1989

Predicted energy shifts for paronic helium

Gordon W. F. Drake

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/physicspub

Part of the Physics Commons

Recommended Citation

https://scholar.uwindsor.ca/physicspub/85
Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same authors are included in Brief Reports.) A Brief Report may be no longer than 3½ printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Predicted energy shifts for "paronic" helium

G. W. F. Drake

Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 28 June 1988)

It has been shown recently that one can construct a local relativistic quantum field theory which admits small violations of the Pauli exclusion principle by introducing "paronic" states which obey para-Fermi statistics of order 2. Paronic shifts are calculated for the low-lying states of helium to aid in the design of experiments either to detect paronic helium, or place upper limits on its possible existence.

Greenberg and Mohapatra\(^1\) have recently argued that one can construct a local relativistic quantum field theory which admits a small violation of the Pauli exclusion principle. Their construction derives from a model of a single oscillator\(^2\) which mainly obeys Fermi statistics, but which allows double occupancy with a small amplitude \(\beta\). Such a state obeys para-Fermi statistics of order 2 such that when two fermions are brought together, there is a probability \(\beta^2/2\) that they will form a doubly occupied (symmetric) state. Following Greenberg et al.\(^1\), the term paronic will be used to denote such states.

A serious objection to these proposals is raised in an earlier paper by Govorkov\(^3\) which shows that paronic states as constructed above generate a Hilbert space with negative norm. However, since other mechanisms may still exist for producing the same phenomenology,\(^4\) it remains of interest to look for evidence for paronic states in the spectra of atoms and molecules.

Kelleher et al.\(^5\) have recently proposed an experiment involving the excitation spectrum of helium which would be sensitive to the presence of paronic states. The experiment would place an upper limit on possible violations of the Pauli exclusion principle much lower than the relatively weak value \(\beta^2/2 \leq 10^{-7}\) which can be inferred from existing spectra.\(^6\) The purpose of this paper is to present theoretical values for the transition frequencies of paronic helium on which the experiment is based.

In the nonrelativistic LS coupling approximation, the wave functions for paronic helium are identical to those for normal helium except that the singlet and triplet spin functions are interchanged so as to form a totally symmetric wave function. The nonrelativistic energies are therefore identical, but there are small paronic shifts relative to normal helium of order \(\alpha^2\) from the spin-dependent terms in the Breit interaction, and of order \(\alpha^3\) and higher from the anomalous magnetic moment and other quantum electrodynamic corrections. The relationship between the energy levels of normal helium and paronic helium is shown in Fig. 1.

The energy levels of normal helium are well known

![Diagram showing energy levels of normal and paronic helium](image)

FIG. 1. Schematic diagram showing the paronic helium states relative to the normal helium reference states.

© 1989 The American Physical Society
from Martin's6 tabulations of experimental data, and high-precision theoretical calculations.7–12 The terms included in the present work are

\[E = E_{NR} + \langle B_p \rangle + \Delta E_{RR} + \Delta E_{QED}, \quad (1) \]

where \(E_{NR} \) is the nonrelativistic energy (including first- and second-order mass-polarization corrections), \(B_p \) is the Pauli form of the Breit interaction, \(\Delta E_{RR} \) are relativistic reduced-mass corrections of \(O(\alpha^2 \mu/M) \), and \(\Delta E_{QED} \) are quantum electrodynamic corrections of \(O(\alpha^3) \).

The results are expressed in terms of the shift of the paronic state relative to the normal state of opposite spin; i.e., with singlet and triplet states interchanged. Specifically, the paronic shift is defined to be

\[\Delta E(nLSJ) = E(nLSJ)_{\text{paronic}} - E(nLSJ)_{\text{normal}}, \quad (2) \]

with

\[S = S \pm 1, \]

\[J = \begin{cases} L \text{ for } L \geq 1 \\ \bar{S} \text{ for } L = 0. \end{cases} \]

The nonrelativistic energy in Eq. (1) then cancels, and only the spin-dependent parts of the remainder survive. The \(O(\alpha^2) \) terms are13

\[B_p = H_3 + H_5, \quad (3) \]

with

\[H_3 = H_{SO} + H_{S00}, \quad \text{(4)} \]

\[H_5 = -\frac{8\pi}{3} \left(\frac{e}{mc} \right)^2 \mathbf{s}_1 \cdot \mathbf{s}_2 \delta(r_{12}) + H_{SS}. \quad \text{(5)} \]

