Exploring a Link Between Spy1 and Hepatocellular Carcinoma Progression

Carlee Stoyanovich

Bre-Anne Fifield

Lisa Porter

Follow this and additional works at: https://scholar.uwindsor.ca/uwilldiscover

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
Spy1 and Hepatocellular Carcinoma Progression:
Exploring a Link in a Murine Model

Presented by: Carlee Stoyanovich
Honors Thesis Project 2016
Hepatocellular Carcinoma (HCC)

- The most aggressive and prevalent form of primary liver cancer
- In men, it is the 5th most common cancer and in women it is the 7th worldwide
- Current treatments are invasive and include: transplantation, resection, ablation and chemotherapy
- The 5-year survival rate is 20%

http://www.hopkinsmedicine.org/liver_tumor_center/conditions/cancerous_liver_tumors/hepatocellular_carcinoma.html
The Progression

Diet/Lifestyle Factors

Hepatitis B/C

Alcoholism

Fatty Liver Disease

Steatohepatitis

Fibrosis

Cirrhosis

Healthy liver → NAFLD → NASH → Cirrhosis + Fibrosis → Hepatocellular carcinoma

A Protective Mechanism

p53
- Tumor suppressor
- Halts the cell cycle during unfavorable conditions
- Regulates cell death (apoptosis)
- Aids in DNA repair
- In HCC normally inactivated or mutated

Spy1
- Speed up cell division
- Override cell cycle barriers
- Enhance stemness in cell populations
- Known role in breast and brain cancers
MMTV-Spy1 Mouse

- Designed to study breast cancer in mice models
 - Constitutively overexpress Spy1 in the mammary gland

B6CBAF1/J genetic background
HCC in the Spy1 Mouse Model

- MMTV-Spy1 male mice with high levels of Spy1 have significantly more HCC than their male littermate controls.

Expression and prognostic role of Spy1 as a novel cell cycle protein in hepatocellular carcinoma

Qing Kea,1, Juling Jia,1, Chun Chenga, Yixin Zhanga, Mudan Lud, You Wangd, Li Zhanga, Peng Lic, Xiaopeng Cuic, Li Chena, Song Hea,*, Aiguo Shenb,*
A Potential Mechanism?

Does an increase in Spy1 levels predispose the liver to HCC development?
Objectives

- Further characterize the MMTV-Spy1 liver phenotype.
- Develop a model to look at HCC progression in wild-type mice.
- Quantify Spy1 protein levels in the wild-type damaged mice livers.
- Monitor fat accumulation as well as p53 and TNF-alpha levels in the mice livers.
Effects of Spy1 on Liver Morphology

Normal hepatocytes
Healthy liver +1yr control mouse

Large vacuoles
Fat accumulation +1yr MMTV-Spy1 mouse

Disordered cell structure
HCC +1yr MMTV-Spy1 mouse
Fat Accumulation in MMTV-Spy1 Mice

10 month control mouse

10 month MMTV-Spy1 mouse

Control

MMTV-Spy1

Cntrl n = 13, MMTV-Spy1 n = 12

*p-value = 0.000530852
Spy1 Increases Indices of Cell Division

The percentage of bi-nucleated cells are significantly higher in control mice.
The Progression in MMTV-Spy1 Mice

- Increased fat accumulation
- Increased HCC
- Decreased bi-nucleated cells
The Progression in MMTV-Spy1 Mice

Healthy liver → NAFLD → NASH → Cirrhosis + Fibrosis → Hepatocellular carcinoma

Trichrome stain of +1yr MMTV-Spy1 mouse

Collagen
The Methionine Choline Deficient (MCD) Diet

- Produces the most severe NASH phenotype in the shortest timeframe
- Causes increased fat accumulation in the hepatocytes
- Induces:
 - Inflammation
 - Apoptosis
 - Oxidative damage
 - Fibrosis
 - Increased serum alanine aminotransferase levels
MCD Progression

- TNF-alpha Levels
- Inflammatory Phase
- Fat Accumulation
- Fibrotic Phase
- Oil Red O Staining
- Trichrome Stain

When do endogenous Spy1 levels peak?
The MCD Diet Experiment

Day 0 - Mice are placed on diets

Day 2

1 week

6 weeks

Collect Liver Tissue

Fat Accumulation

Fibrosis

Healthy Mouse

MCD Diet

Amino Acid Control Diet

- Same genetic background as MMTV-Spy1 mice
- Male mice between 8-12 weeks of age
Tissue Collection and Analysis

- Formalin
 - H+E Staining
- Flash Frozen in Liquid Nitrogen
 - Immunohistochemistry
 - Analyze gene expression
- 4% paraformaldehyde
 - Quantify protein levels
 - Monitor fat accumulation
Fat Accumulation in MCD Mice

Day 2 control

Day 2 MCD

1 week control

1 week MCD

6 week control

6 week MCD

Area Stained

Control

Day 2

1 week MCD

6 week

*
Fibrosis in MCD Mice

MCD mice had clear collagen deposition as compared to the controls.

6 week control

6 week MCD
Spy 1 and p53 Levels

MCD Diet (NASH)

Activate p53

Halt the cell cycle

Apoptosis

Spy 1 Protein (densitometry corrected for actin)

Control | Day 2 | 1 week MCD | 6 week

p53 Protein (densitometry corrected for actin)

Control | Day 2 | 1 week MCD | 6 week
TNF-alpha Gene Expression

MCD Diet (NASH) → Inflammation → TNF-alpha activation

Relative Quantification \log_{10} TNF-alpha vs GAPDH

- Control
- Day 2
- 1 week
- 6 week

* Significant difference
MCD Mice Progression

Healthy Mouse
Day 0

Day 2

1 week

6 weeks

Fat Accumulation

Inflammatory Phase

Fibrotic Phase

Stress Response

Fat Accumulation
Spy1 Protein
p53 Protein
TNF-alpha Gene Expression
Collagen Deposition
Revised Timeline of Progression

Healthy Liver ➔ NAFLD ➔ NASH ➔ Fibrosis ➔ Cirrhosis ➔ Proliferation ➔ HCC

Spy1 as a prognostic indicator

p53 Spy1

HCC
Balance in the Face of Damage

Proliferation/Regeneration

- Restores damaged hepatocytes
- Compensatory hyperplasia
- Allows for regeneration

Fibrosis

- Maintains overall integrity of the organ
- Inflammation
- Formation of scar tissue
- Deposit collagen and fibrin

Stressed Liver
Does Proliferation Favor HCC Over Fibrosis?

In response to an increase in fat accumulation and damage to hepatocytes, Spy1 will be up-regulated to increase regeneration and proliferative ability and decrease fibrosis.
Future Steps

Developing a Spy1 driven mouse and follow its progression on the MCD diet
Acknowledgements

Thank you to my wonderful supervisor, Dr. Lisa Porter and to my mentor Dr. Bre-Anne Fifield!

Thank you to the entire Porter Lab who have given me so much support and guidance!

Thank you to our funding agencies: