Development of a fluctuating plume model for the determination of odour-impact frequencies.

Peter. Mussio

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/1702
NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.
DEVELOPMENT OF A
FLUCTUATING PLUME MODEL
FOR
THE DETERMINATION OF
ODOUR-IMPACT FREQUENCIES

by

Peter Mussio

A Thesis
Submitted to the
Faculty of Graduate Studies and Research
through the Department of
Chemical Engineering in Partial Fulfillment
of the Requirements for the Degree of
Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
1989
The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

ISBN 0-315-54543-7
© Peter Mussio 1989
Dedicated to my Mother and Father
Abstract

A Fluctuating Plume Model has been developed to facilitate the prediction of odour-impact frequencies in the community surrounding elevated point sources. The odour-impact frequencies calculated by the model provide measures of the:

- Magnitudes of the odourous impacts.
- Durations of odourous impacts of various magnitudes at any downwind location during a one hour observation period.

The model was tested with an extensive set of data collected in the residential area surrounding the paint shop of an automotive assembly plant. Most of the perceived odours in the vicinity of the sixty-four, 46 metre high stacks ranged between 2 and 7 odour units and generally persisted for less than 30 seconds. Ninety-eight different field determinations of odour impact frequencies within one kilometre of the plant were conducted during the course of the study.

The results obtained using the model were in good agreement with the field data in terms of both the magnitudes and durations of the odourous impacts. The model is most reliable under neutral atmospheric conditions, although reasonably reliable results were also obtained under unstable conditions. Sufficient data were not available to validate the model's performance under
very unstable and stable atmospheric conditions.

Testing of the model indicates that it provides a more realistic representation of community odour impacts than the Gaussian Plume-type models currently used by most regulatory agencies.
Acknowledgements

I wish to thank my advisor, Dr. A.W. Gnyp for his guidance and encouragement throughout this investigation.

I would also like to thank Gina Mancini for her unending patience and support.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>List of Tables</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>I.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A.</td>
<td>Basic Problems</td>
<td>2</td>
</tr>
<tr>
<td>1. Odour Control Techniques</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>B.</td>
<td>Dispersion Modelling</td>
<td>4</td>
</tr>
<tr>
<td>II.</td>
<td>LITERATURE SURVEY</td>
<td>7</td>
</tr>
<tr>
<td>A.</td>
<td>Diffusion Theories</td>
<td>7</td>
</tr>
<tr>
<td>1. Gradient Transport Theory</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2. Statistical Theory</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>B.</td>
<td>Gaussian Plume Dispersion Models</td>
<td>9</td>
</tr>
<tr>
<td>C.</td>
<td>Gaussian Puff Dispersion Model</td>
<td>11</td>
</tr>
<tr>
<td>D.</td>
<td>Fluctuating Plume Model</td>
<td>11</td>
</tr>
<tr>
<td>E.</td>
<td>Status of Odour Modelling</td>
<td>14</td>
</tr>
<tr>
<td>F.</td>
<td>Dispersion Parameters</td>
<td>15</td>
</tr>
<tr>
<td>1. Dispersion Coefficients</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>a. Plume Dispersion Coefficients</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>b. Puff Dispersion Coefficients</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2. Plume Rise</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>III.</td>
<td>ATMOSPHERIC DISPERSION</td>
<td>23</td>
</tr>
<tr>
<td>A.</td>
<td>Gaussian Plume Model</td>
<td>23</td>
</tr>
</tbody>
</table>

viii
1. Odour Modelling 27
2. Limitations 30
 B. Fluctuating Plume Model 32
IV. ATMOSPHERIC STABILITY 41
 A. Potential Temperature Gradient 42
V. PLUME RISE .. 46
 A. Briggs' Method 47
 1. Stack Parameters 47
 a. Momentum Flux Parameter 47
 b. Buoyancy Flux Parameter 49
 2. Meteorological Parameters 51
 B. Briggs' Plume Rise Equations 53
 1. Bent-over Buoyant Plumes 53
 a. Unstable and Neutral Conditions 53
 b. Stable Conditions 54
 2. Vertical Buoyant Plumes 55
 3. Bent-over Jets 55
 a. Unstable and Neutral Conditions 55
 b. Stable Conditions 55
 4. Vertical Jets 56
 C. Stack-tip Downwash 56
 D. Aerodynamic Downwash 57
 1. Split-H Model 57
 2. Weighting Function 60
 3. Rise For Entrained Portion of Plume 61
a. Unstable Conditions 61
b. Neutral Conditions 62
c. Stable Conditions 63

VI. DISPERSION COEFFICIENTS 64

A. Long-term Average Plume Dispersion
 Coefficients 64
 1. Urban Versus Rural Dispersion
 Coefficients 67

B. Short-term Plume Segment Dispersion
 Coefficients 71
 1. Unstable Conditions 71
 2. Neutral Conditions 73
 3. Stable Conditions 73

C. Plume Segment Position Coefficients ... 74

D. Volume Corrected Dispersion Coefficients ... 75

VII. MODEL DESCRIPTION 77

A. Stack Data Input 78

B. Meteorological and Receptor Data 78
 1. Atmospheric Stability 79
 a. Incoming Solar Radiation 79
 2. Surface Heat Flux 81
 3. Wind Speed Profile 82
 4. Mixing Height 83

C. Plume Rise 83

D. Dispersion Coefficients 87
 1. Long-term Plume Dispersion
 Coefficients 87
2. Short-term Puff Dispersion Coefficients 87
3. Standard Deviations of Puff Positions 88
E. Long-term Average Plume Ground-Level Concentration 88
F. Puff Positions .. 88
 1. Horizontal Positions .. 88
 2. Vertical Positions ... 89
G. Puff Receptor Concentration ... 89
H. Frequency Distribution ... 89
I. Output of Results .. 90

VIII. FIELD TESTING PROGRAM ... 93
 A. Source Selection .. 93
 1. Paint Shop Operation .. 94
 B. Acquisition of Stack Data 95
 C. Collection of Odour Data 99
 1. Calibration of Noses ... 99
 2. Preliminary Odour Survey 100
 3. Receptor Site Location 102
 4. Meteorological Data ... 104
 5. Recording of Odour Data 110
 a. Cumulative Method 112
 b. Differential Method 114

IX. MODEL APPLICATION .. 117
 A. Model Configuration ... 117
 1. Dispersion Coefficients 119
APPENDIX II Keymeter Program 175
APPENDIX III Fluctuating Plume Model Program 200
APPENDIX IV Stack Data 242
APPENDIX V Calibration of Noses Using a Scentometer 248
APPENDIX VI Receptor Data 252
APPENDIX VII Weather Data 256
APPENDIX VIII Field Data 260
VITA AUCTORIS .. 264
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1A</td>
<td>Formation of Plume From Superposition of Individual Averaged Elements</td>
</tr>
<tr>
<td>2.1B</td>
<td>Spreading Disk Plume Model Obtained By Neglecting X-Diffusion</td>
</tr>
<tr>
<td>2.1C</td>
<td>Naturally Occurring Plume With Real Puff Elements</td>
</tr>
<tr>
<td>2.1D</td>
<td>Fluctuating Plume Model</td>
</tr>
<tr>
<td>2.2</td>
<td>Pasquill's Horizontal Dispersion Coefficients</td>
</tr>
<tr>
<td>2.3</td>
<td>Pasquill's Vertical Dispersion Coefficients</td>
</tr>
<tr>
<td>3.1</td>
<td>Plume Undergoing Gaussian Dispersion</td>
</tr>
<tr>
<td>3.2</td>
<td>Dilution-To-Threshold Technique</td>
</tr>
<tr>
<td>3.3</td>
<td>Odour Concentrations for Averaged And Instantaneous Plumes</td>
</tr>
<tr>
<td>3.4</td>
<td>Actual Concentration Compared to the Hourly Mean Value</td>
</tr>
<tr>
<td>3.5</td>
<td>Plume Behaviour When Sampling Time is 1 Hour and When Sampling Time is 30 Seconds</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic Diagram Showing Assumption that Plume is Made Up of Segments</td>
</tr>
<tr>
<td>3.7</td>
<td>Terms in Plume Segment Dispersion</td>
</tr>
<tr>
<td>4.1</td>
<td>Relationship Between Ambient Temperature Gradient and Atmospheric Stability</td>
</tr>
<tr>
<td>5.1</td>
<td>Stages in the Rise of Warm Buoyant Plumes</td>
</tr>
<tr>
<td>5.2</td>
<td>Characteristic Flow Zones Around Large Buildings</td>
</tr>
<tr>
<td>5.3A</td>
<td>Complete Entrainment</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>5.3B</td>
<td>No Entrainment</td>
</tr>
<tr>
<td>5.3C</td>
<td>Partial Entrainment</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison of Urban and Rural Vertical Dispersion Coefficients</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of Urban and Rural Horizontal Dispersion Coefficients</td>
</tr>
<tr>
<td>7.1</td>
<td>Morning Mean Mixing Heights</td>
</tr>
<tr>
<td>7.2</td>
<td>Afternoon Mean Mixing Heights</td>
</tr>
<tr>
<td>7.3</td>
<td>Typical Program Output</td>
</tr>
<tr>
<td>7.4</td>
<td>General Flow Diagram for Puff Model</td>
</tr>
<tr>
<td>8.1</td>
<td>Artistic Representation of Paint Shop Stacks</td>
</tr>
<tr>
<td>8.2</td>
<td>Arrangement of Paint Shop Stacks with Respect to Paint Spray Booths</td>
</tr>
<tr>
<td>8.3</td>
<td>Typical Data Sheet Illustrating the Identification of Odourous Impacts During the Preliminary Odour Survey</td>
</tr>
<tr>
<td>8.4</td>
<td>Map of Residential Area Surrounding the Chrysler Assembly Plant Illustrating the Approximate Wind Directions Relative to the Paint Shop</td>
</tr>
<tr>
<td>8.5A</td>
<td>Receptor Sites 1 Through 20</td>
</tr>
<tr>
<td>8.5B</td>
<td>Receptor Sites 21 Through 40</td>
</tr>
<tr>
<td>8.5C</td>
<td>Receptor Sites 41 Through 60</td>
</tr>
<tr>
<td>8.5D</td>
<td>Receptor Sites 61 Through 80</td>
</tr>
<tr>
<td>8.5E</td>
<td>Receptor Sites 81 Through 98</td>
</tr>
<tr>
<td>8.6</td>
<td>Typical Data Sheet From Cumulative Method of Data Collection</td>
</tr>
<tr>
<td>8.7</td>
<td>Typical Data Sheet From Differential Method of Data Collection</td>
</tr>
<tr>
<td>8.8</td>
<td>Typical Odour Level Profile</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>9.1</td>
<td>Distribution of Stabilities</td>
</tr>
<tr>
<td>9.2</td>
<td>Comparison of Results for A-Stability</td>
</tr>
<tr>
<td>9.3</td>
<td>Comparison of Results for B-Stability</td>
</tr>
<tr>
<td>9.4</td>
<td>Comparison of Results for C-Stability</td>
</tr>
<tr>
<td>9.5</td>
<td>Comparison of Results for D-Stability</td>
</tr>
<tr>
<td>10.1</td>
<td>Receptor Locations for Ford Data</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Comparison of Högstrom's Model Results with Experimental Data</td>
</tr>
<tr>
<td>4.1</td>
<td>Pasquill Stability Classes vs Ambient Temperature Gradient</td>
</tr>
<tr>
<td>4.2</td>
<td>Pasquill Stability Classes Related to Wind Speed and Solar Insolation</td>
</tr>
<tr>
<td>5.1</td>
<td>Potential Temperature Gradients</td>
</tr>
<tr>
<td>6.1</td>
<td>Constants For Use With Equation 6.1</td>
</tr>
<tr>
<td>6.2</td>
<td>Constants For Use With Equation 6.2</td>
</tr>
<tr>
<td>7.1</td>
<td>Cloud Cover Reduction Factors</td>
</tr>
<tr>
<td>7.2</td>
<td>Coefficients for Wind Speed Equation</td>
</tr>
<tr>
<td>7.3</td>
<td>Mixing Heights</td>
</tr>
<tr>
<td>8.1</td>
<td>Volatile Components in Paints and Primers Used at Chrysler Assembly Plant, Windsor, Ontario</td>
</tr>
<tr>
<td>8.2</td>
<td>Summary of Stack Performance Parameters</td>
</tr>
<tr>
<td>8.3</td>
<td>Assessment of odour Impact Severities in Terms of Perceived Odour Levels</td>
</tr>
<tr>
<td>8.4</td>
<td>Distribution of Odour Levels</td>
</tr>
<tr>
<td>9.1</td>
<td>Effects of Varying Model Configuration Factors</td>
</tr>
<tr>
<td>9.2</td>
<td>Model Results</td>
</tr>
<tr>
<td>9.3</td>
<td>Comparison of Predicted Maximum and Average Odour Levels with Field Data</td>
</tr>
<tr>
<td>10.1</td>
<td>Ford Stack Data</td>
</tr>
<tr>
<td>10.2</td>
<td>Receptor Sites</td>
</tr>
<tr>
<td>10.3</td>
<td>Meteorological Conditions</td>
</tr>
<tr>
<td>10.4</td>
<td>Model Results Using Ford Data</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Air pollution may be described as any substance or combination of substances that cause an undesirable change in the physical, chemical, or biological characteristics of the air resulting in the detriment of human life, living conditions, or natural resources [1]. Odours represent one type of air pollution that have been found to have several mental and physiological effects on humans [2,3]. Typical human reactions to odours are:

- Nausea
- Headaches
- Loss of appetite
- Impaired breathing
- Allergies

Although some odourous emissions may be detrimental to human health, objections to these emissions do not generally arise because these emissions are dangerous, but because odours are so obvious and unpleasant that they attract immediate public attention. Excessive complaints by the community often result in public and governmental pressure being applied on the polluter to abate the odour problem.
A. Basic Problems

The elimination of odours is a very complex problem for several reasons. First of all, odours are very difficult to quantify since responses to malodours differ from person to person. Secondly, once odour levels are quantified, it is very difficult to decide what odour levels are acceptable to the general public. Finally, it is not always possible to determine the source of odours. The source of odours does not always emit a visible plume. Often, odourous emissions occur in the form of sporadic fugitive discharges.

