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Abstract

Discrete data in the form of counts arise in many health science disciplines

such as biology and epidemiology. Poisson models are widely used in the regression

analysis of count data. The Poisson distribution has a property that the mean and

the variance are equal. However in practice many count data sets often display

extra-variation or over-dispersion relative to a Poisson model. Thus the Poisson

distribution is not an ideal choice for analysing count data in many applications.

One very convenient and common model to accommodate this extra dispersion

is the two parameter negative binomial distribution. Count data in the form of

one-way layout arise in many practical situations. These data often exhibit extra

variation that cannot be explained by a simple model, such as the binomial or the

Poisson. These data may further be complicated when some of the observations

are missing as in the continuous and some other discrete data situations. In this

dissertation we study the performance C(α) statistics recommended by Barnwal

and Paul (1988) for testing the equality of means of several groups of count data

in presence of a common dispersion parameter. We also study the performance of

the three C(α) statistics developed by Saha (2008) in terms of level and power.

We develop estimation procedures for the parameters involved in the one way

layout of count data under different missing data scenarios and study the effect of

missingness on the C(α) statistics through simulations.
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Chapter 1

Introduction

Discrete data in the form of counts arise in many health science disciplines such

as biology and epidemiology. For examples of discrete count data see Anscombe

(1949); Bliss and Fisher (1953); McCaughran and Arnold (1976); Margolin, Ka-

plan, and Zeiger (1981); Bohning, Dietz, Schlattmann, Mendonca, and Kirchner

(1999); Paul and Deng (2000), and Deng and Paul (2005).

Poisson models are widely used in the regression analysis of count data. The

Poisson distribution has a property that the mean and the variance are equal. How-

ever in practice many count data sets often display extra-variation or over/under

dispersion relative to a Poisson model. Thus the Poisson distribution is not an

ideal choice for analysing count data in many applications. One very convenient

and common model to accommodate this extra dispersion is the two parameter

negative binomial distribution.

For applications of the negative binomial distribution, see, for example Mar-

golin et al. (1989); Engel (1984); Breslow (1984); Lawless (1987); Collings and

Margolin (1985). Different authors have used different parameterizations for the

negative binomial distribution. For example, see, Paul and Plackett (1978); Barn-

wal and Paul (1988); Piegorsch (1990); Paul and Banerjee (1998); Paul and Deng

1



1.0 CHAPTER 1. INTRODUCTION 2

(2000), and Deng and Paul (2005).

Count data may further be complicated by the existence of missing values.

Extensive work has been done on analysis of continuous response data under nor-

mality assumption. See, for example, Rubin (1976), Anderson and Taylor (1976),

Geweke (1986), Little and Rubin (1987), Raftery, Madigan and Hoeting (1997),

Chen, Hubbard and Rubin (2001), Kelly (2007), and Zhang, and Huang (2008).

Some work on missing values has also been done on logistic regression analysis

of binary data. See, for example, Ibrahim (1990); Lipsitz and Ibrahim (1996),

Ibrahim and Lipsitz (1996); Ibrahim, Chen and Lipsitz (1999); Ibrahim, Chen and

Lipsitz (2001); Sinha and Maiti (2008); Maiti and Pradhan (2009).

Some work on missing values with count data has been done. See, for example,

Mian and Paul (2016), Luo and Paul (2018).

Rubin (1976) and Little and Rubin (1987) discuss various missingness mecha-

nisms. If the missingness does not depend on observed data, then the missing data

are called missing completely at random (MCAR). If the missing data mechanism

depends only on observed data, then the data are missing at random (MAR). The

MAR is also known as ignorable missing That is, in this case, the missing data

mechanism is ignored. If the missing data mechanism depends on both observed

and unobserved data, that is, failure to observe a value depends on the value

that would have been observed, then the data are said to be missing not at ran-

dom (MNAR) in which case the missingness is nonignorable . For more detailed

discussion on missing data mechanism, see, Ibrahim et al. (2005, p333).

Count data in the form of one-way layout arise in practice. See, for example,

Beal (1939), Blish and Fisher (1953), McCaughran and Arnold (1976), and Hutto,

Pletschet, and Hendricks (1986). These data often exhibit extra variation that

cannot be explained by a simple model, such as the binomial or the Poisson.
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Barnwal and Paul (1988) developed two C(α) tests to test the equality of the

means of several groups of count data with negative binomial variation. Saha

(2008) developed similar C(α) tests when the data are over/under dispersed but

the data distribution is not known.

In this dissertation we develop inference procedures for one-way layout of count

data with over/under dispersion in presence of missing responses. We develop

estimation procedures for the parameters involved in one way layout of count

data under different missing data scenarios and study the effect of missingness

on the C(α) statistics when data can be assumed to have come from a specific

over/under dispersed model, such as, the negative binomial distribution or when

data are assumed to have come from an unspecified over/under dispersed model

based on the knowledge of only the first two moments of the counts obtained using

the double extended quasi-likelihood.

In chapter 2 we discuss some preliminaries and review some literature related

to the count data model with extra-variation, missing values, maximum likelihood

estimation by using weighted expected maximization algorithm and C(α)tests.

In chapter 3 we study the two C(α) statistics recommended by Barnwal and

Paul (1988). A simulation study is conducted to study the performance of these

statistics in terms of level and power.

In chapter 4, we study the performance of the C(α) statistics based on the

quasi-likelihood, extended quasi-likelihood and double extended quasi-likelihood

in terms of size and power.

In chapter 5, a study of the effect of missingness on the C(α) statistic based

on maximum likelihood and double extended quasi-likelihood is presented.

Finally, conclusions of the thesis with the summary of findings and a plan for

future study are presented in chapter 6.



Chapter 2

Preliminaries and Literature

Review

2.1 Count data model with extra-variation

2.1.1 Poisson Model

Let Y be the count data which follows the Poisson distribution. The probability

mass function for Poisson distribution is given by

f(y;µ) =
e−µµy

y!
, (2.1.1)

where µ is the mean parameter. The mean and variance of the Poisson distribution

are equal to µ.

2.1.2 Negative Binomial model

Let Y be a negative binomial random variable with mean parameter m and

dispersion parameter c. Then, using the terminology of Paul and Plackett (1978),

4



2.2 Missing data 5

Y has the probability mass function

f(y;m, c) = Γ(y+c−1)
y!Γ(c−1)

(
cm

1+cm

)y ( 1
1+cm

)c−1

(2.1.2)

for y = 0, 1, ..., m > 0. Now, for a typical Y , V ar(Y ) = m(1+ cm) and c > −1/m.

Obviously, when c = 0, variance of the NB(m, c) distribution becomes that of the

Poisson(m) distribution. Moreover, it can be shown that the limiting distribution

of the NB(m, c) distribution, as c→ 0, is the Poisson(m).

2.2 Missing data

Missing data or missing values occur when no information is available on the

responses or some of the covariates or both responses and covariates for some

subject of interest in the study. Missing observations are very common obstacles

faced by researchers in real-world contexts which makes the data analysis more

complicated. There can be several reasons why some observations in the data set

may be missing. Non-response occurs when the respondent does not respond to

certain questions due to stress, lack of knowledge or some questions may be sensi-

tive. Most of the standard statistical methods are based on complete information

for all the variables under study. The use of observed information only in the anal-

ysis may produce biased and inefficient parameter estimates and the results can

be misleading. Even a small number of missing observations can have dramatic

effect on the statistical analysis. Missing data may degrade the performance of

confidence intervals, reduce statistical power and bias parameter estimates (Nakai

and Ke, 2011).
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2.2.1 Missing data mechanism

It is essential to know how the observations in a data set are missing. Missing

data mechanism is the way how observations are missing in a data set. Rubin

(1976) and Little and Rubin (1987) came up with the classification system that

is in practice today: Missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR).

Missing Completely at random( MCAR)

Data are MCAR if the probability of missing data on a variable X is unrelated

to other observed as well as unobserved values of the variable itself or any other

variable in the data set. Under MCAR, the probability of missingness is same

for all the observations. For example, consider a child in an educational study

that moves to another district midway through the study. The missing values are

MCAR if the reason for the move is unrelated to other variables in the data set.

Missing at random( MAR)

Data are MAR, if missingness is related to only observed variables in the anal-

ysis, but not to the underlying values of the incomplete variables. Here probability

of missingness depends only on available observations, not on unobserved observa-

tions. For example, missing data on income depends on a house value but is not

related to income given house value. The MAR is also known as ignorable missing.

Missing not at random ( MNAR)

Data are MNAR, if the missingness depends on observed as well as unobserved

observations. Here the probability of missingness depends on both observed and

unobserved observations. For example, dropouts in the medical studies. A person

in a study may not like the previous results and may be worried about the future

results of the study and drops out. The MNAR is also known as non-ignorable
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missing.

2.2.2 Procedures for handling missing data

2.2.2.1 Complete case analysis

This method of analysis also known as listwise deletion, considers only those

subjects which have all the informations available. Here, any subjects having

missing observations are deleted before the analysis. The main advantage of this

method is, one can use any standard statistical software for the analysis. It is

easy to use since no special computational methods are required. The drawback

of the method is when a large fraction of data is missing and considering only

complete cases in the analysis will result in reduction of sample size, also loss of

some important features of the data hence the study may not be reliable. The

method works well when data are missing completely at random (MCAR) , which

is rare in reality.

2.2.2.2 Methods based on Imputation

Imputation method is one of the widely used methods in practice, where each

missing observation is replaced by some guess or estimate based on available or ob-

served data. Once the imputation is complete the analysis is straightforward using

conventional software. Imputation can be single value imputation or sometimes

multiple imputation. The basic advantage of the method is that no observation

is removed, all the information is used in the analysis. Based on the process how

missing values are replaced this is further classified as:

(1) Last value carried forward imputation:
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This is one of the most widely used technique in longitudinal analysis. Un-

der this method, each missing observation is substituted by the last observed

value for the same subject. The method is simple but it uses strong assump-

tion that the missing value does not change which is quite unlikely in many

situations. One of few settings where the method may be appropriate is in

some studies where the missingness is due to recovery or cure (Nakai and

Ke, 2011) .

(2) Imputation by related observation:

Here the missing observations are replaced by some related observations. For

example, missing observation about income can be substituted by income of

another person doing similar job.

(3) Marginal mean imputation:

The missing values are filled in by the average of observed values of the

variable. It is easy to substitute the missing values however the distribution

of variable is distorted and this method assumes data missing completely at

random, hence the method is not recommended these days.

(4) Conditional mean imputaiton:

This method of imputation was discussed by Buck (1960) and Little and

Rubin (1987). At first, based on the complete data, mean and covariance

matrix is estimated. Using these estimates, least square regression of missing

values on observed values is computed for each missing data pattern. The

missing values are filled in by the conditional mean in the second step. This

method yields reasonable estimates of mean if the normality assumptions are

plausible.

(5) Hot deck imputation:
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This technique is common in survey practice. Here the missing values are

substituted from similar responding units in the sample. For example, the

missing information about the total number of individuals in a household is

filled in by the total number of persons in a similar household in that area.

(6) Cold deck imputation:

Under this method, information from external source is used to replace the

missing observation, such as value from a previous survey.

(7) Substitution method:

This technique is used at the fieldwork stage of survey. In case of nonre-

sponse, information is collected from the other available units which were

not previously a part of the sample. For example if the initially selected

respondents are not available then the information is gathered from a sub-

stitute who was not a part of the sample before.

(8) Regression imputation:

Under this method, the estimated values are obtained from the regression

of missing observations on the observed values. First regression equation is

computed based on the completed observation which is then used to predict

the missing observations.

(9) Multiple Imputation:

Multiple Imputation (MI) is one of the most popularly used technique in

handling the missing values. Here, each missing value is replaced by two or

more plausible estimates representing a distribution of possibilities (Allison,

2001). MI works on the principle that larger random samples yield more

certainty about estimates and the estimate of the missing observation is more
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robust when many plausible values are sampled (Little et al. 2014). The

advantage of method is that analysis can be performed using any statistical

package once the imputed data set is generated. The limitation of the method

is that data should be missing at random.

2.2.2.3 Methods based on Likelihood

Another widely used method in handling missing data is the Expectation Max-

imization (EM) algorithm (Dempster et al., 1997). In usual situation where data

are assumed to have come from a distribution with parameter θ , where θ can be

vector valued, a likelihood L or log-likelihood l is constructed and maximized to

obtain the maximum likelihood estimates (MLE) of the parameter θ. However the

situation becomes complicated when some of the observations are missing and EM

algorithm is useful in such situations. EM algorithm is an iterative algorithm that

finds the estimates of parameters which maximize the log likelihood in presence

of missing observations. Each iteration of EM comprises two steps, expectation

(E-step) and maximization (M-step). A cautionary note is that the current EM

theory only guarantees convergence to a local maximum of the likelihood, which

is not necessarily the MLE.

2.3 Estimation procedures for the parameters

There are a few methods of estimation available for estimating the parameters.

namely maximum likelihood, Bayesian estimation techniques.

In the model based procedure, a parametric model can be specified for the

variable with missing observations. In likelihood based estimation, the likelihood

function often is factored based on the observed or missing observations. In this
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type of situation, maximum likelihood estimation technique is easily applicable to

estimate the parameters. Maximum likelihood estimates can be used to estimate

the variance components from the second derivative of the log likelihood function.

The complete data log-likelihood function can be maximized using available al-

gorithms such as Newton Raphson (NR), Nelder Maid (NM) and other similar

algorithms.

For data with missing values, maximum likelihood estimates of the parameters

can be obtained using EM algorithm by Dempster, Laird and Rubin (1977), and

the Weighted EM algorithm by Ibrahim (1990).

Multiple Imputation is another likelihood based approach. In this approach,

multiple complete data sets are created by filling in the missing observations.

Parameter estimates are obtained for each complete (imputed) data sets. The

average estimates of parameters are then obtained for the multiple data sets. For

detailed discussion see Little and Rubin (2002). In many practical situations, like-

lihood based estimation may not be possible to find due to incorrect distributional

assumptions. Weighted Estimating Equations can be used to estimate the param-

eters in such situations. More details about weighted estimating equations in the

presence of missing observations are given in Lipsitz, Ibrahim, and Zhao (1999).

Bayesian approach is another technique for handling data with missing observa-

tions. In this approach prior distributions are specified for all the parameters in the

model. Distributional assumptions for the variables having missing observations

are also necessary in this approach. For detailed discussion see Ibrahim, Lipsitz,

and Chen (2002). Application of any one of these techniques depends on the situ-

ation needed to be addressed. There is no unique superiority of these techniques.

For more detailed discussion, see, Ibrahim, Chen, Lipsitz, and Herring (2005). We

have applied the maximum likelihood estimation technique (using weighted EM
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algorithm) to estimate the parameters of over/under dispersed count data model.

Expectation Maximization (EM) algorithm by Demster, Laird and Rubin (1997)

has been used to find the maximum likelihood estimates of the regression parame-

ters of the model for the data having incomplete or missing observations. Ibrahim

(1990) used the EM algorithm by the method of weights for incomplete data in

generalized linear models. Following Ibrahim (1990), a number of articles have

been published for the application of the EM algorithm by method of weights. For

more details, see, Lipsitz and Ibrahim (1996), Ibrahim and Lipsitz (1996), Ibrahim,

Chen, and Lipsitz (1999, 2001), Ibrahim, Chen, Lipsitz, and Herring (2005), Sinha

and Maiti (2008), and Maiti and Pradhan (2009). The implementation of EM algo-

rithm is straight forward and is computationally more feasible. In this approach,

the log-likehood function of the parameters can be separated for the regression

parameters, parameters of the covariate distribution from the parameters of the

missingness mechanism. This feature of the log likelihood facilitates the separate

maximization and helps to separate the nuisance parameters from the parameters

of interest. These characteristics of the EM algorithm motivate us to use this

algorithm to find the maximum likelihood estimates of the over/under dispersed

count data model with missing observations. More details of the EM algorithm by

the method of weights are explained in the chapters that follow.

2.4 C(α) statistics

The C(α) test is based on partial derivatives of the log-likelihood function

with respect to the nuisance parameters and the parameters of interest evaluated

at the null hypothesis. Let L(θ,φ;y) be the likelihood function and l be the

log-likelihood function for the data, where φ = (φ1, φ2, · · · , φs) is the nuisance
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parameters. Define partial derivatives of the log-likelihood which are evaluated at

θ = θ0 = (θ01, θ02, · · · , θ0k)
′ as

ψ =
∂l

∂θ

∣∣∣∣
θ=θ0

=

[
∂l

∂θ1

,
∂l

∂θ2

, · · · , ∂l
∂θk

]′∣∣∣∣
θ=θ0

and

γ =
∂l

∂φ

∣∣∣∣
θ=θ0

=

[
∂l

∂φ1

,
∂l

∂φ2

, · · · , ∂l
∂φs

]′∣∣∣∣
θ=θ0

.

Under the null hypothesis and mild regularity conditions, ( ∂l
∂θ
, ∂l
∂φ

) follow a multi-

variate normal distribution with the mean vector 0 and variance-covariance matrix,

I−1(θ,φ) (Cramer,1946), where

I(θ,φ) =

Iθθ Iθφ

I ′θφ Iφφ


is the Fisher information matrix with elements

Iθθ = E

(
− ∂2l

∂θ∂θ′

∣∣∣∣
θ=θ0

)
, Iφφ = E

(
− ∂2l

∂φ∂φ′

∣∣∣∣
θ=θ0

)
, and Iθφ = E

(
− ∂2l

∂θ∂φ

∣∣∣∣
θ=θ0

)

which are (k × k), (s× s), and (k × s) matrices, respectively.

The C(α) test is based on the adjusted score S = ∂l
∂θ
− B ∂l

∂φ
, where B is the

matrix of partial regression coefficients that is obtained by regressing ∂l
∂θ

on ∂l
∂φ

.

According to Bartlett (1953), B and the variance-covariance matrix of S can be

expressed as B = IθφI
−1
φφ, and Iθθ.φ = Iθθ − IθφI−1

φφIθφ. Thus the distribution of

adjusted score S ∼ MN(0, Iθθ.φ) and hence the distribution of S ′I−1
θθ.φS ∼ χ2

(k)

(Neyman, 1959).

The statistic involves nuisance parameters φ = (φ1, φ2, · · · , φs) which need to
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be replaced by some suitable estimates for testing the null hypothesis. Follow-

ing Moran (1970) and replacing the nuisance parameters by some
√
n consistent

estimators φ̃ = (φ̃1, φ̃2, · · · , φ̃s)′ evaluated from the data, the test statistic becomes

χ2
C(α) = S̃ ′Ĩ−1

θθ.φS̃,

which is asymptotically distributed as chi-square with k degrees of freedom (Ney-

man, 1959).

Note, if the nuisance parameter φ is replaced by its maximum likelihood es-

timates φ̂, then the adjusted score function S reduces to ψ. The C(α) statistics

then becomes

S1 = ψ̂′Î−1
θθ.φψ̂,

which is a score test (Rao, 1948).

The score test or C(α) class of test has many advantages: it often maintains

at least approximately, a preassigned level of significance, it requires estimates of

parameters only under the null hypothesis, and it often produces a statistic that

is simple to calculate (Deng and Paul, 2000).



Chapter 3

Analysis of One-way layout of

count data:Complete Data with

Parametric Model

3.1 Introduction

Discrete data in the form of counts arise in many health science disciplines such

as biology and epidemiology. For examples of discrete count data see Deng and

Paul (2000, 2005); Anscombe (1949); Bliss and Fisher (1953); McCaughran and

Arnold (1976); Margolin, Kaplan, and Zeiger (1981); Bohning, Dietz, Schlattmann,

Mendonca, and Kirchner (1999).

Poisson models are widely used in the regression analysis of count data. The

Poisson distribution has a property that the mean and the variance are equal. How-

ever, in practice many count data often display extra-variation or over-dispersion

relative to a Poisson model. Thus Poisson distribution is not an ideal choice for

analysing count data in many applications. One very convenient and common

15
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model to accommodate this extra dispersion is the two parameter negative bino-

mial distribution.

For applications of the negative binomial distribution, see, for example En-

gel (1984); Breslow (1984); Margolin et al. (1989); Lawless (1987); Collings and

Margolin (1985). Different authors have used different parameterizations for the

negative binomial distribution. For example, see, Paul and Plackett (1978); Barn-

wal and Paul (1988); Paul and Banerjee(1998); Piegorsch (1990); Paul and Deng

(2000), and Deng and Paul (2005).

Count data in the form of one-way layout arise in practice. See, for example,

Beal (1939), Blish and Fisher (1953), McCaughran and Arnold (1976), and Hutto,

Pletschet, and Hendricks (1986). These data often exhibit extra variation that

cannot be explained by a simple model, such as the binomial or the Poisson.

Barnwal and Paul (1988) developed two C(α) tests to test the equality of the

means of several groups of count data with negative binomial variation. The

performance of these statistics were compared with the likelihood ratio statistic

and other two statistic based on transformed data (Anscombe, 1948) and C(α)

statistics were recommended.

Here, we study the performance of these two C(α) statistics recommended by

Barnwal and Paul (1988) in terms of size and power.

3.1.1 Negative Binomial model

Let Y be a negative binomial random variable with mean parameter m and

dispersion parameter c. Then, using the terminology of Paul and Plackett (1978),

Y has the probability mass function

f(y;m, c) = Γ(y+c−1)
y!Γ(c−1)

(
cm

1+cm

)y ( 1
1+cm

)c−1

(3.1.1)
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for y = 0, 1, ..., m > 0. Now, for a typical Y , V ar(Y ) = m(1+ cm) and c > −1/m.

Obviously, when c = 0, variance of the NB(m, c) distribution becomes that of the

Poisson(m) distribution. Moreover, it can be shown that the limiting distribution

of the NB(m, c) distribution, as c→ 0, is the Poisson(m).

3.1.2 The negative binomial likelihood

Let Yij, i = 1, ..., K, j = 1, ..., ni be the counts for the jth individual of the ith

treatment group. We assume that Yij ∼ NB(mi, ci), with mean mi and dispersion

parameter ci, which has probability mass function

Pr(Yij = yij|mi, ci) =
Γ(yij+ci

−1)

yij !Γ(ci−1)

(
cimi

1+cimi

)yij (
1

1+cimi

)ci−1

(3.1.2)

for yij = 0, 1, ..., and mi > 0. The mean and variance of Yij are

E(Yij) = mi and var(Yij) = mi(1 + cimi), (3.1.3)

where ci > −1/mi. The log-likelihood, apart from some constant terms, can be

written as

l =
K∑
i=1

ni∑
j=1

[
yijln (mi)−

(
yij + 1

ci

)
ln(1 + cimi) +

yij∑
l=1

ln{1 + c(l − 1)}
]
. (3.1.4)

3.1.3 Estimation of the Parameters

We are interested in testing H0 : m1 = m2 = · · ·mK = m against H1 : not all

mi
′
s are equal for all c > −1/m. The log likelihood under the hypothesis H0 is

l0 =
K∑
i=1

ni∑
j=1

[
yijlnm− (yij + c−1)ln(1 + cm) +

yij∑
l=1

ln{1 + c(l − 1)}
]
. (3.1.5)
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Under H0, the maximum likelihood estimator of m is m̂ = ȳ =
K∑
i=1

ȳi.
n

, where

n =
K∑
i=1

ni. The maximum likelihood estimator c0 of c under H0 is obtained as a

solution to

nlog(1 + c0ȳ)−
K∑
i=1

ni∑
j=1

yij∑
l=1

{ c0

1 + c0(l − 1)

}
= 0. (3.1.6)

3.1.4 Testing of Hypothesis

In this section we develop procedures for testing the composite hypotheses

H0 : m1 = · · · = mK against H1: at least two mi’s are not the same, with the

assumption c1 = · · · = cK = c, where c is unknown and c > −1/mi. For the con-

venience of the derivation of the C(α) statistics we reparameterize mi under H1 by

mi = m+ δi, i = 1, ..., K − 1, with δK = 0. Then testing H0 : m1 = ... = mK = m

reduces to testing H0 : δ1 = ... = δK−1, where m and c are treated as nuisance

parameters. This technique was employed by many authors. For example, Tarone

(1985) used this technique to obtain C(α) statistic for testing the equality of sev-

eral odds ratios. Barnwal and Paul (1988) used this same technique to derive these

statistics for testing equality of means in the presence of common negative binomial

over-dispersion. The log-likelihood in terms of reparameterization of mi = m+ δi

and ci = c, apart from some constant terms, can be written as

l =
K∑
i=1

ni∑
j=1

[
yijln(m+ δi)−

(
yij + 1

c

)
ln(1 + cm+ cδi)

+

yij∑
l=1

log{1 + c(l − 1)}
]
.

(3.1.7)



3.1 Introduction 19

Now, define δ = (δ1, ..., δK−1) and ν = (ν1, ν2)
′
= (m, c)

′
. Then,

Following the theory in §2.4, we obtain

φi = ∂l
∂δi

∣∣∣
δ=0

= ni(ȳi.−m)
m(1+cm)

, i = 1, ..., K − 1,

η1 = ∂l
∂ν1

∣∣∣
δ=0

=
K∑
i=1

ni(ȳi. −m)

m(1 + cm)

and

η2 = ∂l
∂ν2

∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

[ 1

c2
ln(1 + cm)−

yij−1∑
r=0

1

c(1 + cr)

]
,

where ȳi. = (1/ni)
∑ni

j=1 yij is the sample mean of the ith treatment. The C(α)

test is based on λi(ν̂) = φi(ν̂) − β1iη1(ν̂) − β2iη2(ν̂), where β1i and β2i are, re-

spectively, the partial regression coefficient of δi on η1 and δi on η2, and where

ν̂ is some
√
n (where n =

∑K
i=1 ni) consistent estimator of ν under the null

hypothesis. The regression coefficients β = (β1, β2) with β1 = (β11, ..., β1K−1)

and β2 = (β21, ..., β2K−1) are obtained as Γγ−1, and the variance-covariance of

Λ(ν) = [λ1(ν), ..., λK−1(ν)]
′

is ∆− Γγ−1Γ
′
, where the (s, t)th components of ∆,Γ,

and γ are

∆st = E
(
− ∂2l

∂δs∂δt

∣∣∣∣
δ=0

)
=


ns/m(1 + cm), s = t = 1, . . . , K − 1,

0 otherwise,

Γst = E
(
− ∂2l

∂δs∂νt

∣∣∣∣
δ=0

)
=


ns/m(1 + cm) , s = 1, ..., K − 1, t = 1,

0, s = 1, ..., K − 1, t = 2,

and
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γst = E
(
− ∂2l

∂νs∂νt

∣∣∣∣
δ=0

)
=



n/m(1 + cm), s = t = 1,

b, s = t = 2,

0 otherwise,

respectively. Note that the above terms involve the nuisance parameter ν = (m, c).

Thus, using ν̂ in Λ,∆,Γ, and γ, the C(α) statistic is obtained as Λ
′
(∆− Γγ−1Γ

′
)
−1

Λ,

which is approximately distributed as a chi-square distribution with K-1 degrees

of freedom. After replacing ν̂ = (m̂, ĉ) by the maximum likelihood estimtes of ν,

the C(α) statistic, after some algebra, becomes

Sc(ml) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ĉ)
,

The derivation is given in appendix A.

This C(α) statistic based on the maximum likelihood has been derived by Barnwal

and Paul(1988).

Using the method of moment estimates m̃ and c̃ of m and c, the C(α) statistic is

Sc(mm) =
K∑
i=1

ni(ȳi. − m̃)2

m̃(1 + c̃m̃)
,

where m̃ = ȳ =
K∑
i=1

ȳi.
n

, c̃ = (s2 − ȳ)/ȳ2, and s2 =
K∑
i=1

ni∑
j=1

(yij − ȳ)2/(n− 1).

3.1.5 Simulation

A simulation study is conducted to examine the comparative behaviour of

the test statistics Sc(ml) and Sc(mm) in terms of size and power. The test of

equality of means of two and three negative binomial distributions with common

dispersion parameter is considered. Empirical significance levels and power of the

tests were all based on 10,000 samples from the negative binomial distribution

for different values of m and c. For all combinations of m = 7, 15, 20, 30, 40

and c = 0.05, 0.25, 0.50 simulations are run based on 10,000 samples of sizes
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n1 = n2 = 10, 20, and 50 for two groups. The values of parameters are same

for n1 = n2 = n3 = 10, 20, and 50 for three groups. Table 3.1 displays em-

pirical levels based on a nominal significance level of α = 5% for Sc(ml) and

Sc(mm) for data generated from the NB distributions for two groups. Table

3.2 displays empirical power based on a nominal significance level of α = 5%

for Sc(ml) and Sc(mm) for data generated from the NB distributions. For two

groups, c = 0.25, m1 = m , m2 = m + φ, and δ = φ/m, where m = 10, 20, 50

and δ = 0.0, 0.2, 0.4, 0.6, 0.8 . The sample sizes considered were n1 = n2 = 10, 20,

and 50. Table 3.3 displays empirical levels based on a nominal significance level

of α = 5% for Sc(ml) and Sc(mm). For each replication, three samples are gen-

erated from the NB(m,c). Table 3.4 displays empirical power based on a nominal

significance level of α = 5% for Sc(ml) and Sc(mm). In this case also for each

replication three samples are generated from the NB(m,c). For three groups, c

= 0.25 , m1 = m , m2 = m + φ1, m3 = m + φ2 , δ1 = φ1/m,δ2 = φ2/m, where

m = 10, 20, 50 and δ = (0, 0), (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.4, 0.8). The sample

sizes considered were n1 = n2 = n3 = 10, 20, and 50.
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3.1.6 Discussion and Conclusion

The results in table 3.1 shows that both statistics Sc(ml) and Sc(mm) maintain

the significance level well. From table 3.3 we observe that Sc(ml) performs better

compared to Sc(mm) when the sample size is small. However, for larger sample

size (n = 50) Sc(mm) also performs well. The results in table 3.2 and table 3.4

shows the performance of these statistics in terms of power. From table 3.2 we

observe that the level of significance of Sc(ml) is better than that for Sc(mm) in

almost all the cases. The power of Sc(ml) is always higher than those for Sc(mm).

Similar results are observed in table 3.4. In both tables, a significant increase in

power is achieved as we increase the sample size. Based on our simulation study

Sc(m) is recommended for the analysis of one way layout of count data with

negative binomial distribution. This conclusion is in agreement with that Barnwal

and Paul (1988).



Chapter 4

Analysis of One-way Layout of

Count Data: Complete data with

Semi-parametric Models

4.1 Introduction

Discrete data in the form of counts arise in many health science disciplines such

as biology and epidemiology. For examples of discrete count data see Deng and

Paul (2000, 2005); Anscombe (1949); Bliss and Fisher (1953); McCaughran and

Arnold (1976); Margolin, Kaplan, and Zeiger (1981); Bohning, Dietz, Schlattmann,

Mendonca,L., and Kirchner (1999).

Poisson models are widely used in the regression analysis of count data. The

Poisson distribution has a property that the mean and the variance are equal.

However, in practice many count data often display extra-variation or over/under

dispersion relative to a Poisson model. Thus Poisson distribution is not an ideal

choice for analysing count data in many applications. One very convenient and

27
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common model to accommodate this extra dispersion is the two parameter negative

binomial distribution.

