Robust Load Disturbance Torque Estimation for a Permanent Magnet DC Motor Drive System

Danny Grignion
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/126

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000 ext. 3208.
Robust Load Disturbance Torque Estimation for a Permanent Magnet DC Motor Drive System

By

Danny Grignion

A Thesis
Submitted to the Faculty of Graduate Studies through Electrical and Computer Engineering
In Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada
2012
© 2012 Danny Grignion
Robust Load Disturbance Torque Estimation for a Permanent Magnet DC Motor Drive System

by

Danny Grignion

APPROVED BY:

__
Dr. B. Minaker
Department of Mechanical, Automotive & Materials Engineering

__
Dr. S. Chowdhury
Department of Electrical & Computer Engineering

__
Dr. X. Chen, Co-Advisor
Department of Electrical & Computer Engineering

__
Dr. N. Kar, Co-Advisor
Department of Electrical & Computer Engineering

__
Dr. M. Mirhassani, Chair of Defense
Department of Electrical & Computer Engineering

May 8, 2012
DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is the result of joint research undertaken in collaboration with Huijie Qian under the supervision of Dr. X. Chen. In all cases, the key ideas, primary contributions, experimental designs, data analysis and interpretation, were performed by the author, and the contribution of the co-author was primarily through the provision of verification of mathematical assumptions and calculations and aid in the acquisition of experimental results.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my thesis, and have obtained written permission from each of the co-author(s) to include the above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work.
II. Declaration of Previous Publication

This thesis includes three original papers that have been previously published/submitted for publication in peer reviewed journals, as follows:

<table>
<thead>
<tr>
<th>Thesis Chapter</th>
<th>Publication title/full citation</th>
<th>Publication status*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1,2,3,5</td>
<td>“Robust Load Disturbance Torque Estimation for a DC Motor Drive System”; 2012 ROCOND Conference, Aalborg, Denmark</td>
<td>Accepted</td>
</tr>
<tr>
<td>Chapter 1,2,3,5</td>
<td>“Improved Load Disturbance Torque Estimation for a DC Motor Drive System”; 2012 IECON Conference, Montréal, Canada</td>
<td>Submitted</td>
</tr>
<tr>
<td>Chapter 1,2,3,5</td>
<td>“Load Disturbance Torque Estimation for a DC Motor Drive System with Robustness Consideration”; IEEE Transactions on Industrial Electronics</td>
<td>Submitted</td>
</tr>
</tbody>
</table>

I certify that I have obtained a written permission from the copyright owner(s) to include the above published material(s) in my thesis. I certify that the above material describes work completed during my registration as graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.
ABSTRACT

Direct current motors are an integral part of many systems. An important factor in the design of these systems is the disturbance torque on the motor’s shaft. This disturbance torque can negatively affect the performance of the motor and the overall system. Knowledge of the disturbance can aid in compensating for these negative effects, which enhances the robustness of the system to changes in the load. Estimation has become a feasible means of acquiring the value of such a disturbance. Various methods for the design of a robust disturbance torque estimator are presented here. The designs are robust in the sense that the estimation is insensitive to the presence of model uncertainties and/or noise. The estimators are designed to estimate both constant and non-constant, low-frequency disturbance torques. The designs are tested using a permanent magnet DC motor. An in-line torque sensor is used for validation.
DEDICATION

I dedicate this thesis to all of my family and friends for their continuous encouragement, love and support throughout my graduate studies.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to Dr. Xiang Chen and Dr. Narayan Kar, my co-supervisors, for accepting me as one of their graduate students, and for their support and guidance throughout this research.

I would also like to express my gratitude and appreciation to Dr. Sazzadur Chowdhury and Dr. Bruce Minaker for their valuable comments and suggestions throughout the evaluation of this thesis and seminar.

This research was supported in part by the Ontario Research Fund, Green Auto Powertrain and NSERC Network Centre of Excellence – AUTO21.

I am very grateful to the University of Windsor for the support of my graduate studies over these two years.

Lastly, I would like to thank all of my fellow graduate students, in particular my lab partner Huijie Qian, and my family and friends for their encouragement and support throughout my time spent as a graduate student.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION OF CO-AUTHORSHIP/PREVIOUS PUBLICATION</td>
<td>iii</td>
</tr>
<tr>
<td>Co-Authorship Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Declaration of Previous Publication</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Disturbance Torque Estimation</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Conflicting Requirements</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Thesis Outline</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2: PRELIMINARY THEORY</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Notations</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Norm Definitions</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Generic Observer Model</td>
<td>7</td>
</tr>
<tr>
<td>2.4 \mathcal{H}_∞ Filter</td>
<td>8</td>
</tr>
<tr>
<td>2.5 \mathcal{H}_∞ Gaussian Filter</td>
<td>10</td>
</tr>
<tr>
<td>2.6 $\mathcal{H}\infty/\mathcal{H}\infty$ Filter</td>
<td>12</td>
</tr>
<tr>
<td>2.7 Permanent Magnet DC Motor Model</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER 3: DISTURBANCE TORQUE ESTIMATOR DESIGN</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Overall Disturbance Torque Estimator</td>
<td>18</td>
</tr>
<tr>
<td>3.2 \mathcal{H}_∞ Filter System Model</td>
<td>20</td>
</tr>
<tr>
<td>3.3 \mathcal{H}_∞ Gaussian Filter System Model</td>
<td>20</td>
</tr>
<tr>
<td>3.4 $\mathcal{H}\infty/\mathcal{H}\infty$ Filter System Model</td>
<td>21</td>
</tr>
<tr>
<td>3.5 Performance Requirements and Error/Disturbance Relation</td>
<td>21</td>
</tr>
<tr>
<td>3.6 Residual/Disturbance Relation</td>
<td>24</td>
</tr>
<tr>
<td>3.7 Cases for Design</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER 4: HARDWARE AND SOFTWARE CONFIGURATION</td>
<td>27</td>
</tr>
<tr>
<td>4.1 Determination of Parameters of DC Motor Under Test</td>
<td>28</td>
</tr>
<tr>
<td>4.1.1 Armature Resistance</td>
<td>28</td>
</tr>
<tr>
<td>4.1.2 Armature Inductance</td>
<td>29</td>
</tr>
<tr>
<td>4.1.3 Electrical and Mechanical Constant</td>
<td>29</td>
</tr>
<tr>
<td>4.1.4 Viscous Friction Coefficient</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 3.1 Structures of B_1, D_{21} and w .. 26
Table 4.1 Operating station and RT computer specifications 32
Table 4.2 Rated values of the motor under test .. 33
Table 4.3 Rated values of the dyno motor .. 34
Table 5.1 Parameters of the motor under test .. 42
Table 5.2 Parameters used to determine the observer gains 43
Table 5.3 Observer gains ... 43
LIST OF FIGURES

Figure 2.1 General layout of a system with an observer .. 8
Figure 2.2 H_∞ estimation problem .. 9
Figure 2.3 H_∞ Gaussian estimation problem ... 11
Figure 2.4 H_∞/LTI filtering problem .. 14
Figure 2.5 Schematic of a PMDC ... 16
Figure 2.6 Block diagram of a PMDC .. 17
Figure 3.1 Disturbance torque estimator ... 19
Figure 3.2 System with disturbance torque estimation ... 19
Figure 4.1 Block diagram of the real-time hardware test bench .. 27
Figure 4.2 Operating station ... 31
Figure 4.3 RT computer ... 32
Figure 4.4 Terminal block interface modules .. 33
Figure 4.5 PMDC used to test the disturbance torque estimators 34
Figure 4.6 Dyno motor used to generate disturbance torques ... 34
Figure 4.7 Motor under test controller ... 35
Figure 4.8 Dyno motor controller ... 35
Figure 4.9 Current shunt resistor .. 37
Figure 4.10 In-line torque sensor .. 38
Figure 4.11 Rotary incremental encoder .. 39
Figure 5.1 Overall input pattern ... 44
Figure 5.2 Sensitivity input pattern ... 44
Figure 5.3 Test results for H_∞ disturbance torque estimation case 1 46
Figure 5.4 Test results for H_∞ Gaussian disturbance torque estimation case 1 46
Figure 5.5 Test results for H_∞/LTI disturbance torque estimation case 1 47
Figure 5.6 Robustness results for case 1 ... 47
Figure 5.7 Noise results for case 1 ... 48
Figure 5.8 H_{-}/H_{∞} sensitivity results for case 1 .. 48
Figure 5.9 Test results for H_{∞} disturbance torque estimation case 2 50
Figure 5.10 Test results for H_{∞} Gaussian disturbance torque estimation case 2 51
Figure 5.11 Test results for H_{-}/H_{∞} disturbance torque estimation case 2 51
Figure 5.12 Robustness results for case 2 ... 52
Figure 5.13 Noise results for case 2 ... 52
Figure 5.14 H_{-}/H_{∞} sensitivity results for case 2 .. 53
Figure 5.15 Test results for H_{∞} disturbance torque estimation case 3 55
Figure 5.16 Test results for H_{∞} Gaussian disturbance torque estimation case 3 55
Figure 5.17 Test results for H_{-}/H_{∞} disturbance torque estimation case 3 56
Figure 5.18 Robustness results for case 3 ... 56
Figure 5.19 Noise results for case 3 ... 57
Figure 5.20 H_{-}/H_{∞} sensitivity results for case 3 .. 57
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARE</td>
<td>Algebraic Riccati Equation</td>
</tr>
<tr>
<td>BLDC</td>
<td>Brushless DC Motor</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LCF</td>
<td>Left Coprime Factorization</td>
</tr>
<tr>
<td>MUT</td>
<td>Motor Under Test</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary Differential Equation</td>
</tr>
<tr>
<td>PMDC</td>
<td>Permanent Magnet DC Motor</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RC</td>
<td>Resistor-Capacitor</td>
</tr>
<tr>
<td>RSE</td>
<td>Referenced Single Ended</td>
</tr>
<tr>
<td>RT</td>
<td>Real-Time</td>
</tr>
<tr>
<td>SI</td>
<td>International System of Units (Système international d’unités)</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
</tbody>
</table>
NOMENCLATURE

\(\Delta \) Variation
\(\omega_m \) Motor speed
\(\tau_d \) Disturbance torque
\(\tau_E \) Electrical time constant
\(\tau_L \) Load torque
\(\tau_M \) Mechanical time constant
\(\tau_m \) Motor torque
\(\tau_s \) Measured torque from in-line torque sensor
\(B_m \) Motor viscous friction coefficient
\(e_a \) Back electromotive force
\(G \) Instrumentation amplifier gain
\(i_a \) Armature current
\(i_{a\text{noise}} \) Measurement noise
\(J_m \) Motor inertial coefficient
\(K_t \) Mechanical constant
\(K_v \) Electrical constant
\(L_a \) Armature inductance
\(N_E \) Encoder pulses counted in the fixed time interval
\(P_R \) Pulses per revolution
\(R_a \) Armature resistance
\(R_k \) Known resistance
\(R_s \) Current shunt resistance
\(T_i \) Fixed time interval
V_{brush} Brush noise

v_c Test motor controller analog input voltage

v_{cdyno} Dyno motor controller analog input voltage

v_d Disturbance voltage

v_{dyno} Dyno motor voltage

v_a Instrumentation amplifier output voltage

v_s In-line torque sensor output voltage

v_t Armature voltage
CHAPTER 1: INTRODUCTION

Direct current (DC) motors are rugged, reliable, cost-effective and easy to use electromechanical machines. This flexibility is what has allowed the DC motor to become commonplace in today’s society with numerous applications including automotive, robotics, mechatronics and model railroading to name a few. Modern automobiles contain a myriad of DC motors that control not only various aspects of the vehicle’s performance, but that also provide extra luxury and comfort for the driver and passengers. Some examples include electronic throttle control, electric power steering, regenerative braking, sunroof, power locks, power seats and power windows. With all of these applications for the DC motor, it is no surprise that research into not only the design of the motor, but also into the control of the motor is of great importance.