1. Odour Control Techniques

Odourous discharges from industrial plants are generally controlled using one or more basic techniques. Typical odour control strategies include:

- Modification of the process in the plant to reduce the production of odourous material
- Installation of a device to reduce the amount of odourant at the point of emission
- Dispersion of the emitted matter to a greater extent so that it is less concentrated by the time it reaches the surrounding community (i.e. raising the stack)
- Addition of masking agents to the discharge so that the resultant odour becomes less objectionable

Today's chemical and industrial processes are so diverse that it is often difficult to suggest specific remedies for an odour
problem. While the installation of an air pollution control device is often very effective in abating malodours, the design, installation, and operation of these devices can also prove to be quite costly. For this reason, it is wise to give process modification first consideration.

Making slight changes in the process is usually cheaper and frequently more effective than odour abatement procedures at the stack. Alternatively, process modification may also constitute the first stage in an odour abatement strategy to reduce the load imposed on subsequent stages. Examples of such approaches to odour reduction include:

- Substitution of low-odour solvents or reactants for highly odourous ones.
- Adjustment of process temperatures
- Changes in residence times or other conditions

Since it is assumed that there is a strong relationship between perceived malodours and odourant concentrations, (this relationship is not directly proportional) most abatement strategies involve decreasing the concentration of the odourant at ground level (i.e. with the exception of masking agents). Malodours become less objectionable as they are diluted. They are abated completely when their concentrations reach the threshold levels of perception. Since the dispersion of a gas from a stack can be monitored by tracers or calculated
theoretically, it should be possible to predict how much odour can be emitted from a given stack without causing a public nuisance. Once this value is determined, the most effective and cost efficient method or combination of methods can be employed to dilute the odourant to levels below the sensory threshold at ground level. However, before the proper control strategy can be designed and implemented, a theoretical method of accurately determining the degree of control required is necessary.

B. Dispersion Modelling

Dispersion modelling is a useful mathematical tool for assessing the possible impact of a pollutant on the air quality of a community. Most dispersion models, however, are not appropriate for determining the effect of an odourous emission. Odourous emissions often produce sporadic and inconsistent occurrences of perceptions downwind of the emitting source. Neither the Ontario Ministry of the Environment nor the United States Environmental Protection Agency have developed or recommended a dispersion model capable of accurately predicting odour levels downwind of elevated point sources. To model odourous emissions properly, the dispersion model must be capable of correctly predicting the fluctuations in ground level concentrations that occur during the sampling period in question. The purpose of this study was to develop a dispersion model which accurately determines the impact of an odourous emission on the community surrounding the source. Such a model would provide an
economical and reliable method of comparing control strategies. A properly designed model, used within its limitations, can prevent the costly overdesigning or the ineffective underdesigning of an odour control system.

This report describes the development and use of a computerized version of a modified fluctuating Gaussian Puff model. The proposed model uses the concept of a fluctuating plume to calculate the changes in ground level concentrations needed to predict the frequency of occurrence of odours at a receptor located downwind of an elevated point source (or sources).

This report provides a detailed analysis of the equations and methods used in the model to calculate:

- Atmospheric stability
- Dispersion coefficients
- Plume rise
- Ground level concentrations

A comprehensive community odour level testing program was implemented for the collection of odour data which could be applied to the testing and calibration of the proposed model. Odour data were collected in the vicinity of a Chrysler Canada Assembly Plant located in Windsor, Ontario. This site was chosen because numerous spontaneous citizen complaints have been generated by the emissions from the plant's paint shop operation. This report describes the results obtained using the proposed
model as well as its accuracy and limitations.
II. LITERATURE SURVEY

A review of the technical literature reveals that although experimentation in the field of dispersion modelling dates back to the late 1920's, most of the developments in this field have been made within the past 30 years. This chapter reviews some of the more important aspects and developments in the area of dispersion modelling, including:

- Diffusion theories
- Gaussian Plume Models
- Gaussian Puff Models
- Fluctuating Puff Model
- Status of Odour Modelling
- Parameters related to dispersion modelling

A. Diffusion Theories

Most of the dispersion models in use today were developed from two basic diffusion theories:

- Gradient Transport Theory
- Statistical Theory
Neither theory is capable of describing absolutely all of the significant aspects of atmospheric dispersion. However, when used within its respective limitations, each theory can provide useful results over a wide range of meteorological conditions.

1. **Gradient Transport Theory**

The Gradient Transport theory was first described by the nineteenth century physiologist Adolf Fick (4,5,1). Fick developed his Gradient Transport theory by relating the diffusion which takes place in the atmosphere to heat transfer through a conducting body. Fick's law can be described mathematically for the one dimensional case according to:

\[
\frac{dq}{dt} = \frac{\partial}{\partial x} (K \frac{\partial q}{\partial x}) \tag{2.1}
\]

where in the atmosphere:

- \(K \) = Constant eddy-diffusivity coefficient
- \(q \) = Concentration of pollutant

The more general case of atmospheric diffusion in three dimensions can be represented by:

\[
\frac{dq}{dt} = \frac{\partial}{\partial x} (K_x \frac{\partial q}{\partial x}) + \frac{\partial}{\partial y} (K_y \frac{\partial q}{\partial y}) + \frac{\partial}{\partial z} (K_z \frac{\partial q}{\partial z}) \tag{2.2}
\]

where:
- \(q \) = Concentration of pollutant
- \(K_x, K_y, K_z \) = Eddy diffusivity coefficients
- \(x, y, z \) = Cartesian space coordinates
Solution of Equation 2.1 under the appropriate boundary conditions is also known as the K-theory.

2. **Statistical Theory**

The Statistical theory is in much wider use today than is the Gradient Transport theory. It differs considerably from the Gradient Transfer theory. Instead of studying diffusion at a fixed space point, statistical theory studies the histories of the motions of individual fluid particles and tries to determine from these motions the statistical properties necessary to describe atmospheric diffusion.

The method most often used to describe atmospheric dispersion statistically depends on Gaussian or Normal distribution. Experiments have shown that the concentration downwind of a steady line source in an isotropic, homogeneous, turbulent flow follows a Gaussian distribution [6]. In other words, repeated experiments in the atmosphere yield a distribution that is nearly normal in the vertical and crosswind directions for the average concentration. Sutton [7], in 1953, used this principle to develop the first generalized Gaussian Plume Diffusion Model.

B. **Gaussian Plume Dispersion Models**

The first comprehensive literature on the practical application of the generalized Gaussian Plume Model was developed
by Turner [8]. In his "Workbook of Atmospheric Dispersion" Turner demonstrated, through numerous examples, how the basic equations of the Plume model could be used to estimate the average atmospheric concentrations of contaminants emitted from various types of sources. The meteorological parameters employed by Turner apply strictly to open, level, country and are representative of a sampling time ranging between ten minutes and one hour. Application of Turner's equations to urban areas would probably result in the underestimation of the plume dispersion. Other topics discussed in this workbook include the:

- Determination of the effective height of an emission.
- Extension of concentration estimates to longer sampling intervals.
- Determination of concentrations from area, line, and multiple sources.

The Ontario Ministry of the Environment (MOE) [9] also uses the basic Gaussian Plume model as a part of its regulations to determine if the permissible concentration of an airborne contaminant has been exceeded. The model gives the pollutant concentration at the point of impingement in terms of a half-hour average value. Several recommended changes to the MOE's air quality model are currently being reviewed in an effort to develop a new model that will more accurately estimate concentrations for both rural and urban sites under a variety of meteorological conditions [10]. The popularity of the Gaussian
Plume model has led to its use in the area of modelling ground-level odour concentrations. A detailed description of the Gaussian Plume model and its limitations when applied to odour modelling are discussed later in this report.

C. Gaussian Puff Dispersion Model

The generalized Gaussian Plume model can provide a general description of dispersion from a continuous source for a relatively large sampling time. It is often necessary, however, to estimate the instantaneous peak downwind concentration from an instantaneous puff release. The Gaussian Puff equation describes the dispersion of a single, instantaneous puff as it travels downwind. William B. Petersen [11] of the United States Environmental Protection Agency developed a computer model based on the Gaussian Puff equation. Through the use of simple equations and nomograms, this model can provide estimates of both the instantaneous peak concentration as well as the average concentration for a puff release. This model is useful for estimating peak concentrations downwind of a single, instantaneous, accidental release of a hazardous or radioactive substance.

D. Fluctuating Puff Model

The generalized Gaussian Plume Model describes diffusion averaged over some period of time. The plume is assumed to be assembled by the superposition of an infinite number of
overlapping puffs, each emanating from a fixed origin and being translated by the mean wind (Figure 2.1a). For mathematical convenience, dispersion in the direction of the mean wind (x-direction) is neglected. This specification leads to the spreading disk dispersion model portrayed in Figure 2.1b.

The process under which actual plumes disperse, however, is much more complicated. Figure 2.1c illustrates the actual downwind movement and superposition that occurs as a pollutant is released from a continuous source. The puffs meander about the centre (or mean axis) of the long-term averaged plume. To account for such behaviour Gifford [12] introduced the concept of a fluctuating plume in 1959. According to Gifford's theory, the puffs are perceived as a series of disk elements whose centres are distributed at random about their mean position (Figure 2.1d). The basic Gaussian equation for the instantaneous concentration is given by:

\[
\frac{C}{Q} = \left(2\pi \gamma^2 u\right)^{-1} \exp\left[-\frac{(y-D_y)^2 + (z-D_z)^2}{2\gamma^2}\right]
\]

(2.3)

where: \(D_y, D_z\) = Distances to the centre of the instantaneous plume from the axis

\(\gamma^2\) = Average variance of the spreading puff

\(y, z\) = Fixed point in space at which the mean concentration is calculated

\(Q\) = Source emission rate

\(u\) = Horizontal wind speed
FIGURE 2.1:

a.) Formation of plume from superposition of individual averaged elements.

b.) Spreading-disk plume model obtained by neglecting x-diffusion.

c.) Naturally occurring plume with real puff elements.

d.) Fluctuating plume model.
In 1964 Hogström [13] conducted a series of experiments during which he measured the diffusion of material about the centre of the puff and the meandering of the puff about the mean axis of the plume. From these experiments, Hogström collected data which could be applied to Gifford's Fluctuating Plume model. In 1968 Hogström [14] applied his puff data to a Fluctuating Plume model in order to develop a statistical approach for the description of emissions from a chimney.

E. Status of Odour Modelling

In 1972 Hogström [15] used his statistical method to develop a dispersion model for predicting odour frequencies at a receptor located at some point downwind of an elevated point source. The results obtained from the model were verified using trained observers who made a large number of instantaneous observations at various locations around a sulphate pulp factory in Sweden. Table 2.1 provides a comparison of the model's predictive results with the collected data.

<table>
<thead>
<tr>
<th>DISTANCE TO RECEPTOR</th>
<th>ODOUR FREQUENCY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOGSTROM'S MODEL</td>
</tr>
<tr>
<td>2 km</td>
<td>8.9</td>
</tr>
<tr>
<td>5 km</td>
<td>5.6</td>
</tr>
<tr>
<td>10 km</td>
<td>3.1</td>
</tr>
<tr>
<td>20 km</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Högström's model appears to achieve good agreement for a distance of 2 kilometres. The model, however, underpredicts the impact of the odourous emissions as the distance from the source increases.

In 1973 Clarenburg [16] conducted a study on the perception of odourous emissions in the Netherlands. He developed a mathematical model to quantitatively predict the effect of odourous emissions on the population living in the vicinity of an odourous source. Beginning with the Gaussian Plume model, Clarenburg developed a penalization function based on the percentage of the population that would perceive an odour. The goal of this study was to predict how many people would perceive an odour as a function of the population distribution around the source or sources in question. Clarenburg's data yielded correlation coefficients exceeding 0.90 for four out of the five test cases.

The Research Corporation (TRC) of New England [17] developed a Puff model that predicts how often the odour level exceeds a specified odour dilution ratio. It claims to have achieved good agreement between observed odour occurrences and those calculated by the computer model. Since details of the model are not readily available, the model's accuracy cannot be verified independently.

