Alkyl- and Alkylthiothiophene Substituted Triazines as Building Blocks for Columnar Liquid Crystals

Vanessa M. Bellemore
University of Windsor, bellemov@uwindsor.ca

Follow this and additional works at: https://scholar.uwindsor.ca/uwilldiscover

https://scholar.uwindsor.ca/uwilldiscover/2015/science/5

This Event is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in UWill Discover Undergraduate Conference by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Alkyl- and Alkylthiothiophene Substituted Triazines as Building Blocks for Columnar Liquid Crystals

Columnar discotic liquid crystals are self-organizing compounds with anisotropic properties. Triazines substituted with three 5-membered ring heterocycles are interesting core structures for the preparation of dyes and organic semiconductors because of their star-shaped and co-planar structures. These aromatic cores are capable of pi-stacking, which aims towards close packing for efficient charge transferring in organic materials. These organic semiconductors will ideally have high solubility, have a HOMO-LUMO gap of approximately 2 eV and be inexpensive to synthesize. Presented here is the synthesis of 1,3,5-triazine substituted with 2-alkyliophenes and 2-alkylthiothiophenes. The functionalized thiophenes are generated in a one-pot approach, stannylated, and finally cross-coupled to cyanuric chloride via a Stille-coupling reaction.