Many factors can affect the performance of a DC motor. Loading conditions and operating temperatures play particularly important roles in these situations. For example, a change in the motor’s loading conditions will present itself as a disturbance torque acting on the motor’s shaft and will cause the motor’s speed and armature current to change. Knowledge of this disturbance torque can be used by the motor’s control system in order to properly mitigate its effects.

Also, over time with extended periods of rigorous use, the motor will heat up causing a change in armature resistance. Therefore, it is important when developing a model, estimation strategy or control strategy, to include possible variations in the motor’s parameters as uncertainties and to minimize the impact of these uncertainties on the strategies being employed, i.e., to make the strategies robust to such uncertainties.

This thesis will explore different methods to robustly estimate the disturbance torque in a DC motor drive system.
1.1 Disturbance Torque Estimation

Due to the difficulty and cost of direct measurement, estimation has become a popular method of measuring the quantity of the disturbance torque acting on a DC motor’s shaft. This estimation may then be used to compensate for the disturbance torque acting on the shaft, thus improving the system’s robustness to external torques and load changes. A well designed estimation scheme can also be used to reduce the cost of the overall system as it can be used to estimate other quantities and thus eliminate the need to use high-priced sensors to measure such quantities.

Three disturbance torque estimation schemes are presented in [1]. All of the schemes use a Luenberger observer, see [2]-[5], as a basis for the estimator designs. In order to accomplish this, the plant model is expanded to incorporate the disturbance torque. This expansion is performed in two ways. The first expansion treats the disturbance torque as an unknown input. The second expansion treats the disturbance torque as a state variable. This second method was used successfully in [6] and [7]. There is a restriction placed on the design of this type of estimator in that the disturbance torque acting on the plant is assumed to be constant and only performance for constant disturbance torques is shown. It is not guaranteed that a non-constant disturbance torque can be estimated.

However, none of these schemes incorporate the presence of model uncertainties into the design of the estimator. A disturbance torque estimator that makes use of an observer design that also takes these uncertainties into account would serve not only to provide a good estimation, but also to make the estimation robust to variations in the parameters of the plant. Two such observers that can be used for this purpose are the H_∞ filter discussed in [8]-[10], and the H_∞ Gaussian filter presented in
[11] and [12]. These observers are designed to provide a robust estimate of the states of a system in the presence of model uncertainties, and noise in the case of the \mathcal{H}_∞ Gaussian filter. This is achieved through the solution of one, or a set of algebraic Riccati equations (ARE).

All of these designs are conducted in the time-domain using state-space representations of the system model. The flexibility of state observer based designs and the fact that the disturbance torque can be easily related to the state variables of a DC motor provide motivation for using such a design methodology. However it should be noted that a state observer based design is not the only method available to estimate a disturbance. For other designs see [13]-[16].

1.2 Conflicting Requirements

It can be shown that the error dynamics of the DC motor drive system are not only affected by model uncertainties, but also by the disturbance acting on the system, and that the disturbance torque estimation is proportional to the error in estimation of the motor’s armature current. This raises an interesting question as to how an observer design can be conducted that both maximizes the sensitivity of the error to the disturbance, while minimizing or constraining the sensitivity of the error to model uncertainties. A good filter design will make a trade-off between these two conflicting requirements. In order to facilitate such a design, two measures are required. One measure is needed in order to properly gauge the sensitivity to uncertainty. This can be easily achieved using the \mathcal{H}_∞ norm. The second measure is needed in order to properly gauge the sensitivity to a disturbance.

The \mathcal{H}_∞ index can be used for such a purpose. This index can be used to achieve the desired sensitivity to a disturbance by maximizing the \mathcal{H}_∞ index of the transfer
function from disturbance to error. A mix of these two measures would thus provide a means for achieving such a filter design. One such design is the multi-objective $\mathcal{H}_-/\mathcal{H}_\infty$ filter, presented in [17]-[23], that has been used for fault-detection. In this case the observer was designed to generate a residual signal whose sensitivity was maximized with respect to faults in the system and minimized with respect to disturbances acting on the system.

In the sense of disturbance torque estimation, this design approach can be used in such a way as to relate the disturbance torque to the residual signal and maximize the signal’s sensitivity with respect to the disturbance while minimizing its sensitivity with respect to model uncertainties.

1.3 Thesis Outline

Three disturbance torque estimator designs will be developed in this thesis. In particular, an \mathcal{H}_∞ filter, an \mathcal{H}_∞ Gaussian filter and a multi-objective $\mathcal{H}_-/\mathcal{H}_\infty$ filter will be used as a basis for the estimator designs.

Chapter 2 will provide definitions of various norms used in the observer designs. A theoretical background of a generic observer, an \mathcal{H}_∞ filter, an \mathcal{H}_∞ Gaussian filter and an $\mathcal{H}_-/\mathcal{H}_\infty$ filter will also be provided along with a model of the DC motor drive system used to design the estimators.

Chapter 3 discusses the design of the disturbance torque estimators, defines performance criteria for the estimators and develops appropriate combinations of model uncertainties that are to be used for testing the robustness of the disturbance torque estimation.
Chapter 4 details the methods used to determine the parameters of the DC motor that is used to test the disturbance torque estimator designs. The hardware and software used to test the estimators is also detailed.

Chapter 5 presents the parameters used to determine the observer gains as well as the calculated observer gains. Test results of the disturbance torque estimators are also presented accordingly.

Chapter 6 concludes this thesis and provides some recommendations for future work in this area of research.
CHAPTER 2: PRELIMINARY THEORY

2.1 Notations

The following notation is used throughout this thesis. Matrices and vectors are represented using bold lettering. \(\hat{\cdot} \) denotes an estimated state variable and \(\cdot' \) denotes a derivative with respect to time. If \(A \) is a matrix then \(A^T \) and \(A^* \) denote its transpose and conjugate transpose respectively. \(I \) and \(0 \) denote an identity matrix of appropriate dimensions and a zero matrix of appropriate dimensions respectively. \(\bar{\sigma}(A) \) and \(\sigma(A) \) denote the largest and smallest singular values of \(A \) respectively.

Let \(G(s) \) be a proper, real, rational transfer matrix. A state space realization of \(G(s) \) is [24]

\[
G(s) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = C(sI - A)^{-1}B + D.
\]

A left coprime factorization (LCF), [21], of \(G(s) \) is a factorization \(G(s) = M^{-1}(s)N(s) \) where \(M(s) \) and \(N(s) \) are left-coprime over \(\mathcal{RH}_\infty \) and \(\mathcal{RH}_\infty \) is the space of all proper and real rational stable matrix transfer functions. Let the state space realization of \(G(s) \) above be detectable and let \(L \) be a matrix with appropriate dimensions such that \(A + LC \) is stable. Then an LCF of \(G(s) \) is given by

\[
\begin{bmatrix} M(s) & N(s) \end{bmatrix} = \begin{bmatrix} A + LC & L & B + LD \\ C & I & D \end{bmatrix}.
\]

2.2 Norm Definitions

The following definitions are used throughout this thesis (see [8]-[12] and [17]-[24]). For \(G(s) \in \mathcal{RH}_2 \) where \(\mathcal{RH}_2 \) is the space of all strictly proper and real rational stable matrix transfer functions, the \(\mathcal{H}_2 \) norm of \(G(s) \) is defined as
\[\|G(s)\|_2 = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{trace}[G^*(j\omega)G(j\omega)]d\omega}. \]

For \(G(s) \in \mathcal{RH}_\infty \) the \(\mathcal{H}_\infty \) norm of \(G(s) \) is defined as
\[\|G(s)\|_\infty = \sup_{\omega \in \mathbb{R}} \sigma(G(j\omega)). \]

Similarly the \(\mathcal{H}_- \) index of \(G(s) \) over all frequencies is defined as
\[\|G(s)\|[-\infty] = \inf_{\omega \in \mathbb{R}} \sigma(G(j\omega)). \]

The \(\mathcal{H}_- \) index of \(G(s) \) over a finite frequency range \([\omega_1, \omega_2]\) is defined as
\[\|G(s)\|[-\infty,\infty] = \inf_{\omega \in [\omega_1,\omega_2]} \sigma(G(j\omega)). \]

The \(\mathcal{H}_- \) index of \(G(s) \) at zero frequency is defined as
\[\|G(s)\|[-0] = \sigma(G(0)). \]

If no superscript is added to the \(\mathcal{H}_- \) symbol, such as \(\|G(s)\|[-\infty] \), then it represents all possible \(\mathcal{H}_- \) definitions.

2.3 Generic Observer Model

Any nominal, linear, time-invariant, continuous-time system can be represented by a state space model in the following form:
\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\] (2-1)

where \(x, \dot{x}, y \) and \(u \) are vectors that represent the system states, the derivatives with respect to time of the system states, the measurement outputs of the system and the control input of the system respectively, and \(A, B, C \) and \(D \) are matrices that are known as the system, input, output and feedthrough matrices respectively.