F. Dispersion Parameters

The use of Gaussian Plume and Gaussian Puff equations requires accurate evaluation of two important dispersion
parameters:

- Dispersion Coefficients
- Plume Rise

1. Dispersion Coefficients

The use of the Gaussian Plume Dispersion and the Gaussian Puff Dispersion equations requires accurate determination of the standard deviations of the emission distributions in both the plume (\(\sigma_y, \sigma_z \)) and puff (\(\sigma_{yp}, \sigma_{zp} \)) respectively.

a. Plume Dispersion Coefficients

The derivation of the Gaussian Dispersion equation requires that \(\sigma_z \) and \(\sigma_y \) be constants throughout the vertical \(z \)-dimension and the horizontal \(y \)-dimension. Although the earliest use of constant dispersion coefficients may be traced to Bosanquet and Pearson [18] in 1936, and to Sutton [19] in 1947, most of the important research in this area was not done until much later.

In 1960 Meade [20], and in 1961 Pasquill [21], independently published some dispersion data estimates from which \(\sigma_z \) and \(\sigma_y \) could be derived for use in Gaussian Dispersion equations. Meade and Pasquill both presented their data in terms of a plot of height versus downwind distance \(X \), and a tabulation of lateral plume spread \(\theta \), in degrees, versus downwind distance, \(X \).
In 1961 Gifford [22] used the estimates of Meade and Pasquill to develop plots of σ_z and σ_y versus downwind distance for the six Pasquill Atmospheric Stability classes A,B,C,D,E, and F. These plots have become known as the "Pasquill-Gifford" dispersion coefficients.

Turner [8] published his own version of the Pasquill-Gifford dispersion coefficient plots. These plots, illustrated in Figures 2.2 and 2.3, have gained widespread use in Gaussian Dispersion models.

McMullen [23] has expressed the Pasquill-Gifford dispersion coefficients in terms of analytical equations. His work has increased the efficiency of computers and calculators in the area of dispersion modelling. It is important to note that the Pasquill-Gifford plots are appropriate only for rural areas with open, level terrain.

Most complaints about odourous emissions occur in densely populated urban areas. To properly model an urban odour emission, dispersion data obtained in an urban setting are required. In 1974, Bowne [24] published three families of dispersion curves, which were based on experimental data gathered since 1963. They provided dispersion coefficients appropriate to urban, suburban, and rural areas.

In 1973 Briggs [25] developed "plume half widths", R_z and R_y for urban areas. These plume half widths are directly related to the Gaussian dispersion coefficients (σ_z, σ_y) by the
FIGURE 2.2: PASQUILL'S HORIZONTAL PLUME DISPERSION COEFFICIENTS [8]
FIGURE 2.3: PASQUILL'S VERTICAL DISPERSION COEFFICIENTS [8]
relationship:

\[R = 1.25\sigma \] \hspace{1cm} (2.4)

In 1975 Gifford [26] used the definition of \(R \) to restate Briggs' half widths in terms of \(\sigma \) and the Pasquill Stability classes to obtain a set of curves describing urban dispersion coefficients. These curves will be presented in greater detail later in this report.

b. **Puff Dispersion Coefficients**

In 1964, Hogström [13] conducted experiments during which he measured the spreading of very short-term plume segments released from elevated point sources. The plume segments were generated over 30 second periods and released at heights ranging from 24 to 87 metres. By tracing the puffs photographically, Hogström was able to measure the lateral and vertical dimensions of each puff as it travelled downwind. The dimensions of the plume segments were assumed to be equivalent to those of an instantaneously generated point source puff situated at the midpoint of the plume segment.

In all, Hogström conducted 111 experiments in which 430 puffs were produced. The majority of the experiments were conducted under near neutral or very stable atmospheric conditions. The equations developed by Hogström for the evaluation of \(\sigma_{yp} \) and \(\sigma_{zp} \) under all atmospheric conditions are discussed in detail in Chapter VI of this report.
2. **Plume Rise**

Regardless of the model being employed, an accurate estimate of the plume rise that occurs is essential if the model is to give meaningful results. One of the earliest and most popular plume rise correlations is the Holland equation [8]:

\[
H = \frac{v_s d}{u} \left(1.5 + 0.00266 \frac{T_s - T_a}{T_s} d \right)
\]

(2.5)

where:
- \(H \) = Rise of plume above the stack (m)
- \(v_s \) = Stack gases exit velocity (m/s)
- \(d \) = Inside stack diameter (m)
- \(u \) = Wind speed (m/s)
- \(p \) = Atmospheric pressure (mb)
- \(T_s \) = Stack gas temperature (°K)
- \(T_a \) = Ambient temperature (°K)

This semi-empirical equation was developed using experimental data from a wide range of sources. Holland's equation tends to underestimate the effective rise of the plume and does not take into account the effect of atmospheric stability.

In 1965 Briggs [27] published his first plume rise model. This model is an improvement over Holland's equation because it describes the rises of warm buoyant plumes as functions of stack parameters, meteorological conditions, and atmospheric stabilities. In 1969 Briggs [28] proposed a complete set of plume rise equations for both warm buoyant plumes and cold
jets. This set of equations, known as the "Briggs' Equations" are the most widely used plume rise equations by organizations involved in dispersion modelling in the United States and Canada. In subsequent publications [29,30] Briggs modified and improved his set of equations. They will be presented later in this report.
III. ATMOSPHERIC DISPERSION

Odourous emissions from industrial stacks are brought into contact with the surrounding community through the process of atmospheric transport. To predict the effect of an odourant on the community, it is necessary to understand the changes in composition and concentration that an odourant undergoes as a result of atmospheric transport. The mechanisms involved in the dispersion and transport of a continuous stack emission are quite complex. Initially, the emission rises due to momentum and buoyancy, and then is diluted and redistributed by the turbulence of the atmosphere. Simply stated, turbulence is the non-uniform, chaotic motion demonstrated by nearly all natural fluid flows. Therefore, to predict the effect of the emission of an odourous material on the surrounding community, it becomes necessary to describe mathematically the effect of atmospheric turbulence on the concentration of the odourant as it moves downwind. Dispersion models are a popular method of describing the dispersion of stack gas emissions.

A. Gaussian Plume Model

The Gaussian Dispersion equation for a continuous point source plume is the most well known method for describing atmospheric dispersion. It has become popular because it:
- Is easy to use
- Gives reasonably reliable results
- Does not require numerical integration

The Gaussian Plume model is based on the assumption that the concentration distribution of a dispersing plume or cloud is Gaussian. This means that the plume spread has a Gaussian, or normal, distribution of unequal magnitudes in both the horizontal and vertical planes. Figure 3.1 depicts a plume undergoing Gaussian dispersion as it travels in the mean wind direction (x).

The generalized Gaussian Dispersion equation for a continuous point source plume is given by:

\[
C = \frac{Q}{u \sigma_z \sigma_y 2\pi} \exp\left(-\frac{Y^2}{2\sigma_y^2}\right) \exp\left[-\frac{(Z-H_e)^2}{2\sigma_z^2} - \frac{(Z+H_e)^2}{2\sigma_z^2}\right] \quad (3.1)
\]

where:
- \(C \) = Concentration of emission at any receptor (g/m³) located at:
 - \(X \) = Meters downwind
 - \(Y \) = Meters crosswind
 - \(Z \) = Meters above ground
- \(Q \) = Source emission rate (g/s)
- \(u \) = Horizontal wind speed at stack height (m/s)
- \(H_e \) = Height of plume centreline above ground (m)
- \(\sigma_z \) = Vertical standard deviation of emission distribution (m)
FIGURE 3.1: PLUME UNDERGOING GAUSSIAN DISPERSION
\[\sigma_y = \text{Horizontal standard deviation of emission distribution (m)} \]

Assuming that the receptor is located at ground-level \((Z=0)\), Equation 3.1 reduces to:

\[
C = \frac{Q}{u \sigma_z \sigma_y} \exp\left(- \frac{y^2}{2\sigma_y^2} - \frac{H_e^2}{2\sigma_z^2}\right)
\] \(\text{(3.2)}\)

The accuracy of the Gaussian Plume model depends upon the validity of several assumptions and constraints stating that:

- The emission rate \(Q\) is constant and continuous
- Vertical \((Z)\) and crosswind \((Y)\) dispersions occur according to Gaussian Distribution
- The horizontal wind velocity and direction are constant for the sampling period in question
- Dispersion in the downwind direction is negligible compared to the downwind transport by the wind. (i.e. only vertical and horizontal dispersion occur)
- There is no chemical conversion, washout, deposition, or absorption of the stack emissions
- All emissions diffusing to the ground are reflected back into the plume
- There are no upper vertical or crosswind barriers to dispersion
- \(\sigma_x\) and \(\sigma_y\) are constants at a given downwind distance
There is homogeneous turbulence throughout the \(X,Y,\) and \(Z\) dimensions of the plume.

By taking all of these assumptions into consideration, fairly accurate estimates for the average (10 minutes to 1 hour) ground-level concentrations can be achieved.

1. Odour Modelling

When dealing with odours, it is generally more convenient to calculate the ground-level concentration in terms of an odour dilution ratio. This approach provides a basis for calculating the degree of dilution needed to deodourize a given odourous emission. In most cases, it will be necessary to evaluate the number of dilutions required to dilute the ground-level concentration to the odour threshold. The odour threshold, \(C_t\), is usually defined as the concentration at which an odour can be detected by a given proportion (usually 50\%) of the population \((C_{50})\). This dilution-to-threshold method of measuring odours has become the most prevalent procedure for measuring odours in air pollution applications. Figure 3.2 summarizes the principles involved in measuring odours by the dilution-to-threshold technique. While this method may be convenient, it does have some disadvantages since it does not provide any information regarding the quality or the objectionability of the odour.

The Gaussian Plume model equation can be manipulated readily to facilitate calculation of ground-level concentrations.
MEASURING ODOURS BY THE DILUTION-TO-THRESHOLD TECHNIQUE

Principle:

\[
\begin{align*}
\text{m, } V, \text{ C} & \quad \rightarrow \quad \text{m, } V_t, \text{ C}_t \\
\text{Sample or odourous air} & \quad \text{Same sample diluted to odour threshold} \\
m & = \text{mass of odourant} & m & = \text{(no change)} \\
V & = \text{volume of sample} & V_t & = \text{volume at threshold} \\
C & = \text{concentration of odourant} & C_t & = \text{threshold concentration} \\
C = \frac{m}{V} & & C_t = \frac{m}{V_t} \\
\end{align*}
\]

Odour dilution ratio
Threshold odour number
Odour pervasiveness
Odour Units

\[N_i = \frac{C}{C_t} = \frac{V_t}{V} = \{\]

ASSUMPTIONS:

- mass of odourant is constant
- odourant is gaseous
- odour threshold is an intrinsic property of the odourant

RESULT THEORETICALLY PROVIDES A BASIS FOR CALCULATION OF:

- degree of dilution needed to deodorize a given odourous emission
- proportion of odourant that must be removed from a sample of air to deodorize it

RESULT DOES NOT PROVIDE A BASIS FOR ESTIMATING:

- quality of the odour
- objectionability or acceptability of the odour

FIGURE 3.2: DILUTION-TO-THRESHOLD TECHNIQUE
in terms of the number of dilutions to threshold. This can be accomplished by letting:

$$ Q = V_o C_o \quad (3.3) $$

where: $$ V_o = \text{Volumetric rate of emission (m}^3/\text{s}) $$

$$ C_o = \text{Concentration of odourous sample at the stack (mg/m}^3) $$

Substitution of Equation 3.3 into Equation 3.1 yields:

$$ C = \frac{V_o C_o}{\sigma_y z^2 \pi} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{(Z-H_e)^2}{2\sigma_z^2}\right) \left[\frac{(Z+H_e)^2}{2\sigma_z^2}\right] \quad (3.4) $$

Considering the Effective Dose 50 level as C_{50}, and dividing Equation 3.4 by this value provides:

$$ \frac{C}{C_{50}} = \frac{V_o (C_o/C_{50})}{\sigma_y z^2 \pi} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{(Z-H_e)^2}{2\sigma_z^2}\right) \left[\frac{(Z+H_e)^2}{2\sigma_z^2}\right] \quad (3.5) $$

which is equivalent to:

$$ N_i = \frac{V_o N_o}{\sigma_y z^2 \pi} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{(Z-H_e)^2}{2\sigma_z^2}\right) \left[\frac{(Z+H_e)^2}{2\sigma_z^2}\right] \quad (3.6) $$

For receptors located at ground-level ($Z = 0$), Equation 3.6
reduces to:

\[N_i = \frac{V_o N_o}{u \sigma_z \sigma_y \pi} \exp\left[-\frac{y^2}{2\sigma_y^2} - \frac{H_e^2}{2\sigma_z^2} \right] \] \hspace{1cm} (3.7)

where:

\[N_i = \text{Odour dilution ratio at the receptor} \]

\[N_o = \text{Odour dilution ratio at the stack} \]

2. Limitations

In addition to the constraints already discussed, the Gaussian Plume model has a serious drawback when applied to the problem of determining the concentration of an odourous emission. Since the Gaussian Plume model is a time averaged model, it is useless for estimating the ratio of peak-to-mean concentrations. The meteorological parameters that it incorporates are, to a large extent, empirical and are only well established for prolonged releases and averaged plumes. Figure 3.3 illustrates the meteorological situation. The shaded areas on the left represent a series of puffs within the plume being released from point A. The dashed curves represent the instantaneous outline of the plume for a continuous release from the source at A. The solid curves define the outline of the long-term average plume resulting from a continuous release from A. The right hand side of the illustration depicts cross-sections of the concentrations
FIGURE 3.3: ODOR CONCENTRATIONS FOR AVERAGED PLUME AND INSTANTANEOUS PLUME [2]
along the plane BC for these two cases.

