Exploring a Link Between Spy1 and Hepatocellular Carcinoma Progression

Carlee Stoyanovich
University of Windsor, stoyanoc@uwindsor.ca

Bre-Anne Fifield
University of Windsor, fifield@uwindsor.ca

Lisa Porter
University of Windsor, lporter@uwindsor.ca

Follow this and additional works at: https://scholar.uwindsor.ca/uwilldiscover

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Stoyanovich, Carlee; Fifield, Bre-Anne; and Porter, Lisa, "Exploring a Link Between Spy1 and Hepatocellular Carcinoma Progression" (2016). UWill Discover Undergraduate Conference. 3.
https://scholar.uwindsor.ca/uwilldiscover/2016/session9/3

This Event is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in UWill Discover Undergraduate Conference by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Spy1 and Hepatocellular Carcinoma Progression: Exploring a Link in a Murine Model

Presented by: Carlee Stoyanovich
Honors Thesis Project 2016
Hepatocellular Carcinoma (HCC)

- The most aggressive and prevalent form of primary liver cancer
- In men, it is the 5th most common cancer and in women it is the 7th worldwide
- Current treatments are invasive and include: transplantation, resection, ablation and chemotherapy
- The 5-year survival rate is 20%

http://www.hopkinsmedicine.org/liver_tumor_center/conditions/cancerous_liver_tumors/hepatocellular_carcinoma.html
The Progression

Diet/Lifestyle Factors

Hepatitis B/C

Alcoholism

Fatty Liver Disease

Steatohepatitis

Fibrosis

Cirrhosis

HCC

Healthy liver → NAFLD → NASH → Cirrhosis + Fibrosis → Hepatocellular carcinoma

A Protective Mechanism

p53
- Tumor suppressor
- Halts the cell cycle during unfavorable conditions
- Regulates cell death (apoptosis)
- Aids in DNA repair
- In HCC normally inactivated or mutated

Spy1
- Speed up cell division
- Override cell cycle barriers
- Enhance stemness in cell populations
- Known role in breast and brain cancers
MMTV-Spy1 Mouse

- Designed to study breast cancer in mice models
- Constitutively overexpress Spy1 in the mammary gland

B6CBAF1/J genetic background
HCC in the Spy1 Mouse Model

- MMTV-Spy1 male mice with high levels of Spy1 have significantly more HCC than their male littermate controls.
A Potential Mechanism?

Does an increase in Spy1 levels predispose the liver to HCC development?
Objectives

- Further characterize the MMTV-Spy1 liver phenotype.
- Develop a model to look at HCC progression in wild-type mice.
- Quantify Spy1 protein levels in the wild-type damaged mice livers.
- Monitor fat accumulation as well as p53 and TNF-alpha levels in the mice livers.
Effects of Spy1 on Liver Morphology

- Normal hepatocytes
- Large vacuoles
- Disordered cell structure

Healthy liver +1yr control mouse
Fat accumulation +1yr MMTV-Spy1 mouse
HCC +1yr MMTV-Spy1 mouse
Fat Accumulation in MMTV-Spy1 Mice

10 month control mouse

10 month MMTV-Spy1 mouse

Oil Red O Stain Area

Control	MMTV-Spy1

Cntrl n = 13, MMTV-Spy1 n = 12
*p-value = 0.000530852
Spy1 Increases Indices of Cell Division

The percentage of bi-nucleated cells are significantly higher in control mice.

+1 yr control mouse
The Progression in MMTV-Spy1 Mice

- Increased fat accumulation
- Increased HCC
- Decreased bi-nucleated cells
The Progression in MMTV-Spy1 Mice

Healthy liver → NAFLD → NASH → Cirrhosis + Fibrosis → Hepatocellular carcinoma

Trichrome stain of +1yr MMTV-Spy1 mouse

Collagen
The Methionine Choline Deficient (MCD) Diet

- Produces the most severe NASH phenotype in the shortest timeframe
- Causes increased fat accumulation in the hepatocytes
- Induces:
 - Inflammation
 - Apoptosis
 - Oxidative damage
 - Fibrosis
 - Increased serum alanine aminotransferase levels
MCD Progression

- **Stress Response**
- **TNF-alpha Levels**
- **Inflammatory Phase**
- **Fat Accumulation**
- **Fibrotic Phase**
- **Trichrome Stain**

When do endogenous Spy1 levels peak?
The MCD Diet Experiment

Day 0 - Mice are placed on diets

Day 2

1 week

6 weeks

Collect Liver Tissue

MCD Diet

Amino Acid Control Diet

- Same genetic background as MMTV-Spy1 mice
- Male mice between 8-12 weeks of age
Tissue Collection and Analysis

Formalin

4% paraformaldehyde

Flash Frozen in Liquid Nitrogen

H+E Staining

Immunohistochemistry

Analyze gene expression

Quantify protein levels

Monitor fat accumulation
Fat Accumulation in MCD Mice

Day 2 control

Day 2 MCD

1 week control

1 week MCD

6 week control

6 week MCD

Area Stained

Control | Day 2 | 1 week MCD | 6 week MCD

*
Fibrosis in MCD Mice

MCD mice had clear collagen deposition as compared to the controls.
Spy 1 and p53 Levels

MCD Diet (NASH) → Activate p53 → Halt the cell cycle → Apoptosis

Graph 1: Spy1 Protein
- Control
- Day 2
- 1 week MCD
- 6 week

Graph 2: p53 Protein
- Control
- Day 2
- 1 week MCD
- 6 week

(Densitometry corrected for actin)
TNF-alpha Gene Expression

MCD Diet (NASH) → Inflammation → TNF-alpha activation

Relative Quantification \log_{10} TNF-alpha vs GAPDH

- Control
- Day 2
- 1 week
- 6 week

* indicates statistically significant difference.
MCD Mice Progression

- **Healthy Mouse Day 0**
- **Day 2**
- **1 week**
- **6 weeks**

- **Fat Accumulation**
- **Spy1 Protein**
- **p53 Protein**
- **TNF-alpha Gene Expression**
- **Collagen Deposition**

Phases:
- Inflammatory Phase
- Fibrotic Phase

Stress Response
Revised Timeline of Progression

Healthy Liver → NAFLD → NASH → Proliferation → Fibrosis/Cirrhosis → HCC

Spy1 as a prognostic indicator

↑ p53 ↑ Spy1
Balance in the Face of Damage

- Proliferation/Regeneration
 - Restores damaged hepatocytes
 - Compensatory hyperplasia
 - Allows for regeneration

- Fibrosis
 - Maintains overall integrity of the organ
 - Inflammation
 - Formation of scar tissue
 - Deposit collagen and fibrin

Stressed Liver
Does Proliferation Favor HCC Over Fibrosis?

In response to an increase in fat accumulation and damage to hepatocytes, Spy1 will be up-regulated to increase regeneration and proliferative ability and decrease fibrosis.
Future Steps

Developing a Spy1 driven mouse and follow its progression on the MCD diet
Acknowledgements

Thank you to my wonderful supervisor, Dr. Lisa Porter and to my mentor Dr. Bre-Anne Fifield!

Thank you to the entire Porter Lab who have given me so much support and guidance!

Thank you to our funding agencies: