanke et al used the partitioning method to design a phase-

cycled averaging to eliminate the residual magnetization for a SPRITE experiment [43]. 

The phase-cycled average allowed the selection of FID signal pathways for low flip angle 

excitations.   

In this work, the partitioning method will be used to develop a phase-cycling 

scheme selecting the main spin-echo pathway with flip angles near 180° in PEPI 

experiments. 
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4.2 Theory 

4.2.1 PEPI Pulse Sequence 

The pulse sequence diagram for the 2D PEPI is shown in Fig. 4-1. The net phase 

within each echo, from either the phase encoding or the frequency encoding gradient, is 

nonzero. In the phase encoding dimension, gradient is applied on every second echo. The 

refocusing pulse reverses the phase, causing a flip across the origin in k-space, so that 

another line of k-space is covered without applying additional gradient. A 3D PEPI was 

performed with the slice selection gradient replaced with a second phase encoding gradient. 

The second phase gradient was applied only after the excitation pulse so that 𝑘𝑝ℎ𝑎𝑠𝑒2
 is 

constant along the echo train, except for a change of sign between even and odd echoes. 

 

 

4.2.2 The Partitioning Method 

The coherence pathways which arise during an echo train can be efficiently 

described using the partitioning method originally described by Kaiser et al [42]. The 

partitioning method is closely related to the EPG method [44], except that each coherence 

Fig. 4-1. The pulse sequence diagram for 2D PEPI. The phase encoding gradient is applied 

after every other refocusing pulse. The frequency encoding gradient is also unbalanced. 
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pathway is considered separately rather than combining states with the same dephasing. In 

this work, the RF phase is included in the RF pulse operators. [15] 

First, consider a change of basis from the 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧  components of the net 

magnetization vector of a single isochromat at position 𝒓: 

 
𝑀+(𝒓) =

1

√2
(𝑀𝑥 + 𝑖𝑀𝑦) =

1

√2
𝑀𝑒𝑖𝜃 = (𝑀−)∗ 

(4.1a) 

 
𝑀−(𝒓) =

1

√2
(𝑀𝑥 − 𝑖𝑀𝑦) =

1

√2
𝑀𝑒−𝑖𝜃 = (𝑀+)∗ 

(4.1b) 

 𝑀′𝑧 = 𝑀𝑧 (4.1c) 

where 𝑀 = |𝑀𝑥𝑦|, 𝑐𝑜𝑠𝜃 =
𝑀𝑥

𝑀
 and 𝑠𝑖𝑛𝜃 =

𝑀𝑦

𝑀
. The change of basis can be described by the 

following unitary operators: 

 

𝑈 =
1

√2
[
1 +𝑖 0
1 −𝑖 0

0 0 √2

] 

(4.2a) 

 

𝑈−1 =
1

√2
[
1 1 0
−𝑖 +𝑖 0

0 0 √2

] 

(4.2b) 

To reach the so called “configuration state” basis in the EPG formalism, we Fourier 

transform the 𝑀+, 𝑀−, 𝑀′𝑧 basis. 

 
𝐹+(𝒌) = ∫𝑀+(𝒓)

 

𝑉

𝑒−𝑖𝒌∙𝒓𝑑3𝒓 = ∫
1

√2
(𝑀𝑥(𝒓) + 𝑖𝑀𝑦(𝒓))

 

𝑉

𝑒−𝑖𝒌∙𝒓𝑑3𝒓 
(4.3a) 

 
𝐹−(𝒌) = ∫𝑀−(𝒓)

 

𝑉

𝑒−𝑖𝒌∙𝒓𝑑3𝒓 = ∫
1

√2
(𝑀𝑥(𝒓) − 𝑖𝑀𝑦(𝒓))

 

𝑉

𝑒−𝑖𝒌∙𝒓𝑑3𝒓 
(4.3b) 

 
𝑍(𝒌) = ∫𝑀′𝑧(𝒓)

 

𝑉

𝑒−𝑖𝒌∙𝒓𝑑3𝒓 = ∫𝑀𝑧(𝒓)
 

𝑉

𝑒−𝑖𝒌∙𝒓𝑑3𝒓 
(4.3c) 
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The three real valued parameters (𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧 ) have been transformed into three 

complex parameters (𝐹+, 𝐹−, 𝑍), so there are some redundancies. Since The 𝑍(𝒌) states are 

the Fourier transform of the real valued 𝑀′𝑧(𝒓) component, we have the relationship 

𝑍(𝒌)∗ = 𝑍(−𝒌). Similarly, 𝐹+(𝒌)∗ = 𝐹−(−𝒌) can be easily derived based on Eqn. 4.3a & 

4.3b. As a result, one only needs to store positive 𝒌 states with no loss of information. 

The effects of gradients and RF pulses can now be described in this configuration 

state basis. Consider a gradient which creates a phase 𝒌′ ∙ 𝒓 in the 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 basis: 

 

[

𝑀𝑥(𝒓)

𝑀𝑦(𝒓)

𝑀𝑧(𝒓)

] → [

𝑀(𝒓) cos( 𝒌′ ∙ 𝒓)

−𝑀 (𝒓)sin( 𝒌′ ∙ 𝒓)

𝑀𝑧(𝒓)
] 

(4.4) 

Using 𝑈 to convert to the 𝑀+, 𝑀−, 𝑀𝑧 basis, the effect of the gradient is 

 

𝑈 [

𝑀𝑥(𝒓)

𝑀𝑦(𝒓)

𝑀𝑧(𝒓)

] → 𝑈 [

𝑀(𝒓) cos( 𝒌′ ∙ 𝒓)

−𝑀(𝒓) sin( 𝒌′ ∙ 𝒓)

𝑀𝑧(𝒓)
] 

 

 

[

𝑀+(𝒓)

𝑀−(𝒓)

𝑀′𝑧(𝒓)
] → [

𝑀+(𝒓)𝑒−𝑖𝒌′∙𝒓

𝑀−(𝒓)𝑒𝑖𝒌′∙𝒓

𝑀′𝑧(𝒓)

] 

(4.5) 

The Fourier transform is then applied to change to the configuration state basis 

 

[

𝐹+(𝒌)

𝐹−(𝒌)

𝑍(𝒌)
] →

[
 
 
 ∫ 𝑀+𝑒−𝑖𝒌′∙𝒓 

𝑉
𝑒−𝑖𝒌∙𝒓𝑑3𝒓

∫ 𝑀−𝑒𝑖𝒌′∙𝒓 

𝑉
𝑒−𝑖𝒌∙𝒓𝑑3𝒓

∫ 𝑀′𝑧(𝒓)
 

𝑉
𝑒−𝑖𝒌∙𝒓𝑑3𝒓 ]

 
 
 
= [

𝐹+(𝒌 + 𝒌′)

𝐹−(𝒌 − 𝒌′)

𝑍(𝒌)
]. 

(4.6) 

A gradient simply changes 𝒌. Since 𝒌 is a measure of dephasing, the 𝑍 state has phase 

storage. The 𝐹+ state undergoes dephasing, and the 𝐹− state undergoes rephasing. 
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The effect of an RF pulse with flip angle 𝛼 and phase 𝜑 in the 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 basis 

can be described by the rotation matrix 𝑅𝑥𝑦(𝜑, 𝛼) = 𝑅𝑧(𝜑)𝑅𝑥(𝛼)𝑅𝑧(−𝜑).  This can be 

transformed into the 𝑀+ , 𝑀− , 𝑀′𝑧  basis as 𝑇(𝜑, 𝛼) = 𝑈𝑅𝑥𝑦(𝜑, 𝛼)𝑈−1 =

𝑈𝑅𝑧(𝜑)𝑅𝑥(𝛼)𝑅𝑧(−𝜑)𝑈−1.  It is unchanged when taking the Fourier Transform assuming 

there is no 𝒓 dependence. The effect of an RF pulse in the configuration state basis is  

 

[

𝐹+(𝒌)

𝐹−(𝒌)

𝑍(𝒌)
] → 𝑈𝑅𝑧(𝜑)𝑅𝑥(𝛼)𝑅𝑧(−𝜑)𝑈−1 [

𝐹+(𝒌)

𝐹−(𝒌)

𝑍(𝒌)
]

= [
𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

] [

𝐹+(𝒌)

𝐹−(𝒌)

𝑍(𝒌)
] 

(4.7) 

 

[

𝐹+(𝒌)

𝐹−(𝒌)

𝑍(𝒌)
] →

[
 
 
 
 
 
 cos2 (

𝛼

2
) 𝑒2𝑖𝜑sin2 (

𝛼

2
) −

𝑖

√2
𝑒𝑖𝜑 sin(𝛼)

𝑒−2𝑖𝜑sin2 (
𝛼

2
) cos2 (

𝛼

2
)

𝑖

√2
𝑒−𝑖𝜑 sin(𝛼)

−
𝑖

√2
𝑒−𝑖𝜑 sin(𝛼)

𝑖

√2
𝑒𝑖𝜑 sin(𝛼) cos(𝛼)

]
 
 
 
 
 
 

[

𝐹+(𝒌)

𝐹−(𝒌)

𝑍(𝒌)
] 

(4.8) 

 

RF pulses in the configuration state basis cause a mixing of states with the same 𝒌. 

Under the EPG formalism, the system is described by a state matrix with elements 

representing the three states 𝐹+, 𝐹−, 𝑍 at different dephasing order 𝒌. The 𝐹+(𝒌 = 0) state 

represents the in phase, transverse magnetization corresponding to the sum of all echoes 

and recently excited signal. The partition method is closely related to the EPG formalism. 

Instead of applying the matrix multiplication as in Eqn 4.8, the states are split as: 

 

 𝐹+(𝒌)  → [

𝑇11𝐹+(𝒌)

𝑇21𝐹−(𝒌)

𝑇31𝑍(𝒌)
] , 𝐹−(𝒌)  → [

𝑇12𝐹+(𝒌)

𝑇22𝐹−(𝒌)

𝑇32𝑍(𝒌)
] , 𝑍(𝒌) → [

𝑇13𝐹+(𝒌)

𝑇23𝐹−(𝒌)

𝑇33𝑍(𝒌)
] 

(4.9) 
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This is more memory intensive compared to the EPG method, but it allows coherence 

pathways to be described independently. An example of the partition method for a three 

RF pulse sequence is given in Appendix 1. 

Based on Eqn 4.7-4.9, the phase of each coherence pathway is a function of the phases 

of the RF pulses multiplied by some integer. Since the RF phases change during the 

optimization of the phase cycling scheme, only the amplitude and integer multiples can be 

precalculated for each pathway. The constant terms in the phase are not essential for the 

cost function proposed in this work. Only the relative phase amongst averages is relevant 

when determining if the signals add constructively or destructively. 

4.2.3 Cost Function 

The goal of this work is to minimize artifacts from unwanted coherence pathways in 

the PEPI experiments.  A phase cycling scheme is developed where different RF phases 

are employed in multiple repetitions. The complex signal of each unwanted coherence 

pathway has different phases in the repetitions leading to a diminished sum. The cost 

function in Eqn. 4.10 penalizes any residual contributions from unwanted coherence 

pathways in all the echoes after averaging. 

 𝐶𝑜𝑠𝑡 = ∑ ∑ |𝐴𝑗 ∑ 𝑒𝑖(𝜑𝑗∙𝛷𝑘−𝜃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,𝑙(𝛷𝑘))
𝑘 |𝑗𝑙 , (4.10) 

where 𝑙, 𝑗, and 𝑘 are indices of the echo number, coherence pathway, and repetition of 

scan, respectively. 𝛷𝑘  is a vector containing the phases of all the RF pulses in the kth 

repetition. 𝜑𝑗 is a vector storing the phase dependence of the jth coherence pathway on the 

RF phase and 𝐴𝑗  is the amplitude of the corresponding pathway. 𝜃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,𝑙(𝛷𝑘) is the 
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receiver phase at the 𝑙th echo time as determined by the phase of the desired coherence 

pathway. 

4.3 Methods 

4.3.1 Cost Function 

A tree structure was used to pre-calculate and store the phase dependence 𝜑𝑗  and 

amplitude 𝐴𝑗  for each coherence pathway. The root node representing the thermal 

equilibrium magnetization had attributes amplitude = 1, phase accumulation 𝒌 = 0 and a 

vector of zeros for the phase dependence 𝜑𝑗. Three children were created for each node to 

represent the splitting of a state by the RF pulse into the 𝐹+, 𝐹−, 𝑍  states with the same 𝒌. 

The amplitude and phase dependence were calculated by Eqn. 4.9. The variable 𝒌 was 

updated to account for the frequency encoding gradient. Each child created three additional 

children for each RF pulse until the end of the pulse train. A flag was assigned to each node 

based on its 𝒌 value indicating if an echo occurred and another flag indicating if it was a 

desired or unwanted signal contribution. Lists of all unwanted signal pathway amplitudes 

𝐴, phase dependence vectors 𝜑 and receiver phases 𝜃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 were obtained based on the 

flags. 

Programming of the optimization and simulation was performed in Python. The 

scipy.optimization.minimize function with the Nelder-Mead method [45] was used for the 

optimization with a flip angle of 150°. The optimization was repeated 10 times with 

different randomized initial guess for the phases ranging from 0 to 2π. The result with the 

lowest cost function value was used. A laptop with an Intel (R) Core (TM) i7-9750H CPU 

@ 2.60GHz and 16GB of RAM was used. Calculating the phase coefficients and 
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amplitudes of coherence pathways for a 16 Echo Train Length (ETL) scan took 0.05s. 

Optimization of the RF phases for a 16 ETL, four averages scan took 12min 1.2s.  

4.3.2 Simulations 

A Bloch equation simulation on a 2D phantom with a matrix size of 64x64 and 21 

isochromats per voxel was used to test the coherence pathway cancelation method. A 

homogeneous 𝑇1 and 𝑇2 of 100ms was used across the phantom.  The simulation phantom 

structure was chosen to match a 3D printed resolution phantom. A TE and echo spacing of 

2.5 ms and TR of 300 ms were used in the simulation. A 160° refocusing flip angle was 

used to simulate PEPI with the optimized phase cycling, CPMG phase scheme, CPMG 

with composite pulses, and XY-16 phase scheme. An ETL of 16 was used with four phase 

cycling averages. For the simulation and all experiments, the k-space center was acquired 

first and the modulation transfer function was a lowpass filter. 

4.3.3 Phantom Experiments 

A 1T permanent magnet, small animal scanner from Aspect (M2, Aspect Imaging Ltd., 

Israel) was used for experimental evaluation of the method. A 35mm diameter solenoidal 

RF coil was used for the resolution phantom experiments and a mouse head coil was used 

for the mouse images.   

For the resolution phantom, 3D/2D PEPI experiments had field of view (FOV) of 

25mm x 25mm x 25mm/25mm x 25mm with a 0.4mm isotropic/in-plane resolution. The 

TR, TE and dwell time were 300ms/710ms, 2.5ms/4ms and 15µs, respectively. The 2D 

slice thickness was 1mm. The ETL was 16 with four phase cycling averages. A composite 
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909018009090  refocussing pulse was used for the 3D PEPI to compensate for pulse 

imperfections [3,46].  

4.3.4 Mouse Head Experiments 

The 2D PEPI and FSE mouse images had a 20mm x 20mm FOV with 1mm slice 

thickness and in-plane resolution of 0.16mm x 0.16mm. The dwell time was 15µs, with a 

TE of 5ms and TR of 1775ms. An ETL of 32 was used with 112 averages for both 

experiments. A 4-average phase cycling scheme was repeated 28 times for PEPI. The total 

scan time was 13 minutes and 15 seconds. The max phase encoding gradient strengths were 

2.4G/cm and 25.2G/cm for the 2D PEPI and FSE, respectively. The phase gradient duty 

cycling was 223 times higher for FSE than PEPI. 

4.4 Results 

4.4.1 Cost Function 

An example result of the optimization is shown in Fig. 4-2 for a 16 ETL experiment 

with four averages. The four coloured lines correspond to different repetitions of the 

experiment, while the conventional XY-16 phase cycling [47] is shown in black. The 

output of the optimization has random-like variation along the echo train direction and 

across averages. For the 3D PEPI, the FIDs of the near 180° pulses and the echoes of these 

signal pathways were included in the cost function. For a 160° refocusing pulse, the 

optimization resulted in a 62% reduction of the cost function value compared to no phase 

cycling. For the 2D PEPI the cost function did not include the FID or its echoes since the 

slice select gradient acts as a crusher for these signal pathways. For a 160° refocusing pulse, 
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the optimization resulted in a 71% reduction of the cost function value compared to without 

phase cycling. 

 

 

4.4.2 Simulations 

In the simulated images using CPMG phase scheme for PEPI, shown in Fig. 4-3b, high 

intensity coherence pathway artifacts are present along the phase encoding direction. A 

CPMG with composite refocusing pulses as in [4] was simulated in Fig. 4-3c. The artifacts 

were reduced, which were still significant with this flip angle. XY-16 phase scheme is 

shown in Fig. 4-3d which had several minor banding artifacts. Each of the unaveraged 

images from the optimized phase scheme had substantial artifacts as shown in Fig. 4-3e. 

In the averaged image Fig. 4-3f, the artifacts were largely removed, leaving only low 

intensity variations absent in the ground truth phantom Fig. 4-3a. 

Fig. 4-2. An example output of the optimized phase cycling scheme. Each coloured line shows 

the RF phases of one average. The proposed method has random like oscillations compared to 

the XY-16 phase cycling in black. 
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4.4.3 Phantom Experiments 

3D PEPI images were acquired experimentally on a resolution phantom with the 

proposed method and XY-16 phase cycling, as shown in Fig. 4-4. The phase cycling 

method produced an artifact free image with nominal 180° refocusing pulses and a very 

similar quality image at a nominal 170°, as shown in the top row of Fig. 4-4. Minor artifact 

was observed at 160° in Fig. 4-4c, which is comparable to the simulation results Fig. 4-3f. 

With XY-16 phase, low intensity artifacts appeared with 180° and 170°, while the 

Fig. 4-3. The PEPI experiments on a phantom (a) were simulated with Bloch equation with 

160° refocusing pulses and 16 ETL. The CPMG phase scheme (b) resulted in substantial 

banding artifacts along the phase encoding direction. The CPMG with composite refocusing 

pulses (c) slightly reduced the artifact. An XY-16 phase scheme (d) led to low intensity artifacts 

in the phase encoding direction. Each repetition from the optimized phase cycling scheme is 

shown in (e), where the artifacts varied with different RF phases. The average (f) of the complex 

images in (e) is comparable to (a) with the artifacts mostly removed. 
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coherence pathway resulted in severe image quality degradation at 160°, as shown in the 

bottom row of Fig. 4-4. Considering the nominal 180° image with optimized phase cycling 

Fig. 4-4a as the reference, the XY-16 images had an RMSE of 0.0018, 0.0024, and 0.0052 

for nominal flip angles of 180°, 170° and 160°, respectively. The optimized phase cycling 

images had an RMSE of 0.0004 and 0.0019 for the 170° and 160°, respectively. 

 

 

 

 

2D PEPI experiments were performed on the phantom at a range of nominal flip angles, 

as shown in Fig. 4-5. The optimized phase cycling scheme produced good quality images 

at nominal flip angles of 180° and 170°, as shown in Fig. 4-5a and b. The coherence 

Fig. 4-4. 3D PEPI experiments (16 ETL and 4 averages) with varying refocusing flip angles 

were performed with the proposed phase cycling scheme (1st row) and XY-16 (2nd row). The 

first phase encoding direction with blips applied every second echo is horizontal while the 

second phase encoding direction is vertical. The image quality was good at a nominal 180° for 

both methods (1st column). With a 170° nominal flip angle, coherence pathway artifacts were 

apparent in the XY-16 image (e), while the optimized method (b) remained relatively artifact 

free. A 160° refocusing pulse resulted in significant artifacts in both images (3rd column). The 

XY-16 image (f) quality was extremely degraded. 
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pathway artifacts became more significant at a nominal flip angle of 160° as shown in Fig. 

4-5c, where most features were still resolvable. The XY-16 method was unable to achieve 

an artifact free image for 2D PEPI even with a nominal flip angle of 180° as shown in Fig. 

4-5d. Low intensity coherence pathway artifacts were present along the horizontal phase 

encoding direction. Fig. 4-5e and Fig. 4-5f show the artifacts increasing in intensity and 

further degrading image quality with nominal 170° and 160° refocussing pulses. Taking 

the nominal 180° image with optimized phase cycling as the reference, the XY-16 images 

had an RMSE of 0.0031, 0.0050, and 0.0101 for nominal flip angles of 180°, 170° and 

160°, respectively. The optimized phase cycling images had an RMSE of 0.0023 and 

0.0063 for the 170° and 160°, respectively. These results qualitatively agreed with the 3D 

phantom experiments, but the slice selection led to lower SNRs.  
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4.4.3 Mouse Head Experiments 

Images of a mouse head were acquired with 2D PEPI and compared to 2D FSE. A slice 

at the gradient isocenter (1st row) and a 2mm off center slice (2nd row) are shown in Fig. 

4-6. The 2D PEPI using the optimized phase cycling produced high quality artifact-free 

images (1st column). Both images with XY-16 (2nd column) had substantial coherence 

pathway artifacts. 2D FSE images with the same timing parameters as the PEPI images are 

shown in Fig. 4-6c and Fig. 4-6f. The SNR and overall image quality is lower in the FSE 

compared to the PEPI with phase cycling. In FSE (3rd column), more blurring was 

observed in the slice away from isocenter, Fig. 4-6f, compared to the slice at isocenter Fig. 