For a prolonged sampling period at a given point along the plane BC, the variation in ground level concentration may appear similar to that illustrated in Figure 3.4. The graph represents the continuous measurement of the concentration of the emission. The time history of the concentration varies as a result of turbulence of the atmosphere. The Gaussian Plume model, being a time averaged model, averages these turbulent motions and provides an estimated mean concentration for the sampling period. Figure 3.4 illustrates that while the hourly mean concentration may very well be below the odour threshold, the peak concentrations can exceed the odour threshold on several occasions.

An odourous impact is equal to the duration of a human breath. Therefore, it is the average concentration over a three to five second breathing interval that is perceived and that causes complaints and not the concentration of a one hour average. If a model is to successfully predict the occurrence of these critical values, it must be specifically designed to estimate very short term or instantaneous concentrations.

B. Fluctuating Puff Model

It has already been shown that when the sampling time is of the order of one hour or more, the plume geometry can be considered to be quite simple. Initially, the plume rises as a consequence of momentum and buoyancy. Then it levels off after
FIGURE 3.4: ACTUAL ODOUR CONCENTRATION COMPARED TO THE HOURLY MEAN VALUE (GAUSSIAN PLUME MODEL)
some distance to establish an almost horizontal mean axis (Figure 3.5a). The distribution of the concentration of the pollutants in the plume is nearly Gaussian, measured at a fixed distance from the source in any direction perpendicular to the axis.

In the case of a very short sampling time, the plume geometry is quite irregular. The most characteristic features of the plume are that (Figure 3.5b):

- The mean axis has an irregular appearance
- The shape of the plume varies all the time in an entirely random manner

It is these characteristics of the plume that are responsible for the short term variations in concentration that have already been described. Therefore, to determine the frequency of variations in concentration, it is necessary to describe the short term characteristics of the plume mathematically.

One method of describing the instantaneous properties of a plume is through the concept of a fluctuating plume. This concept, first introduced by Gifford [12] and later by Hogström [15] greatly simplifies the analysis of the fluctuating plume if it is assumed that:

- The effluent plume is made up of a series of plume segments emitted continuously from a source (Figure 3.6)
FIGURE 3.5: PLUME BEHAVIOUR WHEN SAMPLING TIME IS 1 HOUR AND WHEN SAMPLING TIME IS 30 SECONDS
FIGURE 3.6: SCHEMATIC DIAGRAM SHOWING ASSUMPTION THAT PLUME IS MADE UP OF SEGMENTS
Dispersion is made up of two terms involving:

1. Dispersion of each plume segment as it moves downwind

ii. Dispersion due to the random meander of the plume segments within the long-term average plume envelope

The dispersion within each plume segment as well as the distribution of the plume segments within the long-term average plume envelope are approximately Gaussian

For this model, the following relationship applies:

\[\sigma_y^2 = \sigma_{yp}^2 + \sigma_{yc}^2\] \hspace{1cm} (3.8)

where:

\[\sigma_y\] = Standard deviation of concentration within the long-term average plume

\[\sigma_{yp}\] = Standard deviation of the concentration within each plume segment

\[\sigma_{yc}\] = Standard deviation of the distribution of the plume segments' centroids of mass

Essentially, Equation 3.8 implies that the variance of the average long-term concentration distribution (in both the vertical and horizontal directions) is equal to the variance of the mean instantaneous concentration distribution in each plume segment plus the variance of the distribution of the locus of the centroid of mass of each plume segment. This concept may be visualized as representing the vertical and horizontal meander of the plume or as the variability of the position of the centroid
of mass of each plume segment as a series of segments moves
downwind (Figure 3.7). Methods for calculating \(\sigma_y \), \(\sigma_{yp} \) and \(\sigma_{yc} \)
are discussed later in this report.

The dispersion equation developed by Hogström [15] for
individual plume segments is analogous to the long-term Gaussian
Dispersion equation (Equation 3.1). In this equation, however,
the long-term average plume standard deviations (\(\sigma_z \) and \(\sigma_y \)) have
been replaced with the standard deviations for the concentration
distribution in each plume segment (\(\sigma_{zp} \) and \(\sigma_{yp} \)). The short-term
plume segment concentration can be calculated at any downwind
receptor location (\(x, y, z \)) using the following formula:

\[
C = \frac{Q}{u\sigma_{zp}\sigma_{yp}} \exp\left(- \frac{y^2}{2\sigma_{yp}^2}\right) \exp\left[- \frac{(z-H)^2}{2\sigma_{zp}^2} - \frac{(z+H)^2}{2\sigma_{zp}^2}\right] \quad (3.9)
\]

When the receptor is located at ground-level, Equation 3.9
reduces to:

\[
C = \frac{Q}{u\sigma_{zp}\sigma_{yp}} \exp\left(- \frac{y^2}{2\sigma_{yp}^2} - \frac{H^2}{2\sigma_{zp}^2}\right) \quad (3.10)
\]

Like the Gaussian Plume model, Equation 3.10 can be rewritten to
calculate the ground-level concentrations in terms of dilution
ratios according to:
FIGURE 3.7: TERMS IN PLUME SEGMENT DISPERSION [17]
\[N_i = \frac{V \cdot N_o}{u \cdot \sigma_{zp} \cdot \sigma_{yp} \cdot \pi} \exp\left(- \frac{y^2}{2 \sigma_{yp}^2} - \frac{H^2}{2 \sigma_{zp}^2} \right) \] (3.11)

where:

\(N_i \) = Odour dilution of plume segment at the receptor (odour units)

\(N_o \) = Odour dilution at the stack (odour units)

\(H \) = Height above ground-level of plume segment (m)

\(Y \) = Crosswind distance of plume segment from the receptor (m)
IV. ATMOSPHERIC STABILITY

The turbulence of the atmosphere is the major factor affecting the dispersion of stack gas plumes. The degree of turbulence in the atmosphere has often been defined by categories known as stability classes. The most widely used stability classes used for dispersion modeling are the six categories developed by Pasquill (A, B, C, D, E, and F). Class A describes the most turbulent or unstable atmospheric conditions while class F denotes the least turbulent or most stable conditions.

Any factor that enhances the vertical motion of air increases the degree of turbulence. The difference between the dry adiabatic lapse rate and the ambient temperature gradient provides a direct indication of whether vertical air motion is increased or decreased. The dry adiabatic lapse rate, simply stated, is the idealized adiabatic cooling of rising dry air and has a value of 5.5°F/1000 ft. In other words, rising dry air will show a decrease in temperature of 5.5°F per 1000 foot increase in elevation. The temperature gradient is the actual rate of temperature change as the altitude increases. The temperature gradient is a function of many factors, including:
- Time of day
- Season of the year
- Amount of solar radiation
- Wind velocity
- Rate of heat transfer from the ground to the ambient air

Depending on the value of the temperature gradient relative to the dry adiabatic lapse rate, atmospheric conditions will be:

- Super-adiabatic - unstable
- Sub-adiabatic - stable
- Inversion - very stable
- Adiabatic - neutral

Figure 4.1 summarizes the effect of the ambient temperature gradient on atmospheric conditions.

Table 4.1 shows the direct relationship between the ambient temperature gradient and the six Pasquill Stability classes. If the ambient temperature gradient cannot be determined, the Pasquill Stability class can be determined from the wind speed and from the incoming solar radiation. This relationship is summarized in Table 4.2.

A. Potential Temperature Gradients

Another method used to determine atmospheric stability
SUPER-ADIABATIC CONDITION
Ambient temperature gradient is negative and absolute value is greater than 5.5 °F/1000 ft.
Turbulence is enhanced and the air is unstable.

SUB-ADIABATIC CONDITION
Ambient temperature gradient is negative and absolute value is less than 3.0 °F/1000 ft.
Turbulence is suppressed and the air tends toward being stable.

INVERSION CONDITION
Ambient temperature gradient is positive.
Turbulence is almost completely suppressed and the air is very stable.

FIGURE 4.1: RELATIONSHIP BETWEEN AMBIENT TEMPERATURE GRADIENT AND ATMOSPHERIC STABILITY [31]
TABLE 4.1: PASQUILL STABILITY CLASSES VS AMBIENT TEMPERATURE GRADIENT [31]

<table>
<thead>
<tr>
<th>PASQUILL STABILITY CLASS</th>
<th>AMBIENT TEMPERATURE GRADIENT °F/1000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>A -- very unstable</td>
<td>less than -10.4</td>
</tr>
<tr>
<td>B -- unstable</td>
<td>-10.4 to -9.3</td>
</tr>
<tr>
<td>C -- slightly unstable</td>
<td>-9.3 to -8.2</td>
</tr>
<tr>
<td>D -- neutral</td>
<td>-8.2 to -2.7</td>
</tr>
<tr>
<td>E -- slightly stable</td>
<td>-2.7 to +8.2</td>
</tr>
<tr>
<td>F -- stable</td>
<td>more than +8.2</td>
</tr>
</tbody>
</table>

TABLE 4.2: PASQUILL STABILITY CLASSES RELATED TO WIND SPEED AND SOLAR INSOLATION [8]

<table>
<thead>
<tr>
<th>Surface Wind Speed (m/s)</th>
<th>DAY</th>
<th>NIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incoming Solar Radiation*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>< 2</td>
<td>A</td>
<td>A - B</td>
</tr>
<tr>
<td>2 - 3</td>
<td>A - B</td>
<td>B</td>
</tr>
<tr>
<td>3 - 5</td>
<td>B</td>
<td>B - C</td>
</tr>
<tr>
<td>5 - 6</td>
<td>C</td>
<td>C - D</td>
</tr>
<tr>
<td>> 6</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

* INCOMING SOLAR RADIATION:
 STRONG > 143 cal/m²/s
 MODERATE = 72 - 143 cal/m²/s
 SLIGHT < 72 cal/m²/s
involves the use of the potential temperature gradient ($d\Theta/dz$). The potential temperature gradient is defined as the difference between the ambient temperature gradient and the dry adiabatic lapse rate:

\[
d\Theta/dz = dT/dz - dT_a/dz
\]

\[
d\Theta/dz = dT/dz + 5.5^\circ F/1000 \text{ ft}
\]

where:
- $d\Theta/dz =$ Potential temperature gradient ($^\circ F/1000 \text{ ft}$)
- $dT/dz =$ Ambient temperature gradient ($^\circ F/1000 \text{ ft}$)
- $dT_a/dz =$ Dry adiabatic temperature gradient (lapse rate)
 = $-5.5^\circ F/1000 \text{ ft} (-10^\circ C/\text{km})$

As has already been shown, the difference between the ambient temperature gradient and the dry adiabatic lapse rate can be used to define the Pasquill stability classes. Therefore, the potential temperature gradient ($d\Theta/dz$) can also be used to define atmospheric stability. The potential temperature gradient is an important parameter in the calculation of plume rise.
V. PLUME RISE

Effective use of dispersion equations requires an accurate estimate of the effective stack height (H). The effective stack height is that height at which the plume becomes essentially horizontal. This height rarely corresponds to the height of the stack. In some cases the plume may be caught in the turbulent wake of the stack or of buildings near the stack to create a phenomenon known as aerodynamic downwash. Aerodynamic downwash results in the effluent plume being mixed rapidly downward towards the ground. When a plume is emitted free of these turbulent zones, a number of stack parameters and meteorological factors influence the rise of the plume. The main stack parameters affecting plume rise include the:

- Velocity of the effluent gases at the top of the stack.
- Temperature of the effluent gases at the top of the stack.
- Diameter of the stack exit.

The major meteorological factors include the:

- Wind speed
- Temperature of the ambient air
• Atmospheric stability

A. Briggs' Method

Briggs' method utilizes dimensional analysis to predict the rise of plumes under stable, unstable, and neutral atmospheric conditions [31]. When a smoke plume leaves a chimney it quickly assumes the horizontal wind speed but continues to rise, however, because of its original momentum plus the momentum added by buoyancy. Plume rise is affected greatly by the entrainment of air which, at first, is due to the plume's own relative motion. As this entrainment dies out, atmospheric turbulence becomes chiefly responsible for the mixing. This process is illustrated in Figure 5.1.

1. Stack Parameters

In any dimensional analysis, the most important step is to choose the parameters that are most significant. This choice was simplified by Briggs who approximated the chimney as a point source that is entirely specified by its momentum flux and buoyancy flux [31].

a. Momentum Flux Parameter

The momentum flux parameter, \(F_m \), used by Briggs is defined as the velocity momentum of the stack exit gas divided by \(\pi p_a \). The velocity momentum of the stack exit gas is:

\[
\begin{align*}
\text{Momentum} & = mv \\
& = (p_S v_S)v_s \\
& = p_S(\pi r^2 v_s)v_s \\
\end{align*}
\]
(5.1)
Initial rise: Entrainment of air is dominated by self-induced turbulence from initial vertical momentum and buoyancy momentum.

Final rise: Air entrainment is dominated by atmospheric turbulence (rather than self-induced turbulence).

Transitional rise: Air entrainment is in transition between being self-induced and being dominated by atmospheric turbulence.

\[x^* \] = the point at which atmospheric turbulence begins to dominate the entrainment of air.

\[ax^* \] = the point at which the maximum plume rise is assumed to occur (about 3.5 \(x^* \)).

FIGURE 5.1: STAGES IN THE RISE OF WARM, BUOYANT PLUMES [31]
Briggs' momentum flux parameter can therefore be described by the following equation:

\[F_m = \frac{\text{Momentum}}{\pi p_a} = p_s (\pi r^2 v_s) v_s / \pi p_a = (p_s / p_a) r^2 v_s^2 \quad (5.2) \]

If the stack exit gas has essentially the same molecular weight as air, then Equation 5.2 reduces to:

\[F_m = (T_a / T_s) r^2 v_s^2 \quad (5.3) \]

where:
- \(T_a \) = Ambient air temperature (°K)
- \(T_s \) = Stack gas temperature (°K)
- \(r \) = Stack exit radius (m)
- \(v_s \) = Stack gas exit velocity
- \(V_s \) = Stack volumetric flowrate (m³/s)
- \(p_s \) = Stack gas density (kg/m³)
- \(p_a \) = Ambient air density (kg/m³)

b. **Buoyancy Flux Parameter**

A buoyancy flux parameter was used by Briggs to describe the stack exit buoyancy of a plume. Briggs defined this parameter as the rate at which buoyant force is added to the plume divided by \(\pi \) and the density of the air according to:
\[F = \text{buoyancy force}/\pi p_a \]

(5.4)

The buoyancy force is calculated from the difference in weight between a given volume of stack gas and the volume of ambient air which it displaces according to:

\[
\text{buoyancy force} = g(m_a - m_s) \\
= g(p_a V_a - p_s V_s)
\]

(5.5)

Since \(V_a = V_s \)

\[
\text{buoyancy force} = gV_s(p_a - p_s)
\]

(5.6)

Substitution of Equation 5.6 into Equation 5.4 yields:

\[
F = gV_s(p_a - p_s)/\pi p_a \\
= gV_s/\pi(1 - p_s/p_a)
\]

(5.7)

Typically, the average molecular weight of a stack gas is essentially the same as that of air. Therefore:

\[
p_a/p_s = T_s/T_a
\]

(5.8)

Substitution of Equation 5.8 into Equation 5.7 provides:
\[F = \frac{(gV_s/r)(T_s - T_a)}{T_a} \] \hspace{1cm} (5.9)

or

\[F = qV_s r^2 (T_s - T_a)/T_a \] \hspace{1cm} (5.10)

where:

- \(F \) = Buoyancy flux parameter \((m^4/s^3) \)
- \(g \) = Gravitational acceleration, 9.807 \((m/s^2) \)
- \(V_s \) = Volumetric flowrate of stack gas \((m^3/s) \)
- \(v_s \) = Stack gas exit velocity \((m/s) \)
- \(r \) = Stack exit radius \((m) \)
- \(T_a \) = Ambient temperature \((^\circ K) \)
- \(T_s \) = Stack gas temperature \((^\circ K) \)
- \(p_a \) = Ambient air density \((kg/m^3) \)
- \(p_s \) = Stack gas density \((kg/m^3) \)

2. **Meteorological Parameters**

To describe the effect of atmospheric turbulence on plume rise, Briggs used a stability parameter. He defined this stability parameter as:

\[s = \frac{(g/T_a)d\theta/dz} \] \hspace{1cm} (5.11)

where:

- \(s \) = Stability parameter \((s^{-2}) \)
- \(g \) = 9.807 \(m/s^2 \)
- \(d\theta/dz \) = Potential temperature gradient \((^\circ K/m) \)
- \(T_a \) = Ambient air temperature \((^\circ K) \)
This stability parameter is a measure of the restoring force on a unit mass of air resulting from its vertical displacement from an equilibrium position. For example, a positive value for s (and $d\theta/dz$) indicates that the restoring force acts to return the air mass downward. A positive s value indicates that the atmosphere is stable and that air turbulence is dampened. A negative s value indicates that air turbulence is enhanced resulting in unstable conditions. An s value of zero ($d\theta/dz = 0$) means that air turbulence is neither dampened nor enhanced and that neutral atmospheric conditions prevail.

Table 5.1 provides a list of average potential temperature gradients corresponding to the six Pasquill Stability classes.

<table>
<thead>
<tr>
<th>TABLE 5.1: POTENTIAL TEMPERATURE GRADIENTS [31]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STABILITY CLASS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>
B. Briggs' Plume Rise Equations

Most of the discussion thus far has described the rise of warm buoyant plumes. In his various publications [27, 28, 29, 30], Briggs described plume rise for four basic situations involving:

- Bent-over buoyant plumes
- Vertical buoyant plumes
- Bent-over jets
- Vertical jets

1. Bent-over Buoyant Plumes

The following discussion provides a summary of the equations used to calculate plume rise for bent-over buoyant plumes for the six Pasquill Stability classes.

a. Unstable and Neutral Conditions

For the Pasquill Stability classes A, B, C, and D:

If $F \geq 55 \text{ m}^4/\text{s}^3$ then :

$$dH = 1.6F^{1/3}x^{2/3}u^{-1} \quad \text{for } X < X_f \quad (5.11)$$

or

$$dH_m = 38.7F^{0.6}u^{-1} \quad \text{for } X \geq X_f \quad (5.12)$$

If $F < 55 \text{ m}^4/\text{s}^3$ then :

$$dH = 1.6F^{1/3}x^{2/3}u^{-1} \quad \text{for } X < X_f \quad (5.13)$$

or

$$dH_m = 21.4F^{0.75}u^{-1} \quad \text{for } X \geq X_f \quad (5.14')$$
b. **Stable Conditions**

For Pasquill Stability Classes E and F:

When \(X_F \leq 1.84 u s^{-1/2} \) then:

\[
\begin{align*}
\text{dH} &= 1.6 F^{0.6} X^{2/3} u^{-1} \quad \text{for } X < X_F \quad (5.15) \\
\text{or} & \quad \text{dH}_m = 38.7 F^{0.6} u^{-1} \quad \text{for } X \geq X_F \text{ and } F \geq 55 \text{ m}^4/\text{s}^3 \quad (5.16) \\
\text{or} & \quad \text{dH}_m = 21.4 F^{0.75} u^{-1} \quad \text{for } X \geq X_F \text{ and } F < 55 \text{ m}^4/\text{s}^3 \quad (5.17)
\end{align*}
\]

When \(X_F > 1.84 u s^{-1/2} \) then:

\[
\begin{align*}
\text{dH} &= 1.6 F^{1/3} X^{2/3} u^{-1} \quad \text{for } X < 1.84 u s^{-1/2} \quad (5.18) \\
\text{or} & \quad \text{dH} = 2.4 (F/\text{us})^{1/3} \quad \text{for } X \geq 1.84 u s^{-1/2} \quad (5.19)
\end{align*}
\]

where:

- \(\text{dH} \) = Plume rise (m)
- \(\text{dH}_m \) = Maximum plume rise (m)
- \(X \) = Downwind distance (m)
- \(X_F \) = Downwind distance to maximum plume rise (m)

where:

\[
\begin{align*}
X_F &= 119 F^{0.4} \quad \text{when } F \geq 55 \text{ m}^4/\text{s}^3 \quad (5.20) \\
\text{or} & \quad X_F = 49 F^{0.625} \quad \text{when } F < 55 \text{ m}^4/\text{s}^3 \quad (5.21)
\end{align*}
\]

\(u \) = Horizontal wind velocity (m/s)

\(F \) = Buoyancy flux parameter (m\(^4\)/s\(^3\))

\(s \) = Stability parameter (s\(^{-2}\))
2. **Vertical Buoyant Plumes**

Vertical buoyant plumes occur during calm conditions (negligible wind). The equation describing this type of plume rise is:

\[
dH_m = 5.0F_m^{1/4}s^{-3/8} \quad (5.22)
\]

3. **Bent-over Jets**

A jet is a plume whose temperature is the same as, or less than the temperature of the ambient air.

a. **Unstable and Neutral Conditions**

For Pasquill Stability Classes A, B, C, and D:

\[
dH = 2.3F_m^{1/3}u^{-2/3}s^{1/3} \quad \text{for } X < X_f \quad (5.23)
\]

which is equivalent to:

\[
dH = 1.44(T_a/T_s)^{1/3}(dv_s/u)^{2/3}s^{1/3} \quad \text{for } X < X_f \quad (5.24)
\]

or

\[
dH_m = 3dv_s/u \quad \text{for } X \geq X_f \quad (5.25)
\]

b. **Stable Conditions**

For stable atmospheric conditions (E, F), plume rise is described by:

\[
dH = 1.5(F_m/u)^{1/3}s^{-1/6} \quad (5.26)
\]

which is equivalent to:

\[
dH = 0.95(T_a/T_s)^{1/3}u^{-1/3}s^{-1/6}(dv_s)^{2/3} \quad (5.27)
\]
4. **Vertical Jets**

Briggs described the rise of a cold plume under calm conditions by:

\[
\Delta H = 4.0(P_m/s)^{1/4}
\]
(5.28)

which is equivalent to:

\[
\Delta H = 2.83(T_a/T_s)^{1/4} - 1/4(dv_s)^{1/2}
\]
(5.29)

C. **Stack-tip Downwash**

A relatively high wind speed may cause the plume to be drawn downward into the turbulent wake of the stack. Downwash due to high wind speeds occurs when:

\[
v_s \leq 1.5u
\]
(5.30)

Under these conditions, stack-tip downwash is estimated using the Briggs' formulation:

\[
h_d = 4(v_s/u - 1.5)r
\]
(5.31)

where : \(h_d = \text{Stack-tip downwash (m)}\)

If stack-tip downwash conditions prevail, the effective stack height(H) is reduced by \(h_d\).
D. **Aerodynamic Downwash**

The aerodynamic effects of large buildings on the dispersion of a plume may be significant under certain meteorological conditions. Figure 5.2 illustrates the characteristic aerodynamic flow zones that exist around a large structure. If a plume from a roof source penetrates the displacement zone, the building effects are minimal and dispersion occurs normally. If the plume does not penetrate this displacement zone, however, it becomes entrained in the wake and behaves as though it originated from a ground-level volume source. Aerodynamic downwash generally occurs when the stack height is less than twice the height of the building.

1. **Split-H Model**

A study conducted by Johnson et al. [17,32] of the entrainment of plumes from roof-vent releases indicates that complete entrainment (Figure 5.3A) and no entrainment (Figure 5.3B) of plumes rarely occurs. In general, the plumes undergo only partial entrainment (Figure 5.3C). The degree of entrainment is a function of the velocity ratio:

\[
\frac{v_s}{u} \quad (5.32)
\]

The Split-H model developed by Johnson assumes that an emission is released from two heights:
FIGURE 5.2: CHARACTERISTIC FLOW ZONES AROUND LARGE BUILDINGS [32]
FIGURE 5.3: A.) COMPLETE ENTRAINMENT
B.) NO ENTRAINMENT
C.) PARTIAL ENTRAINMENT
The emission is therefore divided into two parts. A fraction \(M \) is entrained while the fraction \((1-M) \) rises normally.

2. **Weighting Function**

The value of the weighting function \(M \) depends on the value of the velocity ratio.

If \(\frac{v_s}{u} \leq 0.9 \) then:

\[
M = 1.0
\]
(5.33)

If \(0.9 < \frac{v_s}{u} \leq 1.5 \) then:

\[
M = 2.2 - 1.33\left(\frac{v_s}{u}\right)
\]
(5.34)

If \(1.5 < \frac{v_s}{u} < 5.0 \) then:

\[
M = 0.286 - 0.0571\left(\frac{v_s}{u}\right)
\]
(5.35)

If \(\frac{v_s}{u} \geq 5.0 \) then:

\[
M = 0.0
\]
(5.36)
3. **Rise For Entrained Portion of Plume**

To determine the mean height to which the entrained portion of the plume rises, the MOE [10] recommends that this portion of the release be treated as follows:

- Assume that the release is effectively at ground level.
- Assume that the initial vertical mixing of the material by building-induced turbulence results in the plume being mixed to a mean height equal to 1/2 the building height.
- With the initial plume height equal to 1/2 the building height, the virtual source location X_0, relative to the release point is calculated.

Under aerodynamic downwash conditions, the mean height of the entrained portion of the plume can only be calculated for receptor locations located beyond a building's region of high turbulence. This region of high turbulence is assumed to extend a distance equal to five times the building height beyond the edge of the building.

a. **Unstable Conditions**

The virtual source location relative to the release point (X_0) is calculated under unstable meteorological conditions by setting:

$$H = \frac{1}{2} \text{ Building Height}$$ \hspace{1cm} (5.37)
and solving the following equation for x:

$$H = 0.812Z_1 (XW_x/uZ_1)^{1.5} \tag{5.38}$$

where:
$Z_1 = \text{Boundary layer height}$
$X = \text{Downwind distance (m)}$
$W_x = \text{Convective scaling velocity (m/s)}$

The convective scaling velocity is determined from:

$$W_x = \left(\frac{gH_0 Z_1}{(0.5pC_p(2T_a - 0.0098Z_1))} \right)^{1/3} \tag{5.39}$$

where:
$H_0 = \text{Surface heat flux (cal/m}^2/\text{s})$
$p = \text{Density of air (1.2 kg/m}^3)$
$C_p = \text{Specific heat of air (240 cal/kg/°K)}$

Once X_0 has been evaluated, the actual plume height is determined by solving Equation 5.38 for H at a downwind distance equal to $X + X_0$. Chapter 7 describes the method for calculating H_0.

b. **Neutral Conditions**

Under neutral atmospheric conditions, X_0 is calculated by setting:

$$H = 1/2 \text{ Building height}$$
and solving Equation 5.40 for X:

$$X = 0.73H \ln\left(\frac{0.6H}{Z_o}\right) / \alpha^2 \quad (5.40)$$

where: $\alpha =$ von Kármán constant (0.35)

The actual plume height is then determined by solving Equation 5.40 for H at a downwind distance equal to $X + X_o$.

c. **Stable Conditions**

For stable atmospheric conditions, X_o is calculated by setting:

$$H = 1/2 \text{ Building height}$$

and solving Equation 5.41 for X:

$$X = 0.74H\left(\ln\left(\frac{0.6H}{Z_o}\right) + 4.9H/L\right)\left(1+4.9H/L\right) + 1.2H/L)/\alpha^2 \quad (5.41)$$

where:

$$L = 1100(\alpha u/\ln(Z_a/Z_o) + 4.7(Z_a/L))^2 \quad (5.42)$$

$Z_a =$ Anemometer height (m)

H is evaluated at $X + X_o$ using equation 5.41.
VI. DISPERSION COEFFICIENTS

The implementation of the Fluctuating Plume model requires the calculation of three sets of dispersion coefficients:

- \(\sigma_y, \sigma_z \) = Standard deviation of the concentration within the long-term average plume
- \(\sigma_{yp}, \sigma_{zp} \) = Standard deviation of the concentration within each plume segment
- \(\sigma_{yc}, \sigma_{zc} \) = Standard deviation of the distribution of the plume segments' centroids of mass

A. Long-term Average Plume Dispersion Coefficients

The Pasquill-Gifford dispersion coefficients have gained wide usage and acceptance in the area of dispersion modeling. Figures 2.2 and 2.3 are plots, published by Turner [8], of \(\sigma_y \) and \(\sigma_z \) versus downwind distance \(X \) for the six Pasquill Stability classes A, B, C, D, E, and F. These coefficients are affected significantly by the following factors:

- Turbulent structure of the atmosphere
- Height of the plume above the surface
- Sampling time over which the concentration is to be estimated
- Surface roughness
- Wind speed
- Distance from the source

The plots given by Turner are based on the assumptions that:

- The sampling time is of the order of 10 minutes.
- The height is the lowest hundred metres of the atmosphere.
- The surface corresponds to relatively open country.

The turbulent structure of the atmosphere and the wind speed are considered in the selection of the stability class.

Since most dispersion problems are solved using computers, it is useful to express the Pasquill-Gifford dispersion coefficients in the form of analytical equations. McMullen [23] proposed a set of equations that accurately represent Turner's plots according to:

\[\sigma = \exp(I + J(\ln X) + K(\ln X)^2) \] \hspace{1cm} (6.1)

where:
\(X = \) Downwind distance (km)
\(\sigma = \) Long-term plume dispersion coefficient (m)

Table 6.1 provides the constants (I, J, and K) required to solve Equation 6.1.
<table>
<thead>
<tr>
<th>PASQUILL STABILITY CLASS</th>
<th>VERTICAL DISPERSION COEFFICIENT</th>
<th>(I)</th>
<th>(J)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.035</td>
<td>2.1097</td>
<td>0.2770</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.694</td>
<td>1.0629</td>
<td>0.0136</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.110</td>
<td>0.9201</td>
<td>-0.0020</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3.414</td>
<td>0.7371</td>
<td>-0.0316</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.057</td>
<td>0.6794</td>
<td>-0.0450</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2.621</td>
<td>0.6564</td>
<td>-0.0540</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PASQUILL STABILITY CLASS</th>
<th>HORIZONTAL DISPERSION COEFFICIENT</th>
<th>(I)</th>
<th>(J)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.357</td>
<td>0.8828</td>
<td>-0.0076</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5.058</td>
<td>0.9024</td>
<td>-0.0096</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4.651</td>
<td>0.9181</td>
<td>-0.0076</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.230</td>
<td>0.9222</td>
<td>-0.0087</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.922</td>
<td>0.9222</td>
<td>-0.0064</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3.533</td>
<td>0.9181</td>
<td>-0.0070</td>
<td></td>
</tr>
</tbody>
</table>
1. Urban Versus Rural Dispersion Coefficients

It is generally necessary to model odourous dispersions in urban areas. However, the Pasquill-Gifford dispersion coefficients are based on data obtained in rural areas over open level terrain. When a low-level plume is released into an urban area, it encounters a higher degree of turbulence due to the presence of buildings. In an urban area, a low-level plume encounters so much additional turbulence that the effective atmospheric stability is equivalent to a less stable class than would be indicated by the prevailing meteorological conditions. In other words, the prevailing meteorological conditions may indicate a class B stability but the increased turbulence caused by buildings in the area might be equivalent to a class A stability [31]. Therefore, for any given set of meteorological conditions a larger dispersion coefficient is applicable in an urban area than in an open and level rural site. This variation is illustrated in Figures 6.1 and 6.2.

In 1973, Briggs [25] developed a set of dispersion coefficients suitable for urban areas. Gifford [31,26] restated these coefficients in terms of an analytical equation which can be used in conjunction with the Pasquill-Gifford Stability classes. Table 6.2 lists the constants I, J, and K to be used in the Gifford relationship:

\[\sigma = IX(1 + JX)^K \]
(6.2)
FIGURE 6.1: COMPARISON OF URBAN AND RURAL VERTICAL DISPERSION COEFFICIENTS [31]
FIGURE 6.2: COMPARISON OF URBAN AND RURAL HORIZONTAL DISPERSION COEFFICIENTS [31]
<table>
<thead>
<tr>
<th>PASQUILL STABILITY CLASS</th>
<th>URBAN VERTICAL DISPERSION COEFFICIENT</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>240</td>
<td>1.00</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>240</td>
<td>1.00</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>200</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>140</td>
<td>0.30</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td>1.50</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>80</td>
<td>1.50</td>
<td>-0.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PASQUILL STABILITY CLASS</th>
<th>URBAN HORIZONTAL DISPERSION COEFFICIENT</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>320</td>
<td>0.40</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>320</td>
<td>0.40</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>220</td>
<td>0.40</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>160</td>
<td>0.40</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>110</td>
<td>0.40</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>110</td>
<td>0.40</td>
<td>-0.50</td>
<td></td>
</tr>
</tbody>
</table>
where: \(\sigma = \) Urban long-term plume dispersion coefficient (m)
\(X = \) Downwind distance (m)

B. Short-term Plume Segment Dispersion Coefficients

By photographically tracking puffs released from an elevated point source, Hogström [13] developed a method by which the standard deviation of the concentration within a plume segment (puff) could be calculated for a variety of atmospheric conditions.

1. Unstable Conditions

For the horizontal standard deviation, experiments suggested that there is no variation with height and a very weak variation with respect to stability under unstable and neutral conditions. The horizontal standard deviation is given by Equation 6.3 for unstable atmospheric conditions according to:

\[
\sigma_{yp} = 50[2(\exp(-0.001X) + 0.001X - 1)]^{1/2}
\] \hspace{1cm} (6.3)

where: \(\sigma_{yp} = \) Horizontal standard deviation of the concentration within a puff segment (m)
\(X = \) Downwind distance (m)

Data for vertical puff dispersion under unstable atmospheric conditions is scarce. For these conditions, Hogström suggested the following calculational procedure:
\[\sigma_{zp} = \frac{i_R}{b_{oR}} \left(2(\exp(-b_{oR}X) + b_{oR}X - 1) \right)^{1/2} \] \hspace{1cm} (6.4)

where: \[i_R = 0.361 \] \hspace{1cm} (6.5)
\[b_{oR} = 0.65b_o \] \hspace{1cm} (6.6)

Hogstrøm's intensity factor "i" is obtained from the following equations:

\[i = D \cdot \frac{E}{50} \] for \(h < 50 \text{ m} \) \hspace{1cm} (6.7)
and
\[i = D - \frac{E}{h} \] for \(h \geq 50 \text{ m} \) \hspace{1cm} (6.8)

The constants \(D \) and \(E \) are evaluated by setting \(h=50\text{m} \) and substituting Equation 6.9:

\[i = \left[4.31\log\left(\frac{h}{Z_o}\right) \right]^{-1} + 0.03(1 - \frac{u}{16}) \] \hspace{1cm} (6.9)

where: \(h = \) Height of puff above ground-level (m)
\(u = \) Wind speed at height, \(h \) (m)
\(Z_o = \) Roughness length (m)

into Equation 6.7 and by setting \(h=500\text{m} \) and substituting Equation 6.10:

\[i = \left[4.31\log\left(\frac{h}{Z_o}\right) \right]^{-1} + 0.33\left(1 - \frac{u}{16}\right)^3 \] \hspace{1cm} (6.10)

into Equation 6.8.
The constant b_o is calculated from:

$$b_o = a_o \left(\frac{u}{16} \right)$$ \hspace{1cm} (6.11)

where:

$$a_o = \left[\frac{4.31 \log(h/Z_o)}{0.4hN_{pa}} \right]^{-1}$$ \hspace{1cm} (6.12)

N_{pa} = site constant, (0 - 1 m)

In most built up areas, a value of 0.5 is used for N_{pa}.

2. Neutral Conditions

Since σ_{yp} is not a strong function of stability under unstable and neutral conditions, σ_{yp} is calculated using Equation 6.3.

The vertical dispersion coefficient is determined from Equation 6.13 according to:

$$\sigma_{zp} = \frac{i_R}{a_o R} \left[2(\exp(-a_o R X) + a_o R X - 1) \right]^{1/2}$$ \hspace{1cm} (6.13)

where:

$$i_R = 0.36/[4.31 \log(h/Z_o)]$$ \hspace{1cm} (6.14)

$$a_o R = 0.65 a_o$$ \hspace{1cm} (6.15)

3. Stable Conditions

Under stable atmospheric conditions, the horizontal dispersion coefficient is given by:
\[\sigma_{yp} = 50(2(\exp(-0.001x) + 0.001x - 1))^{1/2}(1 + 0.001S)^{-1} \] (6.16)

Similarly, the vertical dispersion coefficient is calculated from:

\[\sigma_{zp} = \frac{1}{a_{oR}} \left[2(\exp(-a_{oR}X) + a_{oR}X - 1) \right]^{1/2}(1 + 0.022S(h/87)^{0.62})^{-1} \] (6.17)

For stable atmospheric conditions, it is necessary to calculate the value of Hogström's stability factor, \(S \). This factor is defined as:

\[S = \frac{(d\theta/dz)}{u_f^2} \times 10^5 \] (6.18)

where: \(d\theta/dz \) = Potential temperature gradient (\(^\circ\)K/m)

\(u_f \) = Free wind speed (wind speed at the top of the friction layer -- 500 to 1000 m) (m/s)

It is important not to confuse Hogström's stability factor with the Briggs stability factor already described in the Plume Rise section of this report.

C. **Plume Segment Position Coefficients**

The standard deviations of the distributions of the plume segments' centroids of mass in both the vertical and horizontal
directions are found by rearranging Equation 3.8 in the form:

$$\sigma_{yc} = \left(\sigma_y^2 - \sigma_{yp}^2 \right)^{1/2} \quad (6.19)$$

and

$$\sigma_{zc} = \left(\sigma_z^2 - \sigma_{zp}^2 \right)^{1/2} \quad (6.20)$$

D. **Volume Corrected Dispersion Coefficients**

The turbulent wake of a building will cause a plume to disperse at a faster rate than would otherwise occur. Fuquay [17,33] suggested a method for correcting dispersion factors for the initial dilution caused by the building wake.

The corrected long-term dispersion coefficients are given by:

$$\Sigma_y = \left(\sigma_y^2 + CA/\pi \right)^{1/2} \quad (6.21)$$

$$\Sigma_z = \left(\sigma_z^2 + CA/\pi \right)^{1/2} \quad (6.22)$$

where: \(\Sigma_y, \Sigma_z = \) Volume corrected long-term dispersion coefficients (m)

\(C = \) Empirical volume correction factor (0 - 2.0)

\(A = \) Wind-oriented building cross-sectional area (m^2)

The volume corrected plume segment dispersion coefficients are calculated in a similar manner from:
\[\Sigma_{\text{yp}} = (\sigma_{\text{yp}}^2 + CA/\pi)^{1/2} \quad (6.23) \]
\[\Sigma_{\text{zp}} = (\sigma_{\text{zp}}^2 + CA/\pi)^{1/2} \quad (6.24) \]

where: \[\Sigma_{\text{yp}}, \Sigma_{\text{zp}} = \text{Volume corrected plume segment dispersion coefficients (m)}\]

On the basis of Equations 6.21, 6.22, 6.23, and 6.24:

\[\Sigma_{\text{yc}} = (\Sigma_{\text{y}}^2 - \Sigma_{\text{yp}}^2)^{1/2} \quad (6.25) \]
\[\Sigma_{\text{zc}} = (\Sigma_{\text{z}}^2 - \Sigma_{\text{zp}}^2)^{1/2} \quad (6.26) \]

where: \[\Sigma_{\text{yc}}, \Sigma_{\text{zc}} = \text{Volume corrected standard deviations of the distribution of the plume segments' centroids of mass (m)}\]
VII. MODEL DESCRIPTION

The proposed model has been designed to calculate odour frequencies downwind of elevated point sources. The impact of several odour emitting sources on a single receptor location can be determined under a variety of meteorological conditions for either urban or rural terrain.