Assuming that the pair \((A,C)\) is observable, i.e. that the observability matrix
The number of state variables, \(n \), has full column rank, the following observer model can be used for estimation of the system states:

\[
\begin{align*}
\dot{x} &= Ax + Bu + L(y - \hat{y}) \\
\hat{y} &= C\hat{x} + Du
\end{align*}
\]

where \(L \) represents the gain of the observer that is to be designed. A general layout of a system with an observer is shown in Figure 2.1.

\[\text{Figure 2.1 General layout of a system with an observer.}\]

The gain \(L \) can be chosen using different methods that are geared towards different performance criteria. Note that the state model of the system used to derive the particular observer gain is altered accordingly also based on the desired performance criteria.

2.4 \(\mathcal{H}_\infty \) Filter

No physical system is ever ideal. As such, ideal models of these systems are never accurate representations of the physical world. Uncertainties are present in any physical system and must be accounted for in any model that is used for design. These uncertainties could be due to parameters that are either unknown, change over long and extended periods of time, vary due to heating and other temperature effects, or are tolerance values in which the nominal system parameters exist.
The \mathcal{H}_∞ filter, [8]-[10], takes into consideration these various parameter and model uncertainties. This filter is designed to estimate the system states in the presence of uncertainties. The state space model of the system used to calculate the observer gain is in the following form:

$$\begin{align*}
\dot{x} &= Ax + Bu + B_1w \\
y &= Cx + D_{21}w \\
z &= C_1x + D_{11}w
\end{align*}$$

(2-3)

where B_1 is a weighting matrix for the model uncertainties, D_{21} and D_{11} are weighting matrices for the measurement and output uncertainties respectively, w is a vector of uncertainties, C_1 is a matrix that allows us to define the desired outputs of the system and z is a vector of the desired outputs of the system.

Using an observer in the form of (2-2) and defining $e_x = x - \hat{x}$ to be the estimation error, the error dynamics of this observer can be calculated as

$$\dot{e}_x = \dot{x} - \dot{\hat{x}} = (A - LC)e_x + (B_1 - LD_{21})$$

(2-4)

where \dot{e}_x represents the derivative with respect to time of the estimation error. Reformulating the problem as shown in Figure 2.2, an objective used to calculate the value of L for this observer can be defined.

\[Z \]
\[e \]
\[\hat{z} \]
\[F(s) \]
\[A \ | \ B_1 \]
\[C \ | \ D_{11} \]
\[C_1 \ | \ D_{21} \]
\[W \]

\[F(s) \]
\[\text{Figure 2.2} \mathcal{H}_\infty \text{ estimation problem.} \]

Given a $\gamma > 0$, find a causal filter $F(s) \in \mathcal{RH}_\infty$ if it exists such that:

$$\|T_{e_xw}\|_\infty = \sup_{\omega \in \mathbb{C} [0, \infty)} \frac{\|e_x\|^2}{\|w\|^2} < \gamma^2$$

(2-5)
where $\mathcal{L}_2[0, \infty)$ is the space of all time domain square integrable functions with functions zero for $t < 0$. Assuming that $D_{11} = D_{21} = 0$, this can be achieved by solving the following ARE:

\[
AP + PA^T + P\left(\gamma^{-2}C_1^T C_1 - C^T C\right)P + B_1B_1^T = 0
\]

which yields a gain of

\[
L = PC^T.
\]

Note that γ is a positive constant that represents the limit of uncertainty that may be tolerated by the filter.

2.5 \mathcal{H}_∞ Gaussian Filter

Uncertainties are not the only factors that plague physical systems. Noise is another factor that can also have detrimental effects. It can affect not only the measurements obtained through sensors (measurement noise) but can also affect the system itself (process noise). Good filter designs will not only factor in uncertainties, but will also factor in noise.

The \mathcal{H}_∞ Gaussian filter, [11] and [12], not only takes uncertainties and noise into consideration, but also makes a trade-off between the two according to the desired performance specifications. It is designed to estimate the system states in the presence of both model uncertainties and white noise. The state space model of the system used to calculate the observer gain is in the following form:

\[
\begin{align*}
\dot{x} &= Ax + Bu + B_0w_0 + B_1w \\
y &=Cx + D_{20}w_0 \\
z_0 &= C_0x \\
z &= C_1x
\end{align*}
\]

where B_1 is a weighting matrix for the model uncertainties, B_0 and D_{20} are input and feedthrough matrices for the process and measurement noises respectively, C_0 and C_1 are matrices that allow us to define the desired outputs of the system, z_0 and z are
vectors of the desired outputs of the system, \(\mathbf{w} \) is a vector of uncertainties and \(\mathbf{w}_0 \) is a vector of white noises acting on the system. Note that white noise is assumed to satisfy the following conditions:

\[
E\{\mathbf{w}_0(t)\} = \mathbf{0} \\
E\{\mathbf{w}_0(t)\mathbf{w}_0^T(t)\} = I_\delta(t - \tau)
\]

where \(E\{\cdot\} \) is the expectation operator.

Using an observer in the form of (2-2) and defining \(e_x = x - \hat{x} \) to be the estimation error, the error dynamics of this observer can be calculated as

\[
\dot{e}_x = \dot{x} - \dot{\hat{x}} = (A - LC)e_x + (B_1 - LD_{21}) + B_1w
\]

where \(\dot{e}_x \) represents the derivative with respect to time of the estimation error. Reformulating the problem as shown in Figure 2.3, an objective used to calculate the value of \(L \) for this observer can be defined.

![Figure 2.3](image)

Figure 2.3 \(H_\infty \) Gaussian estimation problem.

Given a \(\gamma > 0 \), define the following cost functionals:

\[
J_1(F, \mathbf{w}(t), \mathbf{w}_0(t)) = \lim_{T \to \infty} \frac{1}{T} \int_0^T E\{\gamma^2\|\mathbf{w}(t)\|^2 - \|e(t)\|^2\}dt
\]

\[
J_2(F, \mathbf{w}(t), \mathbf{w}_0(t)) = \lim_{T \to \infty} \frac{1}{T} \int_0^T E\{||e_0(t)||^2\}dt
\]

Note that \(F(s) \) must be stable. Therefore we say that \(F \) is an admissible filter if \(F(s) \in \mathcal{RH}_\infty \).
Find and admissible filter F_* of the form

$$\begin{align}
\dot{x} &= A\hat{x} + L(y - \hat{y}) = (A - LC)\hat{x} + Ly; \quad x(0) = 0 \\
\dot{z}_0 &= C_0\hat{x} \\
\dot{z} &= C_1\hat{x}
\end{align}$$

and a worst disturbance signal $w_*(t)$ such that

$$j_1(F_*, w_*(t), w_0(t)) \leq j_1(F_*, w(t), w_0(t))$$

$$j_2(F_*, w_*(t), w_0(t)) \leq j_2(F_*, w(t), w_0(t))$$

hold for all $F \in \mathcal{P}$ where \mathcal{P} is the space of all stationary signals with bounded power. This can be achieved by solving the following coupled ARE's:

$$\begin{align}
(A - P_2C^T R_0^{-1}C - B_0 D_{20}^T R_0^{-1}C)^TP_1 + P_1(A - P_2C^T R_0^{-1}C - B_0 D_{20}^T R_0^{-1}C) &+
\gamma^{-2}P_1 B_1 B_1^TP_1 + C_1^TC_1 = 0 \\
(A - B_0 D_{20}^T R_0^{-1}C + \gamma^{-2}B_1 B_1^TP_1)P_2 + P_2(A - B_0 D_{20}^T R_0^{-1}C + \gamma^{-2}B_1 B_1^TP_1)^T &-
P_2C^T R_0^{-1}CP_2 + B_0(I - D_{20}^T R_0^{-1}D_{20})B_0^T = 0
\end{align}$$

where $R_0 = D_{20}^T D_{20}$. This yields a gain of

$$L = (P_2C^T + B_0 D_{20}^T)R_0^{-1}.$$

Note that γ is a positive constant that the designer can vary so as to fulfill the desired performance specifications. As $\gamma \to \infty$, the performance of the filter towards white noise improves, whereas as $\gamma \to 0$, the performance of the filter towards model uncertainty improves.

2.6 \mathcal{H}_∞ Filter

In certain situations, it is desirable to amplify of the sensitivity of a parameter or input that affects the system while simultaneously minimizing the sensitivity of another. For example, in fault detection it is desirable to amplify the sensitivity of a residual signal to a fault while minimizing the sensitivity of the residual signal to a disturbance. In the case of disturbance torque estimation, it is desirable to amplify the sensitivity of a
residual signal to an external disturbance while minimizing the sensitivity of the residual signal to model uncertainties.

The \mathcal{H}_∞ filter, [17]-[23], can achieve such a desired performance. It is designed to maximize the sensitivity of the estimation to one parameter or input and making the estimation robust against another. For the purposes of this thesis, the state space model of the system used to calculate the observer gain is in the following form:

$$\begin{align*}
\dot{x} &= Ax + Bu + B_d w_d + B_1 w \\
y &= Cx + Du + D_d w_d + D_{21} w
\end{align*}$$

where B_d and D_d are input and feedthrough matrices for the disturbances respectively, B_1 and D_{21} are weighting matrices for the model uncertainties and output uncertainties respectively, w_d is a vector of external disturbances, and w is a vector of uncertainties.

By taking the Laplace transform of (2-16) we get

$$y = G_u(s)u + G_1(s)w + G_d(s)w_d$$

where $G_u(s)$, $G_1(s)$ and $G_d(s)$ are the transfer matrices from input to output, uncertainty to output and disturbance to output respectively, whose state space realizations are

$$[G_u(s) \ G_1(s) \ G_d(s)] = \begin{bmatrix} A & B & B_1 & B_d \\ C & D & D_{21} & D_d \end{bmatrix}.$$

An LCF of (2-18) can be written as

$$[G_u(s) \ G_1(s) \ G_d(s)] = M^{-1}(s)[N_u(s) \ N_1(s) \ N_d(s)]$$

where

$$[G_u(s) \ G_1(s) \ G_d(s)] = \begin{bmatrix} A + LC & L & B + LD & B_1 + LD_{21} & B_d + LD_d \\ C & I & D & D_{21} & D_d \end{bmatrix}$$

and L is a matrix such that $A + LC$ is stable.