For applications of the negative binomial distribution, see, for example En-

gel (1984); Breslow (1984); Lawless (1987); Margolin et al. (1989); Collings and

Margolin (1985). Different authors have used different parameterizations for the

negative binomial distribution. For example, see, Paul and Plackett (1978); Barn-

wal and Paul (1988); Paul and Banerjee(1998); Piegorsch (1990); Paul and Deng

(2000), and Deng and Paul (2005).

However, in many practical data analysis situations, the full distributional as-

sumption becomes too restrictive and one can perform robust analysis using some

semi-parametric models which require specification of only the first two moments of

the counts. To avoid the full distributional assumption Wedderburn (1974) intro-

duced the quasi-likelihood based on the assumption of only the first two moments

of the response variable.The quasi-likelihood methodology is useful for estimating

only mean or the regression parameters. Nelder and Pregibon (1987) proposed

the extended quasi-likelihood which can be used to jointly estimate the mean and

the dispersion parameter. Lee and Nelder (2001) introduced the double extended

quasi-likelihood for the joint estimation of the mean and the dispersion parameters.

Saha (2008) developed test statistics for the homogeneity of the means of sev-

eral treatment groups of count data in presence of over/under dispersion when

there is no likelihood available. The C(α) statistics were derived based on the

semi-parametric models quasi-likelihood, extended quasi-likelihood, and double

extended quasi-likelihood and compared to the C(α) statistic based on the neg-

ative binomial model in terms of size and power. The C(α) statistic based on

double extended quasi-likelihood is recommended.

Here we study the performance the statistics based on the semi-parametric
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models in terms of size and power.

4.2 The Likelihood

4.2.1 The quasi-likelihood

The quasi-likelihood methodology of Wedderburn(1974) is based on the knowl-

edge of the form of first two moments of the random variable Yij, which coincides

with those based on the negative binomial model. The quasi-log-likelihood (see

Breslow, 1990) for the counts Yij (i = 1, 2, ..., K, j = 1, 2, ..., ni) is given by

Q =
K∑
i=1

ni∑
j=1

[(
yij +

1

ci

)
ln
(

(1+ciyij)

1+cimi

)
− yij ln

(
yij
mi

)]
, (4.2.1)

where the mean-variance relationship is

E(Yij) = mi and var(Yij) = mi(1 + cimi).

4.2.2 The extended quasi-likelihood

The quasi-likelihood is useful for estimating only the mean or the regression

parameters. By introducing a normalizing factor to the quasi-likelihood, Nelder

and Pregibon (1987) and Godambe and Thompson (1989) proposed the extended

quasi-likelihood (EQL), which can be used for the simultaneous estimation of the

parameters mi and ci. The modified extended quasi-log-likelihood (for details see
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Clark and Perry, 1989), apart from a constant, becomes

Q+∗ =
K∑
i=1

ni∑
j=1

[1

2
ln {1 + ciyij + ci/6} − 1

2
ln{(yij + 1/6)(1 + ciyij)

2(1 + ci/6)}

+
(
yij + 1

ci

)
ln
(

1+ciyij
1+cimi

)
− yij ln

(
yij
mi

)]
.

(4.2.2)

4.2.2.1 The double extended quasi-likelihood

In a generalized linear model setup Lee and Nelder (2001) developed hierar-

chical likelihood procedure for the joint estimation of the mean and the variance

components. For the situation in which a full distributional assumption is not

available, Lee and Nelder(2001) introduced the double extended quasi-likelihood

(DEQL) for estimation of the mean and the dispersion parameters of the response

variable. For joint estimation of the mean and the dispersion parameters the DEQL

has been derived by Paul and Saha (2007). Omitting details of the derivation, the

profile DEQL with the modified Stirling approximation is

pv
∗(DEQ) =

K∑
i=1

ni∑
j=1

[
yijln(mi) +

(
yij + 1

ci

)
ln
(

1+ciyij
1+cimi

)
− 1

2
ln(1 + ciyij)

−
(
yij + 1

2

)
ln(yij) + ci

12(1+ciyij)
− ci

12
− 1

12yij
− 1

2
ln(2π)

]
.

(4.2.3)

4.3 Estimation

We are interested in testing H0 : m1 = m2 = · · ·mK = m against H1 : not all

mi
′
s are equal for all c > −1/m.
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4.3.1 Quasi-likelihood estimates

The quasi-log-likelihood under H0 is

Q0 =
K∑
i=1

ni∑
j=1

[(
yij +

1

c

)
ln
(

(1+cyij)

1+cm

)
− yij ln

(
yij
m

)]
. (4.3.1)

The estimating equation for m is

∂Q0

∂m
=

K∑
i=1

ni∑
j=1

[yij
m
− (1 + cyij)

(1 + cm)

]
= 0. (4.3.2)

No such estimating function exists for c. However, following Breslow (1984, 1990)

and Saha (2008) an unbiased estimating function for c can be obtained as

V (m, c) =
K∑
i=1

ni∑
j=1

(yij −m)2

m(1 + cm)
− (n−K). (4.3.3)

4.3.2 Extended Quasi-likelihood estimates

The modified extended quasi-log-likelihood under H0 is

Q0
+∗ =

K∑
i=1

ni∑
j=1

[1

2
ln {1 + cyij + c/6} − 1

2
ln{(yij + 1/6)(1 + cyij)

2(1 + c/6)}

+
(
yij + 1

c

)
ln
(

1+cyij
1+cm

)
− yij ln

(
yij
mi

)]
.

(4.3.4)

The estimating equations for m and c are

∂Q0
+∗

∂m
=

K∑
i=1

ni∑
j=1

[yij
m
− (1 + cyij)

(1 + cm)

]
= 0 (4.3.5)
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and

∂Q0
+∗

∂c
=

K∑
i=1

ni∑
j=1

[ yij −m
c(1 + cm)

+ c−2ln
(

1+cm
1+cyij

)
+

1+6yij
2(c+6+6cyij)

− yij
1+cyij

− 1
2(c+6)

]
= 0.

(4.3.6)

The maximum extended quasi-likelihood estimate of m obtained from the first

equation above is m̂ = ȳ. The maximum extended quasi-likelihood estimate ĉeql

of c is obtained by iteratively solving the second equation after replacing m by ȳ.

4.3.3 The Double Extended Quasi-likelihood estimates

The profile DEQL under H0 is

p0
∗(DEQ) =

K∑
i=1

ni∑
j=1

[
yijln(m) +

(
yij + 1

ci

)
ln
(

1+ciyij
1+cm

)
− 1

2
ln(1 + cyij)

−
(
yij + 1

2

)
ln(yij) + c

12(1+cyij)
− c

12
− 1

12yij
− 1

2
ln(2π)

]
.

(4.3.7)

The estimating equations for m and c are

∂p0∗(DEQ)
∂m

=
K∑
i=1

ni∑
j=1

[yij
m
− (1 + cyij)

(1 + cm)

]
= 0 (4.3.8)

and

∂p0∗(DEQ)
∂c

=
K∑
i=1

ni∑
j=1

[ yij −m
c(1 + cm)

+
1

c2
ln
(

1+cm
1+cyij

)
− yij

2(1+cyij)
− cyij(2+cyij)

12(1+cyij)2

]
= 0.

(4.3.9)

The maximum double extended quasi-likelihood estimate of m obtained from the

first equation above is m̂ = ȳ. The maximum double extended quasi-likelihood

estimate ĉdeql of c is obtained by iteratively solving the second equation after
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replacing m by ȳ.

4.4 Testing Hypothesis

In this section we develop procedures for testing the composite hypotheses

H0 : m1 = · · · = mK against H1: at least two mi’s are not the same, with the

assumption c1 = · · · = cK = c, where c is unknown and c > −1/mi. For the

convenience of the derivation of the C(α) statistics we reparameterize mi under

H1 by mi = m + δi, i = 1, ..., K − 1, with δK = 0. Then testing H0 : m1 = ... =

mK = m reduces to testing H0 : δ1 = ... = δK−1, where m and c are treated as

nuisance parameters. This technique was employed by many authors. For example,

Tarone (1985) used this technique to obtain C(α) statistic for testing the equality

of several odds ratios. Barnwal and Paul (1988) used this same technique to derive

these statistic for testing equality of means in the presence of a common negative

binomial over-dispersion.

4.4.1 The C(α) statistic based on quasi-likelihood

The quasi-log-likelihood in terms of reparameterization of mi = m + δi and

ci = c, apart form some constant terms, can be written as

Q =
K∑
i=1

ni∑
j=1

[
(yij + c−1)ln

(
1+cyij

1+c(m+δi)

)
− yijln

(
yij
m+δi

)]
. (4.4.1)

Given c the unbiased estimating functions for the parameters δ1, δ2, · · · , δK−1,m

are , Ui(δi,m, c) = ∂Q
∂δi
, i = 1, 2, · · ·K − 1 and V1(δi,m, c) = ∂Q

∂m
. No such esti-

mating function exists for c. However, following Breslow (1984, 1990) and Moore

and Tsiatis (1991), given δ1, δ2, · · · , δK−1,m, an unbiased estimating function for
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c can be obtained as

V2(δi,m, c) =
K∑
i=1

ni∑
j=1

(yij −m− δi)2

(m+ δi)(1 + cm+ cδi)
− (n−K), (4.4.2)

where n =
K∑
i=1

ni. We obtain the C(α) statistic based on the Quasi-likelihood,

treating Ui, i = 1, 2, · · · , K − 1, V1, and V2 as the likelihood score analogs. Now,

define δ = (δ1, ..., δK−1) and ν = (ν1, ν2)
′

= (m, c)
′
. Following the theory in §2.4

we obtain

Ui = ∂Q
∂δi

∣∣∣
δ=0

= ni(ȳi.−m)
m(1+cm)

, i = 1, ..., K − 1,

V1(δi,m, c) = ∂Q
∂ν1

∣∣∣
δ=0

=
K∑
i=1

ni(ȳi. −m)

m(1 + cm)
,

where ȳi. = (1/ni)
∑ni

j=1 yij is the sample mean of the ith treatment. The C(α) test

is based on λi(ν̂) = Ui(ν̂)−β1iV1(ν̂)−β2iV2(ν̂), where β1i and β2i are, respectively,

the partial regression coefficient of δi on V1 and δi on V2, where ν̂ is some
√
n (where

n =
∑K

i=1 ni) consistent estimator of ν under the null hypothesis. The regression

coefficients β = (β1, β2) with β1 = (β11, ..., β1K−1) and β2 = (β21, ..., β2K−1) are

obtained as Γγ−1, and the variance-covariance of Λ(ν) = [λ1(ν), ..., λK−1(ν)]
′

is

∆− Γγ−1Γ
′
, where the (s, t)th components of ∆,Γ, and γ are

∆st = E
(
− ∂2Q

∂δs∂δt

∣∣∣∣
δ=0

)
=


ns/m(1 + cm), s = t = 1, . . . , K − 1,

0 otherwise,

Γst = E
(
− ∂2Q

∂δs∂νt

∣∣∣∣
δ=0

)
=


ns/m(1 + cm) , s = 1, ..., K − 1, t = 1,

0, s = 1, ..., K − 1, t = 2,

and
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γst = E
(
− ∂2Q

∂νs∂νt

∣∣∣∣
δ=0

)
=



n/m(1 + cm), s = t = 1,

b, s = t = 2,

0 otherwise,

respectively. Note that the above terms involve the nuisance parameter ν = (m, c).

Thus, using ν̂ in Λ,∆,Γ, and γ, the C(α) statistic is obtained as Λ
′
(∆− Γγ−1Γ

′
)
−1

Λ,

which is approximately distributed as a chi-square distribution with K-1 degrees

of freedom. After replacing ν̂ = (m̂, ĉmm), the C(α) statistic, after some algebra,

becomes

C(ql) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ ˆcmm)
,

where m̂ = ȳ =
K∑
i=1

ȳi.
n

, ĉmm = (s2 − ȳ)/ȳ2 , and s2 =
K∑
i=1

ni∑
j=1

(yij − ȳ)2/(n − 1).

The derivation is given in appendix B. This C(α) statistic can also be obtained by

method of moments (see Barnwal and Paul, 1988).

4.4.2 The C(α) statistic based on extended quasi-likelihood

Using the parameters δ1, ..., δK−1,m, and c, the modified extended quasi-likelihood,

apart from a constant term, is obtained as

Q+∗ =
K∑
i=1

ni∑
j=1

[1

2
ln{1 + ayij + a/6} − 1

2
ln{(yij + 1/6)(1 + ayij)

2(1 + a/6)}

+
(
yij + 1

a

)
ln
(

1+ayij
1+a(m+δi)

)
− yijln

(
yij
m+δi

)]
.

(4.4.3)

Now, similar to the procedure in Section 4.4.1 and using Q+∗ as the log-likelihood

of δ1, ..., δK−1,m, and c, it can be shown that the C(α) statistic, Sc(eql) , based
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on the modified extended quasi-likelihood is

Sc(eql) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ ˆceql)
,

where m̂ = ȳ =
K∑
i=1

ȳi.
n

and ĉeql is the maximum extended quasi-likelihood estimate

of c, under H0, obtained by solving
K∑
i=1

ni∑
j=1

[ yij − m̂
c(1 + cm̂)

+ c−2ln
(

1+cm̂
1+cyij

)
+

1+6yij
2(c+6+6cyij)

− yij
1+cyij

]
= n

2(c+6)
.

The derivation is given in appendix C. This C(α) statistic has been derived by

Saha (2008).

4.4.3 The C(α) statistic based on double extended quasi-

likelihood

The double extended quasi-likelihood excluding a constant term, using the

reparameteriztion of mi under H1, can be written as

pv
∗(DEQ) =

K∑
i=1

ni∑
j=1

[
yijln(m+ δi) +

(
yij + 1

c

)
ln
(

1+cyij
1+c(m+δi)

)
− 1

2
ln(1 + cyij)

+ c
12(1+cyij)

− c
12
− 1

12yij

]
.

(4.4.4)

Now, similar to the procedure in Section 4.4.1 and using pv
∗(DEQ) as the log-

likelihood of δ1, ..., δK−1,m, and c, it can be shown that the C(α) statistic, Sc(deql),

based on the double extended quasi-likelihood is

Sc(deql) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ ˆcdeql)
,
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where m̂ = ȳ =
K∑
i=1

ȳi.
n

and ĉdeql is the maximum double extended quasi-likelihood

estimate of c, under H0, obtained by solving

K∑
i=1

ni∑
j=1

[ yij − m̂
c(1 + cm̂)

+
1

c2
ln
(

1+cm̂
1+cyij

)
− yij

2(1+cyij)
− cyij(2+cyij)

12(1+cyij)2

]
= 0. (4.4.5)

The derivation is given in appendix D. This C(α) statistic has been derived by

Saha (2008).

4.5 Simulations

A simulation study is conducted to examine the comparative behaviour of the

test statistics Sc(ql), Sc(eql), and Sc(deql) in terms of size and power. The test of

equality of means of two and three negative binomial distributions with common

dispersion parameter is considered. Empirical significance levels and power of the

tests were all based on 10,000 samples from the negative binomial distribution

for different values of m and c. For all combinations of m = 7, 15, 20, 30, 40

and c = 0.05, 0.25, 0.50 simulations are run based on 10,000 samples of sizes

n1 = n2 = 10, 20, and 50 for two groups. The values of parameters are same

for n1 = n2 = n3 = 10, 20, and 50 for three groups. Table 4.1 displays empir-

ical levels based on a nominal significance level of α = 5% for Sc(ql), Sc(eql),

and Sc(deql) for data generated from the NB distributions for two groups. Table

4.2 displays empirical power based on a nominal significance level of α = 5% for

Sc(ql), Sc(eql), and Sc(deql) for data generated from the NB distributions. For

two groups, c = 0.25, m1 = m, m2 = m + φ, and δ = φ/m, where m = 10, 20, 50

and δ = 0.0, 0.2, 0.4, 0.6, 0.8 .The sample sizes considered were n1 = n2 = 10, 20,

and 50. Table 4.3 displays empirical levels based on a nominal significance level
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of α = 5% for for Sc(ql), Sc(eql), and Sc(deql). For each replication three samples

are generated from the NB(m,c). Table 4.4 displays empirical power based on a

nominal significance level of α = 5% for Sc(ql), Sc(eql), and Sc(deql). In this case

also for each replication three samples are generated from the NB(m,c). For three

groups, c = 0.25 , m1 = m, m2 = m + φ1, m3 = m + φ2, δ1 = φ1/m, δ2 = φ2/m,

where m = 10, 20, 50 and δ = (0, 0), (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.4, 0.8). The

sample sizes considered were n1 = n2 = n3 = 10, 20, and 50.
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4.6 Discussion and Conclusion

From the results in table 4.1 we observe that all three statistics Sc(ql), Sc(eql),

and Sc(deql) maintain the significance level well. Data departure has no effect on

size performances of the statistics. Similar results were observed from table 4.3.

For the larger sample size (n=50) all the statistics maintain level quite well. Table

4.2 presents the power performance of all three statistics for two groups. For small

to moderate sample size, it is observed that Sc(ql) has lower levels compared to

that of other two statistics. However, for large sample size (n=50) it maintains

the level well and close to other two statistics. Though these statistics maintain

the level well, we observe that in almost all data situations the power estimates of

Sc(deql) is higher than that of Sc(ql) and Sc(eql). Table 4.4 also shows that the

power performance of Sc(deql) is better than the other two statistics. In both the

tables significant increase in power is achieved with the increase in sample size.

Based on our simulation study Sc(deql) is recommended. This conclusion is in

agreement with that of Saha (2008).



Chapter 5

Effect of missing responses on the

C(α) or score tests in One-way

Layout of Count Data

5.1 Introduction

Discrete data in the form of counts arise in many health science disciplines such

as biology and epidemiology. For examples of discrete count data see Anscombe

(1949); Bliss and Fisher (1953); McCaughran and Arnold (1976); Margolin et al.

(1981); Böhning et al. (1999), Paul and Deng (2000) and Deng and Paul (2005).

Poisson models are widely used in the regression analysis of count data. The

Poisson distribution has a property that the mean and the variance are equal.

However, in practice, many count data often display extra-variation or over/under

dispersion relative to a Poisson variance. Thus Poisson distribution is not an

ideal choice for analysing count data in many applications. One very convenient

and common model to accommodate this extra dispersion is the two parameter

44
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negative binomial distribution.

For applications of the negative binomial distribution, see, for example, Engel

(1984); Breslow (1984); Collings and Margolin (1985); Lawless (1987); Margolin et

al. (1989). Different authors have used different parameterizations for the negative

binomial distribution. For example, see, Paul and Plackett (1978); Barnwal and

Paul (1988); Piegorsch (1990); Paul and Banerjee (1998); Paul and Deng (2000),

and Deng and Paul (2005).

One-way layout of count data having over/under dispersion arise in many

practical situations. Barnwal and Paul (1988) developed and studied two C(α)

statistics (Neyman, 1959) under the negative binomial assumption and three other

statistics for testing the equality of means of several groups of count data in pres-

ence of a common dispersion parameter and recommend the C(α) statistics. For

the same purpose Saha (2008) developed three C(α) type statistics for situations

in which the negative binomial assumption might be violated. Of these statistics,

they recommend C(α) type statistic based on the double extended quasi-likelihood.

Count data may further be complicated by the existence of missing values.

Extensive work has been done on the analysis of continuous response data un-

der normality assumption. See, for example, Rubin (1976), Little and Rubin

(1987), Anderson and Taylor (1976), Geweke (1986), Raftery, Madigan, and Hoet-

ing (1997), Chen, Hubbard, and Rubin (2001), Kelly (2007), and Zhang and Huang

(2008).

Some work on missing values has also been done on logistic regression analysis

of binary data. See , for example , Ibrahim (1990); Lipsitz and Ibrahim (1996),

Ibrahim and Lipsitz (1996); Ibrahim, Chen, and Lipsitz (1999); Ibrahim, Chen,

and Lipsitz (2001); Sinha and Maiti (2008); Maiti and Pradhan (2009).

Recently, some work on the estimation of parameters of zero-inflated count
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data model and over-dispersed binomial model with missing responses has been

done. See, for example, Mian and Paul (2016), Luo and Paul (2018).

Rubin (1976) and Little and Rubin (1987) discuss various missingness mecha-

nisms. If the missingness does not depend on observed data, then the missing data

are called missing completely at random (MCAR). If the missing data mechanism

depends only on observed data, then the data are missing at random (MAR). The

MAR is also known as ignorable missing, that is, in this case, the missing data

mechanism is ignored. If the missing data mechanism depends on both observed

and unobserved data, that is, failure to observe a value depends on the value

that would have been observed, then the data are said to be missing not at ran-

dom (MNAR) in which case the missingness is nonignorable. For more detailed

discussion on missing data mechanism, see Ibrahim et al. (2005, p333).

In this paper we develop estimation procedures for the parameters involved in

the one way layout of count data under different missing data scenarios and study

the effect of missingness on the C(α) statistics recommended by Barnwal and Paul

(1988) and that by Saha (2008) by Monte Carlo simulation.

In Section 2 we develop the estimation procedure. The score tests are given in

Section 3 and a simulation study is conducted in Section 4. A discussion of the

findings are given in Section 5.

5.2 Estimation of the Parameters

5.2.1 Maximum likelihood estimates

Let Yij, i = 1, ..., K, j = 1, ..., ni be the counts for the jth individual of the ith

treatment group. We assume that Yij ∼ NB(mi, c), which has probability mass
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function

Pr(Yij = yij|mi, c) =
Γ(yij+c−1)

yij !Γ(c−1)

(
cmi

1+cmi

)yij (
1

1+cmi

)c−1

(5.2.1)

for yij = 0, 1, ..., and mi > 0. The mean and variance of Yij are

E(Yij) = mi and var(Yij) = mi(1 + cmi), (5.2.2)

where c > −1/mi. See Paul and Placket (1978) and many other references later

on. We are interested in testing H0 : m1 = m2 = · · ·mK = m against H1 : not all

mi
′
s are equal for all c > −1/m.

Under the null hypothesis, then, the probability mass function is

Pr(Yij = yij|m, c) =
Γ(yij+c−1)

yij !Γ(c−1)

(
cm

1+cm

)yij ( 1
1+cm

)c−1

. (5.2.3)

As we are interested in studying as to whether missing values affect the C(α) or

C(α)-like statistics, we show all calculations for the estimations of the parameters

under the null hypothesis of equality of the means. That is, we want to estimate

only the common mean m and the common over/under dispersion parameter c.

The log-likelihood, under which, is

l0 =
K∑
i=1

ni∑
j=1

lij , (5.2.4)

where

lij = yijlogm− (yij + c−1)log(1 + cm) +

yij∑
l=1

log{1 + c(l − 1)}. (5.2.5)
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The maximum likelihood estimator of m is m̂ = ȳ =
K∑
i=1

ȳi.
n

, where n =
K∑
i=1

ni.

The maximum likelihood estimator, denoted by cM of c under H0 is obtained as a

solution to

nlog(1 + cȳ)−
K∑
i=1

ni∑
j=1

yij∑
l=1

{ c

1 + c(l − 1)

}
= 0. (5.2.6)

5.2.2 Double extended quasi-likelihood estimates

In some situations a full distributional assumption cannot be assumed to be

satisfied. In such situations, based on the assumption that a discrete random

variable Y satisfies E(Y ) = m and V ar(Y ) = m(1 + cm), where m is the mean

and c is the dispersion (over/under) parameter, a few hypbrid likelihood types

have been developed. See, for example, quasi-likelihood (Wedderburn, 1974), Ex-

tended quasilikelihood (Nelder and Pregibon, 1987), and double extended quasi-

likelihood (Lee and Nelder, 2001). Saha (2008) developed the double extended

quasi-likelihood estimate of m and c as in what follows.

In a generalized linear model setup Lee and Nelder (2001) developed hierar-

chical likelihood procedure for the joint estimation of the mean and the variance

components. For the situation in which a full distributional assumption is not

available, Lee and Nelder (2001) introduced the double extended quasi-likelihood

(DEQL) for estimation of the mean and the dispersion parameters of the response

variable. For joint estimation of the mean and the dispersion parameters the DEQL

has been derived by Paul and Saha (2007). Omitting details of the derivation, the

profile DEQL, denoted by Dl0, is

Dl0 =
K∑
i=1

ni∑
j=1

dlij , (5.2.7)
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where

dlij =
[
yijln(m) +

(
yij + 1

c

)
ln
(

1+cyij
1+cm

)
− 1

2
ln(1 + cyij)

−
(
yij + 1

2

)
ln(yij) + c

12(1+cyij)
− c

12
− 1

12yij
− 1

2
ln(2π)

]
.

(5.2.8)

Again, omitting details, the double extended quasi-likelihood estimate for the pa-

rameter m is m̂ = ȳ and that for c, denoted by cdeql, is obtained by solving

K∑
i=1

ni∑
j=1

[ 1

c2
ln
(

1+cȳ
1+cyij

)
+

yij−ȳ
c(1+cȳ)

− yij
2(1+cyij)

− cyij(2+cyij)

12(1+cyij)2

]
= 0. (5.2.9)

Note that cdql is
√
n consistent and efficient (Paul and Saha, 2007).

5.2.3 Estimation of parameters with missing responses

Under MCAR, missingness of the data does not depend upon the observed data

and the cases with missing values are deleted before analysis. We can implement

the standard methods of CC for the analysis. However, this may result in loss of

efficiency due to the reduced sample size comprising of only the complete cases.

For MAR and MNAR, since some of the responses may be missing, we express

the response yij as

yij =


yo,ij if yij is observed,

ym,ij if yij is missing.

(5.2.10)

5.2.3.1 Maximum likelihood estimation under MAR

Let Yo represent the observed responses, Ym represent the missing responses,

and θ = (m, c).

In MAR the conditional probability of missingness data depends on observed

data. Parameters of missingness mechanism are completely separate and distinct
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from parameters of the model (5.2.3). In likelihood based estimation considering

MAR, missingness mechanism can be ignored from the likelihood and the missing

data are often known as ignorable missing. However subjects having these missing

observations cannot be deleted before analysis. For more details see Little and

Rubin (1987), and Ibrahim et. al (2005).

Our purpose is to maximize the following log likelihood with respect to the

parameter (θ = m, c)

l0(m, c|Yo) =
∑
Ym

l0(m, c|Yo, Ym). (5.2.11)

In more general case where the missing data are not MAR, the missing data

mechanism needs to be defined and included in the model. Direct maximization

of l0(m, c|Yo) is not, in general, straight forward. However, the EM algorithm

(Dempster et al., 1977) is a very useful tool for obtaining maximum likelihood es-

timates when some of the observations in the data are missing. The EM algorithm

uses two steps, the expectation and the maximization steps. Following Little and

Rubin (1987, 2002, 2014, 2020) the E-step provides the conditional expectation of

the log-likelihood l0(m, c|Yo, Ym) given the observed data Yo and current estimate

of parameters (θ = m, c). Suppose A of the n responses are observed and B=n-A

responses are missing. Let ’s’ be an arbitrary number of iterations during max-

imization of the log-likelihood, then the E-step of the EM algorithm for the ijth

missing response for the (s+ 1)th iteration can be written as

Qij(θ|θ(s)) = E
[
lij(θ

(s)|yo,ij, ym,ij)|yo,ij, θ(s)
]

=
∑

ym,ij
lij(θ

(s)|yo,ij, ym,ij)P (ym,ij|yo,ij, θ(s)).
(5.2.12)

For all the observations, the E-step of the EM algorithm for the (s+ 1)th iter-
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ation is

Q0(θ|θ(s)) =
∑A

ij=1 lij(θ
(s)|yo,ij)

+
∑B

ij=1

∑
ym,ij

lij(θ
(s)|yo,ij, ym,ij)P (ym,ij|yo,ij, θ(s)).

(5.2.13)

Note for the situation in which there is no missing response, the EM algorithm re-

quires only maximization of the first term on the right hand side. Here P (ym,ij|yo,ij, θ(s))

is the conditional distribution of the missing response given the observed data and

the current (sth) iteration estimate of θ. However in many situations P (ym,ij|yo,ij, θ(s))

may not always be available. Following Ibrahim et. al (2001) and Sahu and Roberts

(1999) we can write P (ym,ij|yo,ij, θ(s)) ∝ P (yij|θ(s)) (the complete data distribu-

tion given in equation (5.2.3)). For the (ij)th of the B missing responses we take a

sample aij,1, aij,2, ..., aij,mij
, from P (yij|θ(s)) using Gibbs sampler (see Casella and

George 1992 for details). Then following Ibrahim et al. (2001), Q0(θ|θ(s)) can be

written as

Q0(θ|θ(s)) =
A∑

ij=1

lij(θ
(s)|yo,ij) +

B∑
ij=1

1

mij

mij∑
k=1

lij(θ
(s)|aij,k). (5.2.14)

In the M-step of EM algorithm, the Q0(θ|θ(s)) is maximized. We denote the

resultant estimates by mMA and cMA. Here maximizing Q0(θ|θ(s)) is analogous to

maximization of complete data log-likelihood where each incomplete observation

is replaced by mij weighted observations.

5.2.3.2 DEQL estimation under MAR

Following section 5.2.3.1 and without going into further detail, the DEQL es-

timates of the parameters m and c, denoted by dmMA and dcMA, under MAR are



5.2 Estimation of the Parameters 52

obtained by maximizing

QD0(θ|θ(s)) =
A∑

ij=1

dlij(θ
(s)|yo,ij) +

B∑
ij=1

1

mij

mij∑
k=1

dlij(θ
(s)|aij,k). (5.2.15)

5.2.3.3 Estimation under MNAR

Under MNAR, the probability of missing observation in response variable de-

pends on the values of the response that would have been observed. The missing

data mechanism cannot be ignored and needs to be incorporated in the likelihood.

The missing data that are MNAR are known as non-ignorable missing. A para-

metric model needs to be specified for this missingness. To incorporate the missing

data mechanism into the likelihood we define a random variable rij as,

rij =


0 if yij is observed,

1 if yij is missing.

(5.2.16)

The random variable rij follows

p(rij|yij) = [p(rij = 1)]rij [1− p(rij = 1)](1−rij). (5.2.17)

See Ibrahim et al. (2001). To model the probability of missing in terms of values

of responses that would have been observed, a logit link

log
[ p(rij = 1)

1− p(rij = 1)

]
= α0 + α1 ∗ yij (5.2.18)
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can be used. Here yij is the responses and the responses that would have been

observed. Note that p(rij = 1) can be written as a logistic model

p(rij = 1) =
exp(α0 + α1 ∗ yij)

1 + exp(α0 + α1 ∗ yij)
. (5.2.19)

Then the likelihood function of the parameter α = (α0, α1) can be written as

l(α|rij, yij) =
K∑
i=1

ni∑
j=1

[
rij ∗ log

[ p(rij = 1)

1− p(rij = 1)

]
+ log(1− p(rij = 1))

]
. (5.2.20)

Following Ibrahim, Lipsitz and Chen (1999), after incorporating the model for

missingness mechanism in l(α|rij, yij), the log likelihood for all the parameters

involved is

l0(θ, α|Yo, Ym, R) =
K∑
i=1

ni∑
j=1

lij +
K∑
i=1

ni∑
j=1

[
rij ∗ log

[ p(rij = 1)

1− p(rij = 1)

]
+log(1− p(rij = 1))

]
,

(5.2.21)

where lij is same as in equation 5.2.5.

5.2.3.4 Maximum likelihood estimation under MNAR

As in section 5.2.3.1, for the (ij)th of the B missing responses we take a sample

aij,1, aij,2, ..., aij,mij
, from P (yij|θ(s)) using Gibbs sampler (see Casella and George

1992 for details). Then following section 5.2.3.1, the maximum likelihood estimates

under MNAR of the parameter m and c are obtained by maximizing

Q0(θ|θ(s)) =
∑A

ij=1 lij(θ
(s)|yo,ij) +

∑B
ij=1

1
mij

∑mij

k=1 lij(θ
(s)|aij,k)

+
K∑
i=1

ni∑
j=1

[
rij ∗ log

[ p(rij = 1)

1− p(rij = 1)

]
+ log(1− p(rij = 1))

]
,
(5.2.22)
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where lij is same as in equation 5.2.5. We denote the resultant estimates by mMN

and cMN .

5.2.3.5 DEQL estimation under MNAR

Following section 5.2.3.1 and without going into further detail, the DEQL es-

timates of the parameters m and c, denoted by dmMN and dcMN , under MNAR

are obtained by maximizing

QD0(θ|θ(s)) =
∑A

ij=1Dlij(θ
(s)|yo,ij) +

∑B
ij=1

1
mij

∑mij

k=1Dlij(θ
(s)|aij,k)

+
K∑
i=1

ni∑
j=1

[
rij ∗ log

( p(rij = 1)

1− p(rij = 1)

)
+log(1− p(rij = 1))

]
,

(5.2.23)

where Dlij is same as in equation 5.2.8.

5.3 Test of hypothesis concerning the means in

one-way anova with extra-dispersed count data

There is a long history of the development of C(α) (Neyman, 1959) test or

score test (Rao, 1947) . For the situation under study here, Barnwal and Paul

(1988) developed the C(α) test statistics for testing the equality of the means

in one-way layout of count data. Without going into details of derivation which

can be found in Barnwal and Paul (1988), the C(α) statistic, using the maximum

likelihood estimates of the parameters m and c is

Sc(ml) =
K∑
i=1

ni(ȳi. − ȳ)2

ȳ(1 + ȳcml)
.

Further, the C(α) (C(α)-like) statistic developed by Saha (2008) based on the

double extended quasi-likelihood is
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Sc(deql) =
K∑
i=1

ni(ȳi. − ȳ)2

ȳ(1 + ȳcdeql)
.

The C(α) statistics using (mMC , cMC), (mMA, cMA), and (mMN , cMN) are

Sc(MC) =
K∑
i=1

ni(ȳi. −mMC)2

mMC(1 +mMCcMC)
, Sc(MA) =

K∑
i=1

ni(ȳi. −mMA)2

mMA(1 +mMAcMA)
,

and Sc(MN) =
K∑
i=1

ni(ȳi. −mMN)2

mMN(1 +mMNcMN)

respectively.

Similarly, the C(α) statistics using (mdMC , cdMC), (mdMA, cdMA), and (mdMN ,

cdMN) are

Sc(dMC) =
K∑
i=1

ni(ȳi. −mdMC)2

mdMC(1 +mdMCcdMC)
,

Sc(dMA) =
K∑
i=1

ni(ȳi. −mdMA)2

mdMA(1 +mdMNcdMA)
,

and Sc(dMN) =
K∑
i=1

ni(ȳi. −mdMN)2

mdMN(1 +mdMNcdMN)

respectively.

However, as can be seen from equations 5.2.22 and 5.2.23 each of the likelihoods

contain 2 parts, first part involves only the parameters of the count data mod-

els and the second part contains the parameters of the missing data mechanism.

Therefore, estimates of the parameters m and c and those of the missing data

mechanism are independent. Therefore, the statistics Sc(MA) and Sc(MN) are

identical and the statistics Sc(dMA) and Sc(dMN) are also identical.

5.4 Simulation Study

A simulation study is conducted to examine the comparative behaviour of the

test statistics Sc(ml) and Sc(deql) in terms of size and power when some of the

responses are missing. We use data under four scenarios: (i) data are observed

completely (CC), (ii) some of the responses are missing completely at random
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(MCAR), (iii) some responses are missing at random (MAR), and (iv) some re-

sponses are missing not at random (MNAR). Empirical significance levels and

power of the tests were all based on 10,000 samples from the negative binomial

distribution for different values of m and c. When data are observed completely,

for all combinations of m = 7, 15, 20, 30, 40 and c = 0.05, 0.25, 0.50 simulations are

run based on 10,000 samples of sizes n1 = n2 = 10, 20, and 50 for two groups. The

values of parameters are same for n1 = n2 = n3 = 10, 20, and 50 for three groups.

Table 5.1 displays empirical levels based on a nominal significance level of α = 5%

for Sc(ml) and Sc(deql) for complete data for two groups, data generated from the

NB distributions. Table 5.2 displays empirical power based on a nominal signifi-

cance level of α = 5% for Sc(ml) and Sc(deql) for complete data for two groups,

data generated from the NB distributions. For two groups, c = 0.25, m1 = m,

m2 = m + φ, and δ = φ/m, where m = 10, 20, 50 and δ = 0.0, 0.2, 0.4, 0.6, 0.8.

The sample sizes considered were n1 = n2 = 10, 20, and 50. Table 5.3 dis-

plays empirical levels based on a nominal significance level of α = 5% for Sc(ml)

and Sc(deql) under MCAR and MAR for two groups. Table 5.4 displays em-

pirical power based on a nominal significance level of α = 5% for Sc(ml) and

Sc(deql) under MCAR and MAR for two groups. Table 5.5 displays empirical

levels based on a nominal significance level of α = 5% for Sc(ml) and Sc(deql)

for complete data for three groups. Table 5.6 displays empirical power based on

a nominal significance level of α = 5% for Sc(ml) and Sc(deql) for complete data

for three groups, data generated from the NB distributions. For three groups

c=0.25; m1 = m, m2 = m + φ1, m3 = m + φ2, δ1 = φ1/m, δ2 = φ2/m,

and δ = (0, 0), (0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.4, 0.8). Table 5.7 displays empirical

levels based on a nominal significance level of α = 5% for Sc(ml) and Sc(deql)

under MCAR and MAR for three groups. For all combinations of m = 20, 30
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and c = 0.05, 0.25, 0.50 simulations are run based on 10,000 samples of sizes

n1 = n2 = n3 = 20 and 30 . Table 5.8 displays empirical power based on a

nominal significance level of α = 5% for Sc(ml) and Sc(deql) under MCAR and

MAR for three groups.
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Table 5.3: 103× empirical levels: α=0.05; based on 10,000 replications for data
under MCAR and MAR

m=20 m=30
c c

Statistics %missing 0.05 0.25 0.50 0.05 0.25 0.50

n1 = n2 = 20 0 55 50.2 48.9 54.5 52.6 49
5 51.9 53 52.9 53 51.8 52.7
10 52.1 48.1 47.6 50.8 51.1 53.3

Sc(MC) 25 53.8 51.3 49 54.7 52.9 50.2
0 55.1 50.2 49.3 54.5 52.6 49.4
5 51.9 53 53.1 53 51.8 52.8

Sc(dMC) 10 52.1 48.1 47.6 50.9 51.1 53.7
25 53.9 51.3 49.3 54.7 52.9 50.4
0 55 50.2 48.9 54.5 52.6 49
5 52 52.5 52 49.5 48 50.5

Sc(MA) 10 59.5 51 50.5 42 48.5 47.5
25 46 48.5 55.5 46.5 46.5 44.5
0 55.1 50.2 49.3 54.5 52.6 49.4
5 49.5 47 50 55 48 50.5

Sc(dMA) 10 40 41.5 48 58.5 60 57.5
25 54 45 49 54 56 43.5

n1 = n2 = 30 0 47.5 53 40 47 53 46.5
5 50.5 52.6 50.7 51.2 53.4 53.9
10 56.1 55.5 48.7 54.8 52.3 52.7

Sc(MC) 25 51.3 51.1 47.6 50.3 53.9 48
0 47.5 53.5 41 47 53 46.5
5 50.5 52.6 51.1 51.1 53.4 54.2

Sc(dMC) 10 56.1 55.5 49 54.7 52.3 52.7
25 51.3 51.2 47.7 50.2 53.9 48
0 47.5 53 40 47 53 46.5
5 55 49.5 52.5 54 53.5 59.5

Sc(MA) 10 55 51 64 54.5 52 54.5
25 49 51 46.5 50 45 50
0 47.5 53.5 41 47 53 46.5
5 51 56 59.5 49 50.5 47

Sc(dMA) 10 53.5 53 48 54.5 54 55.5
25 47.5 58.5 53 43 51 55
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Table 5.4: 103× empirical power corresponding to nominal significance level
α=0.05; based on 10,000 replications for 2 groups (under MCAR and MAR );
m1 = m, m2 = m+ φ, δ = φ/m ; c=0.25

n1 = n2 = 20 n1 = n2 = 30
δ δ

Statistic %missing 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

m=20 0 50.2 179.9 484 766.4 918.1 53 258.5 669 912.5 986
5 53 162.2 446.6 730.2 886.5 54.7 224.8 591.7 872.2 972

Sc(MC) 10 48.1 148.1 401.5 666.3 853.1 51.1 202.6 562.5 846.4 959.6
25 51.3 115.4 281.9 510 694.7 52.3 148.7 400.7 665.6 850.5

0 50.2 180 484.3 766.7 918.3 53.5 259 669 912.5 986
5 53 162.4 447.2 730.2 886.7 52.6 227.4 592.2 876.1 972.1

Sc(dMC) 10 48.1 148.1 401.5 666.5 853.3 55.5 208.1 567.8 842.4 959.6
25 51.3 115.4 282.3 510.1 695.1 51.2 150.9 397.8 661.2 850.6

0 50.2 179.9 484 766.4 918.1 53 258.5 669 912.5 986
5 52.5 180.5 453 773.5 924.5 49.5 233.5 654.5 912.5 984.5

Sc(MA) 10 51 162 486.5 756 924 51 244 665.2 899 985.5
25 48.5 192 493 748.5 920.5 51 257 662.5 908 984

0 50.2 180 484.3 766.7 918.3 53.5 259 669 912.5 986
5 47 182.5 483 753.5 910.5 56 238.5 676.5 905.5 989.5

Sc(dMA) 10 41.5 172 483 759.8 921.3 53 253 651 905 985
25 45 177 475.5 775 909.5 58.5 236 679.5 911 978.5

m=30 0 49.5 170 490.5 788 932 53 258.5 689 920 991
5 51.8 173 455.6 735.1 904.9 53.4 229.6 612.9 889.6 977.2
10 51.1 157.6 412.7 695.2 868.1 52.3 226.1 581.5 857.6 968.4

Sc(MC) 25 52.9 123.1 298.8 521.7 718 53.9 161.2 424.6 686.1 866.7

0 49.5 170 490.5 788 932 53 258.5 689 920 991
5 51.8 166.5 455.9 739.7 904.9 53.4 229.7 613 889.6 977.2

Sc(dMC) 10 51.1 160.7 412.9 690.3 868.1 52.3 226.3 581.7 857.6 968.4
25 52.9 120.6 298.9 510.8 718.3 53.9 161.2 424.9 686.3 866.9

0 49.5 170 490.5 788 932 53 258.5 689 920 991
5 48 180 491 766.5 928 53.5 236.4 575.7 798.2 867.8

Sc(MA) 10 48.5 186.5 499 786.5 928.5 52 268.5 664 914.5 991
25 46.5 189.5 493 789.5 928 45 245.5 652.5 935 991

0 49.5 170 490.5 788 932 53 258.5 689 920 991
5 48 190 488.6 775.3 935.5 50.5 258.5 678.5 927.5 990

Sc(dMA) 10 60 185.5 498 790.5 935.5 54 259 651 905 985
25 56 183 484 785.5 918 51 264.5 668.5 920.5 988.5
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Table 5.7: 103× empirical levels: α=0.05;based on 10,000 replications for data
under MCAR and MAR

m=20 m=30
c c

Statistics %missing 0.05 0.25 0.50 0.05 0.25 0.50

n1 = n2 = n3 = 20 0 52.1 46.6 51.2 49.3 48.7 49.4
5 44.7 49.2 47.4 49.8 52.3 47.6
10 49.7 47.9 45.2 51.8 46.7 48.2

Sc(MC) 25 46.6 45.9 39.5 49.6 49.7 43.7
0 52.1 46.7 51.4 49.3 48.7 49.7
5 44.7 49.2 48 49.7 52.3 50.1

Sc(dMC) 10 49.7 47.9 45.8 51.8 46.7 46.3
25 46.6 46 40 49.6 49.7 43.5
0 52.1 46.6 51.2 49.3 48.7 49.4
5 48.5 48.5 45 52 47.5 46.5

Sc(MA) 10 51 49 51 51.5 56.5 47.5
25 51.5 51 55.5 45 49 50.5
0 52.1 46.7 51.4 49.3 48.7 49.7
5 45 43 45.5 55 52 50.5

Sc(dMA) 10 43.5 64.5 51.5 56 49 55.5
25 51 60 45 40.5 46.5 54

n1 = n2 = n3 = 30 0 46.5 55 47 48.5 50.5 46.5
5 46.6 53.4 48.6 50.5 54 49.1
10 49.4 49.9 47 48.5 50.4 50.8

Sc(MC) 25 46.2 48.5 47.7 51.5 46.7 48.8
0 46.5 55.5 47 48.5 50.5 47
5 48 53.4 48.9 50.5 54.1 49.1
10 49.3 50 49.5 48.5 50.5 51.2

Sc(dMC) 25 46.4 48.5 48.7 51.5 46.7 49.3
0 46.5 55 47 48.5 50.5 46.5
5 38.5 54 47 46.5 48.5 44.5

Sc(MA) 10 56 58 53 55 47.5 44.5
25 57 47 42.5 41.5 45 53.5
0 46.5 55.5 47 48.5 50.5 47
5 55 51 42 48.5 54 52

Sc(dMA) 10 49 49.5 51 54.5 50.5 60
25 47.5 51 58 52.5 56.5 51
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Table 5.8: 103× empirical power corresponding to nominal significance level
α=0.05; based on 10,000 replications for 3 groups (under MCAR and MAR) m1 =
m, m2 = m+ φ1, m3 = m+ φ2, δ1 = φ1/m, δ2 = φ2/m ; c=0.25

n1 = n2 = n3 = 20 n1 = n2 = n3 = 30
δ δ

Statistic %missing (0,0 ) (0,0.2) (0.2, 0.4) (0.4,0.6) (0.4,0.8) (0,0 ) (0,0.2) (0.2, 0.4) (0.4,0.6) (0.4,0.8)

m=20 0 46.6 168.9 365.6 669 859.4 55 249.5 543 856 968.5
5 49.2 156.9 323.9 588.3 790.4 53.4 201.6 452.9 760.7 921.7
10 47.9 135.6 281.2 497.9 707.1 49.9 196.6 406.2 710.1 884.8

Sc(MC) 25 45.9 86.9 156.2 272.4 411.8 48.5 113.7 214.7 408 584.6

0 46.7 169 365.7 669.1 860.9 55.5 249.5 543 856 968.5
5 49.2 156.9 324.1 588.5 790.4 53.4 201.7 453.1 760.8 921.8

Sc(dMC) 10 47.9 135.7 281.5 498.3 707.4 50 196.8 406.2 710.4 884.8
25 46 87.1 156.4 273.1 412 48.5 113.8 214.8 408.5 584.7

0 46.6 168.9 365.6 669 859.4 55 249.5 543 856 968.5
5 48.5 177.5 383.5 646.5 852 54 239.5 529 859.5 966.5

Sc(MA) 10 49 187 388 660.5 858 58 232 561.5 856 968
25 51 168 372.5 668 838 47 237.5 547.5 863.5 962.5

0 46.7 169 365.7 669.1 860.9 55.5 249.5 543 856 968.5
5 43 168.5 365.5 648.5 856 51 229 547.5 855.5 961.5

Sc(dMA) 10 64.5 175.5 370 661.5 864.5 49.5 260 534.5 848.5 969.5
25 60 177 365.5 661 861.5 51 259.5 546 860 961

m=30 0 48.5 193.5 395.5 689 875 50.5 248.5 555 872 964.5
5 52.3 163.4 340.4 610.4 802.7 54 221.4 473.7 791.9 932.2
10 46.7 137.2 286.7 519.5 717 50.4 205.4 427.2 733.8 903.9

Sc(MC) 25 49.7 91.4 163.5 283.6 434.3 46.7 120.6 235.1 425.2 612.1

0 48.5 194 396 689 875 50.5 248.5 555.5 872 964.5
5 52.3 163.6 340.5 611 803 54.1 221.4 473.7 792.2 932.2

Sc(dMC) 10 46.7 137.4 287.1 519.6 717.2 50.5 205.4 427.3 733.8 903.9
25 49.7 91.6 163.5 283.9 434.6 46.7 120.7 235.2 425.4 612.3

0 48.5 193.5 395.5 689 875 50.5 248.5 555 872 964.5
5 47.5 189.5 404 695.5 865.5 48.5 252.5 568.5 865.5 978.5

Sc(MA) 10 56.5 177 398 670 867.5 47.5 262.5 566 885 975
25 49 182.5 393 691.5 865.5 45 245.5 550.5 856.5 973

0 48.5 194 396 689 875 50.5 248.5 555.5 872 964.5
5 52 174 377 670.5 864.5 54 253 565 871.5 969

Sc(dMA) 10 49 173.5 381 696.5 864 50.5 259 579 870 965.5
25 46.5 186 399.5 684 857.5 56.5 266 559 867 966
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5.5 Conclusions from the simulation study

Results in table 5.1 show that both the score tests based on the maximum

likelihood estimates (Sc(ml)) and those based on the double extended quasi like-

lihood (Sc(deql)) hold level reasonably well irrespective of the value of the mean

parameter m (common m) and sample size (n1 = n2 = 10, 20, 50).

Table 5.2 show the empirical power of these two statistics for increasing m(m =

10, 20, 50) and increasing sample sizes (n1 = n2 = 10, 20, 50). A general conclusion

is that empirical power increases as sample size increases. Power increases as the

value of common m increases and also power increases as the difference between

two m′s increases.

Table 5.3 shows the empirical level of the score tests (Sc(MC), Sc(dMC)), (Sc(MA),

Sc(dMA)) for n1 = n2 = 20 , n1 = n2 = 30 and for common m = 20 and 30 for

percentage missing 0%, 5%, 10%, and 25%. The result in the table shows that

there is virtually no qualitative difference in the empirical levels irrespective of the

percentage missing, irrespective of the common m chosen, and irrespective of the

common n chosen.

Table 5.4 provides empirical power for two groups where common m = 20 and

30 and common n1 = n2 = 20 and n1 = n2 = 30. Again the general conclusion

is that as m increases (δ increases) power increases. This behaviour is consistent

irrespective of the common m (for example m = 20 and m = 30) or common n

(n1 = n2 = 20 and n1 = n2 = 30).

Same conclusion holds for table 5.5 where the number of population increases

from 2 to 3, where n1 = n2 = n3 = 10, 20, 50. Both the statistics (Sc(ml)) and

(Sc(deql)) hold the level reasonably well.

Table 5.6 shows the empirical power of these two statistics when population in-
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creases from 2 to 3. As in table 5.3, a general conclusion here is that the empirical

power increases with the increase in sample size and also the power increases when

the difference in m′s increases.

Table 5.7 shows the empirical level of the score tests (Sc(MC), Sc(dMC)), (Sc(MA),

Sc(dMA)) for n1 = n2 = n3 = 20 , n1 = n2 = n3 = 30 and for common m = 20

and 30 for percentage missing 0%, 5%, 10%, and 25%. Similar conclusions hold as

in table 5.3.

Table 5.8 provides empirical power for three groups with same parameters and sam-

ple sizes as in table 5.4 and again the general conclusion is that power increases

when the difference in m′s increases (δ increases). This is consistent irrespective

of common m (m = 20 and m = 30) or common n ( n1 = n2 = n3 = 20 and

n1 = n2 = n3 = 30).

Under MCAR, the power for both the statistics (Sc(MC) and Sc(dMC)) decreases

as the percentage missing increases. In general, Sc(MA) has better power than

Sc(MC) and Sc(dMA) has better power than that of Sc(dMC).
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5.5.1 Illustrative Examples

In this section we present the analysis of data sets collected and published by

researchers.

Example 1 (Toxicological data): Table 5.9 presents data on embryonic deaths

in mice in a control group and two treatment groups. These data have been ana-

lyzed by Barnwal and Paul (1988) which shows that the assumption of a common

dispersion parameter among the control group and the two treatment groups is

reasonable. Based on the assumption of common c, they showed that the means

for the treatment groups are not different from that of the control group. The

test statistic was based on the maximum likelihood estimates of m and c. Saha

(2008), showed that the estimates of m and c based on the double extended quasi

likelihood are 0.7667 and 0.5354, respectively. The C(α) statistic based on these

estimates is 3.021 (p-value =0.2208) which showed that the means of treatment

groups do not differ from that of the control group as in Barnwal and Paul (1988).

Table 5.10 shows the values of parameter estimates and the test statistics for

complete case and under various missing scenarios. The results show that both

statistics (Sc(ml), Sc(deql)) based on the maximum likelihood estimates and dou-

ble extended quasi-likelihood estimates respectively have the p-value > 0.05 for

all missing percentage (0 %, 10%, and 25 %) and under all missing data mecha-

nism (MCAR and MAR). This indicates that the means do not differ between the

treatment groups and control group. The conclusion is in agreement with those

achieved by Barnwal and Paul (1988) and Saha (2008).
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Table 5.9: Counts of embryonic deaths in a control group and two treatment
groups from Barnwal and Paul(1998)

Number of deaths Observed frequencies
Control group Dose level 1 Dose level 2

0 7 5 4
1 2 4 2
2 1 0 3
3 0 1 0
4 0 0 1

Table 5.10: Estimates of parameters m and c and score statistics using maximum
likelihood and double extended quasi-likelihood for data in table 5.9

Missing % Estimates of m and c and score statistics
m̂ml ĉml Sc(ml) p-value m̂deql ĉdeql Sc(deql) p-value

Complete Case 0% 0.7667 0.5439 3.0069 0.2224 0.7667 0.5354 3.0209 0.2208
MCAR 10% 0.7778 0.5038 1.8471 0.3970 0.8148 0.5275 3.3062 0.1915

25% 0.8333 0.7499 3.0154 0.2214 0.7917 0.6978 2.5088 0.2852
MAR 10% 0.7837 0.6222 2.8096 0.2454 0.8090 0.6569 2.6799 0.2618

25% 0.7253 0.9484 2.710 0.2579 0.7874 0.8287 2.5205 0.2836

Example 2 (Biological data): Table 5.11 presents the data on the total num-

ber of borers per hill in each plot for a control group and three treatment groups,

originally given and analyzed by Bliss and Fisher (1953). In a field experiment of

insect pests on the corn borer, four treatments were arranged in 15 randomized

blocks. In each plot, eight hills of corn were selected randomly and the borers per

hill were recorded at the end of season. Saha (2008) showed that the value of C(α)

statistic for testing the assumption of a common dispersion among the groups is

7.5303 (p-value = 0.0568) and the assumption of common c is reasonable. For

the data in table 5.11, the values of parameter estimates and the test statistics

for complete case and under various missing scenario are given in table 5.12. The

results show that both statistics (Sc(ml), Sc(deql)) based on the maximum likeli-

hood estimates and double extended quasi-likelihood estimates respectively have

the p-value < 0.05 for all missing percentage (0 %, 5%,10%, and 25 %) and under
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all missing data mechanisms (MCAR and MAR). This indicates that the means

differ among the groups. Saha (2008) showed that the C(deql) statistic for testing

equality of means across groups is 68.2764 (p-value =9.9 × 10−15) indicating the

difference in means among the groups. Our results for the complete case are in

agreement with those achieved by Saha.

Table 5.11: Distribution of corn borers in a field experiment arranged in 15
randomized blocks from Bliss and Fisher (1953)

Borers per hill Observations for
Control (C) Treatment 1 (T1) Treatment 2 (T2) Treatment 3 (T3)

0 19 24 43 47
1 12 16 35 23
2 18 16 17 27
3 18 18 11 9
4 11 15 5 7
5 12 9 4 3
6 7 6 1 1
7 8 5 2 1
8 4 3 2
9 4 4
10 1 3 1
11 1
12 1 1
13 1
15 1
17 1
19 1
26 1

Table 5.12: Estimates of parameters m and c and score statistics using maximum
likelihood and double extended quasi-likelihood for data in table 5.11

Missing % Estimates of m and c and score statistics
m̂ml ĉml Sc(ml) p-value m̂deql ĉdeql Sc(deql) p-value

CC 0% 2.5479 0.9239 67.4487 1.5× 10−15 2.5479 0.9080 68.2764 9.9× 10−15

MCAR 5% 2.5482 0.9708 64.0609 8.0× 10−14 2.5614 0.9274 68.7422 7.8× 10−15

10% 2.5602 0.9579 60.1439 5.5× 10−13 2.5671 0.8235 55.9171 4.4× 10−12

25% 2.4722 0.9892 52.5694 2.3× 10−11 2.6028 0.9410 56.1262 3.9× 10−12

MAR 5% 2.5467 0.9761 64.9284 5.2× 10−14 2.5451 0.9603 65.7590 3.5× 10−14

10% 2.5593 0.9715 64.6061 6.1× 10−14 2.5571 0.9504 65.7172 3.5× 10−14

25% 2.4931 1.0165 65.5773 3.8× 10−14 2.4852 0.9884 67.3212 1.5× 10−14



Chapter 6

Summary and Plan for Future

Research

6.1 Summary

One-way layout of count data often arises in practice. Poison models are widely

used in the regression analysis of count data. Poisson model has strong assumption

that the mean and variance are equal however in practice count data often exhibit

extra-Poisson variation. Among several distributions available in literature, one

very convenient and common model to accommodate this extra dispersion is the

two parameter negative binomial distribution. For the over/under dispersed count

data in one way layout, one may be interested in testing the equality of means of

two or more groups.

In chapter 3 we study the two C(α) statistics, Sc(ml) and Sc(mm) recom-

mended by Barnwal and Paul (1988). We studied, through the simulation studies,

the performance of the test statistics based on small, moderate and large sample

sizes. Performance of the test procedure were compared in terms of size and power.

71
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Both the statistics maintain the significance level well, however the power of Sc(ml)

is always higher than those for the Sc(mm). Thus, Sc(ml) is recommended.

In chapter 4, we studied the performance of the C(α) statistics based on the

semi-parametric models quasi-likelihood, extended quasi-likelihood, and double

extended quasi-likelihood, namely, Sc(ql), Sc(eql) and Sc(deql) in terms of size

and power. For small to moderate sample sizes, Sc(ql) has lower levels compared

to the other two statistics. However, for large sample size it maintains the level

well and close to other two statistics. The power performance of the statistics

Sc(deql) is higher than the other two statistics in almost all data situations. Thus

based on our simulation study Sc(deql) is recommended.

In chapter 5, through the simulation studies, we studied the effect of miss-

ingness on the C(α) statistic based on maximum likelihood and double extended

quasi-likelihood.

6.2 Future Research

6.2.1 Effect of Missing Data on the Score Test of Inter-

action in Two-Way Layout of Count Data Involving

Multiple Counts in Each Cell

Standard contingency tables involving fixed factors can be analyzed using log-

linear models (e.g., Agresti 1990; Bishop, Fienberg, and Holland 1975; Plack-

ett 1981) or score tests under a Poisson assumption. When multiple counts in

each cell occur, particularly when the data are unbalanced such standard analyses

will provide misleading conclusions. For the balanced two-way layout of Poisson-

distributed data involving two fixed factors, Thall (1992) developed score tests for
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interaction and main effects that have simple forms. Thall (1992) also developed

score tests for the main effects for the balanced two-way layout when one factor

is fixed and the other is random. In future research I plan to study how the per-

formance of the score tests developed by Thall (1992) are affected when some of

the data in some cells are missing. Here I give a review of the work done by Thall

(1992) and provide a plan of research to be done on this topic.

6.2.2 Score Test for Interaction

Let Yijk denote the kth response in the (ij)th cell, i = 1, 2, . . . , a, j = 1, 2, . . . , b, k =

1, 2, . . . , n. The interaction model for the mean is given by

µij = αiβj(τ + φij) (6.2.1)

with αa = βb = 1 and φib = φaj = 0 for all i and j. The hypothesis of

no interaction is H0 : φ = 0. The vector of interaction parameter is φ =

(φ1,1, . . . , φ1,b−1, . . . , φa−1,1, . . . , φa−1,b−1)′ with dimension (a − 1)(b − 1) and the

vector of nuisance parameter is θ = (α′, β′, τ)′ = (α1, . . . , αa−1, β1, . . . , βb−1, τ)′

with dimension (a + b − 1). The log-likelihood for testing the interaction when

Yijk ∼ Poisson(µij), apart from a constant independent of the parameters,takes

the form,

l1 =
a−1∑
i=1

Yi..log(αi) +
b−1∑
j=1

Y.j.log(βj) +
a−1∑
i=1

b−1∑
j=1

Yij.log(τ + φij)

+(Ya.. + Y.b. − Yab.)log(τ)− n{τ + α.τ + β.τ +
∑a−1

i=1

∑b−1
j=1 αiβj(τ + φij)}

(6.2.2)

where, Yi.. =
b∑

j=1

n∑
k=1

Yijk, Y.j. =
a∑
i=1

n∑
k=1

Yijk, Yij. =
n∑
k=1

Yijk α. =
a−1∑
i=1

αi and

β. =
∑b−1

j=1 βj. Under null hypothesis µij = αiβjτ . The log-likelihood under the
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hypothesis of no interaction is,

l0 =
a−1∑
i=1

Yi..log(αi) +
b−1∑
j=1

Y.j.log(βj) + Y...log(τ)− nτ{(α. + 1)(β. + 1)}. (6.2.3)

In order to compute TC(α), the quantities ψ = ∂l1
∂φ
|φ=0, F = E(− ∂2l1

∂φ∂φ′
|φ=0), C =

E(− ∂2l1
∂φ∂θ′

|φ=0) and D = E(− ∂2l1
∂θ∂θ′
|φ=0) are required. Using the maximum likeli-

hood estimates θ̂ of θ under the null hypothesis, in ψ,F ,C, and D, then the score

test for interaction is given by

TC(α) = ψ̂′(F̂ − ĈD̂
−1
Ĉ ′)

−1

ψ̂.

The maximum likelihood estimates of θ under H0 are α̂i = Yi../Ya.., β̂j = Y.j./Y.b.

and τ̂ = Ya..Y.b./nY... so that µ̂ij = Yi..Y.j./nY... = Ȳi..Ȳ.j./Ȳ.... For Poisson observa-

tions in the a× b layout with n observations per cell, the C(α) test statistic for the

hypothesis of no multiplicative interaction computed using the MLE of θ under

the null hypothesis as given by Thall (1992) is

TC(α)(A×B) =
a∑
i=1

b∑
j=1

(Yij.Y... − Yi..Y.j.)2

Yi..Y.j.Y...
(6.2.4)

which, asymptotically, as n→∞, has a chi-squared distribution with (a−1)(b−1)

df. The test statistic can be expressed in simple equivalent form as

TC(α)(A×B) = n
a∑
i=1

b∑
j=1

(Ȳij. − µ̂ij)
2

µ̂ij
(6.2.5)
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6.2.3 Estimation of parameters with missing responses

We asssume Yijk ∼ Poisson (µij) which has probability mass function

P (Yijk = yijk|µij) =
e−µijµij

yijk

(yijk)!
, (6.2.6)

where µij is the mean parameter. The mean and variance of the Poisson distribu-

tion are equal and is µij. The interaction model for the mean is given by 6.2.1.

Under null hypothesis µij = αiβjτ . Under MCAR, the cases with missing values

are deleted before analysis. For MAR, the response yijk can be expressed as

yijk =


yo,ijk if yijk is observed,

ym,ijk if yijk is missing.

(6.2.7)

6.2.3.1 Maximum likelihood estimation under MAR

Since some of the responses are considered missing, let Yo represent the observed

values and Ym represent the missing values. We are interested in studying the

effect of missing values on the score test of interaction, thus our purpose is to

maximize the following log-likelihood under the null hypothesis of no interaction,

with respect to the parameter, θ = (α′, β′, τ)′

l0(θ|Yo) =
∑
Ym

l0(θ|Yo, Ym). (6.2.8)

The E-step of EM algorithm gives the conditional expectation of the log-likelihood

given the observed data Yo and current parameter estimates. The E-step for (ijk)th
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missing response for the (s+ 1)th iteration is given as,

Qijk(θ|θ(s)) = E
[
lijk(θ

(s)|yo,ijk, ym,ijk)|yo,ijk, θ(s)
]

=
∑

ym,ijk
lijk(θ

(s)|yo,ijk, ym,ijk)P (ym,ijk|yo,ijk, θ(s)).
(6.2.9)

For all the observations, the E-step of the EM algorithm for the (s+ 1)th iteration

is

Q(θ|θ(s)) =
O∑

ijk=1

lijk(θ
(s)|yo,ijk)

+
M∑

ijk=1

∑
ym,ijk

lijk(θ
(s)|yo,ijk, ym,ijk)P (ym,ijk|yo,ijk, θ(s)),

(6.2.10)

where O and M represent the number of observed and missing responses respec-

tively. Here P (ym,ijk|yo,ijk, θ(s)) is the conditional distribution of the missing re-

sponse given the observed data and the current (sth) iteration estimate of θ.

Following Ibrahim et. al (2001) we have P (ym,ijk|yo,ijk, θ(s)) ∝ P (yijk|θ(s)). For

each (ijk)th missing responses we generate samples aijk,1, aijk,2, ..., aijk,mijk
, from

P (yijk|θ(s)) using Gibbs sampler. Then following Ibrahim et. al (2001), Q(θ|θ(s))

can be written as

Q(θ|θ(s)) =
O∑

ijk=1

lij(θ
(s)|yo,ijk) +

M∑
ijk=1

1

mijk

mijk∑
r=1

lijk(θ
(s)|aijk,r). (6.2.11)

In the M-step of EM algorithm, the Q(θ|θ(s)) is maximized which is analogous to

maximization of complete data log-likelihood where each incomplete observation

is replaced by mijk weighted observations.

In my future study I will investigate the properties of estimators θ = (α′, β′, τ)′

by Monte Carlo simulation studies and extend this theory to the two-way layout
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of count data involving multiple counts in each cell (Paul and Banerjee, 1998).



Appendices

A Derivation of C(ml)

The log-likelihood in terms of reparameterization of mi = m + δi and ci = c,

apart form some constant terms, can be written as

l =
K∑
i=1

ni∑
j=1

[
yijln(m+ δi)−

(
yij + 1

c

)
ln(1 + cm+ cδi)

+

yij∑
l=1

log{1 + c(l − 1)}
]
.

(A.1)

Now, define δ = (δ1, ..., δK−1) and ν = (ν1, ν2)
′
= (m, c)

′
. Then,

φi = ∂l
∂δi

∣∣∣
δ=0

=

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

.

=

ni∑
j=1

yij −m
m(1 + cm)

= ni(ȳi.−m)
m(1+cm)

,

(A.2)
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η1 = ∂l
∂ν1

∣∣∣
δ=0

= ∂l
∂m

∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

.

=
K∑
i=1

ni∑
j=1

yij −m
m(1 + cm)

=
K∑
i=1

ni(ȳi. −m)

m(1 + cm)
,

(A.3)

η2 = ∂l
∂ν2

∣∣∣
δ=0

= ∂l
∂c

∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

[−(yij + c−1)m

(1 + cm+ cδi)
+ ln(1 + cm+ cδi)c

−2 +

yij∑
l=1

l − 1

(1 + c(l − 1))

]∣∣∣
δ=0

.

= −
K∑
i=1

ni∑
j=1

myij
1 + cm

−
K∑
i=1

ni∑
j=1

m

c(1 + cm)
+

K∑
i=1

ni∑
j=1

ln(1 + cm)

c2

+
K∑
i=1

ni∑
j=1

yij∑
l=1

1/c{1 + c(l − 1)} − 1/c

1 + c(l − 1)

=
K∑
i=1

ni∑
j=1

[ ln(1 + cm)

c2
−

yij−1∑
r=0

1

c(1 + cr)

]

(A.4)

∆st = E
(
− ∂2l
∂δs∂δt

∣∣∣
δ=0

)
(A.5)

∂l
∂δs

=
ns∑
j=1

[ yij
(m+ δs)

− (yij + c−1)c

(1 + cm+ cδs)

]

∂2l
∂δs

2 =
ns∑
j=1

[
− yij

(m+ δs)2
+

(1 + cyij)c

(1 + cm+ cδs)2

]
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∂2l
∂δs

2

∣∣∣
δ=0

=
ns∑
j=1

[
− yij
m2

+
(1 + cyij)c

(1 + cm)2

]

E
(
− ∂2l
∂δs

2

∣∣∣
δ=0

)
= ns/m(1 + cm) (A.6)

And,

E
(
− ∂2l
∂δsδt

∣∣∣
δ=0

)
= 0 (A.7)

Γst = E
(
− ∂2l
∂δs∂νt

∣∣∣
δ=0

)
(A.8)

∂2l
∂δs∂ν1

=
ns∑
j=1

[
− yij

(m+ δs)2
+

(1 + cyij)c

(1 + cm+ cδs)2

]

E
(
− ∂2l
∂δs∂ν1

∣∣∣
δ=0

)
= ns/m(1 + cm) (A.9)

∂2l
∂δs∂ν2

= −
ns∑
j=1

[(1 + cm+ cδs)yij − (1 + cyij)(m+ δs)

(1 + cm+ cδs)2

]

E
(
− ∂2l
∂δs∂ν2

∣∣∣
δ=0

)
= 0 (A.10)

γst = E
(
− ∂2l
∂νs∂νt

∣∣∣
δ=0

)
(A.11)
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γ11 = E
(
− ∂2l
∂m2

∣∣∣
δ=0

)

∂l
∂m

=
K∑
i=1

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]

∂2l
∂m2 =

K∑
i=1

ni∑
j=1

[
− yij

(m+ δi)2
+

(1 + cyij)c

(1 + cm+ cδi)2

]

∴ γ11 = E
(
− ∂2l
∂m2

∣∣∣
δ=0

)
= n

m(1+cm)

γ12 = E
(
− ∂2l
∂m∂c

∣∣∣
δ=0

)

∂2l
∂m∂c

= −
K∑
i=1

ni∑
j=1

[(1 + cm+ cδi)yij − (1 + cyij)(m+ δi)

(1 + cm+ cδi)2

]

∴ γ12 = E
(
− ∂2l
∂m∂c

∣∣∣
δ=0

)
= 0

γ22 = E
(
− ∂2l
∂c2

∣∣∣
δ=0

)
= b(say)
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The C(α) test is based on λi(ν̂) = φi(ν̂)−β1iη1(ν̂)−β2iη2(ν̂), where β1i and β2i are,

respectively, the partial regression coefficient of δi on η1 and δi on η2. The regres-

sion coefficients β = (β1, β2) with β1 = (β11, ..., β1K−1) and β2 = (β21, ..., β2K−1)

are obtained as Γγ−1.

Γγ−1 =



n1

m(1+cm)
0

n2

m(1+cm)
0

...
...

n(k−1)

m(1+cm)
0


m(1+cm)

n
0

0 1
b

 =



n1

n
0

n2

n
0

...
...

n(k−1)

n
0


(A.12)

β1i = ni

n
and β2i = 0 for i = 1, 2, ..., K − 1. Substituting the values of β′ijs from

(A.12) in λi , we get,

λi(ν̂) = φi(ν̂)− β1iη1(ν̂) (A.13)

The variance-covariance of Λ(ν) = [λ1(ν), ..., λK−1(ν)]
′

is

V = ∆− Γγ−1Γ
′

Define,

di =
ni

m(1 + cm)
, for i =1,2, ...K

and a vector

d′ = (d1, d2, · · · , dK−1) (A.14)

Then , we get,

V = Diag(d)− dd′

1′d+ dK

V −1 = Diag(1/d1, 1/d2, · · · , 1/dK−1) +
11′

dK
(A.15)
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The C(α) statistic is obtained as Λ
′
(∆− Γγ−1Γ

′
)
−1

Λ, which is approximately dis-

tributed as a chi-square distribution with K-1 degrees of freedom.For K=4 we

have,

C(ml) =

[
Λ1 Λ2 Λ3

]
1
d1

+ 1
d4

1
d4

1
d4

1
d4

1
d2

+ 1
d4

1
d4

1
d4

1
d4

1
d3

+ 1
d4




Λ1

Λ2

Λ3

 (A.16)

=
Λ1

2

d1

+
Λ2

2

d2

+
Λ3

2

d3

+
Λ1

2

d4

+
Λ2

2

d4

+
Λ3

2

d4

+
2Λ1Λ2

d4

+
2Λ1Λ3

d4

+
2Λ2Λ3

d4

C(ml) =
3∑
i=1

Λi
2

di
+

(
∑3

i=1 Λi)
2

d4

(A.17)

Hence we have,

C(ml) =
K−1∑
i=1

Λi
2

di
+

(
∑K−1

i=1 Λi)
2

dK
(A.18)

From (A.2) define,

φk =
nK(ȳk. −m)

m(1 + cm)

And from (A.12) define,

βk =
nk
n

Then from (A.2), (A.3) and (A.13) we get,

K−1∑
i=1

Λi =
K−1∑
i=1

φi − η1

K−1∑
i=1

Λiβi1

= −(φk − βk1η1)

= −Λk

(A.19)
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From (B.18) and (B.19) we get,

C(ml) =
K∑
i=1

Λi
2

di
. (A.20)

Replacing m̂ by the maximum likelihood estimate , from (B.3) we get,

η1 =
K∑
i=1

ni(ȳi. −m)

m(1 + cm)
= 0

This gives,

Λi(ν̂) = φi(ν̂) (A.21)

Hence from (A.20) and (A.21) after some algebra we get,

C(ml) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ĉ)
(A.22)

B Derivation of C(ql)

After reparameterizingmi underH1, the quasi-log-likelihood for the parameters

δ1, δ2, · · · , δK−1,m and c is,

Q =
K∑
i=1

ni∑
j=1

[
(yij + c−1)ln

(
1+cyij

1+c(m+δi)

)
− yijln

(
yij
m+δi

)]
=

K∑
i=1

ni∑
j=1

[
(yij + c−1) ln(1 + cyij)− (yij + c−1)ln(1 + cm+ δi)

−yijlnyij + yijln(m+ δi)
]

(B.1)
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Given c the unbiased estimating functions for the parameters δ1, δ2, · · · , δK−1 is,

Ui =
∂Q

∂δi

Ui = ∂Q
∂δi

∣∣∣
δ=0

=

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

.

=

ni∑
j=1

yij −m
m(1 + cm)

= ni(ȳi.−m)
m(1+cm)

,

(B.2)

V1(δi,m, c) =
∂Q

∂m

∂Q
∂m

∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

=
K∑
i=1

ni(ȳi. −m)

m(1 + cm)

(B.3)

∂2Q
∂δi

2

∣∣∣
δ=0

=

ni∑
j=1

[
− yij

(m+ δi)2
+

(1 + cyij)c

(1 + cm+ cδi)2

]∣∣∣
δ=0

E
(
−∂2Q
∂δi

2

∣∣∣
δ=0

)
= ni/m(1 + cm) for i=j=1,2,...,K-1 (B.4)

And,

E
(
− ∂2Q
∂δi∂δj

∣∣∣
δ=0

)
= 0 otherwise. (B.5)
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Γij = E
(
− ∂2Q
∂δi∂νj

∣∣∣
δ=0

)
= E

(
− ∂2Q
∂δi∂m

∣∣∣
δ=0

)
for j=1

(B.6)

∂2Q
∂δiν1

∣∣∣
δ=0

=

ni∑
j=1

[
− yij

(m+ δi)2
+

(1 + cyij)c

(1 + cm+ cδi)2

]∣∣∣
δ=0

∴ E
(
− ∂2Q
∂δi∂ν1

∣∣∣
δ=0

)
= ni/m(1 + cm) (B.7)

∂2Q
∂δiν2

∣∣∣
δ=0

= −
ni∑
j=1

[(1 + cm+ cδi)yij − (1 + cyij)(m+ δi)

(1 + cm+ cδi)2

]∣∣∣
δ=0

∴ E
(
− ∂2Q
∂δiν2

∣∣∣
δ=0

)
= 0 (B.8)

γij = E
(
− ∂2Q
∂νi∂νj

∣∣∣
δ=0

)
(B.9)

∂2Q
∂m2

∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

[
− yij

(m+ δi)2
+

(1 + cyij)c

(1 + cm+ cδi)2

]∣∣∣
δ=0

∴ γ11 = E
(
− ∂2Q
∂m2

∣∣∣
δ=0

)
= n

m(1+cm)

γ12 = E
(
− ∂2l
∂m∂c

∣∣∣
δ=0

)
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∂2Q
∂m∂c

∣∣∣
δ=0

= −
K∑
i=1

ni∑
j=1

[(1 + cm+ cδi)yij − (1 + cyij)(m+ δi)

(1 + cm+ cδi)2

]∣∣∣
δ=0

γ12 = E
(
− ∂2Q
∂m∂c

∣∣∣
δ=0

)
= 0

γ22 = E
(
−∂2Q

∂c2

∣∣∣
δ=0

)
= b(say)

The C(α) test is based on λi(ν̂) = Ui(ν̂)−β1iV1(ν̂)−β2iV2(ν̂), where β1i and β2i are,

respectively, the partial regression coefficient of δi on V1 and δi on V2.The regression

coefficients β = (β1, β2) with β1 = (β11, ..., β1K−1) and β2 = (β21, ..., β2K−1) are

obtained as Γγ−1. Following the procedure above in appendix A, the C(α)statistic

based on the Quasi-likelihood , C(ql) is obtained as,

C(ql) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ ˆcmm)
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C Derivation of C(eql)

Using the the parameters δ1, δ2, · · · , δK−1,m and c, the modified extended quasi-

likelihood, apart from a constant term is,

Q+∗ =
K∑
i=1

ni∑
j=1

[1

2
ln{1 + cyij + c

6
} − 1

2
ln{(yij + 1

6
)(1 + cyij)

2(1 + c
6
)}+ (yij + 1

c
)ln
( 1+cyij

1+c(m+δi)

)
−yijln

( yij
m+δi

))]
=

K∑
i=1

ni∑
j=1

[1

2
ln{1 + cyij + c

6
} − 1

2
ln(yij + 1

6
)−ln(1 + cyij)−ln

(
1 + c

6

)
+
(
yij + c−1

)
ln(1 + cyij)−

(
yij + c−1

)
ln(1 + cm+ cδi)− yijlnyij + yijln(m+ δi)

]

φi = ∂Q+∗

∂δi

∣∣∣
δ=0

=

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

=

ni∑
j=1

yij −m
m(1 + cm)

= ni(ȳi.−m)
m(1+cm)

,

(C.1)

η1 = ∂Q+∗

∂ν1

∣∣∣
δ=0

= ∂Q+∗

∂m

∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

=
K∑
i=1

ni∑
j=1

yij −m
m(1 + cm)

=
K∑
i=1

ni(ȳi. −m)

m(1 + cm)
,

(C.2)
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η2 = ∂Q+∗

∂ν2

∣∣∣
δ=0

= ∂Q+∗

∂c
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δ=0

=
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ni∑
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2(1 + cyij + c/6)
− yij

(1 + cyij)
− 1/6

2(1 + c/6)

+
yij(yij+1/c)

(1+cyij)
− c−2ln(1 + cyij)− (yij+c−1)(m+δi)

1+cm+cδi
+ c−2ln(1 + cm+ cδi)

]∣∣∣
δ=0

=
K∑
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ni∑
j=1

[ (1 + 6yij)

2(6 + 6cyij + c)
− yij

(1 + cyij)
− 1

2(c+ 6)
+
yij
c
− ln(1 + cyij)

c2

−m(1+cyij)

c(1+cm)
+ ln(1+cm)

c2

]
=

K∑
i=1

ni∑
j=1

[ yij −m
c(1 + cm)

+ c−2ln
(

1+cm
1+cyij

)
+

1+6yij
2(c+6+6cyij)

− yij
1+cyij

− 1
2(c+6)

]

(C.3)

∂Q+∗

∂δs

∣∣∣
δ=0

=
ns∑
j=1

[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]∣∣∣
δ=0

(C.4)

∂2Q+∗

∂δs
2

∣∣∣
δ=0

=
ns∑
j=1

[
− yij

(m+ δi)2
+

(1 + cyij)c

(1 + cm+ cδs)2

]∣∣∣
δ=0

E
(
−∂2Q+∗

∂δs
2

∣∣∣
δ=0

)
= ns/m(1 + cm) for s=t=1,2,...,K-1 (C.5)

And,

E
(
−∂2Q+∗

∂δs∂δt

∣∣∣
δ=0

)
= 0 otherwise. (C.6)

Γst = E
(
−∂2Q+∗

∂δs∂νt

∣∣∣
δ=0

)
(C.7)
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∂2Q+∗

∂δs∂ν1
=

ns∑
j=1

[
− yij

(m+ δs)2
+

(1 + cyij)c

(1 + cm+ cδs)2

]

E
(
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δ=0

)
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∂2Q+∗

∂δs∂ν2
=

ns∑
j=1

[(1 + cm+ cδi)yij − (1 + cyij)(m+ δi)

(1 + cm+ cδi)2

]

E
(
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δ=0

)
= 0 (C.9)

γst = E
(
−∂2Q+∗

∂νs∂νt
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δ=0
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(C.10)

γ11 = E
(
−∂2Q+∗

∂m2

∣∣∣
δ=0

)

∂Q+∗

∂m
=

K∑
i=1

ni∑
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[ yij
(m+ δi)

− (yij + c−1)c

(1 + cm+ cδi)

]

∂2Q+∗

∂m2 =
K∑
i=1

ni∑
j=1

[
− yij

(m+ δi)2
+

(1 + cyij)c
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∴ γ11 = E
(
−∂2Q+∗

∂m2

∣∣∣
δ=0

)
= n

m(1+cm)

γ12 = E
(
−∂2Q+∗
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The C(α) test is based on λi(ν̂) = φi(ν̂)−β1iη1(ν̂)−β2iη2(ν̂), where β1i and β2i are,

respectively, the partial regression coefficient of δi on η1 and δi on η2.The regression

coefficients β = (β1, β2) with β1 = (β11, ..., β1K−1) and β2 = (β21, ..., β2K−1) are

obtained as Γγ−1. Following the procedure above in appendix A, the C(α)statistic

based on the Extended Quasi-likelihood , Sc(eql) is obtained as,

Sc(eql) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ ˆceql)

where ĉeql is the maximum extended quasi-likelihood estimate of c, under H0 ,

obtained by solving
K∑
i=1

ni∑
j=1

[ yij − m̂
c(1 + cm̂)

+ c−2ln
(

1+cm̂
1+cyij

)
+

1+6yij
2(c+6+6cyij)

− yij
1+cyij

]
= n

2(c+6)
.
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D Derivation of C(deql)

The double extended quasi-likelihood excluding constant term, using the repa-

rameterization of mi under H1, can be written as

pv
∗(DEQ) =

K∑
i=1

ni∑
j=1

[
yijln(m+ δi) +
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− 1
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] (D.1)

Now, define δ = (δ1, ..., δK−1) and ν = (ν1, ν2)
′
= (m, c)

′
. Then,
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∆st = E
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∂2pv∗(DEQ)
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The C(α) test is based on λi(ν̂) = φi(ν̂)−β1iη1(ν̂)−β2iη2(ν̂), where β1i and β2i are,

respectively, the partial regression coefficient of δi on η1 and δi on η2.The regression

coefficients β = (β1, β2) with β1 = (β11, ..., β1K−1) and β2 = (β21, ..., β2K−1) are

obtained as Γγ−1. Following the procedure above in appendix A, the C(α)statistic

based on the Double Extended Quasi-likelihood , Sc(deql) is obtained as,

Sc(deql) =
K∑
i=1

ni(ȳi. − m̂)2

m̂(1 + m̂ ˆcdeql)

where ĉdeql is the maximum double extended quasi-likelihood estimate of c, under

H0 , obtained by solving
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Böhning, D., Dietz, E., Schlattmann, P., Mendonca, L., & Kirchner, U.

(1999). The zero-inflated Poisson model and the decayed, missing and filled

teeth index in dental epidemiology. Journal of the Royal Statistical Society:

Series A (Statistics in Society), 162 (2), 195-209.

Breslow, N. E. (1984). Extra-Poisson variation in log-linear models. Jour-

nal of the Royal Statistical Society: Series C (Applied Statistics), 33 (1), 38-44.

Buck, S.F. (1960). A method of estimation of missing values in multi-

variate data suitable for use with an electronic computer. Journal of the Royal

Statistical Society, Series B, 22 (2), 302-306.

Casella, G., & George, E.I. (1992). Explaining the Gibbs sampler. The

American Statistician, 46 (3), 167-174.

Chen, J., Hubbard, S., & Rubin, Y. (2001). Estimating the hydraulic

conductivity at the south oyster site from geophysical tomographic data using

Bayesian techniques based on the normal linear regression model. Water

Resources Research, 37 (6), 1603-1613.

Collings, B. J., & Margolin, B. H. (1985). Testing goodness of fit for the

Poisson assumption when observations are not identically distributed. Journal

of the American Statistical Association, 80 (390), 411-418.



98

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum like-

lihood from incomplete data via the em algorithm. Journal of the Royal

Statistical Society: Series B (Methodological), 39 (1), 1-22.

Deng, D., & Paul, S. R. (2000). Score tests for zero-inflation in general-

ized linear models. The Canadian Journal of Statistics, 28 (3), 563-570.

Deng, D., & Paul, S. R. (2005). Score tests for zero-inflation and over-

dispersion in generalized linear models. Statistica Sinica, 15, 257-276.

Efron, B., & Hinkley, D. V. (1978). Assessing the accuracy of the max-

imum likelihood estimator: Observed versus expected fisher information.

Biometrika, 65 (3), 457-483.

Engel, J. (1984). Models for response data showing extra-Poisson varia-

tion. Statistica Neerlandica, 38 (3), 159-167.

Geweke, J. (1986). Exact inference in the inequality constrained normal

linear regression model. Journal of Applied econometrics, 1 (2), 127-141.

Hutto, R.L., Pletschet, S.M., & Hendricks, P. (1986). A fixed-radius point count

method for nonbreeding and breeding season use. The Auk, 103 (3), 593-602.

Ibrahim, J. G. (1990). Incomplete data in generalized linear models. Journal of

the American Statistical Association, 85 (411), 765-769.



99

Ibrahim, J. G., Chen, M.-H., & Lipsitz, S. R. (1999). Monte Carlo EM

for missing covariates in parametric regression models. Biometrics, 55 (2),

591-596.

Ibrahim, J. G., Chen, M.-H., & Lipsitz, S. R. (2001). Missing responses

in generalised linear mixed models when the missing data mechanism is

nonignorable. Biometrika, 88 (2), 551-564.

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R., & Herring, A. H. (2005).

Missing-data methods for generalized linear models: A comparative review.

Journal of the American Statistical Association, 100 (469), 332-346.

Ibrahim, J. G. & Lipsitz, S. R. (1996). Parameter estimation from in-

complete data in binomial regression when the missing data mechanism is

nonignorable. Biometrics, 1071-1078.

Kelly, B. C. (2007). Some aspects of measurement error in linear regres-

sion of astronomical data. The Astrophysical Journal, 665 (2), 1489.

Lawless, J. F. (1987). Negative binomial and mixed Poisson regression.

The Canadian Journal of Statistics, 15 (3), 209-225.

Lee, Y., & Nelder, J. A. (2001). Hierarchical generalised linear models: a

synthesis of generalised linear models, random-effect models and structured

dispersions. Biometrika, 88 (4), 987-1006.



100

Lipsitz, S. R., & Ibrahim, J. G. (1996). A conditional model for incom-

plete covariates in parametric regression models. Biometrika, 83 (4), 916-922.

Little, R. J., & Rubin, D. B. (1987, 2002, 2014, 2020). Statistical analy-

sis with missing data. John Wiley & Sons.

Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, E. W. G. (2014).

On the joys of missing data. Journal of pediatric psychology, 39 (2), 151-162.

Luo, R., & Paul, S. (2018). Estimation for zero-inflated beta-binomial re-

gression model with missing response data. Statistics in Medicine, 37 (26),

3789-3813.

Maiti, T., & Pradhan, V. (2009). Bias reduction and a solution for sep-

aration of logistic regression with missing covariates. Biometrics, 65 (4),

1262-1269.

Margolin, B. H., Kaplan, N., & Zeiger, E. (1981). Statistical analysis of

the Ames Salmonella microsome test. Proceedings of the National Academy of

Sciences, 78 (6), 3779-3783.

McCaughran, D. A., & Arnold, D. W. (1976). Statistical models for numbers

of implantation sites and embryonic deaths in mice. Toxicology and Applied

Pharmacology, 38 (2), 325-333.



101

Mian, R., & Paul, S. (2016). Estimation for zero-inflated over-dispersed

count data model with missing response. Statistics in medicine, 35 (30),

5603-5624.

Nakai, M., & Ke, W. (2011). Review of the methods for handling miss-

ing data in longitudinal data analysis. International Journal of Mathematical

Analysis, 5 (1), 1-13.

Nelder, J. A., & Pregibon, D. (1987). An extended quasi-likelihood func-

tion. Biometrika, 74 (2), 221-232.

Neyman, J. (1959). Optimal asymptotic tests of composite hypotheses.

Probability and statsitics, 213-234.

Paul, S., & Banerjee, T. (1998). Analysis of two-way layout of count

data involving multiple counts in each cell. Journal of the American Statistical

Association, 93 (444), 1419-1429.

Paul, S., & Plackett, R. (1978). Inference sensitivity for Poisson mix-

tures. Biometrika, 65 (3), 591-602.

Paul, S., & Saha, K.K. (2007). The generalized linear model and extension:

a review and some biological and environmental applications.Environmetrics,

18 (4), 421-443.

Paul, S. R.,& Deng, D. (2000). Goodness of fit of generalized linear models



102

to sparse data. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 62 (2), 323-333.

Piegorsch, W. W. (1990). Maximum likelihood estimation for the nega-

tive binomial dispersion parameter. Biometrics, 863-867.

Plackett, R. L. (1981). The analysis of Categorical Data. London:Griffin.

Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model

averaging for linear regression models. Journal of the American Statistical

Association, 92 (437), 179-191.

Rao, C. R. (1948). Large sample tests of statistical hypotheses concern-

ing several parameters with applications to problems of estimation. In

Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57.

Cambridge University Press.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581-

592.

Saha, K. K. (2008). Analysis of one-way layout of count data in the presence of

over or under dispersion. Journal of statistical planning and inference, 138 (7),

2067-2081.

Sahu, S. K., & Roberts, G. O. (1999). On convergence of the EM algo-

rithm and the Gibbs sampler. Statistics and Computing, 9 (1), 55-64.



103

Sinha, S., & Maiti, T. (2008). Analysis of matched case-control data in

presence of nonignorable missing exposure. Biometrics, 64 (1), 106-114.

Thall, P. F. (1992). Score tests in the two-way layout of counts. Commu-

nications in Statistics - Theory and Methods, 21 (10), 3017-3036.

Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear

models, and the Gauss-Newton method. Biometrika, 61 (3), 439-447.

Zhang, C.-H., & Huang, J. (2008). The sparsity and bias of the lasso se-

lection in high-dimensional linear regression. The Annals of Statistics, 36 (4),

1567-1594.



Vita Auctoris

Poonam Shrestha Malakar was born in 1982 in Nepal . She obtained her

Masters degree in Statistics from Tribhuvan University of Kathmandu, Nepal in

2007, then she worked as a lecturer of Statistics and Reserch methodology in

various reputed colleges, universities in Kathmandu. She is currently a candidate

for a Ph.D. in Statistics at the University of Windsor and will graduate in Fall

2022.

104


	Analysis of Count Data in One-Way Layout with Missing Response
	Recommended Citation

	Author's Declaration of Originality
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Abbreviations
	Introduction 
	Preliminaries and Literature Review
	Count data model with extra-variation
	Poisson Model
	Negative Binomial model

	Missing data 
	Missing data mechanism
	Procedures for handling missing data
	Complete case analysis
	Methods based on Imputation
	Methods based on Likelihood


	Estimation procedures for the parameters
	C() statistics 

	Analysis of One-way layout of count data:Complete Data with Parametric Model
	Introduction
	Negative Binomial model
	The negative binomial likelihood
	Estimation of the Parameters 
	Testing of Hypothesis 
	Simulation
	Discussion and Conclusion


	Analysis of One-way Layout of Count Data: Complete data with Semi-parametric Models
	Introduction
	The Likelihood
	The quasi-likelihood
	The extended quasi-likelihood
	The double extended quasi-likelihood


	Estimation
	Quasi-likelihood estimates
	Extended Quasi-likelihood estimates
	The Double Extended Quasi-likelihood estimates

	Testing Hypothesis
	The C() statistic based on quasi-likelihood 
	The C() statistic based on extended quasi-likelihood
	The C() statistic based on double extended quasi-likelihood

	Simulations
	Discussion and Conclusion

	Effect of missing responses on the C() or score tests in One-way Layout of Count Data
	Introduction
	Estimation of the Parameters
	Maximum likelihood estimates
	Double extended quasi-likelihood estimates
	Estimation of parameters with missing responses
	Maximum likelihood estimation under MAR
	DEQL estimation under MAR
	Estimation under MNAR
	Maximum likelihood estimation under MNAR
	DEQL estimation under MNAR


	Test of hypothesis concerning the means in one-way anova with extra-dispersed count data
	Simulation Study
	Conclusions from the simulation study
	Illustrative Examples


	Summary and Plan for Future Research
	Summary
	Future Research
	Effect of Missing Data on the Score Test of Interaction in Two-Way Layout of Count Data Involving Multiple Counts in Each Cell
	Score Test for Interaction
	Estimation of parameters with missing responses
	Maximum likelihood estimation under MAR



	Appendices
	Derivation of C(ml)
	Derivation of C(ql)
	Derivation of C(eql)
	Derivation of C(deql) 

	Bibliography
	Vita Auctoris