In the above \(H_{SO} \) and \(H_{S00} \) are the usual spin-orbit and spin-other-orbit interactions, and \(H_{SS} \) is the rank-2 spin-spin interaction. The remaining small corrections in Eq. (1) can be written in the form10,11,14

\[\Delta E_{RR} = (\Delta E_{RR})_M + (\Delta E_{RR})_X, \quad (6) \]

with

\[(\Delta E_{RR})_M = \Delta_1 - (2m/M)(\langle H_{SO0} \rangle + \langle H_5 \rangle), \quad (7) \]

\[\Delta_1 = \sum_{k=1}^{L} \left[\frac{Ze^2}{m\kappa^2 cr_k^2} \right] r_k \times \mathbf{p}_k \mathbf{s}_k, \]

and

\[\Delta E_{QED} = \frac{(\alpha/\pi)}{2} (\langle H_{SO0} \rangle + \frac{1}{2} \langle H_{SO0} \rangle + \langle H_5 \rangle), \quad (8) \]

The terms in \((\Delta E_{RR})_M \) correspond to using the reduced-mass Rydberg \(R_M = (1 - \mu/M)R_\infty \) in converting the \(B_p \) matrix elements from a.u. to cm-1. The remaining part \((\Delta E_{RR})_X \) is the second-order cross term of \(O(\alpha^2 \mu/M) \) resulting from using mass-polarization-corrected wave functions in evaluating matrix elements of \(B_p \). The matrix elements are listed in Table I in terms of the infinite nuclear-mass part \(\langle T_0 \rangle \) and a finite-mass correction \((\mu/M) \langle T_1 \rangle \). Finally, the terms in \(\Delta E_{QED} \) are the spin-dependent anomalous magnetic-moment corrections.

The matrix elements were evaluated with correlated variational wave functions in Hylleraas coordinates, using the double basis set method described previously10–12 together with a complete optimization of the nonlinear parameters. The uncertainties in the matrix elements in Table I represent the degree of convergence obtained with basis sets containing up to 840 terms.

For \(S \) states, all of the terms in Eqs. (3), (6), and (8) vanish except for the \(\delta(r_{12}) \) contact term in (5). Using

\[\langle s_1 \cdot s_2 \rangle = \frac{1}{2} \left[S(S+1) - \frac{3}{2} \right], \quad (9) \]

the \(^3S \)-state paronic shift is

\[\Delta E = -\frac{8\pi}{3} (1 - 2m/M) \left[1 + \frac{\alpha}{\pi} \right] \alpha^2 \langle \delta(r_{12}) \rangle \quad (10) \]

in units of \(2R_M \) with

\[R_M = 109.722.2735 \text{ cm}^{-1}. \]

This gives the shift of the triplet paronic \(S \) state relative to the normal singlet state. The shift is zero for the singlet paronic \(S \) state.

Table I. Values of matrix elements (in a.u.) required for the calculation of paronic energy shifts in helium. For \(^4\text{He}, \mu/M = 1.3707456 \times 10^{-4} \). Numbers in parentheses denote errors.

| Paronic state | \(\langle \delta(r_{12}) \rangle \) | \(\langle ||H_{SO}|| \rangle^2 \) | \(\langle ||H_{S00}|| \rangle^2 \) | \(\langle ||H_{SS}|| \rangle^2 \) | \(\langle ||\Delta_1|| \rangle / (\alpha^2 m/M) \) |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| \(^1S \) | 0.334093 86(4) | 0 | 0 | 0 | 0 |
| \(^1S \) | 0.0387070 \mu/M | 0 | 0 | 0 | 0 |
| \(^2P \) | 0.00230960(1) | 0.115001 3147(1) | 0.084605 7041(1) | 0.083009 487(2) | 0.200710 7(1) |
| \(^2P \) | 0.0108530 \mu/M | 0 | 0 | 0 | 0 |
| \(^3P \) | 0.000791 739(1) | 0.107319 4801(1) | 0.038762 0422(2) | 0 | 0 |
| \(^3P \) | 0.003317 \mu/M | 0 | 0 | 0 | 0 |
| \(^3P \) | 0.003481 175(3) | 0.031481 175(3) | 0 | 0 | 0 |
| \(^3P \) | 0.003317 \mu/M | 0 | 0 | 0 | 0 |
| \(^3P \) | 0.003481 222(1) | 0.010777 285(2) | 0 | 0 | 0 |
| \(^3P \) | 0.022630 \mu/M | 0 | 0 | 0 | 0 |
| \(^3P \) | 0.001064 \mu/M | 0 | 0 | 0 | 0 |
TABLE II. Calculated shifts of the paronic helium states, relative to the normal helium reference states (in cm$^{-1}$) as defined by Eq. (2).