It can be shown that the filter can take the following general form [21]:

$$r = Q(s)(M(s)y - N_u(s)u) = Q(s)[M(s) - N_u(s)]y$$

(2-21)
where \(r \) is known as the residual vector and \(Q(s) \) is a stable transfer matrix to be designed. By replacing \(y \) in (2-21) with the right-hand side of (2-17) and (2-19) we get

\[
r = Q(s)[N_1(s) \quad N_d(s)] \begin{bmatrix} w \\ w_d \end{bmatrix} = Q(s)N_1(s)w + Q(s)N_d(s)w_d.
\]

Thus the transfer matrices from uncertainty to residual and disturbance to residual can be written as

\[
G_{rw} = Q(s)N_1(s), \quad G_{rd} = Q(s)N_d(s).
\]

A block diagram of the system is shown in Figure 2.4. From this, an objective can be defined that can be used to design an appropriate \(Q(s) \).

\[
\begin{array}{c}
 W \\
 G_1 \\
 \downarrow \\
 G_u \\
 \downarrow \\
 N_u \\
 \downarrow \\
 M \\
 \downarrow \\
 Q \\
 \downarrow \\
 y \\
 \downarrow \\
 r \\
 \downarrow \\
 W_d \\
 \end{array}
\]

Figure 2.4 \(\mathcal{H}_- / \mathcal{H}_\infty \) filtering problem.

Let \(\gamma > 0 \), be a given uncertainty rejection level. Find a stable transfer matrix \(Q(s) \in \mathcal{RH}_\infty \) in (2-21)-(2-23) such that \(\|G_{rw}(s)\|_\infty \leq \gamma \) and \(\|G_{rd}(s)\|_- \) is maximized, i.e.

\[
\max_{Q(s) \in \mathcal{RH}_\infty} \{\|Q(s)N_d(s)\|_- : \|Q(s)N_1(s)\|_\infty \leq \gamma\}.
\]
By letting $R_1 = D_{21}D_{21}^T > 0$ and letting $Y \geq 0$ be the stabilizing solution to the following ARE:

$$
\begin{align*}
& (A - B_1D_{21}^TR_1^{-1}C)Y + Y(A - B_1D_{21}^TR_1^{-1}C)^T - YC^TR_1^{-1}CY \\
& + B_1(I - D_{21}^TR_1^{-1}D_{21})B_1^T = 0
\end{align*}
$$

(2-24)

such that $A - B_1D_{21}^TR_1^{-1}C - YC^TR_1^{-1}C$ is stable, we can define

$$
L_0 = -(B_1D_{21}^T + YC^T)R_1^{-1}
$$

(2-25)

Then

$$
\max_{Q(s) \in \mathcal{H}_\infty} \{ \|Q(s)N_d(s)\|_{\infty} : \|Q(s)N_1(s)\|_{\infty} \leq \gamma \} = \gamma \|V^{-1}(s)N_d(s)\|_{\infty}
$$

and an optimal filter can be found that has the following state space representation:

$$
r = Q_{opt}(s)[M(s) \ -N_u(s)] [\begin{bmatrix} Y \\ u \end{bmatrix}]
$$

(2-26)

where

$$
Q_{opt}(s)[M(s) \ -N_u(s)] = \gamma \begin{bmatrix} A + L_0C & -L_0 & B + L_0D \\ -R_1^{-1/2}C & R_1^{-1/2} & R_1^{-1/2}D \end{bmatrix}
$$

and

$$
V^{-1}(s)N_d(s) = \begin{bmatrix} A + L_0C & B_d + L_0D_d \\ R_1^{-1/2}C & R_1^{-1/2}D_d \end{bmatrix}
$$

In other words, the optimal \mathcal{H}_∞ filter is the following observer:

$$
\dot{\hat{x}} = (A + L_0C)\hat{x} - L_0y + (B + L_0D)u
$$

$$
r = \gamma R_1^{-1/2}(y - C\hat{x} - Du)
$$

(2-27)

2.7 Permanent Magnet DC Motor Model

DC motors available both on the market and in use today can be found in a variety of types. These include separately excited DC motors, series DC motors, shunt DC motors, brushless DC motors (BLDC) and permanent magnet DC motors (PMDC) to name a few. In order to design a disturbance torque estimator, an appropriate nominal
A mathematical model must first be developed. A PMDC, [25], is considered in this thesis. A schematic of a PMDC with no load is shown in Figure 2.5.

\[
\begin{align*}
\tau_m &= K_i i_a \\
J_m &+ B_m \omega_m \\
\end{align*}
\]

Figure 2.5 Schematic of a PMDC.

A nominal PMDC with no load can be represented by the following two coupled, linear, time-invariant, continuous-time, differential equations:

\[
\begin{align*}
v_t &= R_a i_a + L_a \frac{di_a}{dt} + K_v \omega_m \\
K_i i_a &= J_m \frac{d\omega_m}{dt} + B_m \omega_m
\end{align*}
\]

(2-28)

where the first equation is the electrical equation of the PMDC derived using Kirchhoff's voltage law and the second equation is the mechanical equation of the PMDC derived using Newton's second law of motion applied to a rotational system.

In general, by selecting the state variables to be \(i_a \) and \(\omega_m \) and having the sole measurement output of the system be the armature current, a state space model for a PMDC can be written in the following form:

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx
\end{align*}
\]

(2-29)

where

\[
A = \begin{bmatrix}
-\frac{R_a}{L_a} & -\frac{K_v}{L_a} \\
\frac{1}{K_i} & -\frac{B_m}{J_m}
\end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ L_a \end{bmatrix}, \quad C = [1 \ 0], \quad x = \begin{bmatrix} i_a \\ \omega_m \end{bmatrix}, \quad u = v_t, \quad y = i_a.
\]
By introducing disturbances and uncertainties into the system in the form of a disturbance torque and a disturbance voltage, [1], the equations in (2-28) can be rewritten as

\[
v_t = R_a i_a + L_a \frac{di_a}{dt} + K_v \omega_m + v_d
\]
\[
K_t i_a = J_m \frac{d\omega_m}{dt} + B_m \omega_m + \tau_d
\]

where

\[
v_d = \Delta R_a i_a + \Delta L_a \frac{di_a}{dt} + \Delta K_v \omega_m
\]
\[
\tau_d = -\Delta K_t i_a + \Delta J_m \frac{d\omega_m}{dt} + \Delta B_m \omega_m + \tau_L.
\]

A block diagram of a PMDC is shown in Figure 2.6.

![Block diagram of a PMDC.](image)

Figure 2.6 Block diagram of a PMDC.

It is worth noting that \(\tau_L \) not only denotes the load torque, but also denotes any variations in the load that may arise as a result of other external disturbances acting on the motor’s shaft. Also note that the state space model in (2-29) must be augmented in order to incorporate the appropriate disturbances and uncertainties, and that the state space models of the system that are required to design the estimator differ based on the filter type being employed. These augmentations will be discussed as part of the design of the disturbance torque estimators.
CHAPTER 3: DISTURBANCE TORQUE ESTIMATOR DESIGN

3.1 Overall Disturbance Torque Estimator

The overall disturbance torque estimator consists of two parts: a state observer, and an equation that relates the disturbance torque estimation to the system states and their derivatives.

Assuming that the pair \((A, C)\) is observable, an observer in the form of (2-2) can be designed. For the PMDC considered in this thesis, the observability matrix can be calculated as

\[
\mathbf{O} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} \frac{1}{L_a} & 0 \\ -\frac{R_a}{L_a} & -\frac{K_v}{L_a} \end{bmatrix}.
\]

(3-1)

It can be seen clearly in (3-1) that the observability matrix has full column rank and thus the PMDC considered here is an observable system.

By rearranging the mechanical equation of the PMDC in (2-30), the disturbance torque can be written as

\[
\tau_d = K_t i_a - J_m \dot{\omega}_m - B_m \omega_m.
\]

(3-2)

Since \(i_a\) is the only measurement output of the system and since the PMDC is an observable system, \(\omega_m\) and \(\dot{\omega}_m\) in (3-2) can be replaced with their respective estimates \(\hat{\omega}_m\) and \(\hat{\dot{\omega}}_m\). Thus an equation for the disturbance torque estimate can be written as

\[
\hat{\tau}_d = K_t \hat{i}_a - J_m \hat{\dot{\omega}}_m - B_m \hat{\omega}_m.
\]

(3-3)

Note that the actual armature current is used as opposed to the estimated armature current since it is assumed that the measured value is more reliable than the estimated value.

\(^1\) This chapter contains material that is the result of joint research.
The overall disturbance torque estimator is described by (2-2) and (3-3). A block diagram of the overall estimator is shown in Figure 3.1 and a block diagram of a system with disturbance torque estimation is shown in Figure 3.2.

![Figure 3.1 Disturbance torque estimator.](image1)

![Figure 3.2 System with disturbance torque estimation.](image2)
3.2 \mathcal{H}_∞ Filter System Model

In order to design an appropriate \mathcal{H}_∞ filter to be used for disturbance torque estimation, the state space model of the PMDC in (2-29) must be augmented to include both the disturbance torque and model uncertainties. For the \mathcal{H}_∞ filter, the state space model of the PMDC is written as:

\[
\begin{align*}
\dot{x} &= Ax + Bu + B_dw_d + B_1w \\
y &= Cx \\
z &= C_1x
\end{align*}
\tag{3-4}
\]

where \(A, B, C, x, u\) and \(y\) are the same as defined in (2-29) and

\[
B_d = \begin{bmatrix} 0 \\ -1 \\ \frac{1}{J_m} \end{bmatrix}, \quad C_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad w_d = \tau_d.
\]

The structures of \(B_1\) and \(w\) change based on the combination of uncertainties being used to calculate the observer gain and will be discussed later in this chapter.

3.3 \mathcal{H}_∞ Gaussian Filter System Model

In the case of the \mathcal{H}_∞ Gaussian filter the state space model of the PMDC in (2-29) must be augmented to include not only the disturbance torque and model uncertainties, but to also include white noise. For the \mathcal{H}_∞ Gaussian filter, the state space model of the PMDC is written as:

\[
\begin{align*}
\dot{x} &= Ax + Bu + B_dw_d + B_0w_0 + B_1w \\
y &= Cx + D_0w_0 \\
z_0 &= C_0x \\
z &= C_1x
\end{align*}
\tag{3-5}
\]

where \(A, B, C, x, u\) and \(y\) are the same as in (2-29) and

\[
B_d = \begin{bmatrix} 0 \\ -1 \\ \frac{1}{J_m} \end{bmatrix}, \quad C_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad w_d = \tau_d.
\]
The structures of B_0, B_1, w_0 and w also change based on the combination of uncertainties and white noises being used to calculate the observer gain and will be discussed later in this chapter and in chapter 5.

3.4 \mathcal{H}_∞ \mathcal{H}_∞ Filter System Model

Similar to the \mathcal{H}_∞ filter, in the case of the $\mathcal{H}_-\mathcal{H}_\infty$ filter the state space model of the PMDC in (2-29) must be augmented to include both the disturbance torque and model uncertainties. For the $\mathcal{H}_-\mathcal{H}_\infty$ filter, the state space model of the PMDC is written as:

$$
\begin{align*}
\dot{x} &= Ax + Bu + B_d w_d + B_1 w \\
y &= Cx + D_{21} w
\end{align*}
$$

where A, B, C, x, u and y are the same as defined in (2-29) and

$$
B_d = \begin{bmatrix} 0 \\ -1/J_m \end{bmatrix}, \quad w_d = \tau_d.
$$

The structures of B_1, D_{21} and w change based on the combination of uncertainties being used to calculate the observer gain and will be discussed later in this chapter.

3.5 Performance Requirements and Error/Disturbance Relation

By defining $e_x = x - \hat{x} = [e_i \quad e_\omega]^T$ where e_i and e_ω denote the error in estimation of armature current and motor speed respectively, the error dynamics of the disturbance torque estimator can be defined when using an \mathcal{H}_∞ filter as

$$
\dot{e}_x = \dot{x} - \dot{\hat{x}} = (A - LC)e_x + B_d w_d + B_1 w
$$

when using an \mathcal{H}_∞ Gaussian filter as

$$
\dot{e}_x = \dot{x} - \dot{\hat{x}} = (A - LC)e_x + B_d w_d + (B_0 - LD_{20}) w_0 + B_1 w
$$

and when using an $\mathcal{H}_-\mathcal{H}_\infty$ filter as

$$
\dot{e}_x = \dot{x} - \dot{\hat{x}} = (A - LC)e_x + B_d w_d + (B_1 + LD_{21}) w
$$
where $L = [L_1 \quad L_2]^T$ for the PMDC. Note that the gain L_0 described previously for the $\mathcal{H}_\infty/\mathcal{H}_\infty$ filter, was defined solely for the purpose of derivation and can be considered the same as the gain L in (2-2) and is defined as

$$L = L_0 = (B_1D_{21}^T + YC^T)R_1^{-1}$$

for the purpose of implementation.

Using (3-7), (3-8) and (3-9), certain criteria can be defined as to what the estimator should yield in terms of performance:

1. The design of the disturbance torque estimator must ensure that the eigenvalues of $(A - LC)$ lie within the left-half plane. In other words, the estimator must be stable.

2. The disturbance torque estimator must provide an appropriate estimation of the disturbance torque.

3. The selection of the gain observer gain L must minimize or constrain the transfer function from uncertainty to error (and white noise to error in the case of the \mathcal{H}_∞ Gaussian filter). In other words, the estimation must be robust to model uncertainties (and white noise in the case of the \mathcal{H}_∞ Gaussian filter).

The first two criteria can be easily satisfied by a wide range of values for the observer gain. Using this knowledge, it can be assumed that there also exists within that range, an observer gain that also satisfies the third criterion. The difficulty arises in the determination of such a gain, which can be resolved using the calculation techniques discussed in this thesis.

Another issue that arises in the design of the disturbance torque estimator is that in the designs of both the \mathcal{H}_∞ filter and the \mathcal{H}_∞ Gaussian filter, there is no systematic treatment of the disturbance torque but rather only of the uncertainties and white noise.
This issue is addressed solely in the design of the \mathcal{H}_∞ filter thus justifying the use of such a filter design. The observer gain in this filter design not only constrains the transfer function from uncertainty to error but also amplifies the sensitivity of the transfer function from disturbance to error which in turn also amplifies the sensitivity of the estimation to the disturbance torque.

Since the value of the observer gain in all cases constrains the transfer function from uncertainty to error, and in the case of the \mathcal{H}_∞ Gaussian filter also minimizes the impact of white noise, it can be assumed without loss of generality that (3-7), (3-8) and (3-9) can be reduced to

$$\dot{e}_x = (A - LC)e_x + B_d w_d. \quad (3-11)$$

Solving (3-11) yields

$$e_x = e^{(A-LC)t}e_x(0) + \int_0^t e^{(A-LC)(t-\tau)}B_dw_d(\tau)d\tau. \quad (3-12)$$

It can be seen in (3-12) that under steady-state conditions, the estimation error is related to the disturbance. Note that steady-state can refer to a periodic steady-state such as sinusoidal steady state. Since this equation does not assume a constant disturbance, it can be said that with an observer gain calculated using the methods described in this thesis, it is possible to estimate a non-constant disturbance that varies with time at low frequency, i.e., the period of the disturbance should not exceed the time it takes for the error dynamics to settle. In other words, for a non-constant disturbance, the dynamics of the disturbance should not be faster than the dynamics of the estimation error.

For a PMDC, if the observer state estimation equation for $\dot{\omega}_m$ is substituted into (3-3), the disturbance torque estimation equation becomes:

$$\hat{\tau}_d = (K_i - L_2J_m)e_i \quad (3-13)$$
where \(e_i = i_a - \hat{i}_a \). Thus we can see from (3-12) and (3-13) that that disturbance torque is related to the error in estimation of the armature current and can be estimated without the assumption of the disturbance torque being constant. This justifies the need to constrain the transfer function from uncertainty to disturbance, minimize the impact of white noise on the error and amplify the transfer function from disturbance to error.

3.6 Residual/Disturbance Relation

In order to fully implement a disturbance torque estimator that is built using an \(\mathcal{H}_\infty \) filter, a relation between the error in estimation of armature current and the residual signal must be found since the \(\mathcal{H}_\infty \) filter described in this thesis operates on the transfer functions from disturbance to residual and uncertainty to residual. Using the residual equation from (2-27) and the output equation from (3-6) we find that

\[
3-14
r = yR_1^{-1/2}Ce_x + yR_1^{-1/2}D_{21}w.
\]

Since the filter is designed to constrain the transfer function from uncertainty to residual, it can also be assumed without loss of generality that (3-14) can be reduced to

\[
3-15
r = yR_1^{-1/2}Ce_x.
\]

Substituting the value of \(C \) into (3-15) and rearranging results in

\[
3-16
\hat{e}_i = \frac{r}{yR_1^{-1/2}}.
\]

Substituting (3-16) into (3-13) results in

\[
3-17
\hat{\tau}_d = (K_t - L_2J_m) \frac{r}{yR_1^{-1/2}}.
\]

It can be easily seen that (3-3) and (3-17) are equivalent and thus the complete disturbance torque estimator designed using an \(\mathcal{H}_\infty \) filter can be entirely described by (2-2) (with \(D = 0 \)) and (3-3) as is also the case for the estimators designed using an \(\mathcal{H}_\infty \) filter and an \(\mathcal{H}_\infty \) Gaussian filter.
3.7 Cases for Design

In order to properly calculate an observer gain that produces a robust estimation, the parameters of interest for which the estimation must be robust against must first be defined. Since the disturbance torque being estimated is assumed to either be constant or to vary with low frequency, the armature current may also be assumed to either be constant or to vary with low frequency. As a result, the term \(\Delta L_a (di_a/dt) \) can be assumed to be small and negligible, i.e., any variations in the armature inductance can be ignored. Also, as shown in (2-31), variations in any of the mechanical parameters of the motor and variations in the load can be considered as part of the disturbance torque. As a result, the only two model uncertainties of significance are variations in the armature resistance and variations in the electrical constant. From this, three separate cases for the structures of \(B_1, D_{21} \) and \(w \) can be considered.

In case 1, only variations in the armature resistance are considered. In case 2, only variations in the electrical constant are considered. In case 3, both variations in the armature resistance and the electrical constant are considered. The cases are summarized in Table 3.1. Note that in all cases \(w_1, w_2 \), and \(w_3 \) are positive constants that represent the significance of the particular uncertainty. They are added to the system in order to influence the calculation of the observer gain.

In the case of the \(\mathcal{H}_\infty \) filter, another model uncertainty was also required to ensure that there exists a solution to the ARE in (2-24). Since \(R_1 = D_{21} D_{21}^T > 0 \), it is required to define some sort of output uncertainty so that the matrix \(D_{21} \) can be defined and thus result in \(R_1 > 0 \). For this purpose, the parameter \(\Delta i_a \) is defined to represent measurement output uncertainty. This is justified by the fact that in real physical systems, no measurement is ever completely accurate and always contains some
amount of uncertainty. Thus we redefine the measurement output for the \mathcal{H}_∞ filter as $y = i_a + \Delta i_a$ and assume that the armature current being measured contains within it some amount of uncertainty.

Once determined, these parameters are used to solve the ARE’s in (2-6), (2-13), (2-14) and (2-24) whose solutions are then used to calculate the corresponding observer gains (2-7), (2-15) and (3-10).

Table 3.1 Structures of B_1, D_{21} and w.

<table>
<thead>
<tr>
<th>Case</th>
<th>$\mathcal{H}\infty$ and $\mathcal{H}\infty$ Gaussian Filters</th>
<th>\mathcal{H}_∞ Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$w = \Delta R_a i_a$, $B_1 = \begin{bmatrix} -\frac{w_1}{L_a} \ \Delta i_a \ 0 \end{bmatrix}$</td>
<td>$B_1 = \begin{bmatrix} -\frac{w_1}{L_a} \ \Delta i_a \ 0 \end{bmatrix}$, $D_{21} = [0 \ w_3]$</td>
</tr>
<tr>
<td>2</td>
<td>$w = \Delta K_y \omega_m$, $B_1 = \begin{bmatrix} -\frac{w_2}{L_a} \ \Delta i_a \ 0 \end{bmatrix}$</td>
<td>$B_1 = \begin{bmatrix} -\frac{w_2}{L_a} \ \Delta i_a \ 0 \end{bmatrix}$, $D_{21} = [0 \ w_3]$</td>
</tr>
<tr>
<td>3</td>
<td>$w = \begin{bmatrix} \Delta R_a i_a \ \Delta K_y \omega_m \end{bmatrix}$, $B_1 = \begin{bmatrix} -\frac{w_1}{L_a} & -\frac{w_2}{L_a} \ \Delta i_a \ 0 \end{bmatrix}$</td>
<td>$B_1 = \begin{bmatrix} -\frac{w_1}{L_a} & -\frac{w_2}{L_a} \ \Delta i_a \ 0 \end{bmatrix}$, $D_{21} = [0 \ 0 \ w_3]$</td>
</tr>
</tbody>
</table>
In order to test the designed disturbance torque estimators, a real-time hardware test bench was setup. The test bench consisted of the following components:

1. A PMDC used as the motor under test (MUT).
2. A PMDC used as a dyno in order to provide disturbance torques to the MUT.
3. A current shunt resistor along with signal conditioning circuitry used to measure the armature current of the MUT.
4. An in-line torque sensor used to validate the disturbance torque estimations.
5. Two H-bridge controllers used to control the input voltage of the MUT and the dyno motor.
6. A real-time (RT) computer used to implement the disturbance torque estimators, generate inputs for the H-bridge controllers and acquire data from the sensors.
7. An operating station used to develop models of the disturbance torque estimators for execution on the RT computer, interface with the RT-computer, control the execution of tests, and plot and analyze experimental data.

A block diagram of the test bench is shown in *Figure 4.1*.

![Figure 4.1 Block diagram of the real-time hardware test bench.](image-url)
4.1 Determination of Parameters of DC Motor Under Test

Prior to testing the estimators, the parameters of the plant, in this case the PMDC, must be determined so that calculation of observer gains may be conducted, and also so that the estimator models can be programmed into the RT computer. For the PMDC, these parameters include the motor’s armature resistance, armature inductance, electrical constant, mechanical constant, viscous friction coefficient and inertial coefficient. These parameters can either be found in a datasheet that is provided by the manufacturer, or can be determined through testing.

If testing is to be performed in order to determine these parameters, the model of the model of the PMDC that is used is in the form of (2-28) where no disturbance, uncertainty, or noise is considered in the system. Each test is repeated 2-3 times and the results are averaged.

All of the values that are obtained either from documentation or from testing are assumed to be nominal values. Any uncertainty or variations in the parameters are addressed in the design of the estimators.

4.1.1 Armature Resistance

The first step in determining the armature resistance of a PMDC is to lock the armature so that \(\omega_m = 0 \) regardless of the input to the motor. A small, known voltage, \(v_t \), is then applied to the motor and the armature current is measured after reaching steady-state (\(di_a/dt = 0 \)). This must be done quickly in order to prevent the armature winding from heating up which could cause a change in its resistance. Using the known value of \(v_t \) and the measured value of \(i_a \), the armature resistance can be calculated as

\[
R_a = \frac{v_t}{i_a}
\]

(4-1)
4.1.2 Armature Inductance

To determine the armature inductance of a PMDC, the armature is to be locked once again so that $\omega_m = 0$ regardless of the input to the motor. A resistor of known resistance, R_k, is then connected in series with armature circuit. A step voltage is applied to the motor and the transient response of the voltage across R_k is plotted. This must also be done quickly in order to prevent the armature winding from heating up. The electrical time constant, τ_E, is then determined from the transient response. Using the value of R_a that has already been obtained, the known value of R_k and the measured value of τ_E, the armature inductance can be calculated as

$$L_a = \tau_E (R_a + R_k).$$

(4-2)

4.1.3 Electrical Constant and Mechanical Constant

In determining the electrical constant, the PMDC is allowed to run freely with no load attached to it. A small known voltage, v_t, is applied to the motor and the armature current and motor speed are measured after reaching steady-state ($di_a/dt = 0$ and $d\omega_m/dt = 0$). Once again this must be done quickly in order to prevent the armature winding from heating up. Using the known value of v_t, the previously determined value of R_a and the measured values of i_a and ω_m, the electrical constant can be calculated as

$$K_v = \frac{v_t - R_ai_a}{\omega_m}. \quad (4-3)$$

The value of the mechanical constant can be easily determined if using SI units to measure and calculate the electrical constant. This results from the fact that in SI units, the value of the mechanical constant is equivalent to the value of the electrical constant. Thus the value of the mechanical constant can be calculated as

$$K_t = K_v.$$

(4-4)
4.1.4 Viscous Friction Coefficient

To determine the viscous friction coefficient, the PMDC is once again allowed to run freely with no load attached to it. A small known voltage, v_t, is applied to the motor and the armature current and motor speed are measured after reaching steady-state ($di_a/dt = 0$ and $d\omega_m/dt = 0$). Using the previously determined value of K_t and the measured values of i_a and ω_m, the viscous friction coefficient can be calculated as

$$B_m = \frac{K_t i_a}{\omega_m}$$ \hfill (4-5)

4.1.5 Inertial Coefficient

In determining the inertial coefficient, the PMDC is once again allowed to run freely with no load attached to it. A step voltage, v_t, whose magnitude is the rated input voltage of the PMDC is applied to the motor so that it runs at rated speed and the transient response of the motor speed is plotted. The mechanical time constant, τ_M, is then determined from the transient response. Using the previously determined value of B_m and the measured value of τ_M, the inertial coefficient can be calculated as

$$J_m = \tau_M B_m.$$ \hfill (4-6)

4.2 Hardware Configuration

Each component of the test bench is designed to perform specific tasks and as such has its own separate requirements and specifications that must be satisfied in order to make proper use of the particular component. These specifications can include such things as power ratings, shielding requirements, operating temperatures and wiring configurations. Other components may require programming, mode selection or calibration in order to function in the desired manner and to produce the correct output.
When performing data acquisition, it is necessary to relate the output of the sensor to the measured quantity. In many situations, this relation is provided by the manufacturer. Other times the sensor must be tested and calibrated in order to determine this relation. Signal conditioning of the sensor output may also be required in some situations in order to ensure that the sensor output is compatible with the data acquisition hardware. All of these tasks must be performed prior to the conducting of any tests to ensure that testing and experimentation can be performed effectively.

4.2.1 Operating Station and Real-Time Computer

The hardware test bench has two computers used to develop models, manage the execution of tests, analyze data and implement algorithms. Model development, test management and data analysis are taken care of by an operating station consisting of a Dell Dimension 4550 computer shown in Figure 4.2. Implementation of algorithms is handled by an Opal-RT real-time computer shown in Figure 4.3. The specifications of the operating station and the RT computer are listed in Table 4.1.

Figure 4.2 Operating station.
Table 4.1 Operating station and RT computer specifications.

<table>
<thead>
<tr>
<th>Device</th>
<th>Operating Station</th>
<th>RT Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Windows XP Service Pack 2</td>
<td>QNX 6.0</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel Pentium 4 CPU at 1.80 GHz</td>
<td>2 Intel 686 2401 MHz FPU's</td>
</tr>
<tr>
<td>Memory</td>
<td>512 MB DDR SDRAM</td>
<td>1015 MB RAM</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>60 GB HDD</td>
<td>HDD</td>
</tr>
<tr>
<td>Network Interface Card</td>
<td>Realtek RTL8139 Family PCI Fast Ethernet NIC</td>
<td>Netlink BCM5787M Gigabit Ethernet PCI Express</td>
</tr>
</tbody>
</table>

The operating station and the RT computer are networked together using a Local Area Network (LAN) consisting of a standard Ethernet cable that connects directly between the network cards on both computers. The network uses the popular TCP/IP protocol to pass information back and forth between the two computers with the RT computer having an IP address of 192.168.10.101. This connection is detected automatically by the operating system on the operating station when both computers are on.

Interfacing between the RT computer and test components is handled by two terminal block interface modules shown in Figure 4.4. One module handles signals sent
from the RT computer to the test components while the second handles signals received from the test components. Each terminal block connects to an interface card via a 40-pin ribbon cable. One interface card is used to output analog voltages in the range of 0 V to +5 V while the second card is used to read in analog voltages in the range of -10 V to +10 V.

![Figure 4.4 Terminal block interface modules.](image)

4.2.2 Motor Under Test

The motor that is to be used to test the disturbance torque estimators is the Baldor CDP3440-V24 PMDC. The motor's ratings are listed in Table 4.2 (see [26]) and the motor is shown in Figure 4.5. The parameters of this motor that are used in the estimator designs are given in chapter 5.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armature Voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Armature Current</td>
<td>29.4 A</td>
</tr>
<tr>
<td>Power</td>
<td>0.75 hp</td>
</tr>
<tr>
<td>Speed</td>
<td>1800 RPM</td>
</tr>
<tr>
<td>Full-Load Torque</td>
<td>3 N⋅m</td>
</tr>
</tbody>
</table>

Table 4.2 Rated values of the motor under test.
4.2.3 Dyno Motor

The motor that is to be used as a dyno to provide disturbance torques to the MUT is the Bosch GPA 12 V 400 W PMDC. The motor’s ratings are listed in Table 4.3 (see [27]) and the motor is shown in Figure 4.6.

Table 4.3 Rated values of the dyno motor.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armature Voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Armature Current</td>
<td>50 A</td>
</tr>
<tr>
<td>Power</td>
<td>400 W</td>
</tr>
<tr>
<td>Speed</td>
<td>3400 RPM</td>
</tr>
<tr>
<td>Continuous Torque</td>
<td>1.2 N·m</td>
</tr>
</tbody>
</table>
4.2.4 Motor Controllers

The RoboteQ AX1500-BP, [28], and RoboteQ AX3500-BP, [29], motor controllers are used to control the input voltage to the MUT and dyno motor respectively. Each module can be powered by a 12-to-40 VDC power supply and is capable of acting as a stand-alone closed-loop controller, or as an H-bridge. The output of the controllers in all operating modes is in the form of a PWM signal. The AX1500-BP is shown in Figure 4.7 and the AX3500-BP is shown in Figure 4.8.

![Figure 4.7 Motor under test controller.](image1)

![Figure 4.8 Dyno motor controller.](image2)
For the purposes of testing the disturbance torque estimators, the controllers are configured to operate using the analog signal input command mode and the open-loop, separate speed control mode. Using these settings allows the controller to operate the motors in either the forward or reverse direction in proportion to an analog input voltage that is to be provided from the RT computer. The analog input voltage must be in the range of 0 V to +5 V. These analog input voltages are translated into digital values that the controller then uses to set both the direction the motor will spin and the duty cycle of the PWM signal. A +2.5 V input translates into a digital value of 0 (motor off) while a +5 V input translates into a digital value of +127 (maximum forward command) and a 0 V input translates into a digital value of -127 (maximum reverse command).

In order to calculate the voltage being applied to the terminals of the test motor for use in the disturbance torque estimators, the following equation is used:

\[v_t = -9.6v_c + 24. \]

(4-7)

Note that (4-7) is not a fixed relation and changes depending upon the supply voltage used to power the controller.

4.2.5 Current Measurement

Since the disturbance torque estimators require a measurement of the armature current of the MUT, a current shunt resistor is used as a sensor to acquire this value. It is connected in series with the armature circuit of the MUT and has a nominal resistance that is small enough to be considered not to have a significant, or even any effect on the motor’s performance. The current shunt that is to be used for testing has a rated output voltage of 50 mV at a rated current of 100 A which translates into a nominal resistance of 0.5 mΩ. It is shown in Figure 4.9.
By measuring the voltage across the current shunt resistor, the armature current can be calculated. Before this can be done, the output voltage must be passed through signal conditioning circuitry in order to amplify it to a level that can be easily read-in by the RT computer. For this purpose, an instrumentation amplifier is used due to its superior noise rejection properties in comparison to the conventional op-amp. The output of the amplifier is also fed through a 1 kHz low-pass RC filter. The cut-off frequency of the filter was chosen to correspond with the 1 ms sampling period of the RT computer. The armature current can then be calculated as

\[i_a = \frac{v_o}{GR_s} \]

(4-8)

4.2.6 Torque Sensor

In order to validate the disturbance torque estimations generated using the designed estimators, an in-line torque sensor, [30], is used. The sensor is connected in between the MUT and dyno motor to form one continuous shaft. It contains a strain gauge sensor as well as the appropriate signal conditioning circuitry. The sensor
measures the torque applied to its shaft and produces a mV/V output for a given torque.

