Tuneable Optical Transmission of Glass Substrates Using Gold Nanoparticles

Melissa Mathers
University of Windsor, mathersm@uwindsor.ca

Follow this and additional works at: https://scholar.uwindsor.ca/uwilldiscover

https://scholar.uwindsor.ca/uwilldiscover/2015/science/18

This Event is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in UWill Discover Undergraduate Conference by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Title: Tuneable Optical Transmission of Glass Substrates Using Gold Nanoparticles
Name: Melissa Mathers
Contact Information: mathersm@uwindsor.ca c: 519-981-0954

Type of Proposal: Oral Presentation

Importance of the Project: This project is focused on improving the absorption capabilities of thin-film solar cells, which has the potential to revolutionize the renewable energy industry by increasing the efficiency of affordable photovoltaic technologies.

Existing State of Knowledge: Traditional crystalline silicon (c-Si) solar cells are inefficient with only 22%-25% of incident light being converted to electricity. Forty percent of the cost of manufacturing c-Si cells can be attributed to the cost of the semi-conducting layer. [1] Efforts to reduce this cost resulted in reducing the thickness of the active layer, which in turn further reduced efficiency. Currently, various research teams are working to develop light trapping mechanisms (Beck, Poleman, Catchpole) and charge separation techniques (Thomann) to improve the efficiencies of the less-expensive thin-film solar cells.


Research Question: Can we optimize electron generation by tuning light incident on the surface of the cell to better match the absorption spectrum of the active layer?

Methodology: It is well known that the size of gold nanoparticles and the spacing between them in an array can alter localized electric fields. [2] Computational software and mathematically analytic methods will be used to optimize the radius to distance ratio of spherical gold nanoparticles in an array to match transmitted light to the absorption spectrum of the active layer.


Findings: Data analysis and certain simulations are still in progress. The preliminary results will be presented for the Internal Quantum Efficiency (IQE) of a cell, over the range ratios of particle radius a, to spacing d, from (a/d) = 0.071 to (a/d) = 2.5. The theoretical results for absorption as a function of this same ratio will also be presented.