Fig. 4-5. 2D PEPI experiments (16 ETL and 4 averages) with varying refocusing flip angles 

were performed with the proposed phase cycling scheme (1st row) and XY-16 (2nd row). The 

phase encoding direction is horizontal while the second phase encoding direction is vertical. 

The image quality was good at a nominal 180° for the optimized method (a), while low intensity 

artifacts are observed with XY-16 (d). With a 170° nominal flip angle, coherence pathway 

artifacts were significant in the XY-16 image (e), while the optimized method (b) shows only 

minor artifacts. A 160° refocusing pulse resulted in artifacts in both images (3rd column) where 

the artifacts were of much higher intensity in the XY-16 (f). 
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4-6c, due to the concomitant magnetic fields. The blurring appears to be more significant 

further from the center. For example, there is more blurring in the region highlighted in 

Fig. 4-6f compared to that highlighted in Fig. 4-6c. This increase in blurring away from the 

gradient isocenter confirmed the concomitant field effects. On the contrary, the two PEPI 

slices had comparable quality as the phase encoding gradient amplitudes were largely 

reduced. 

 

 

 

 

 

Fig. 4-6. 2D PEPI image of a mouse brain using the optimized phase cycling scheme (1st 

column) and XY-16 (2nd column). The 1st row is the slice at the gradient isocenter and the 2nd 

row is offset 2mm from the isocenter. Significant coherence pathway artifacts are present in 

XY-16. 2D FSE images (3rd column) had reduced quality. Additional blurring away from the 

gradient isocenter was observed, as highlighted in (f), due to the concomitant magnetic field, 

while features close to the gradient isocenter were less degraded, such as highlighted in (c). 
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4.4 Discussion 

A PEPI experiment with coherence pathway cancellation has been designed and 

verified. The method requires multiple averages with different RF phases, which has been 

demonstrated to be less sensitive to imperfect refocusing than conventional methods. 

Additionally, the proposed method permits artifact-free, slice-selective PEPI which was 

not previously possible due to imperfect slice profile. This greatly expands the potential 

applications of PEPI since the sample can extend outside the homogeneous region of the 

B1 field along the slice direction as in the mouse head images. 

For low-field applications it is often necessary to perform averages to achieve sufficient 

SNR, especially for high resolution imaging, so there is no extra cost to incorporate the 

phase cycling scheme. Additionally, flip angles of the refocusing pulse do not need to be 

reduced to maintain SAR limit, so that the deviations from 180° are only due to B1 field 

inhomogeneity, error in RF calibration, and imperfect slice selection profile. Compared to 

FSE, PEPI reduces the phase gradient duty cycle by a large factor. In this work, a reduction 

of 223X was achieved. The signal was reduced by a small percentage in the coherence 

pathways cancelation as a compromise. This trade-off diminished the concomitant field 

effects.  

Concomitant field artifacts can be significant for high resolution imaging such as the 

mouse head images in Fig. 4-6. Additional blurring appeared in the FSE image away from 

the gradient isocenter, consistent with concomitant field effects. This was not present in 

the PEPI images because the gradient amplitude was much lower for the identical spatial 

resolution. 
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The optimized phase cycling method can be applicable to other experiments, such as 

BLIPPED [9] and TRASE [48]. BLIPPED is a pure phase encoding version of PEPI thus 

it suffers from similar coherence pathway artifacts with imperfect refocusing [9]. TRASE 

encodes spatial information with the RF phase variation, so different coherence pathways 

also have different spatial encoding similar to PEPI. 

It has been assumed that the RF pulse 𝑇(𝜑, 𝛼) was not dependent on position when the  

𝑀+, 𝑀−, 𝑀′𝑧 basis was transformed to the configuration state basis. In practice, there is 

usually some variation in B1 field across the sample, where the proportion of mixing 

between the 𝐹+, 𝐹−, 𝑍 states and the phase introduced are the same, with an additional 

convolution causing a mixing between states of different 𝒌. The B1 variation is generally 

small in the spatial domain, so the convolution kernel is narrow leading to a mixing over a 

very small range of 𝒌. This should not create significant errors for volume coils, especially 

at low field.  

In this work, the phase of each coherence pathway is recorded separately. The cost 

function is the sum squared of the residual of each coherence pathway after averaging. A 

flip angle must be chosen to calculate the amplitudes of the coherence pathways for 

weighting the terms. The optimization attempts to set the phase such that each coherence 

pathway cancels over the averages. Since the amplitudes of unwanted pathways have 

factors which tend towards zero as the flip angle approaches 180°, it is expected that a 

phase cycling scheme which produces an acceptable quality at a low flip angle will remain 

acceptable or perform even better for flip angles closer to 180°. 
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Coefficients for the phase dependence of each RF pulse as well as the amplitude of 

each pathway are precalculated and stored to speed up the optimization. Since the number 

of coherence pathways grows exponentially with the number of pulses, it is necessary to 

discard low amplitude coherence pathways when the number of RF pulses is large. 

A modification to the cost function of potential interest is to sum over all unwanted 

coherence pathways at a given acquisition time before taking the magnitude as: 

 𝐶𝑜𝑠𝑡 = ∑ |∑ 𝐴𝑗 ∑ 𝑒𝑖(𝜑𝑗∙𝛷𝑘−𝜃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,𝑙(𝛷𝑘))
𝑘𝑗 |𝑙 , (7) 

where different coherence pathways from the same average may cancel each other which 

could result in a better cancelation of unwanted signal. It is, however, expected to increase 

sensitivity to the flip angle as the amplitudes of these different pathways depend on the flip 

angle. 

From Eqn. 4.8, the amplitude of the desired coherence pathway decays as a function of 

sin2𝑛 (
𝛼

2
) where 𝑛 is the number of refocusing pulses. This extra decay in addition to the 

𝑇2 decay is not present in FSE with CPMG phase cycling. This contributes to a more 

significant point spread function (PSF). As a result, low flip angle refocusing used in FSE 

to reduce SAR are not practical for PEPI experiments even with good artifact elimination. 

PEPI is more advantageous in low field MRI where SAR is not a limiting factor for nominal 

180° pulses and only imperfect slice selection and 𝐵1 inhomogeneity need to be accounted 

for. It is therefore unnecessary to perform the optimization at very low flip angles. It should 

also be noted that the reduced spatial encoding gradients in PEPI can permit a shorter echo 

spacing, reducing the 𝑇2 decay contribution to the PSF. PEPI has a less severe PSF when 

studying short 𝑇2 systems with the flip angle close to 180°. 
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4.5 Conclusion 

An optimized phase cycling scheme has been proposed to minimize the signal 

contribution from unwanted coherence pathways in PEPI experiments. The reduced 

sensitivity to imperfect refusing flip angle has been demonstrated with simulation, phantom 

and mouse head experiments. This method has also enabled high quality 2D imaging with 

slice selection, so that PEPI can be applied to study a broader range of systems, especially 

high-resolution imaging at low field.   
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CHAPTER 5 

Conclusions and Future Work 

5.1 Conclusions 

Two optimization problems in MRI have been examined. The use of CS for the 

tacking of individual, ION tagged cells to improve temporal resolution was explored. An 

optimized phase cycling scheme was investigated for artifact reduction in PEPI 

experiments. 

One of the major challenges for MRI is the long acquisition time which can result 

in motion artifacts including blurring. CS aims to address this, but conventional 

regularizers are not well suited to cell tracking experiments where the features of interest 

are noise like signal voids. In this work it was shown that DL and low rank regularizers 

can be used in CS to improve the temporal resolution in cell tracking experiments provided 

a high-quality initial guess. A variable undersampling ratio Cartesian sampling scheme was 

introduced so that a fully sampled reconstruction was acquired simultaneously and can be 

used as the initial guess. The phantom experiments demonstrated contrast improvements 

for fast moving cells while the static cells are preserved. The in vivo measurements 

confirmed that additional cells could be detected which were not visible in the fully 

sampled images. 

PEPI has great potential for low field MRI as it provides images at a similar speed 

as the widely used FSE, while requiring significantly reduced gradient strength and duty 

cycle. The serious limitation of a near perfect refocusing pulse is addressed in this thesis. 

An optimization of the RF pulse phase has been performed to minimize the signal 
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contribution of the unwanted coherence pathways. Simulations and experimental results 

have confirmed that the proposed phase cycling scheme is less sensitive to flip angle 

deviations compared to conventional methods. Additionally, a slice selective PEPI 

experiment was achieved. 

5.2 Future Work 

Current cell tracking experiment utilizes 𝑇2
∗ contrast to image ION labelled cells. 

The distorted magnetic field causes additional dephasing around the cells, resulting in a 

reduced intensity. It is expected that the phase of the image also carries information about 

the presence of tagged cells. In the proposed method this phase information is simply 

discarded by taking the absolute value. Future work could incorporate this phase 

information into the contrast of the final image to assist identifying cells, as in susceptibility 

weighted imaging. 

The optimized phase cycling scheme can be useful for a variety of other MRI pulse 

sequences in addition to PEPI, such as TRASE. The use of this optimization function 

should be investigated for other pulse sequences susceptible to coherence pathway 

artifacts. Another possible direction is to modify the cost function to generate new pulse 

sequences where multiple coherence pathways with different spatial encoding are 

measured in each acquisition interval for accelerated image acquisition. 
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APPENDICES  

Appendix 1 

A1.1 Partition Method for 3 Pulses 

The coherence pathways generated from a 3 RF pulse 2D PEPI experiment will be 

considered. 𝒌  is a vector which describes independent dephasing effects with its 

components. For example, if 𝐵0  inhomogeneity, frequency encoding gradient, phase 

gradient, and slice gradients are the independent phase effects considered, 𝒌 is a vector in 

a 4-dimensional space (𝒌 = [𝑘Δ𝐵0 , 𝑘𝑓 , 𝑘𝑝, 𝑘𝑠]). The coherence pathways will be calculated 

at locations (1)-(10) shown in Fig. A1-1. For simplicity, the integrated area of each gradient 

pulse is taken to be 1 and the 𝐵0 inhomogeneity during 𝑇𝐸/2 is taken to increment 𝑘Δ𝐵0  

by 1 (more rigorously one could write 1 ∙ Δ𝑘Δ𝐵0  for example). The duration of the RF pulse 

and acquisition window are assumed to be negligible for simplicity. 

 

  

  

  

  

 /2°  °  °

(1) (2) (3) ( ) (5)(6) (7) (8) (9)

Fig. A1-1. A pulse sequence diagram for the first three pulses in a PEPI experiment with non-

ideal refocusing pulses. Numbers (1-9) indicate time points of interest at which the coherence 

pathways are calculated with the partition method. 
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At (1) the magnetization is at thermal equilibrium with no phase accumulation. This 

corresponds to the state 𝑍(𝒌 = [0,0,0,0]) with amplitude 1 and no phase. The first RF 

pulse splits this state based on Eqn. 4.9. Note for 𝒌 = [0,0,0,0] only one of the 𝐹+ and 𝐹− 

states needs to be stored as they are redundant by the relationship (𝐹+(𝒌))
∗
= 𝐹−(−𝒌). 

(1)-(2) is described by: 

 𝑍(𝒌 = [0,0,0,0])   cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A2a) 

 −
𝑖

√2
𝑒𝑖𝜑1 sin (

𝛼

2
) 𝐹+(𝒌 = [0,0,0,0]) (A2b) 

 

From (2)-(3) there is gradient applied along the frequency encoding direction, and phase 

accumulation occurs due to 𝐵0 inhomogeneity.  

  cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0])   cos (

𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A3a) 

 −
𝑖

√2
𝑒𝑖𝜑1 sin (

𝛼

2
) 𝐹+(𝒌 = [0,0,0,0])  −

𝑖

√2
𝑒𝑖𝜑1 sin (

𝛼

2
) 𝐹+(𝒌 =

[1,1,0,0]) 

(A3b) 

 

The refocusing pulse splits these two states. The (𝐹+(𝒌))
∗
= 𝐹−(−𝒌) redundancy is once 

again used for the splitting of the 𝑍(𝒌 = [0,0,0,0]) state. The evolution of the system from 

(3)-(4) is described by: 

  cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0])  cos(𝛼) cos (

𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A4a) 

 −
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
) 

𝐹+(𝒌 = [0,0,0,1])  

 

 

 

 

 

(A4b) 
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  −
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
) 

 𝐹+(𝒌 = [1,1,0,2]) 

 

(A4c) 

 −
𝑖

√2
𝑒𝑖𝜑1 sin (

𝛼

2
) 

𝐹+(𝒌 = [1,1,0,0])  

 −
𝑖

√2
𝑒𝑖(𝜑1−2𝜑2) sin3 (

𝛼

2
) 

𝐹−(𝒌 = [1,1,0,0])  

 

(A4d) 

  −
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼) 

𝑍(𝒌 = [1,1,0,1])  

(A4e) 

 

The phase encoding gradient is applied from (4)-(5). Additionally, dephasing from 𝐵0 

inhomogeneity occurs. The system at the start of the acquisition window at (5) is given by: 

 cos(𝛼) cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0])  cos(𝛼) cos (

𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A5a) 

−
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [0,0,0,1])  

 −
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
) 

𝐹+(𝒌 = [1,0,1,1])  

 

(A5b) 

 

−
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [1,1,0,2]) 

 −
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
) 

 𝐹+(𝒌 = [2,1,1,2]) 

 

(A5c) 

 −
𝑖

√2
𝑒𝑖(𝜑1−2𝜑2) sin3 (

𝛼

2
) 

𝐹−(𝒌 = [1,1,0,0])  

 

 −
𝑖

√2
𝑒𝑖(𝜑1−2𝜑2) sin3 (

𝛼

2
) 

𝐹−(𝒌 = [0,1, −1,0])  

 

(A5d) 

−
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼)  

𝑍(𝒌 = [1,1,0,1])  

 −
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼) 

𝑍(𝒌 = [1,1,0,1])  

(A5e) 

 

The main signal contributions come from the FID of (A5b) and the spin echo pathway 

(A5d).  The FID pathway has some dephasing due to the slice select gradient, so it is less 

significant in the 2D PEPI compared to the 3D. The 𝑍 pathways, (A5a) and (A5e), do not 

contribute to signal as they represent the longitudinal component of the magnetization. The 

remaining pathway (A5c) is a negligible signal contribution due to the high dephasing from 

the slice select gradient, 𝐵0 inhomogeneity and frequency encoding gradient. 
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The frequency encoding gradient is applied from (5)-(6). Conventionally the relationship 

(𝐹+(𝒌))
∗
= 𝐹−(−𝒌) is used such that 𝐹+ states represent dephasing states (magnitude of 

𝒌 is increasing) and 𝐹− states represent rephasing states (magnitude of 𝒌 is decreasing) 

thus the evolution is written as: 

 cos(𝛼) cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0])  cos(𝛼) cos (

𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A6a) 

−
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [1,0,1,1])  

 −
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
) 

𝐹+(𝒌 = [1,1,1,1])  

 

(A6b) 

 

 

−
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [2,1,1,2]) 

 −
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
) 

 𝐹+(𝒌 = [2,2,1,2]) 

 

(A6c) 

 −
𝑖

√2
𝑒𝑖(𝜑1−2𝜑2) sin3 (

𝛼

2
) 

𝐹−(𝒌 = [0,1, −1,0])  

 

 
𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
) 

𝐹+(𝒌 = [0,0,1,0])  

 

(A6d) 

−
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼)  

𝑍(𝒌 = [1,1,0,1])  

 −
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼) 

𝑍(𝒌 = [1,1,0,1])  

(A6e) 

 

The FID pathway, (A6b), becomes progressively dephased as the frequency encoding 

gradient is applied, thus its contribution to the signal decreases along the acquisition 

window. The primary echo pathway, (A6d), is rephased as the frequency encoding gradient 

moves the signal from −𝑘 𝑚𝑎𝑥 to 0 in k-space. 

Right before the next refocusing pulse (6)-(7), the frequency encoding gradient is applied 

to finish reading out the line, and 𝐵0 inhomogeneity causes dephasing. 

 cos(𝛼) cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0])  cos(𝛼) cos (

𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A7a) 

−
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [1,1,1,1])  

 −
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
) 

𝐹+(𝒌 = [2,2,1,1])  

(A7b) 
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−
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [2,2,1,2]) 

 −
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
) 

 𝐹+(𝒌 = [3,3,1,2]) 

 

(A7c) 

 
𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
) 

𝐹+(𝒌 = [0,0,1,0])  

 

 
𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
) 

𝐹+(𝒌 = [1,1,1,0])  

 

(A7d) 

−
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼)  

𝑍(𝒌 = [1,1,0,1])  

 −
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼) 

𝑍(𝒌 = [1,1,0,1])  

(A7e) 

 

The refocusing pulse, (7)-(8), creates additional coherence pathways: 

 cos(𝛼) cos (
𝛼

2
) 

𝑍(𝒌 = [0,0,0,0])  

 cos2(𝛼) cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

(A8a) 

 −
𝑖

√2
𝑒𝑖𝜑3 sin(𝛼) cos(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [0,0,0,1])  

 

 

(A8b) 

 −
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos3 (

𝛼

2
)  

𝐹+(𝒌 = [2,2,1,3])  

 

(A8c) 

−
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [2,2,1,1])  

−
𝑖

√2
𝑒𝑖(𝜑2−2𝜑3) sin(𝛼) sin2 (

𝛼

2
) cos (

𝛼

2
)  

𝐹−(𝒌 = [2,2,1,1])  

 

(A8d) 

   −
1

2
𝑒𝑖(𝜑2−𝜑3) sin2(𝛼) cos (

𝛼

2
) 

𝑍(𝒌 = [2,2,1,2])  

 

 

(A8e) 

 

 −
𝑖

√2
𝑒𝑖𝜑1 cos4 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [3,3,1, ]) 

 

(A8f) 

−
𝑖

√2
𝑒𝑖𝜑1 cos2 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [3,3,1,2]) 

 −
𝑖

√2
𝑒𝑖(𝜑1−2𝜑3) cos2 (

𝛼

2
) sin3 (

𝛼

2
)  

 𝐹−(𝒌 = [3,3,1,2]) 

 

(A8g) 

 −
1

2
𝑒𝑖(𝜑1−𝜑3) cos2 (

𝛼

2
) sin (

𝛼

2
) sin(𝛼)  

 𝑍(𝒌 = [3,3,1,3]) 

 

 

(A8h) 
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 𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
) cos2 (

𝛼

2
)  

𝐹+(𝒌 = [1,1,1,2])  

 

(A8i) 

 
𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
) 

𝐹+(𝒌 = [1,1,1,0])  

 

𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2−2𝜑3) sin5 (

𝛼

2
)  

𝐹−(𝒌 = [1,1,1,0])  

 

(A8j) 

 1

2
𝑒𝑖(−𝜑1+2𝜑2−𝜑3) sin3 (

𝛼

2
) sin(𝛼)  

𝑍(𝒌 = [1,1,1,1])  

 

 

(A8k) 

 𝑖

2√2
𝑒𝑖(𝜑1−𝜑2+𝜑3) sin (

𝛼

2
) sin2(𝛼)  

𝐹+(𝒌 = [1,1,0,2])  

 

(A8l) 

−
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
)  

sin(𝛼)𝑍(𝒌 = [1,1,0,1])  

−
𝑖

2√2
𝑒𝑖(𝜑1−𝜑2−𝜑3) sin (

𝛼

2
) sin2(𝛼)  

𝐹−(𝒌 = [1,1,0,0])  

 

(A8m) 

   −
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼) cos(𝛼) 

𝑍(𝒌 = [1,1,0,1])  

(A8n) 

 

There is once again an FID, (A8b), which experiences some crushing effect from the slice 

select gradient. Its signal contribution will decline over the acquisition as dephasing from 

the frequency encoding gradient and 𝐵0 inhomogeneity accumulates:  

cos2(𝛼) cos (
𝛼

2
) 𝑍(𝒌 = [0,0,0,0])  cos2(𝛼) cos (

𝛼

2
) 𝑍(𝒌 = [0,0,0,0]) 

 

 

(A9a) 

−
𝑖

√2
𝑒𝑖𝜑3 sin(𝛼) cos(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [0,0,0,1])  

−
𝑖

√2
𝑒𝑖𝜑3 sin(𝛼) cos(𝛼) cos (

𝛼

2
)  

𝐹+(𝒌 = [1,1,0,1])  

 

(A9b) 

−
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos3 (

𝛼

2
)  

𝐹+(𝒌 = [2,2,1,3])  

 

−
𝑖

√2
𝑒𝑖𝜑2 sin(𝛼) cos3 (

𝛼

2
)  

𝐹+(𝒌 = [3,3,1,3])  

 

(A9c) 

−
𝑖

√2
𝑒𝑖(𝜑2−2𝜑3) sin(𝛼) sin2 (

𝛼

2
)  

cos (
𝛼

2
) 𝐹−(𝒌 = [2,2,1,1])  

 

−
𝑖

√2
𝑒𝑖(𝜑2−2𝜑3) sin(𝛼) sin2 (

𝛼

2
) cos (

𝛼

2
)  

𝐹−(𝒌 = [1,1,1,1])  

 

(A9d) 
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−
1

2
𝑒𝑖(𝜑2−𝜑3) sin2(𝛼) cos (

𝛼

2
)  

𝑍(𝒌 = [2,2,1,2])  

 −
1

2
𝑒𝑖(𝜑2−𝜑3) sin2(𝛼) cos (

𝛼

2
) 

𝑍(𝒌 = [2,2,1,2])  

 

(A9e) 

 

−
𝑖

√2
𝑒𝑖𝜑1 cos4 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [3,3,1, ]) 

 

−
𝑖

√2
𝑒𝑖𝜑1 cos4 (

𝛼

2
) sin (

𝛼

2
)  

 𝐹+(𝒌 = [ , ,1, ]) 

 

(A9f) 

−
𝑖

√2
𝑒𝑖(𝜑1−2𝜑3) cos2 (

𝛼

2
) sin3 (

𝛼

2
)  

 𝐹−(𝒌 = [3,3,1,2]) 

 

 −
𝑖

√2
𝑒𝑖(𝜑1−2𝜑3) cos2 (

𝛼

2
) sin3 (

𝛼

2
)  

 𝐹−(𝒌 = [2,2,1,2]) 

 

(A9g) 

−
1

2
𝑒𝑖(𝜑1−𝜑3) cos2 (

𝛼

2
) sin (

𝛼

2
)  

 sin(𝛼)𝑍(𝒌 = [3,3,1,3]) 

−
1

2
𝑒𝑖(𝜑1−𝜑3) cos2 (

𝛼

2
) sin (

𝛼

2
) sin(𝛼)  

 𝑍(𝒌 = [3,3,1,3]) 

 

(A9h) 

𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
)  

cos2 (
𝛼

2
) 𝐹+(𝒌 = [1,1,1,2])  

 

𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2) sin3 (

𝛼

2
) cos2 (

𝛼

2
)  

𝐹+(𝒌 = [2,2,1,2])  

 

(A9i) 

𝑖

√2
𝑒𝑖(−𝜑1+2𝜑2−2𝜑3)  

sin5 (
𝛼

2
)𝐹−(𝒌 = [1,1,1,0])  

 

−
𝑖

√2
𝑒𝑖(𝜑1−2𝜑2+2𝜑3) sin5 (

𝛼

2
)  

𝐹+(𝒌 = [0,0, −1,0])  

 

(A9j) 

1

2
𝑒𝑖(−𝜑1+2𝜑2−𝜑3) sin3 (

𝛼

2
)  

sin(𝛼)𝑍(𝒌 = [1,1,1,1])  

1

2
𝑒𝑖(−𝜑1+2𝜑2−𝜑3) sin3 (

𝛼

2
) sin(𝛼)  

𝑍(𝒌 = [1,1,1,1])  

 

(A9k) 

𝑖

2√2
𝑒𝑖(𝜑1−𝜑2+𝜑3) sin (

𝛼

2
)  

sin2(𝛼)𝐹+(𝒌 = [1,1,0,2])  

 

𝑖

2√2
𝑒𝑖(𝜑1−𝜑2+𝜑3) sin (

𝛼

2
) sin2(𝛼)  

𝐹+(𝒌 = [2,2,0,2])  

 

(A9l) 

−
𝑖

2√2
𝑒𝑖(𝜑1−𝜑2−𝜑3) sin (

𝛼

2
)  

sin2(𝛼)𝐹−(𝒌 = [1,1,0,0])  

 

𝑖

2√2
𝑒𝑖(−𝜑1+𝜑2+𝜑3) sin (

𝛼

2
) sin2(𝛼)  

𝐹+(𝒌 = [0,0,0,0])  

 

(A9m) 

−
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼)  

cos(𝛼) 𝑍(𝒌 = [1,1,0,1])  

 −
1

2
𝑒𝑖(𝜑1−𝜑2) sin (

𝛼

2
) sin(𝛼) cos(𝛼) 

𝑍(𝒌 = [1,1,0,1])  

(A9n) 

 

The FID from the first 𝛼 pulse is being refocused in (A9d). This pathway has its 

largest signal contribution at the end of the acquisition period when the frequency encoding 

gradient effects are fully refocused. It is however partially spoiled by the slice select 

gradient. There are two echoes, (A9j) and (A9m), at the center of the acquisition. The first, 
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(A9j), is the desired echo pathway. The receiver phase is set to the phase of this pathway 

for each average so that this contribution adds constructively. Therefore, a receiver phase 

of 𝜃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,2 = 𝜑1 − 2𝜑2 + 2𝜑3 − 𝜋 is used for the second acquisition in the echo train. 

The (A9m) pathway is a stimulated echo, where the transverse magnetization generated by 

the 1st RF pulse is flipped back to the longitudinal direction by the 2nd RF pulse and excited 

by the 3rd RF pulse to rephase in the transverse plane. Since the stimulated echo is in the 

𝑍-state during phase encoding, its 𝑘𝑝ℎ𝑎𝑠𝑒 value is not the same as the desired pathway. It 

must be eliminated to prevent artifacts resulting from the signal contribution with the 

incorrect spatial encoding. This pathway is included as a term in the cost function with 

weighting 𝐴𝑗 =
1

2√2
sin (

𝛼

2
) sin2(𝛼)  and phase vector 𝜑𝑗 = [−1,1,1] . The two FID 

contributions can be included in the cost function similarly. 

A1.2 Implementation of Pathway Calculation 

A base class, “coherence_pathway” is created which includes parameters such as 

the refocusing flip angle and echo train length. Relevant information about the pathway 

such as the amplitude and phase dependence is stored. The elements of the dephasing 

vector 𝑘Δ𝐵0 , 𝑘𝑓 and 𝑘𝑠 do not all need to be stored to determine if an echo has occurred. 

In the case of 𝑘Δ𝐵0 and 𝑘𝑓, both have a similar effect of double the Δ𝑘 increment between 

𝛼 pulses compared to between the first and second RF pulses. Both are also symmetric 

about the center of the acquisition window. 𝑘𝑠 differs only in that the slice select gradient 

for the 𝛼/2 pulse is balanced such that both coherence pathways have  𝑘𝑠 = 0 right before 

the slice select gradient of the 𝛼 pulse. As a result, the coherence pathways split from the 

state in 𝑍 during this period have reduced amplitude from the crushing effect. This can be 
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accounted for with the FID_weight parameter, although in this work a value of 1 was used 

for the 3D experiments to ignore crushing, and a value of 0 was used to ignore these 

contributions. 

1. class coherence_pathway(): 
2.     def __init__(self, FA, n_pulses, amp=1, min_amp=1e-4, phase_coeffs=None, 

const_phase=0, 
3.                  pulses=0, k=0, primary=True, signal=False, TE=9, T1=80, T2=40, 

FID_weight=1): 
4.           
5.         # default phase_coeffs set to none but should be zeros length n_pulses 
6.         if(phase_coeffs is None): 
7.             phase_coeffs = np.zeros(n_pulses) 
8.           
9.         # determine how much relaxation occurs between pulse and echo 
10.         relax = self.relaxation(TE/2, T1,T2) 
11.           
12.         # store information about coherence pathway in attributes 
13.         self.pulses = pulses 
14.         self.k = k 
15.         self.amp = amp * relax 
16.         self.phase_coeffs = phase_coeffs 
17.         self.const_phase = const_phase 
18.         self.primary = primary 
19.         self.signal = signal 
20.         self.n_pulses = n_pulses 

The amplitude and phase coefficients that each child node should receive depends on 

the state of the parent node. Three derived classes are made for the 𝐹+, 𝐹− and 𝑍 states. 

Each defines its own function for calculating the amplitude and phase coefficients for its 

child nodes. 

1. class F(coherence_pathway): 
2.       
3.     def relaxation(self, t, T1, T2): 
4.         return np.exp(-t/T2) 
5.       
6.     def F_calc(self, FA): 
7.         amp = np.cos(FA/2)**2 * self.amp 
8.         phase_coeffs = np.copy(self.phase_coeffs) 
9.         phase_coeffs[self.pulses] = 0 
10.         const_phase = self.const_phase 
11.           
12.         return amp, phase_coeffs, const_phase 
13.       
14.     def F_star_calc(self, FA): 
15.         amp = np.sin(FA/2)**2 * self.amp 
16.         phase_coeffs = np.copy(self.phase_coeffs) 
17.         phase_coeffs[self.pulses] = -2 
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18.         const_phase = self.const_phase 
19.           
20.         return amp, phase_coeffs, const_phase 
21.       
22.     def Z_calc(self, FA): 
23.         amp = 0.5 * np.sin(FA) * self.amp 
24.         phase_coeffs = np.copy(self.phase_coeffs) 
25.         phase_coeffs[self.pulses] = -1 
26.         const_phase = (self.const_phase + 3*np.pi/2) % (2*np.pi) 
27.           
28.         return amp, phase_coeffs, const_phase 
29.       
30.     def is_Z(self): 
31.         return False 
32.           
33. class F_star(coherence_pathway): 
34.       
35.     def relaxation(self, t, T1, T2): 
36.         return np.exp(-t/T2) 
37.       
38.     def F_calc(self, FA): 
39.         amp = np.sin(FA/2)**2 * self.amp 
40.         phase_coeffs = np.copy(self.phase_coeffs) 
41.         phase_coeffs[self.pulses] = 2 
42.         const_phase = self.const_phase 
43.           
44.         return amp, phase_coeffs, const_phase 
45.       
46.     def F_star_calc(self, FA): 
47.         amp = np.cos(FA/2)**2 * self.amp 
48.         phase_coeffs = np.copy(self.phase_coeffs) 
49.         phase_coeffs[self.pulses] = 0 
50.         const_phase = self.const_phase 
51.           
52.         return amp, phase_coeffs, const_phase 
53.       
54.     def Z_calc(self, FA): 
55.         amp = 0.5 * np.sin(FA) * self.amp 
56.         phase_coeffs = np.copy(self.phase_coeffs) 
57.         phase_coeffs[self.pulses] = 1 
58.         const_phase = (self.const_phase + np.pi/2) % (2*np.pi) 
59.           
60.         return amp, phase_coeffs, const_phase 
61.       
62.     def is_Z(self): 
63.         return False 
64.               
65.           
66. class Z(coherence_pathway): 
67.       
68.     def relaxation(self, t, T1, T2): 
69.         return np.exp(-t/T1) 
70.       
71.     def F_calc(self, FA): 
72.         amp = np.sin(FA) * self.amp 
73.         phase_coeffs = np.copy(self.phase_coeffs) 
74.         phase_coeffs[self.pulses] = 1 
75.         const_phase = (self.const_phase + 3*np.pi/2) % (2*np.pi) 
76.           
77.         return amp, phase_coeffs, const_phase 
78.       
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79.     def F_star_calc(self, FA): 
80.         amp = np.sin(FA) * self.amp 
81.         phase_coeffs = np.copy(self.phase_coeffs) 
82.         phase_coeffs[self.pulses] = -1 
83.         const_phase = (self.const_phase + np.pi/2) % (2*np.pi) 
84.           
85.         return amp, phase_coeffs, const_phase 
86.       
87.     def Z_calc(self, FA): 
88.         # amplitude is negative for 180, currently don't account for this 
89.         amp = abs(np.cos(FA)) * self.amp 
90.         phase_coeffs = np.copy(self.phase_coeffs) 
91.         phase_coeffs[self.pulses] = 0 
92.         const_phase = self.const_phase 
93.           
94.         return amp, phase_coeffs, const_phase 
95.       
96.     def is_Z(self): 
97.         return True 

 

An initial node of the derived Z class represents the system at thermal equilibrium. 

