Evaluation of Microglial Action in a JSK Treated Paraquat Rat Model of Parkinson's Disease

Annie S. Kanwar
University of Windsor, kanwara@uwindsor.ca

Follow this and additional works at: https://scholar.uwindsor.ca/uwilldiscover

https://scholar.uwindsor.ca/uwilldiscover/2015/science/1
EVALUATION OF ASTROCYTE ACTION IN A JSK TREATED PARAQUAT RAT MODEL OF PARKINSON’S DISEASE

INTRODUCTION

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder, affecting 7 to 10 million individuals worldwide. This chronic, progressive disease is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the basal ganglia. This structure gives rise to motor, associative and limbic circuits, which incorporate the thalamus and cortices.

PD impacts all three aforementioned circuits leading to symptoms such as resting tremors on one side of the body, hypokinesia (reduced ability to smell), muscle rigidity, bradykinesia which is slowed motion and a limited range of movement, as well as mood and REM behaviour disorders.

Approximately 90% of PD cases are sporadic and oxidative stress has been implicated as a key player in these situations. However, other known and unknown factors are assumed to be involved and the overall pathophysiology of the disease is not well understood. Hence our lab began to consider the idea of a more holistic and natural approach to treating PD.

Chinese culture has utilized natural herbal remedies since ancient times and several concoctions have proved beneficial for treating illness. In 2013, a novel herbal formulation known as Ji-Su-Kang (JSK) showed positive results in healing damage due to acute spinal cord injury (SCI) in rats, and proved beneficial for a few PD patients. Therefore, this proposal suggests the use of JSK treatment in a paraquat rat model of Parkinson’s Disease.

OBJECTIVES

• Understand if JSK can provide neuroprotection
• What mechanisms are employed by JSK if it possesses neuroprotective activity

Astrocytes are the cells of interest in this project as they are activated in response to inflammation, which is a primal immune response of the body. Activated by the lack of neurotransmitter binding or the presence of abnormal molecules, astrocytes release neurotrophic factors. Glial cell-derived neurotrophic factor (GDNF) and brain cell-derived neurotrophic factor (BDNF), are two important astrocyte molecules responsible for reducing inflammation and protecting neurons.

Ultimately, the goal of this study is to assess the role of JSK in astrocyte activation using a prophylactic paraquat rat model of Parkinson’s Disease.

REFERENCES

P00246746/1/