The torque sensor is shown in Figure 4.10.

\[\tau_s = (0.7243 + 0.00007v_s)v_s. \]
\[(4-9) \]

4.2.7 Rotary Incremental Encoder

Determination of some of the parameters of the MUT requires a measurement of the motor's speed. These measurements are acquired with the use of a rotary incremental encoder (see [31]). The encoder has three output channels whose outputs can be used for either RSE measurements or differential measurements and allows for calculation of not only speed, but also of position and direction. The encoder is shown in Figure 4.11.
For the purpose of measuring motor speed, only one of the output channels is used. This channel is known as the index or Z channel. It outputs a pulse with a magnitude of +5 V once per revolution. By counting the number of pulses in a specified time interval, the speed of the motor can be calculated in radians per second as

\[
\omega_m = \frac{2\pi N_{\phi}}{P_R T_i}
\]

(4-10)

where \(P_R = 1 \) for the index channel.

4.3 Software Configuration

Prior to testing the designed disturbance torque estimators, the various observer gains need to be determined and the models of the estimators must be input, compiled and programmed into both the operating station and the RT computer. Several software packages exist that can assist with these tasks. These packages aid in reducing the difficulty of the calculations involved in the designs, reduce the amount of time it takes to develop the software necessary for testing, and simplify both the acquisition and analysis of experimental data.
4.3.1 MATLAB/Simulink

Calculation of the various observer gains is performed in the MATLAB environment. This popular software can be used for many purposes ranging from simple calculations to complex analysis and visualization of data. In this environment, model parameters are input into a main program that calls on several different functions. Each function is designed to calculate a particular observer gain and when called upon, returns the value of the resulting observer gain matrix. The resulting eigenvalues of the error dynamics of each estimator are also calculated to ensure that stability requirements are satisfied.

The disturbance torque estimator models that are to be tested are created using a component of MATLAB known as Simulink. This environment allows for the creation, simulation and implementation of model-based designs. The models are input as block diagram representations of the mathematical equations associated with the system. Simulink contains many built-in ODE solvers that can be tuned to optimize the performance of the simulation. Since the estimators are to be implemented on an RT computer and the tests will be conducted in real-time, the simulation parameters are selected such that a fixed-step ODE solver is used. The solver is configured to have a fixed step size of 1 ms which corresponds to the sampling period of the RT computer.

4.3.2 RT-Lab

Once the disturbance torque estimator models are created and are ready for testing, the appropriate C-language code must be generated from the models and compiled in order to be programmed into the RT computer. A software package known as RT-Lab, [32], handles these tasks. This software communicates with MATLAB and
Simulink to open the models, generate and compile the necessary code, transfer the code to the RT computer, execute the tests and collect test data upon completion.

During execution, various test signals can be visualized and inputs to the system can be adjusted. This allows the user to execute and manipulate the magnitude and type of disturbance torque signals to be used for testing in real-time and without having to halt the current test being performed. Once a test is complete, the software communicates over the LAN to acquire all of the test data that was collected and stored by the RT computer. This data can then be plotted and analyzed in the MATLAB environment.
CHAPTER 5: TEST RESULTS

5.1 Motor Under Test Parameters

The MUT’s parameters, with the exception of armature resistance and armature inductance, were determined through testing of the motor according to the test procedures described in Chapter 4 and are listed in Table 5.1. The armature resistance and armature inductance were obtained from [26]. These parameters were then used to calculate the observer gains and in the estimation algorithms.

Table 5.1 Parameters of the motor under test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armature Resistance</td>
<td>0.0933 Ω</td>
</tr>
<tr>
<td>Armature Inductance</td>
<td>0.7493 mH</td>
</tr>
<tr>
<td>Electrical Constant</td>
<td>0.11235 V/rad/s</td>
</tr>
<tr>
<td>Mechanical Constant</td>
<td>0.11235 N·m/A</td>
</tr>
<tr>
<td>Viscous Friction Coefficient</td>
<td>1.2404×10⁻³ N·m/rad/s</td>
</tr>
<tr>
<td>Inertial Coefficient</td>
<td>1.8078×10⁻⁴ kg/m²</td>
</tr>
</tbody>
</table>

5.2 Parameters Used for Observer Gain Calculation and Calculated Gains

In order to calculate the observer gains, all of the design parameters, i.e., γ, w₁, w₂ and w₃ as shown in Table 3.1, for each filter needed to be determined. These parameters were selected in such a way as to maintain a high level of robustness in the estimations, while also ensuring that stable solutions to the ARE’s in (2-6), (2-13), (2-14) and (2-24) exist. The parameters are listed in Table 5.2 and the resulting observer gains are listed in Table 5.3. Note that in all cases for the \mathcal{H}_∞ Gaussian filter, B_0, D_{20} and w_0 were as follows:

$$B_0 = \begin{bmatrix} 0.5 & 0 \\ \frac{L_a}{0} & 0 \end{bmatrix}, \quad D_{20} = [0 \quad 1], \quad w_0 = \begin{bmatrix} V_{brush} \\ i_{d,noise} \end{bmatrix}.$$
Table 5.2 Parameters used to determine the observer gains.

<table>
<thead>
<tr>
<th>Case</th>
<th>Parameter</th>
<th>H_{∞} Filter</th>
<th>H_{∞} Gaussian Filter</th>
<th>H_{-}/H_{∞} Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>γ</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>w_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>w_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>w_3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>γ</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>w_1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>w_2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>w_3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>γ</td>
<td>10</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>w_1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>w_2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>w_3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 5.3 Observer gains.

<table>
<thead>
<tr>
<th>Case</th>
<th>H_{∞} Filter</th>
<th>H_{∞} Gaussian Filter</th>
<th>H_{-}/H_{∞} Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$L = \begin{bmatrix} 1.26 \times 10^3 \ -0.37 \times 10^3 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 5.51 \times 10^2 \ 0.25 \times 10^2 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1.21 \times 10^3 \ 0.05 \times 10^3 \end{bmatrix}$</td>
</tr>
<tr>
<td>2</td>
<td>$L = \begin{bmatrix} 5.61 \times 10^2 \ -0.20 \times 10^2 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 5.49 \times 10^2 \ 0.24 \times 10^2 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 5.49 \times 10^2 \ 0.24 \times 10^2 \end{bmatrix}$</td>
</tr>
<tr>
<td>3</td>
<td>$L = \begin{bmatrix} 8.43 \times 10^2 \ -0.79 \times 10^2 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 5.50 \times 10^2 \ 0.25 \times 10^2 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 8.22 \times 10^2 \ 0.36 \times 10^2 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

5.3 Input Patterns

For each of the cases, two distinct voltage input patterns were used to generate the disturbance torque. The first pattern consisted of a combination of constant and low frequency signals. This pattern was used to test not only that the estimators deliver appropriate results, but also to test for robustness and noise rejection. The second pattern consisted of a staircase that increased in small increments. This pattern was used to test for sensitivity. The patterns are shown in Figure 5.1 and Figure 5.2. Note that these patterns represent the signal applied to the input of the dyno motor’s controller. The actual input voltage applied to the dyno motor can be calculated using as

\[v_{dyno} = -4.8v_{c,dyno} + 12. \] (5-1)
Figure 5.1 Overall input pattern.

Figure 5.2 Sensitivity input pattern.
5.4 Disturbance Torque Estimation Test Results

For all of the tests, the estimators were implemented using both nominal parameters as well as parameters with the appropriate variations, as shown in Table 3.1, and the results were compared. All of the estimations were validated using the in-line torque sensor appropriately. Each test was conducted in real-time with the disturbance torque estimators implemented using the RT computer. Upon completion of a test, the data acquired by the RT computer was transmitted to the operating station. This data was then plotted using the MATLAB environment and analyzed to ensure that the estimators performed according to the design specifications.

5.4.1 Test Results for Case 1

For case 1, the tests were executed using nominal parameters and in the presence of variations in the armature resistance of ±10%. The first input pattern was used to generate the disturbance torque. The results for the \(\mathcal{H}_\infty, \mathcal{H}_\infty \) Gaussian and \(\mathcal{H}_/-\mathcal{H}_\infty \) disturbance torque estimations are shown in Figure 5.3, Figure 5.4 and Figure 5.5 respectively. These results were also magnified to show the robustness and noise rejection capabilities of the designed estimators and are shown in Figure 5.6 and Figure 5.7 respectively. Note that the noise rejection results are shown only for the estimation with nominal parameters for the purpose of clarity. Similar results appear in the presence of uncertainties.

The second input pattern was used to test the sensitivity requirement of the \(\mathcal{H}_/-\mathcal{H}_\infty \) disturbance torque estimator. The results are shown in Figure 5.8. Once again note that the sensitivity results are shown only for the estimation with nominal parameters for the purpose of clarity. Similar results appear in the presence of uncertainties.
Figure 5.3 Test results for \mathcal{H}_∞ disturbance torque estimation case 1.

Figure 5.4 Test results for \mathcal{H}_∞ Gaussian disturbance torque estimation case 1.
Figure 5.5 Test results for \(H_\infty \) disturbance torque estimation case 1.

Figure 5.6 Robustness results for case 1.
Figure 5.7 Noise results for case 1.

Figure 5.8 H_∞ sensitivity results for case 1.
It can be seen in Figure 5.3, Figure 5.4 and Figure 5.5 that all of the estimators are capable of delivering appropriate and robust disturbance torque estimations in the presence of variations in the armature resistance. This is seen in the fact that the difference between all of the estimations is not even visible in the results. These results are also reinforced by Figure 5.6 which shows that there are very small and negligible variations in the results due to the variations.

It can also be seen in Figure 5.7 that the estimation result of the H_∞ Gaussian filter contains less noise in comparison to the H_∞ filter and H_-/H_∞ filter estimation results. This is expected since the H_∞ Gaussian filter is designed to make a trade-off between robustness and noise rejection.

In Figure 5.8 it can be clearly seen that the H_-/H_∞ filter estimation is very sensitive to small changes in the disturbance torque. Once again this is expected since the H_-/H_∞ filter is designed to be sensitive to the disturbance torque. This level of sensitivity may also be achieved using either the H_∞ filter or the H_∞ Gaussian filter depending on the system but is not guaranteed and would be coincidental and unique to the particular system.

