Spin-forbidden Helium I transition rates

D. C. Morton

Gordon W. F. Drake

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/physicspub

Part of the Physics Commons

Recommended Citation

https://scholar.uwindsor.ca/physicspub/60

This Conference Proceeding is brought to you for free and open access by the Department of Physics at Scholarship at UWindsor. It has been accepted for inclusion in Physics Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Spin-forbidden Helium I transition rates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.


(http://iopscience.iop.org/1742-6596/388/15/152019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 137.207.184.30
The article was downloaded on 08/05/2013 at 19:48

Please note that terms and conditions apply.
Spin-forbidden Helium I transition rates

Donald C. Morton∗1, Gordon W. F. Drake†2

∗Herzberg Institute of Astrophysics, National Research Council, Victoria, Canada
†Department of Physics, University of Windsor, Windsor, Canada

Synopsis We have calculated spin-forbidden transition rates in neutral helium using the spin-orbit and spin-other-orbit Breit-Pauli operators.

We have begun a project to calculate the electric dipole (E1) spin-forbidden transitions in neutral helium and He-like ions. In the Breit-Pauli approximation these extremely weak transitions arise from the perturbation of the initial and final wave functions by the relativistic spin-orbit (SO) and spin-other-orbit (SOO) operators. Measurement of some of these transitions is now possible[1] so the numerical work is timely.

Our calculations involve several important features: (1) extremely accurate nonrelativistic wave functions for infinite nuclear mass in Hylleraas coordinates, (2) a sequence of pseudostates to represent all the intermediate states including the continuum in the sums, (3) perturbation of the 1S0 and 3P1 levels by the pseudostates corresponding to the doubly excited npn′p 3P0 and npn′p 1P1 respectively, (4) spin-changing matrix elements with the SO and SOO Breit operators acting between the pseudostates and the initial and final states, and (5) the use of both the length and velocity dipole interaction operators as a check on the accuracy of the results.

Table 1 lists some examples. There Δε is the energy difference in atomic units, λ is the wavelength of the transition, Ml is the length matrix element, MV is the velocity element plus the relativistic corrections to the transition operator as described by Drake[2], f is the absorption oscillator strength and A the transition rate. Further details are available in recent papers by Morton, Moffat and Drake[3] and Morton and Drake[4].

A future step will add the finite-mass corrections to the Breit operators for use with wave functions already available with the mass-polarization included.

References

Table 1. Matrix elements M, and f- and A-values for spin-forbidden transitions.

<table>
<thead>
<tr>
<th></th>
<th>2 1S0 − 2 3P1</th>
<th>1 1S0 − 3 3P1</th>
<th>2 3S1 − 3 1P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δε∞ theory</td>
<td>0.012 809 855 271</td>
<td>0.845 643 292 8</td>
<td>0.120 083 016 1</td>
</tr>
<tr>
<td>λ (nm) vacuum</td>
<td>3 556.90</td>
<td>53.8801</td>
<td>379.432</td>
</tr>
<tr>
<td>Ml</td>
<td>1.338 711 × 10−3</td>
<td>1.013 20 × 10−4</td>
<td>1.211 766 × 10−4</td>
</tr>
<tr>
<td>MV/Δε∞</td>
<td>1.338 711 × 10−3</td>
<td>1.013 22 × 10−4</td>
<td>1.211 766 × 10−4</td>
</tr>
<tr>
<td>f</td>
<td>1.530 5 × 10−8</td>
<td>5.787 6 × 10−9</td>
<td>3.918 4 × 10−10</td>
</tr>
<tr>
<td>A(s−1)</td>
<td>2.689 7 × 10−2</td>
<td>44.326</td>
<td>0.181 54</td>
</tr>
</tbody>
</table>

1E-mail: don.morton@nrc.gc.ca
2E-mail: gdrake@uwindsor.ca

Published under licence by IOP Publishing Ltd