This node generates additional nodes that represent the states just before the first refocusing 

pulse. These nodes branch to represent the states at the center of the acquisition window 

which branch for the next window and so on.  A logical structure was included in the 

constructor of the base class to determine if the node should branch further depending on 

its amplitude and whether there are additional pulses left in the echo train. Logical 

statements are also included to determine if measurable signal is generated by the child 

node on creation. Flag are passed to the children indicating if they are the desired signal 

pathway (primary) or unwanted signal.  

1. # if there is an additional pulse after, create children 
2. if(pulses<n_pulses): 
3.     if(self.amp>min_amp): 
4.                   
5.         # excitation pulse is special case (half flip angle) 
6.         if(pulses==0): 
7.                       
8.             # only need one child (F* redundant, Z has different echo locations) 
9.             amp, phase_coeffs, const_phase = self.F_calc(FA/2) 
10.             self.F_child = F(FA, n_pulses, amp, min_amp, phase_coeffs, 
11.                              const_phase, pulses=pulses+1, k=1, 
12.                              primary=True, signal=False, TE=TE, T1=T1, T2=T2) 
13.                       
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14.             # redundant 
15.             self.F_star_child = None 
16.                       
17.             # gives rise to FIDs 
18.             amp, phase_coeffs, const_phase = self.Z_calc(FA/2) 
19.             # apply FID weight to account for T2* and Spoiling effects 
20.             self.Z_child = Z(FA, n_pulses, amp*relax*FID_weight, min_amp, 
21.                              phase_coeffs, const_phase, 
22.                              pulses=pulses+1, k=abs(k), primary=False, 
23.                              signal=False, TE=TE, T1=T1, T2=T2) 
24.                       
25.         else: 
26.             # child in the F state 
27.             amp, phase_coeffs, const_phase = self.F_calc(FA) 
28.                       
29.             if(k==0): 
30.                 # FID 
31.                 flag = True 
32.             else: 
33.                 # not FID 
34.                 flag = False 
35.                       
36.             # abs of k to ensure it is positive +2 for additional dephasing 
37.             self.F_child = F(FA, n_pulses, amp*relax, min_amp, 
38.                              phase_coeffs, const_phase, pulses=pulses+1, 
39.                              k=abs(k)+2, primary=False, signal=flag, 
40.                              TE=TE, T1=T1, T2=T2) 
41.                       
42.             # child in the F* states 
43.             amp, phase_coeffs, const_phase = self.F_star_calc(FA) 
44.                       
45.             if(k==1): 
46.                 # special case (goes to F*(-1) then to F(1)) 
47.                 # this creates an echo 
48.                 phase_coeffs = -phase_coeffs 
49.                 const_phase = -const_phase 
50.                 self.F_star_child = F(FA, n_pulses, amp*relax, min_amp, 
51.                                       phase_coeffs, const_phase, 
52.                                       pulses=pulses+1, k=1, 
53.                                       primary=primary, signal=True, 
54.                                       TE=TE, T1=T1, T2=T2) 
55.             elif(k==-1): 
56.                 # special case F*(-1) to F*(-1) after RF pulse then to F(1) 
57.                 # this also creates an echo 
58.                 phase_coeffs = -phase_coeffs 
59.                 const_phase = -const_phase 
60.                 self.F_star_child = F(FA, n_pulses, amp*relax, min_amp, 
61.                                       phase_coeffs, const_phase, 
62.                                       pulses=pulses+1, k=1, 
63.                                       primary=primary, signal=True, 
64.                                       TE=TE, T1=T1, T2=T2) 
65.             elif(k==0): 
66.                 # FID or echo at start of acquisition 
67.                 if(self.is_Z()): 
68.                     # FID 
69.                     self.F_star_child = None 
70.                 else: 
71.                     # echo at end 
72.                     phase_coeffs = -phase_coeffs 
73.                     const_phase = -const_phase 
74.                     self.F_star_child = F(FA, n_pulses, amp*relax, min_amp, 
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75.                                           phase_coeffs, const_phase, 
76.                                           pulses=pulses+1, k=1, 
77.                                           primary=primary, signal=True, 
78.                                           TE=TE, T1=T1, T2=T2) 
79.             elif(abs(k)==2): 
80.                 # echo at end of acquisition 
81.                 phase_coeffs = -phase_coeffs 
82.                 const_phase = -const_phase 
83.                 self.F_star_child = F(FA, n_pulses, amp*relax, min_amp, 
84.                                       phase_coeffs, const_phase, 
85.                                       pulses=pulses+1, k=0, 
86.                                       primary=primary, signal=True, 
87.                                       TE=TE, T1=T1, T2=T2) 
88.             else: 
89.                 # still in F*(-k) state 
90.                 self.F_star_child = F_star(FA, n_pulses, amp*relax, min_amp, 
91.                                            phase_coeffs, const_phase, 
92.                                            pulses=pulses+1, k=-abs(k)+2, 
93.                                            primary=primary, signal=False, 
94.                                            TE=TE, T1=T1, T2=T2) 
95.                           
96.                       
97.             # child in the Z states 
98.             amp, phase_coeffs, const_phase = self.Z_calc(FA) 
99.             self.Z_child = Z(FA, n_pulses, amp*relax, min_amp, 
100.                              phase_coeffs, const_phase, 
101.                              pulses=pulses+1, k=abs(k), primary=False, 
102.                              signal=False, TE=TE, T1=T1, T2=T2) 
103.               
104.     else: 
105.        # don't need any further calculations because small contribution 
106.         self.F_child = None 
107.                   
108.         self.F_star_child = None 
109.                       
110.         self.Z_child = None  
111. else: 
112.     # don't need any further calculations after last pulse 
113.     self.F_child = None 
114.               
115.     self.F_star_child = None 
116.                   
117.     self.Z_child = None 

The base class contained a function which returned the amplitude and phase 

information of all primary echoes as the root node determined the primary pathway child 

and queried it. Each child then checked if it had a child which was primary and so on until 

the end of the branch was reached. This child returned its amplitude and phase information 

to its parent which appended its own amplitude and phase and returned the list. This 

continued until a full list was generated by the root node. A similar function was created to 
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retrieve the amplitude and phase information of all signal contributions at a particular echo 

location. 

1. def get_primary_pathways(self): 
2.     """ 
3.     Gets the phase_coeffs, amplitudes, and phase constants of each primary 
4.     echo for all children. 
5.   
6.     Returns 
7.     ------- 
8.     phase_coeffs : list 
9.         List of arrays of the coefficients (multiple with the phases of 
10.         the RF pulses) for each primary echo. 
11.     amp : list 
12.         List of amplitudes of primary echoes. 
13.     const_phase : list 
14.         List of the constant part (not dependent on RF phase) for each 
15.         primary echoes. 
16.   
17.     """ 
18.           
19.     if(self.F_child is None): 
20.               
21.         # then there are no children and we need to initialize the list if 

primary 
22.               
23.         if(self.primary and self.signal): 
24.             phase_coeffs = [self.phase_coeffs] 
25.             amp = [self.amp] 
26.             const_phase = [self.const_phase] 
27.         else: 
28.             return 
29.               
30.     else: 
31.               
32.         # if excitation just directly return without appending (no echo) 
33.         # also exclude the initial object which is prior to the excitation 
34.               
35.         # else combine current echo with child echoes 
36.         if(self.F_child.primary): 
37.             phase_coeffs, amp, const_phase = self.F_child.get_primary_pathways() 
38.                   
39.             if(self.pulses>1): 
40.                 phase_coeffs.append(self.phase_coeffs) 
41.                 amp.append(self.amp) 
42.                 const_phase.append(self.const_phase) 
43.                   
44.         elif(self.F_star_child.primary): 
45.             phase_coeffs, amp, const_phase = 

self.F_star_child.get_primary_pathways() 
46.                   
47.             if(self.pulses>1): 
48.                 phase_coeffs.append(self.phase_coeffs) 
49.                 amp.append(self.amp) 
50.                 const_phase.append(self.const_phase) 
51.           
52.     return phase_coeffs, amp, const_phase 
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53.       
54.       
55. def get_echoes(self, pulse, primary=False): 
56.     """ 
57.     Get all coherence pathways giving an echo imidiately after the nth pulse 
58.   
59.     Parameters 
60.     ---------- 
61.     pulse : int 
62.         Index of the refocussing pulse immediately before the echo 
63.         (index starting at zero). 
64.     primary : Boolean, optional 
65.         Whether or not to include the primary echo pathway. The default is 

False. 
66.   
67.     Returns 
68.     ------- 
69.     phase_coeffs : list 
70.         List of arrays of the coefficients (multiple with the phases of 
71.         the RF pulses) for each primary echo. 
72.     amp : list 
73.         List of amplitudes of primary echoes. 
74.     const_phase : list 
75.         List of the constant part (not dependent on RF phase) for each 
76.         primary echoes. 
77.   
78.     """ 
79.           
80.     # +1 for excitation, +1 for initial object which is prior to the excitation 
81.     if(self.pulses==pulse+2): 
82.               
83.         # the next pulse is the one of interest (the echo after it really) 
84.               
85.         if(self.signal): 
86.             if(not(primary) and self.primary): 
87.                       
88.                 # then we don't want this included 
89.                 phase_coeffs = [] 
90.                 amp = [] 
91.                 const_phase = [] 
92.                       
93.             else:    
94.                 # then we should begin the list here 
95.                 phase_coeffs = [self.phase_coeffs] 
96.                 amp = [self.amp] 
97.                 const_phase = [self.const_phase] 
98.         else: 
99.             # then we don't want this included 
100.             phase_coeffs = [] 
101.             amp = [] 
102.             const_phase = [] 
103.               
104.     else: 
105.               
106.         if not(self.F_child is None): 
107.             phase_coeffs, amp, const_phase = 

self.F_child.get_echoes(pulse,primary) 
108.                   
109.             # F* contributions 
110.             if not(self.F_star_child is None): 
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111.                 phase_coeffs_, amp_, const_phase_ = 
self.F_star_child.get_echoes(pulse,primary) 

112.                       
113.                 # append to other pathways 
114.                 phase_coeffs.extend(phase_coeffs_) 
115.                 amp.extend(amp_) 
116.                 const_phase.extend(const_phase_) 
117.                   
118.             # Z contributions 
119.             phase_coeffs_, amp_, const_phase_ = 

self.Z_child.get_echoes(pulse,primary) 
120.                   
121.             # append to other pathways 
122.             phase_coeffs.extend(phase_coeffs_) 
123.             amp.extend(amp_) 
124.             const_phase.extend(const_phase_) 
125.                       
126.         else: 
127.             # nothing from this branch 
128.             phase_coeffs = [] 
129.             amp = [] 
130.             const_phase = [] 
131.                   
132.           

133.     return phase_coeffs, amp, const_phase 

Appendix 2 

Code for the implementation of the DLLR-CS method described in Chapter 3: 

1. from scipy import io 
2. import numpy as np 
3. import matplotlib.pyplot as plt 
4. import pickle 
5. from scipy import stats 
6. from scipy.signal import correlate2d 
7.   
8. from sklearn.decomposition import MiniBatchDictionaryLearning 
9. from sklearn.feature_extraction.image import extract_patches_2d 
10. from sklearn.feature_extraction.image import reconstruct_from_patches_2d 
11.   
12. """user defined parameters""" 
13. # at most set to twice the number of cpu cores but depending on memory might 
14. # have to go lower 
15. threads = 1 
16. # filename for loading data 
17. #k_space_filename = "phantom_20210822.mat" 
18. #k_space_filename = "phantom_simulated_spokes_80.mat" 
19. k_space_filename = "full_dataset_40_lines_9859_2022.mat" 
20.   
21. # good ones 3 (0.05,0.04,0.5), 10 (0.001,0.001,0.5) 
22. # 0.05, 0.05,0.5,10 
23.   
24. #weigthing of dictionary 
25. lam3 = 0.05 
26. # weight of low rank approximation 
27. lam4 = 0.01 



 

84 
 

28. # weight of central data 
29. lam2 = 1 
30. # soft threshold for svd 
31. lam1 = 0.1 
32. # list of noise levels 
33. noise = 15 
34.   
35. # these default settings are generally good 
36. # rank of svd 
37. r = 5 
38. # number of nonzero DL coefficeints to use 
39. coefs = 4 
40.   
41. # how many frames reconstructed per fully sampled image (fully sampled included) 
42. frames = 5 
43. # whether or not to perform motion correction 
44. correction = False 
45.   
46. def high_pass_filter(image, coefficient, var): 
47.     """ 
48.     1 - guassian filter. Enhances edges and amplifies noise. 
49.   
50.     Parameters 
51.     ---------- 
52.     image : array 
53.         2D array. 
54.     coefficient : float 
55.         Coefficientout front the gaussian. 
56.     var : float 
57.         Determines width of gaussian. 
58.   
59.     Returns 
60.     ------- 
61.     array 
62.         High-pass filtered image. 
63.   
64.     """ 
65.       
66.     x = np.linspace(-1,1,image.shape[0]) 
67.     y = np.linspace(-1,1,image.shape[1]) 
68.       
69.     X, Y = np.meshgrid(y, x) 
70.       
71.     filt = 1 - coefficient * np.exp(-(X**2 + Y**2)/var) 
72.       
73.     return abs(cifft2(cfft2(image) * filt)) 
74.   
75. def roll(x): 
76.     """ 
77.     For circularly shifting brain into center 
78.   
79.     Parameters 
80.     ---------- 
81.     x : array 
82.         image to circularly shift. 
83.   
84.     Returns 
85.     ------- 
86.     array 
87.         circularly shifted image. 
88.   
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89.     """ 
90.     return np.roll(x,-40,1) 
91.   
92. def cfft(x): 
93.     """ 
94.     Performs Fourier transform along first axis 
95.   
96.     Parameters 
97.     ---------- 
98.     x : array 
99.         Array to perform 1D Fourier transform on. 
100.   
101.     Returns 
102.     ------- 
103.     array 
104.         The result of the 1D Fourier transform. 
105.   
106.     """ 
107.       
108.     return np.fft.fftshift(np.fft.fft(np.fft.ifftshift(x))) 
109.   
110. def cifft(x): 
111.     """ 
112.     Performs inverse Fourier transform along first axis 
113.   
114.     Parameters 
115.     ---------- 
116.     x : array 
117.         Array to perform 1D inverse Fourier transform on. 
118.   
119.     Returns 
120.     ------- 
121.     array 
122.         The result of the 1D inverse Fourier transform. 
123.   
124.     """ 
125.       
126.     return np.fft.fftshift(np.fft.ifft(np.fft.ifftshift(x))) 
127.   
128. def cfft2(x): 
129.     """ 
130.     Performs Fourier transform along first two axis 
131.   
132.     Parameters 
133.     ---------- 
134.     x : array 
135.         Array to perform 2D Fourier transform on. 
136.   
137.     Returns 
138.     ------- 
139.     array 
140.         The result of the 2D Fourier transform. 
141.   
142.     """ 
143.       
144.     return 

np.fft.fftshift(np.fft.fftn(np.fft.ifftshift(x,axes=[0,1]),axes=[0,1]),axes=[0,1
]) 

145.   
146. def cifft2(x): 
147.     """ 
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148.     Performs inverse Fourier transform along first two axis 
149.   
150.     Parameters 
151.     ---------- 
152.     x : array 
153.         Array to perform 2D inverse Fourier transform on. 
154.   
155.     Returns 
156.     ------- 
157.     array 
158.         The result of the inverse 2D Fourier transform. 
159.   
160.     """ 
161.       
162.     return 

np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(x,axes=[0,1]),axes=[0,1]),axes=[0,
1]) 

163.   
164. def soft_threshold(x,alpha): 
165.     """ 
166.     Returns an array with same shape as x with all values with smaller 
167.     magnitude than alpha set to zero, and all others having their 

magnitude 
168.     reduced by alpha 
169.   
170.     Parameters 
171.     ---------- 
172.     x : array 
173.         An array of any shape. 
174.     alpha : float 
175.         Thresholding parameter. 
176.   
177.     Returns 
178.     ------- 
179.     array 
180.         The result of the soft thresholding. 
181.   
182.     """ 
183.     return np.maximum(np.abs(x)-alpha,0)*np.sign(x) 
184.   
185. def get_shift(k_sam): 
186.     """ 
187.       
188.   
189.     Parameters 
190.     ---------- 
191.     k_sam : array 
192.         K-space measurements. 
193.   
194.     Returns 
195.     ------- 
196.     v_shift : array 
197.         Shift in vertical direction. 
198.     h_shift : array 
199.         Shift in horizontal direction. 
200.   
201.     """ 
202.       
203.     v_shift = np.zeros(k_sam.shape[-1]) 
204.     h_shift = np.zeros(k_sam.shape[-1]) 
205.       
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206.     for i in range(2*frames-1,k_sam.shape[-1],frames): 
207.         # find shift of fully sampled image from cross-correlation 
208.         cor = correlate2d(abs(cifft2(k_sam[:,:,frames-1])), 
209.                           abs(cifft2(k_sam[:,:,i]))) 
210.         temp = np.unravel_index(cor.argmax(), cor.shape) 
211.           
212.         v_shift[i] = temp[0] - cor.shape[0]/2 
213.         h_shift[i] = temp[1] - cor.shape[1]/2 
214.           
215.         # linear interpolation for other frames 
216.         v_shift[i-frames:i] = np.linspace(v_shift[i-frames], 
217.                                           v_shift[i],frames) 
218.         h_shift[i-frames:i] = np.linspace(h_shift[i-

frames],h_shift[i],frames) 
219.           
220.     return (v_shift,h_shift) 
221.   
222.   
223. def corrections(k1, k_sam, v_shift, h_shift): 
224.     """ 
225.     Performs horizontal and verticle shift corrections as well as  
226.     zeroth order phase correction 
227.   
228.     Parameters 
229.     ---------- 
230.     k1 : array 
231.         The frame being corrected. 
232.     k_sam : array 
233.         The whole set of k-space data (realized not needed but don't 

want to 
234.                                        make big changes before I send it 

and 
235.                                        passed by reference so not a big 

deal). 
236.     v_shift : float 
237.         How far the current frame is shifted vertically. 
238.     h_shift : float 
239.         How far the current frame is shifted horizontally. 
240.   
241.     Returns 
242.     ------- 
243.     k1 : array 
244.         k1 frame with corrections applied (note unsampled points not 

exactly 
245.                                            zero due to floating point 

error). 
246.   
247.     """ 
248.       
249.     # horizontal shift correction 
250.     #x = np.linspace(-0.5,0.5,k1.shape[1]) 
251.     sz = k1.shape[1] 
252.     x = np.linspace(-sz/2+1,sz/2,sz)/sz 
253.     correction = np.exp(-1j * 2 * np.pi * x * (h_shift)) 
254.     k1 = k1 * correction[None,:] 
255.     # vertical phase correction 
256.     #x = np.linspace(-0.5,0.5,k1.shape[0]) 
257.     sz = k1.shape[0] 
258.     x = np.linspace(-sz/2+1,sz/2,sz)/sz 
259.     correction = np.exp(-1j * 2 * np.pi * x * (v_shift)) 
260.     k1 = k1 * correction[:,None] 
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261.     # 0th order phase correction 
262.     #correction = np.angle(k1[k_sam.shape[0]//2,k1.shape[1]//2]) 
263.     #k1 = cfft2(cifft2(k1) * np.exp(-1j * correction)) 
264.     return k1 
265.   
266. def compute_density(sampling_scheme): 
267.     """ 
268.     Computes sampling density for density compensation 
269.   
270.     Parameters 
271.     ---------- 
272.     sampling_scheme : array 
273.         boolean array of sampled vs unsampled points. 
274.   
275.     Returns 
276.     ------- 
277.     Z : array 
278.         Array of sampling density at each point. 
279.   
280.     """ 
281.   
282.     mat = np.array(sampling_scheme,dtype=np.bool) 
283.     X, Y = np.mgrid[0:mat.shape[0], 0:mat.shape[1]] 
284.     positions = np.vstack([X.ravel(), Y.ravel()]) 
285.     values = np.vstack([X[mat].ravel(), Y[mat].ravel()]) 
286.     kernel = stats.gaussian_kde(values, bw_method=5e-1) 
287.     Z = np.reshape(kernel(positions).T, X.shape) 
288.   
289.     Z = np.tile(Z[mat.shape[0]//2,:][None,...],(mat.shape[0],1)) 
290.     Z /= np.mean(Z[mat]) 
291.   
292.     return Z 
293.   
294. def dl_reconstruction(image, dico, patch_size): 
295.     """ 
296.     Calculate dictionary learning (DL) coefficients along first two 

axes. 
297.     Calculate reconstruction for that slice, iterate over third axis 
298.   
299.     Parameters 
300.     ---------- 
301.     image : array 
302.         Image to calculate DL transform on. 
303.     dico : MiniBatchDictionaryLearning object 
304.         Dictionary of atoms and transform parameters. 
305.     patch_size : tuple 
306.         Dimensions of patch. 
307.   
308.     Returns 
309.     ------- 
310.     reco : array 
311.         DL reconstruction. 
312.   
313.     """ 
314.   
315.     V = dico.components_ 
316.     reco = np.zeros(image.shape) 
317.       
318.     # roll so there isn't a cutoff in the brain 
319.     image = np.roll(image,-20,axis=1) 
320.   
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321.     for i in range(image.shape[-1]): 
322.         # extract patches of noisy image 
323.         patches = extract_patches_2d(abs(image[:,:,i]), patch_size) 
324.         patches = patches.reshape(patches.shape[0], -1) 
325.         intercept = np.mean(patches, axis=0) 
326.         patches -= intercept 
327.         length = len(patches) 
328.   
329.         # sparse representation of data 
330.         code = dico.transform(patches) 
331.   
332.         # return to image domain 
333.         patches = np.dot(code, V) 
334.         patches += intercept 
335.         patches = patches.reshape(length, *patch_size) 
336.   
337.         reco[:,:,i] = reconstruct_from_patches_2d(patches, 

reco.shape[0:2]) 
338.       
339.     # roll back to original 
340.     reco = np.roll(reco,20,axis=1) 
341.     return reco 
342.   
343. def low_rank_approx(SVD=None, A=None, r=1): 
344.     """ 
345.     Computes an r-rank approximation of a matrix 
346.     given the component u, s, and v of it's SVD 
347.     """ 
348.     if not SVD: 
349.         SVD = np.linalg.svd(A, full_matrices=False) 
350.     u, s, v = SVD 
351.     u = u[:,:r] 
352.     s = s[:r] 
353.     v = v[:r,:] 
354.     reco = (u * s) @ v 
355.     return reco 
356.   
357.   
358. def svd_threshold(SVD=None, A=None, lam1=0.1): 
359.     """ 
360.     Computes approximation of a matrix cutting off singular values below 
361.     lam0 given the component u, s, and v of it's SVD. (Not in use) 
362.     """ 
363.     if not SVD: 
364.         SVD = np.linalg.svd(A, full_matrices=False) 
365.     u, s, v = SVD 
366.     s = soft_threshold(s, lam1) 
367.     reco = (u * s) @ v 
368.     return reco 
369.   
370. def low_rank(image, lam1): 
371.     """ 
372.     Performs SVD approximation to r singular values along each phase 

encoding/ 
373.     temporal slice of the image 
374.   
375.     Parameters 
376.     ---------- 
377.     image : array 
378.         3D array where the first dimension is iterated along and SVD 
379.         approximation calculated along second and third. 
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380.     r : int 
381.         Number of singular values to keep. 
382.   
383.     Returns 
384.     ------- 
385.     reco : array 
386.         Result of approximation. 
387.   
388.     """ 
389.   
390.     reco = np.zeros(image.shape) 
391.   
392.     for j in range(image.shape[0]): 
393.         reco[j,:,:] = svd_threshold(A=abs(image[j,:,:]), lam1=lam1) 
394.   
395.     return reco 
396.   
397. def x_step(X, dic, lowr, k_un, k_full, phase, mat, c_mask, lam2, lam3, 

lam4): 
398.     """ 
399.     Update the guess for the reconstruction X 
400.   
401.     Parameters 
402.     ---------- 
403.     X : array 
404.         The current guess of the image. 
405.     dic : array 
406.         Result of dictionary learning reconstruction . 
407.     lowr : array 
408.         Result of low rank approximation. 
409.     k_sam : array 
410.         Sampled k-space. 
411.     phase : array 
412.         Phase of image. 
413.     mat : array 
414.         Boolean array of sampled points. 
415.     c_mask : array 
416.         mask for the center of k-space. 
417.     lam2 : float 
418.         weight of central data. 
419.     lam3 : float 
420.         weigthing of dictionary. 
421.     lam4 : float 
422.         weight of low rank approximation. 
423.   
424.     Returns 
425.     ------- 
426.     array 
427.         New guess of the image. 
428.   
429.     """ 
430.   
431.     temp = cfft2(np.exp(1j*phase) * (lam3 * dic + lam4 * lowr)) 
432.       
433.     # list to relate undersampled and fully sampled frames 
434.     ful_idx = (frames-1)//2*[0] 
435.     for i in range(1,k_full.shape[-1]): 
436.         ful_idx += (frames-1)*[i] 
437.     ful_idx+=(frames-1)//2*[k_full.shape[-1]-1] 
438.   
439.     for i in range(k_un.shape[-1]): 
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440.   
441.         # sampled 
442.         k_reco = mat[...,i] * (k_un[...,i] + temp[...,i]) / (1 + lam3 + 

lam4) 
443.         # unsampled center 
444.         k_reco += ((1 - mat[...,i]) * c_mask[...,i] * 
445.                    (temp[...,i] + lam2*k_full[...,ful_idx[i]]) / (lam3 + 

lam4 + lam2)) 
446.         # unsampled exterior 
447.         k_reco += (1 - mat[...,i]) * (1 - c_mask[...,i]) * temp[...,i] / 

(lam3 + lam4) 
448.   
449.         X[...,i] = np.abs(cifft2(k_reco)) 
450.   
451.     return abs(X) 
452.   
453. def fit_transform(dico, image, patch_size): 
454.     """ 
455.     Fit dictionary and transform coefficients given an image 
456.   
457.     Parameters 
458.     ---------- 
459.     dico : MiniBatchDictionaryLearning object 
460.     Sklearn MiniBatchDictionaryLearning object with desired parameters 

set. 
461.     image : array 
462.     Image on which to perform the fit transform. 
463.     patch_size : tuple 
464.     Size of patches and atoms. 
465.   
466.     Returns 
467.     ------- 
468.     reco : array 
469.     image resulting from fit transform. 
470.   
471.     """ 
472.     # extract patches of noisy image 
473.     patches = extract_patches_2d(image, patch_size) 
474.     patches = patches.reshape(patches.shape[0], -1) 
475.     intercept = np.mean(patches, axis=0) 
476.     patches -= intercept 
477.     length = len(patches) 
478.     # sparse representation of data 
479.     code = dico.fit_transform(patches) 
480.     V = dico.components_ 
481.     # return to image domain 
482.     patches = np.dot(code, V) 
483.     patches += intercept 
484.     patches = patches.reshape(length, *patch_size) 
485.     reco = reconstruct_from_patches_2d(patches, image.shape) 
486.     return reco 
487.   
488. def reconstruction(idx_slice): 
489.     print(idx_slice) 
490.     # load all fully and undersampled frames 
491.     k_sam = io.loadmat(k_space_filename)["k_all"][:,:,idx_slice,:] 
492.       
493.     # set fully sampled frames 
494.     k_full = k_sam[:,:,frames-1::frames] 
495.     # set undersampled frames 
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496.     k_un = 
np.zeros((k_sam.shape[0],k_sam.shape[1],k_full.shape[2]*(frames-
1)),dtype='complex128') 

497.     un_idx = 0 
498.     for i in range(k_sam.shape[-1]): 
499.         if((i+1)%frames!=0): 
500.             k_un[:,:,un_idx] = k_sam[:,:,i] 
501.             un_idx += 1 
502.     del k_sam, un_idx 
503.   
504.     center = k_full.shape[1]//2 
505.   
506.     # mask 
507.   
508.     # mask 
509.     mat = 1 - 1*(k_un==0) 
510.     ''' 
511.     if(correction): 
512.         # determine shift for motion correction 
513.         v_shift, h_shift = get_shift(k_sam) 
514.           
515.         for i in range( k_sam.shape[-1]): 
516.             # apply correction 
517.             k_sam[:,:,i] = corrections(np.copy(k_sam[:,:,i]), k_sam, 
518.                                        v_shift[0] - v_shift[i], 
519.                                        h_shift[0] - h_shift[i]) 
520.     ''' 
521.               
522.     # create mask for center k_space points (given some weight in 

reconstruction) 
523.     c_mask = np.zeros(k_un.shape) 
524.   
525.     x, y= np.meshgrid(np.linspace(-

k_un.shape[1]//2,k_un.shape[1]//2,k_un.shape[1]), 
526.                       np.linspace(-

k_un.shape[0]//2,k_un.shape[0]//2,k_un.shape[0])) 
527.   
528.     c_mask[:,center-15:center+15,:] = 1 
529.       
530.     # make list of nearest fully sampled lines for each undersampled 

frame 
531.     ful_idx = (frames-1)//2*[0] 
532.     for i in range(1,k_full.shape[-1]): 
533.         ful_idx += (frames-1)*[i] 
534.     ful_idx+=(frames-1)//2*[k_full.shape[-1]-1] 
535.   
536.     # allocate memory for initial guess and phase 
537.     image = np.zeros(k_un.shape,dtype='complex128') 
538.     phase = np.zeros(k_un.shape) 
539.     # create initial guess for each slice 
540.     for i in range(k_un.shape[-1]): 
541.   
542.         # phase is equal to phase of nearest fully sampled frame 
543.         temp = (1 - mat[...,i]) * k_full[:,:,ful_idx[i]] + mat[...,i] * 

k_un[...,i] 
544.         temp = cifft2(temp) 
545.         phase[:,:,i] = np.angle(temp) 
546.           
547.         # initial guess from the nearest fully sampled frame + noise 
548.         temp = abs(temp) 
549.         np.random.seed(seed=(i+1)*4321) 
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550.         image[:,:,i] = temp + 
np.random.normal(scale=np.max(abs(temp)/noise), 

551.                                                       size=k_full.shape[
:-1]) 

552.           
553.           
554.   
555.     # loading dictionary 
556.     patch_sz = 7 
557.     patch_size = (patch_sz, patch_sz) 
558.       
559.     ''' 
560.     dico_dot = pickle.load(open("dot_dictionary.txt",'rb')) 
561.     dico_brain = pickle.load(open("brain_dictionary_phantom.txt",'rb')) 
562.     dico_edge = pickle.load(open("mouse_edges_dictionary.txt",'rb')) 
563.     ''' 
564.   
565.     dico = pickle.load(open("combine_dictionary_with_2x2.txt",'rb')) 
566.   
567.     dico.transform_algorithm = 'omp' 
568.     dico.transform_n_nonzero_coefs = coefs 
569.   
570.     X = np.abs(image) 
571.     del image 
572.   
573.     # dictionary learning compressed sensing 
574.   
575.     for i in range(4): 
576.   
577.         print(i) 
578.         dic = dl_reconstruction(X, dico, patch_size) 
579.         lowr = low_rank(X, r) 
580.   
581.         X = x_step(X, dic, lowr, k_un, k_full, phase, mat, c_mask, lam2, 

lam3, lam4) 
582.           
583.     dic = dl_reconstruction(X, dico, patch_size) 
584.     lowr = low_rank(X, r) 
585.   
586.     X = x_step(X, dic, lowr, k_un, k_full, phase, mat, c_mask, 0, lam3, 

0) 
587.   
588.     return dic, X, abs(cifft2(k_full)) 
589.   
590. #%% running reconstruction on all frames 
591.   
592. # for multithreading 
593. from multiprocessing import Pool 
594.   
595. if __name__ == '__main__': 
596.     # start timer 
597.     import time 
598.     start = time.time() 
599.       
600.     # calls reconstruction for threads number of slices at once 
601.     with Pool(threads) as p: 
602.         data = p.map(reconstruction, [0]) 
603.       
604.     # end timer 
605.     end = time.time() 
606.     print(end - start) 
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