<table>
<thead>
<tr>
<th>Paronic state</th>
<th>Normal reference state</th>
<th>Paronic shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s21S$_1$</td>
<td>1s21S$_0$</td>
<td>−10.4322</td>
</tr>
<tr>
<td>1s23S$_1$</td>
<td>1s21S$_0$</td>
<td>−0.8484</td>
</tr>
<tr>
<td>1s23S$_0$</td>
<td>1s23S$_1$</td>
<td>0</td>
</tr>
<tr>
<td>1s2p3P$_3$</td>
<td>1s2p1P$_1$</td>
<td>0.0196</td>
</tr>
<tr>
<td>1s2p3P$_0$</td>
<td>1s2p1P$_1$</td>
<td>−0.2935</td>
</tr>
<tr>
<td>1s2p3P$_0$</td>
<td>1s2p1P$_1$</td>
<td>0.1328</td>
</tr>
<tr>
<td>1s2p3P$_1$</td>
<td>1s2p1P$_1$</td>
<td>0.0672</td>
</tr>
<tr>
<td>1s3p3P$_3$</td>
<td>1s3p1P$_1$</td>
<td>0.0090</td>
</tr>
<tr>
<td>1s3p3P$_0$</td>
<td>1s3p1P$_1$</td>
<td>−0.0973</td>
</tr>
<tr>
<td>1s3p3P$_1$</td>
<td>1s3p1P$_1$</td>
<td>0.0167</td>
</tr>
<tr>
<td>1s3p1P$_1$</td>
<td>1s3p1P$_1$</td>
<td>0.0178</td>
</tr>
</tbody>
</table>

The situation is more complicated for the $3P$ paronic states because the matrix elements of H_{SO}, H_{SOO}, and H_{SS} must be recomputed using the spatially symmetric 1snp nonrelativistic wave functions in place of the antisymmetric ones. The results are listed in Table I in terms of the reduced matrix elements

$$\langle \gamma' \ell' \ell'J'M \vert H_{SO} \vert \gamma LS \rangle$$

$$= (-1)^{L+S'+J} \begin{pmatrix} J & S' & L' \\ 1 & L & S \end{pmatrix} \langle \gamma' \ell' \ell' \vert H_{SS} \vert \gamma LS \rangle,$$

and

$$\langle \gamma' \ell' \ell'J'M \vert H_{SO} \vert \gamma LS \rangle$$

$$= (-1)^{L+S'+J} \begin{pmatrix} J & S' & L' \\ 2 & L & S \end{pmatrix} \langle \gamma' \ell' \ell' \vert H_{SS} \vert \gamma LS \rangle.$$

(12)

For the diagonal elements, the multiplying factors are $-\frac{1}{3}$, $-\frac{1}{6}$, and $\frac{1}{5}$ in Eq. (11), and $\frac{1}{3}$, $-\frac{1}{3}$, and $\frac{5}{6}$ in Eq. (12) for $3P_j$ states with $J=0, 1$, and 2, respectively. For the off-diagonal elements of Eq. (11) with $S'=1, S=0$, and $J=1$ the factor is $\frac{1}{3}$. The final eigenvalues for the $3P_1$ and $1P_1$ states include the singlet-triplet mixing correction.

Table II lists the paronic shifts for the low-lying S and P states of helium. The uncertainty is estimated to be $\pm 0.2(aZ)^4 = \pm 0.002$ cm$^{-1}$ from uncalculated terms of this order. The largest effect is a downward shift of 10.4322 cm$^{-1}$ for the $1s^22S_1$ ground state. For the excited states, it is interesting that the ordering of the $3P_j$ states has changed. Whereas the normal states are completely inverted with $E_0 > E_1 > E_2$, the paronic states are ordered according to $E_0 > E_2 > E_1$. The actual transition frequencies can easily be obtained by adding the paronic shifts to the known transition frequencies9 for the normal reference states of opposite spin. For example, the predicted $1S_1 - 2P_1$ transition frequency for paronic helium of (171 145.14 ± 0.15) cm$^{-1}$ is obtained by adding the paronic shift of (−0.2935 + 10.4322) cm$^{-1} = 10.1387$ cm$^{-1}$ (see Table II) to the experimental $1S_0 - 2P_1$ transition frequency for normal helium9 of (171 135.00 ± 0.15) cm$^{-1}$. The calculated shift is much more accurate than the ± 0.15 cm$^{-1}$ experimental uncertainty in the ground-state energy.

This research was supported in part by the National Science Foundation under Grant No. PHY82-17853, supplemented by funds from the National Aeronautics and Space Administration, at the University of California at Santa Barbara, and in part by the Natural Sciences and Engineering Research Council of Canada. The author is grateful to Dr. O. W. Greenberg for a helpful conversation concerning this work.