5.4.2 Disturbance Torque Estimation Test Results for Case 2

For case 2, the tests were executed using nominal parameters and in the presence of variations in the electrical constant of ±10%. The first input pattern was used to generate the disturbance torque. The results for the H_∞, H_∞ Gaussian and H_-/H_∞ disturbance torque estimations are shown in Figure 5.9, Figure 5.10 and Figure 5.11 respectively. These results were also magnified to show the robustness and noise rejection capabilities of the designed estimators and are shown in Figure 5.12 and Figure 5.13 respectively. Note that the noise rejection results are shown only for the estimation.
with nominal parameters for the purpose of clarity. Similar results appear in the presence of uncertainties.

The second input pattern was used to test the sensitivity requirement of the $\mathcal{H}_\infty/\mathcal{H}_\infty$ disturbance torque estimator. The results are shown in Figure 5.14. Once again note that the sensitivity results are shown only for the estimation with nominal parameters for the purpose of clarity. Similar results appear in the presence of uncertainties.

![Graph](image.png)

Figure 5.9 Test results for \mathcal{H}_∞ disturbance torque estimation case 2.
Figure 5.10 Test results for H_{∞} Gaussian disturbance torque estimation case 2.

Figure 5.11 Test results for H_{∞}/H_{∞} disturbance torque estimation case 2.
Figure 5.12 Robustness results for case 2.

Figure 5.13 Noise results for case 2.
Figure 5.14 H_∞ sensitivity results for case 2.

It can be seen in Figure 5.9, Figure 5.10 and Figure 5.11 that all of the estimators are capable of delivering appropriate and robust disturbance torque estimations in the presence of variations in the electrical constant. This is seen in the fact that the difference between all of the estimations is not even visible in the results. These results are also reinforced by Figure 5.12 which shows that there are very small and negligible variations in the results due to the variations.

It can also be seen in Figure 5.13 that the estimation result of the H_∞ Gaussian filter contains less noise in comparison to the H_∞ filter and H_-/H_∞ filter estimation results as expected.

In Figure 5.14 it can be clearly seen that the H_-/H_∞ filter estimation is very sensitive to small changes in the disturbance torque. This is once again as expected.
This level of sensitivity may also be achieved using either the \mathcal{H}_∞ filter or the \mathcal{H}_∞ Gaussian filter depending on the system but is not guaranteed and would be coincidental and unique to the particular system.

5.4.3 Disturbance Torque Estimation Test Results for Case 3

For case 3, the tests were executed using nominal parameters and in the presence of variations in the armature resistance of ±10% and in the electrical constant of ±10%. The first input pattern was used to generate the disturbance torque. The results for the \mathcal{H}_∞, \mathcal{H}_∞ Gaussian and $\mathcal{H}/\mathcal{H}_\infty$ disturbance torque estimations are shown in Figure 5.15, Figure 5.16 and Figure 5.17 respectively. These results were also magnified to show the robustness and noise rejection capabilities of the designed estimators and are shown in Figure 5.18 and Figure 5.19 respectively. Note that the noise rejection results are shown only for the estimation with nominal parameters for the purpose of clarity. Similar results appear in the presence of uncertainties.

The second input pattern was used to test the sensitivity requirement of the $\mathcal{H}/\mathcal{H}_\infty$ disturbance torque estimator. The results are shown in Figure 5.20. Once again note that the sensitivity results are shown only for the estimation with nominal parameters for the purpose of clarity. Similar results appear in the presence of uncertainties.
Figure 5.15 Test results for H_∞ disturbance torque estimation case 3.

Figure 5.16 Test results for H_∞ Gaussian disturbance torque estimation case 3.
Figure 5.17 Test results for \mathcal{H}_∞/\mathcal{H}_∞ disturbance torque estimation case 3.

Figure 5.18 Robustness results for case 3.
Figure 5.19 Noise results for case 3.

Figure 5.20 $\mathcal{H}_- / \mathcal{H}_\infty$ sensitivity results for case 3.
It can be seen in Figure 5.15, Figure 5.16 and Figure 5.17 that all of the estimators are capable of delivering appropriate and robust disturbance torque estimations in the presence of variations in both the armature resistance and the electrical constant. This is seen in the fact that the difference between all of the estimations is not even visible in the results. These results are also reinforced by Figure 5.18 which shows that there are very small and negligible variations in the results due to the variations.

It can also be seen in Figure 5.19 that the estimation result of the \mathcal{H}_∞ Gaussian filter contains less noise in comparison to the \mathcal{H}_∞ filter and $\mathcal{H}_-/\mathcal{H}_\infty$ filter estimation results as expected.

In Figure 5.20 it can be clearly seen that the $\mathcal{H}_-/\mathcal{H}_\infty$ filter estimation is very sensitive to small changes in the disturbance torque. This is once again as expected. This level of sensitivity may also be achieved using either the \mathcal{H}_∞ filter or the \mathcal{H}_∞ Gaussian filter depending on the system but is not guaranteed and would be coincidental and unique to the particular system.
6.1 Conclusion

DC motors can be found in many applications and have become commonplace in today’s society. Their flexibility allows them to be found not only in specialized high-performance applications, but also in regular everyday applications for enhanced luxury, comfort and entertainment. As a result of this, research into both the design and control of the DC motor has been and will continue to be of great importance.

These motors unfortunately can be plagued by many factors that can inhibit their performance. The disturbance torque acting on a motor shaft can have particularly large negative effects. Knowledge of this disturbance torque can be used to mitigate the degradation in performance but direct measurement of the disturbance torque can be costly and difficult. To overcome this, estimation strategies can be used in order to obtain knowledge of the disturbance torque.

This thesis has examined the use of three robust filtering techniques to design and test three disturbance torque estimators. These include the \mathcal{H}_∞ filter, the \mathcal{H}_∞ Gaussian filter and the $\mathcal{H}_- / \mathcal{H}_\infty$ filter. The $\mathcal{H}_- / \mathcal{H}_\infty$ filter in particular was originally designed for use in fault detection applications and is a new a novel approach to disturbance torque estimation.

Depending upon the application, it may be necessary to ensure that the disturbance torque estimator is not only robust to model uncertainty, but that is also capable of rejecting white noise. If model uncertainty is the only factor of concern, an \mathcal{H}_∞ filter based disturbance torque estimator can be designed. If both robustness and noise rejection are required, an \mathcal{H}_∞ Gaussian filter based disturbance torque estimator can be designed.
Each of these designs, though, does not factor in the sensitivity to a disturbance. Examination of the error dynamics for each observer showed that the estimation error is subject not only to uncertainties, and in some cases noise, but that it is also subject to disturbances. It was also shown that the estimate of the disturbance torque is directly related to the error in estimation and thus maximization of the error’s sensitivity to a disturbance should be a factor in a good estimator design. As a result, under these circumstances it is best to use an $\mathcal{H}_- / \mathcal{H}_\infty$ filter based disturbance torque estimator for the design.

Examination of the error dynamics also revealed that the these designs were capable of estimating not only constant disturbance torques, but also ones that varied with time at low frequency, i.e., the dynamics of the disturbance should not be faster than the dynamics of the estimation error.

The designed estimators were implemented and tested using an RT computer connected to a PMDC. A dyno motor was used to provide various types of disturbance torques. The estimators were subjected to various types of parameter variations as well as various types of constant and low frequency disturbance torques. The estimation results were validated using an in-line torque sensor.

In all cases, each of the designed disturbance torque estimators were shown to be capable of delivering a robust estimation of both constant and low frequency disturbance torques. Testing of the filters also showed that the \mathcal{H}_∞ Gaussian filter based disturbance torque estimator has better noise rejection qualities in comparison to the \mathcal{H}_∞ filter and $\mathcal{H}_- / \mathcal{H}_\infty$ filter based disturbance torque estimators. This is expected since \mathcal{H}_∞ Gaussian filter is designed to make a trade-off between robustness and noise rejection.
The $\mathcal{H}_-/\mathcal{H}_\infty$ filter based disturbance torque estimator was also shown to be sensitive to small changes in the disturbance torque. Once again this is expected since the $\mathcal{H}_-/\mathcal{H}_\infty$ filter is designed to be sensitive to the disturbance. This level of sensitivity may also be achieved using either the \mathcal{H}_∞ filter or the \mathcal{H}_∞ Gaussian filter based disturbance torque estimators but is not guaranteed. This kind of result would be coincidental and unique to the particular system and may not prove true for any other system in general.

6.2 Future Work

Continued testing should be done in order to further tune the disturbance torque estimation. This can be done by varying the degree of tolerance to uncertainty and/or noise of the observer, or by varying the significance of a particular uncertainty on the disturbance torque estimation. Each time a new set of parameters is chosen, the changes in the estimation should be noted. This could aid in not only optimization of the disturbance torque estimation but could also in the development of a systematic method to tune the estimation parameters.

Reduction of observer order and its effects on the disturbance torque estimation should also be investigated. This could lead to the development of a reduced order observer design for the disturbance torque estimator. The benefit of such a design would be the reduction in resources required to implement such an estimation algorithm as opposed to a full order observer based estimation algorithm. This reduction in resources could also lead to a reduction in overall system cost.

The $\mathcal{H}_-/\mathcal{H}_\infty$ filter design technique has been shown to work as a basis for a disturbance torque estimator design when applied to a PMDC system. Generalization of this type of design should be studied in order show that such an estimation scheme is
not restricted solely to a PMDC system, but that it can also be applied to a wide variety of other systems.

Since the ultimate goal of developing a disturbance torque estimation scheme is to compensate for the effects of the disturbance torque acting on the system, methods on how to use the estimation for control should be examined. One possibility would be to use model recovery techniques to acquire a mathematical model of the disturbance torque from the estimation as opposed to instantaneous values of the disturbance torque generated by the estimation algorithms at each sampling interval when implemented in a digital system. The model of the disturbance torque could be updated at regular intervals of time and the controller made to adapt to these changes based on the internal model principle.
REFERENCES

VITA AUCTORIS

NAME: Danny Grignion

PLACE OF BIRTH: Leamington, Ontario, Canada

YEAR OF BIRTH: 1987

EDUCATION:
- **Master of Applied Science (M.A.Sc.)**
 Electrical Engineering
 University of Windsor, Windsor, Ontario, Canada
 2010-2012

- **Bachelor of Applied Science (B.A.Sc.)**
 Honours Electrical Engineering
 University of Windsor, Windsor, Ontario, Canada
 2006-2010