The computer model has been divided into eleven distinct sections. These sections include:

- Stack data input
- Meteorological and receptor data input
- Determination of stack positions relative to the receptor location
- Plume rise
- Long-term plume dispersion coefficients
- Short-term puff dispersion coefficients
- Standard deviations of puff positions
- Long-term average plume ground-level concentration
- Puff receptor concentrations
- Frequency distribution of ground-level concentrations
- Output of results
A. Stack Data Input

All of the stack data required for the execution of the dispersion model are inputted by means of a user created data file at the beginning of the computer program. The data file is created using the program 'KEYSTACK'. Appendix I provides an illustrated example of how to use this file creation program.

The stack data required by the computer model (Turbo Pascal 4.0) include:

- Number of Stacks (1-100)
- Stack diameter (m)
- Stack height (m)
- Stack gas temperature (°K)
- Stack gas exit velocity (m/s)
- Stack gas volumetric flowrate (m^3/s)
- X coordinate of stack location (m)
- Y coordinate of stack location (m)
- Building width (m)
- Building height (m)

B. Meteorological and Receptor Data

The meteorological and receptor data used in the model are also inputted by means of a user created data file. Appendix II provides an illustrated example of how to use the data creation program, 'KEYMETER'.

The required meteorological and receptor data include:
- Number of observations (1-100)
- Observation number
- Ambient temperature (°K)
- Wind speed at anemometer height (m/s)
- Terrain (urban, rural)
- Wind angle
- Stability class (A-F or 1-6)
- X coordinate of receptor location (m)
- Y coordinate of receptor location (m)
- Roughness length (0-1m)
- Site constant (0-1)
- Surface heat flux (cal/m²/s)
- Mixing height (m)

1. **Atmospheric Stability**

The stability of the atmosphere is described according to the six Pasquill Stability Categories: A, B, C, D, E, and F. The criteria of wind speed and incoming solar radiation described in Table 4.2 are used in the selection of the proper stability category. The proper stability category is selected by the 'KEYMETER' program.

 a. **Incoming Solar Radiation**

 The incoming solar radiation is calculated using the formulations developed by Maul [10]. It can be estimated from:
\[R = 220.938 \{ \cos(\phi) \cos(r) \cos(L_r) + \sin(\phi) \sin(L_r) \} \]

(7.1)

where:
\[R = \text{Incoming solar radiation (cal/m}^2/\text{s)} \]

\[L_r = \text{Latitude of the source (radians)} \]

\[B = \text{Radiation reduction factor for the incoming solar radiation due to cloud cover} \]

\[r = \pi(t - t_n)/12 \]

(7.2)

\[t = \text{Time in decimal hours} \]

\[t_n = 12 + L_D/15 \]

(7.3)

\[t_n = \text{Local noon time} \]

\[L_D = \text{Longitude of the source (degrees)} \]

\[\phi = \text{ARCTAN} \{ 0.4348 \sin(\pi(D - 78/180)) \} \]

(7.4)

\[D = \text{Julian day (1 to 365 or 366)} \]

Values of \(B \) for different degrees of cloud cover are given in Table 7.1. This evaluation of incoming solar radiation applies only to values of \(t \) between:

\[t_{\text{rise}} = t_n - (12/\pi) \cos^{-1}(-\tan(\phi) \tan(L_r)) \]

(7.5)

and

\[t_{\text{set}} = t_n + (12/\pi) \cos^{-1}(-\tan(\phi) \tan(L_r)) \]

(7.6)

where:
\[t_{\text{rise}} = \text{Local sunrise} \]

\[t_{\text{set}} = \text{Local sunset} \]
2. **Surface Heat Flux**

From the value of the incoming solar radiation (R), the surface heat flux is determined in the 'KEYMETER' program using the relationship:

\[H_o = \alpha R + H_L \] \hspace{1cm} (7.7)

where:
- \(H_o \) = Surface heat flux (cal/m²/s)
- \(\alpha \) = Empirical proportionality factor (0.35)
- \(H_L \) = Long wavelength heat loss (cal/m²/s)
- \(H_L = -0.7(8.5 - \text{cc}) \) \hspace{1cm} (7.8)

The value for the fractional cloud cover (cc) is chosen from Table 7.1.

<table>
<thead>
<tr>
<th>SKY COVER %</th>
<th>FRACTIONAL CLOUD COVER (cc)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>12.5</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>25.0</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>37.5</td>
<td>3</td>
<td>0.76</td>
</tr>
<tr>
<td>50.0</td>
<td>4</td>
<td>0.72</td>
</tr>
<tr>
<td>62.5</td>
<td>5</td>
<td>0.67</td>
</tr>
<tr>
<td>75.0</td>
<td>6</td>
<td>0.59</td>
</tr>
<tr>
<td>87.5</td>
<td>7</td>
<td>0.45</td>
</tr>
<tr>
<td>100.0</td>
<td>8</td>
<td>0.23</td>
</tr>
</tbody>
</table>
3. Wind Speed Profile

Wind speed data from weather stations is recorded only at an anemometer height of 10 metres. Proper execution of the model requires the determination of wind speeds at the elevations corresponding to:

- Plume height
- Stack height

The increase in wind speed with respect to height is affected by the stability of the atmosphere. The United States Environmental Protection Agency [11] recommends the following equation for calculating the increase in wind speed with height:

\[
u_H = u_A \left(\frac{H}{ANHGT}\right)^{PP}
\]

(7.9)

where:
- \(u_H\) = Wind speed at height \(H\)
- \(u_A\) = Wind speed at anemometer height
- \(PP\) = Stability dependent wind speed equation coefficient
- \(ANHGT\) = Anemometer height (10 m)

Table 7.2 shows the relationship between atmospheric stability and \(PP\).
4. **Mixing Height**

The height of the mixing layer is also determined by the 'KEYMETER' program. Table 7.3 illustrates the relationships between Pasquill Stability Classes and mixing heights. Figures 7.1 and 7.2 show the morning mean and afternoon mean mixing heights for the United States.

C. **Plume Rise**

The effective height of a plume not affected by the turbulent wake of a building is determined using the Briggs equations described in Chapter V. The plume rise can be calculated for both warm buoyant plumes and cold jets under unstable (A,B), neutral (C,D), and stable (E,F) conditions.

For the case of partial aerodynamic downwash, the model assumes that a second source exists at the same location as the
TABLE 7.3: MIXING HEIGHTS

<table>
<thead>
<tr>
<th>STABILITY CLASS</th>
<th>MIXING HEIGHT (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.5 x AMH</td>
</tr>
<tr>
<td>B</td>
<td>AMH</td>
</tr>
<tr>
<td>C</td>
<td>AMH</td>
</tr>
<tr>
<td>D (DAY)</td>
<td>AMH</td>
</tr>
<tr>
<td>D (NIGHT)</td>
<td>(AMH+MMH)/2</td>
</tr>
<tr>
<td>E</td>
<td>MMH</td>
</tr>
<tr>
<td>F</td>
<td>MMH</td>
</tr>
</tbody>
</table>

AMH = AFTERNOON MEAN MIXING HEIGHT (m)
MMH = MORNING MEAN MIXING HEIGHT (m)

original source. This second source is located at ground level
and has an emission rate equal to:

\[\text{Emission Rate} = M V_o N_o \] \hspace{1cm} (7.10)

where: \(M \) = Fraction of the total
emission that undergoes aerodynamic downwash.

Consequently, the emission rate of the original elevated source
must be reduced by multiplying the total emission rate by \((1-M)\).
Plume rise for the original source is calculated using the Briggs
equations while the plume rise for the second source is
determined using the equations for ground level area sources.
D. Dispersion Coefficients

The proposed model requires the calculation of three sets of dispersion coefficients. They are:

- Long-term plume dispersion coefficients
- Short-term puff dispersion coefficients
- Standard deviations of puff positions

1. Long-term Plume Dispersion Coefficients

Two methods of determining the values of the long-term plume dispersion coefficients may be used in the proposed model, depending upon the nature of the terrain surrounding the source. For a rural terrain (RU=2), the Pasquill-Gifford dispersion coefficients described by Equation 6.1 are applicable. Urban terrain (RU=1) requires the use of Briggs' Urban dispersion coefficients (Equation 6.2). Both sets of long-term plume dispersion coefficients can be calculated for the full range of stability classes.

2. Short-term Puff Dispersion Coefficients

The short-term puff dispersion coefficients are determined using the methods developed by Hogström (Equations 6.3 to 6.10). These methods can be used with confidence for distances of several kilometres under stable and neutral atmospheric conditions. However, the equations used to calculate the dispersion coefficients under unstable conditions should be used cautiously since they were developed on the basis of very
limited experimental data.

3. **Standard Deviations of Puff Positions**

The measures of the random meanders of the plume segments (puffs) within the long-term average plume are calculated using Equations 6.19 and 6.20.

E. **Long-term Average Plume Ground-Level Concentration**

The long-term average ground-level concentration is calculated using the generalized Gaussian Dispersion equation. The ground-level concentration is calculated in terms of odour units using Equation 3.7.

F. **Puff Positions**

The main characteristics of a series of puffs moving downwind are that:

- They meander about the mean axis of the plume in an entirely random manner.
- The distributions of the puff positions are Gaussian in both the vertical and horizontal directions.

A normally distributed random number generator can simulate the random movement of the puffs as they pass a particular receptor location [17].

1. **Horizontal Positions**

This model uses an algorithm known as the 'Polar Method
for Normal Deviates', developed by Box, Miller, and Marsaglia [34], to produce normally distributed numbers with a mean value corresponding to the plume centreline and a standard deviation equal to σ_{yc}.

2. **Vertical Positions**

The same algorithm is used to determine the vertical position of the puff. The numbers produced are normally distributed with a standard deviation equal to σ_{zc} and a mean value corresponding to the plume height.

G. **Puff Receptor Concentration**

Once a puff position has been determined, its contribution to the receptor odour level is calculated using Equation 3.11. The model calculates the ground-level concentration of every puff from each source passing the receptor location. In the case of multiple sources, the model assumes that the combined affect of several puffs occurring simultaneously at a receptor location is additive.

H. **Frequency Distribution**

After all of the puff concentrations have been calculated, the model creates a frequency distribution of ground-level concentrations. The model analyzes all of the calculated ground-level concentrations that occur at a receptor location and separates them into six concentration categories (Figure 7.3). This approach is useful for determining what percentage of the
total concentrations occurring at the receptor during the sampling period exceed the odour threshold level.

I. Output of Results

Once all of the calculations have been completed, the model outputs a brief summary of the results. This summary includes:

- Receptor position (XPos, YPos)
- Terrain type (Ter, rural=2, urban=1)
- Stability class (Stab)
- Wind speed (Wind)
- Wind angle (W-Ang)
- Roughness length (ZO)
- Ambient temperature (Temp)
- Odour frequencies

The output also includes a value for the Wind Angle Offset. The Wind Angle Offset provides a measure of the off-centreline position of the receptor location. A Wind Angle Offset equal to zero corresponds to a receptor location at the plume centreline (Appendix III).

Figure 7.3 illustrates the outputted results. The calculational procedure used by the proposed model is summarized in the flowchart depicted in Figure 7.4. Appendix III provides a printout of a computer program for the proposed model.
Puff Release Rate (Puffs/hr) = 200
Wind Angle Offset (deg) = -9

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Wind</th>
<th>Temp</th>
<th>Stab</th>
<th>W-Ang</th>
<th>ZO</th>
<th>X-Pos</th>
<th>YPos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>5.3</td>
<td>283</td>
<td>3</td>
<td>327</td>
<td>0.75</td>
<td>325</td>
</tr>
</tbody>
</table>

Odour Frequencies:

<table>
<thead>
<tr>
<th>ODOR LEVEL CLASSIFICATIONS (odour units)</th>
<th>FREQUENCY OF OCCURRENCE (% of sampling time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>29.00</td>
</tr>
<tr>
<td>*</td>
<td>14.50</td>
</tr>
<tr>
<td>*</td>
<td>0.50</td>
</tr>
<tr>
<td>*</td>
<td>0.00</td>
</tr>
<tr>
<td>*</td>
<td>0.00</td>
</tr>
<tr>
<td>>31</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Maximum Concentration (odour units) = 4.03646
Gaussian Concentration (odour units) = 0.49241
Average Concentration (odour units) = 1.18532

FIGURE 7.3: TYPICAL PROGRAM OUTPUT
FIGURE 7.4: GENERAL FLOW DIAGRAM FOR PUFF MODEL
VIII. FIELD TESTING PROGRAM

To test the validity of the proposed model, a comprehensive field testing program was undertaken. The field testing program involved the collection of odour data in the vicinity of an odour emitting source for comparison with the computer model results. The field testing program required for the validation of the proposed model was divided into the three distinct stages:

- Selection of a suitable odour emitting source.

- Acquisition of the necessary source and stack information

- Collection of odour data in the surrounding community.

A. Source Selection

The four basic criteria used in the selection of an odour source for this study specified that:

- The source of the odour must be an elevated stack (or stacks)

- The emitted odour must have a quality that is readily recognizable

- The odour must be unique to the source for the surrounding community

- Source stack data must be readily available
The source selected for this study was a Chrysler of Canada automotive assembly plant located in Windsor, Ontario, Canada. In this plant, which manufactures T-115 Mini-Van vehicles, water-based primer coats and organic solvent-based paints are applied to automotive bodies and parts as part of the assembly process. Since 1984, odour complaints from residents in the surrounding community have been received by both Chrysler and the local office of the Ontario Ministry of the Environment. The odourants have been identified as the volatile components of the various paints andprimers used in the plant.

1. Paint Shop Operation

Once the vehicle body has been assembled, it is completely submerged in a zinc phosphate bath which is part of an eight stage phosphate system that ensures protection of all interior and exterior surfaces. After this initial treatment, the automobile is carried through the 418 foot long Uni-Prime system consisting of two dips and six sprays.

Primer paint, called Uni-prime, is electroplated onto the vehicle while it is immersed in a 90,000 gallon tank. After the coated body is baked in the Uniprime Oven System and sanded, its interior is sprayed with basecoat (BC) paint by eight "Graco" fully automated robots. The exterior is then coated with coloured BC paint by both automatic and manual sprays. A clearcoat (CC) paint is applied directly over the wet BC layer by high voltage electrostatic sprays (HVES).
According to Chrysler [35], the transfer efficiency of paint solids onto the body is about 45% for the BC and over 80% for the HVES operation. The overspray paint solids and associated vaporized solvents are carried through water scrubbers which remove the solid paint particulate matter. Since the solvents are collected minimally by the scrubbers, they are exhausted into the atmosphere where they can create odour problems when transported downwind into the surrounding residential areas.

The volatile components in the various paint formulations used by the Chrysler plant are listed in Table 8.1.

B. Acquisition of Stack Data

The paint shop operation consists of:

- Two interior spray booths
- Two exterior spray booths
- One two tone spray booth

The five booths are exhausted by 64 stacks located at the south end of the plant. The 19 metre high stacks are situated on the roof of a 26.8 metre high building (Figure 8.1). The relationship of the 64 stacks to the five spray booths is provided by Figure 8.2. Table 8.2 summarizes the remaining stack data. Appendix IV provides details of the stack performance parameters and their relative positions.
TABLE 8.1: VOLATILE COMPONENTS IN PAINTS AND PRIMERS USED AT CHRYSLER ASSEMBLY PLANT, WINDSOR, ONTARIO [36]

1. **ALIPHATIC KETONES**
 - A) methyl amyl ketone (MAK)
 - B) methyl ethyl ketone (MEK)
 - C) methyl isobutyl ketone (MIBK)
 - D) acetone

2. **ALIPHATIC ALCOHOLS**
 - A) methyl alcohol
 - B) ethyl alcohol
 - C) isopropyl alcohol
 - D) n-butyl alcohol

3. **ALIPHATIC ACETATES**
 - A) n-butyl acetate
 - B) cellosolve acetate
 - C) oxohexyl acetate
 - D) butyl cellosolve acetate

4. **AROMATIC**
 - A) xylene
 - B) toluene

TABLE 8.2: SUMMARY OF STACK PERFORMANCE PARAMETERS [36]

<table>
<thead>
<tr>
<th>STACK PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT (m)</td>
<td>45.75</td>
</tr>
<tr>
<td>DIAMETER (m)</td>
<td>0.915</td>
</tr>
<tr>
<td>TEMPERATURE (°K)</td>
<td>296.3 - 308.2</td>
</tr>
<tr>
<td>EXIT VELOCITY (m/s)</td>
<td>10.64 - 18.80</td>
</tr>
<tr>
<td>VOLUMETRIC FLOWRATE (m³/s)</td>
<td>7.00 - 12.37</td>
</tr>
<tr>
<td>SOURCE STRENGTH (odour units)</td>
<td>90 - 1412</td>
</tr>
</tbody>
</table>
FIGURE 8.2: ARRANGEMENT OF PAINT SHOP STACKS WITH RESPECT TO PAINT SPRAY BOOTH
C. Collection of Odour Data

There are no instruments available for the objective measurement of:

- Odour concentrations (levels)
- Odour hedonics (pleasantness or unpleasantness)

Consequently the human nose (olfactometry) provides the only means of quantifying the magnitudes of perceived odour problems in the community.

1. Calibration of Noses

In a two year study (35) of the air qualities of residential areas located downwind of the paint shop, olfactometric determinations of odour levels were made by investigators whose noses had been calibrated against a commercially available "Scentometer". Subsequent process and stack modifications implemented just prior to the commencement of this study reduced odour levels to such an extent that they did not persist long enough for the "Scentometer" to be useful for calibration purposes. Consequently, for this study the noses of new observers were calibrated against those of experienced personnel through side-by-side evaluation of odour levels at different locations in the surrounding community over a 10 to 15 day period.

The original calibration procedure using the "Scentometer" is described in Appendix V.
2. Preliminary Odour Survey

Before detailed odour data were collected for validation of the proposed model, a preliminary odour survey of the area surrounding the Chrysler plant was conducted. This preliminary odour survey was conducted to:

- Determine the types of odours occurring in the community that could be related to the plant
- Determine the levels at which these odours are perceived
- Determine the maximum distances from the plant that odours can be perceived under various atmospheric conditions.

This preliminary odour survey was conducted over a period of several weeks. The field investigation involved walking through the areas downwind of the plant, and recording the perceptions and magnitudes of odourous impacts associated with the plant. The data collected during this survey included:

- The magnitudes of the odour levels
- The types of odours
- The times that the odours were detected
- The durations of odourous episodes
- The locations where the odours were detected

All of the data were recorded on a map of the area (Figure 8.3).

The odour survey provided information for the implementation
THE QUALITY OF THIS MICROPICHE IS HEAVILY DEPENDENT UPON THE QUALITY OF THE THESIS SUBMITTED FOR MICROFILMING.

UNFORTUNATELY THE COLOURED ILLUSTRATIONS OF THIS THESIS CAN ONLY YIELD DIFFERENT TONES OF GREY.

LA QUALITE DE CETTE MICROFICHE DEPENDE GRANDEMENT DE LA QUALITE DE LA THESE SOUMISE AU MICROFILMAGE.

MALHEUREUSEMENT, LES DIFFERENTES ILLUSTRATIONS EN COULEURS DE CETTE THESE NE PEUVENT DONNER QUE DES TEINTES DE GRIS.
FIGURE 8.3: TYPICAL DATA SHEET ILLUSTRATING THE IDENTIFICATION OF ODOROUS IMPACTS DURING THE PRELIMINARY ODOR SURVEY
of the field testing program. Specifically it showed that:

- Odours occurred sporadically
- Two distinct odours could be detected regularly
- The odours could be detected only for a few seconds at a time (<30s)
- Most of the recorded odour levels ranged between 2 and 7 odour units
- Odours were rarely detected beyond one kilometre from the plant

The two distinct odours which were detected regularly were identified as:

- Sweet solvent-type odour characteristic of the aliphatic ketones associated with the painting process.
- Pungent, acrid odour associated with the UNIPRIME curing oven process.

3. **Receptor Site Location**

On the basis of the results from the preliminary odour survey, all receptor site locations were limited to a one kilometre radius from the plant's paint shop. The wind direction determined the downwind location of the receptor. A map showing the relative wind directions and the one kilometre boundary was used as an aid for the selection of the receptor locations (Figure 8.4). Although the choice of receptor locations was dictated by the wind direction, an attempt was made to locate
FIGURE 8.4: MAP OF RESIDENTIAL AREA SURROUNDING THE CHRYSLER ASSEMBLY PLANT ILLUSTRATING THE APPROXIMATE WIND DIRECTIONS RELATIVE TO THE PAINT SHOP
receptors at as many positions as possible within the populated area defined by the one kilometre boundary. Figure 8.5 shows the chosen receptor site locations. Appendix VI provides the X and Y coordinates for these sites.

4. Meteorological Data

The collection of reliable weather data is important because:

- An accurate wind direction is required for the selection of a suitable downwind receptor location.
- Accurate meteorological conditions are necessary for the proper application of the proposed model.

Weather data for this study were recorded on an hourly basis for all sampling days. The weather data were obtained from the Environment Canada meteorological station located at Windsor Airport. Previous studies [36] have shown that there is excellent agreement between the meteorological data collected on-site in the Chrysler neighbourhood and that provided by the Windsor Airport weather station.

Hourly averages were collected for the three important meteorological parameters:

- Ambient temperature (°C)
- Wind speed (km/h)
- Wind direction
FIGURE 8.5 A: RECEPTOR SITES 1 THRU 20
FIGURE 8.5 B: RECEPTOR SITES 21 THRU 40

106
FIGURE 8.5 C: RECEPTOR SITES 41 THRU 60
FIGURE 8.5 D: RECEPTOR SITES 61 THRU 80
FIGURE 8.5 E: RECEPTOR SITES 81 THRU 98
All of the recorded weather data are listed in Appendix VII.

5. Recording Of Odour Data

Once a wind direction was established, a receptor site corresponding to this mean wind direction was chosen and the impacts of the odours on this receptor site were recorded. Data were collected in terms of odour units. Table 8.3 summarizes the odour level estimates and corresponding assessments of odour severities that were made in the field during the preliminary surveys.

The results of the preliminary survey indicated that the odours occurred only sporadically and for the most part, were detectible only for a matter of seconds. Also, a receptor's ability to perceive odours in the community decreased significantly after about an hour of exposure to the odourous impacts. Consequently the field activities were standardized to ensure that:

- Acquisition of odour level data at any receptor location would extend for only one hour
- An odour detection would be made every 12 seconds during the one hour observation period and the results recorded at 12 second intervals (300 total detections for the one hour sampling period)

Ninety-eight field tests were conducted over the interval from October 1987 to November 1988. During this period of time, two methods of recording data were used.
<table>
<thead>
<tr>
<th>ESTIMATED ODOUR LEVEL (DILUTION TO THRESHOLD)</th>
<th>OBSERVER PERCEPTION</th>
<th>SEVERITY OF ODOROUS IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODOUR UNITS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>Barely perceptible odour during forced breathing</td>
<td>Not detectable during normal breathing</td>
</tr>
<tr>
<td>2</td>
<td>Barely detectable odour during normal breathing</td>
<td>Barely detectable with no adverse observer reaction</td>
</tr>
<tr>
<td>2+</td>
<td>Detectable odour during normal breathing</td>
<td>No adverse observer reaction</td>
</tr>
<tr>
<td>>2</td>
<td>Readily detectable odour during normal breathing</td>
<td>No adverse observer reaction (tolerable)</td>
</tr>
<tr>
<td><7</td>
<td>Odour quality recognizable</td>
<td>Marginally unpleasant: More sensitive observer tempted to complain</td>
</tr>
<tr>
<td>7</td>
<td>Odour quality readily recognizable</td>
<td>Definitely unpleasant. Complaint potential established</td>
</tr>
<tr>
<td>7+</td>
<td>Odour becomes offensive</td>
<td>Becoming very unpleasant. Definite complaint potential</td>
</tr>
<tr>
<td>>7</td>
<td>Odour definitely offensive</td>
<td>Very unpleasant. At least 50% of a community prepared to complain</td>
</tr>
<tr>
<td>31</td>
<td>Extremely offensive</td>
<td>Unbearable (100% complaint potential)</td>
</tr>
</tbody>
</table>
a. **Cumulative Method**

The first method, which was used from October 1987 until June 1988, utilized the data collection sheet depicted in Figure 8.6. According to this procedure the number of detections falling within the specified ranges were recorded. To obtain a measure of the distribution of the odour levels over the one hour observation period, odour detections were separated into 5 minute intervals. On the data sheet, each horizontal line of data represents 25 detections for the 5 minute period. This method of collecting data shows approximately when the different odour levels occurred over the course of the sampling period. For example, from the sample data sheet illustrated in Figure 8.6, it is evident that during the first five minutes of the observation, the odour levels that occurred at the receptor location were distributed according to the pattern shown in Table 8.4.

<table>
<thead>
<tr>
<th>ODOR LEVEL</th>
<th>NO. OF DETECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>23</td>
</tr>
<tr>
<td>2 - 7</td>
<td>2</td>
</tr>
<tr>
<td>7 - 10</td>
<td>0</td>
</tr>
<tr>
<td>>10</td>
<td>0</td>
</tr>
</tbody>
</table>

The red markings represent a paint odour detection while the black markings indicate the identification of the
<table>
<thead>
<tr>
<th></th>
<th>0 - 2</th>
<th>2 - 7</th>
<th>7 - 10</th>
<th>> 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sub-total</td>
<td>245</td>
<td>41</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>286</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.6: Typical Data Sheet from Cumulative Method of Data Collection
UNIPRIME odour.

b. **Differential Method**

The second method of collecting odour data was used from June 1988 to November 1988. The data were collected using the data sheet shown in Figure 8.7. This method is an improvement over the first one since the magnitude of a detected odour level is recorded for each 12 second detection interval. On the data sheet, each vertical column represents 25 detections over a five minute period. Although it is sometimes difficult to assign an exact numerical value to a detected odour level, this method of collecting data provides the information required to construct the receptor odour level profile illustrated in Figure 8.8. This odour level profile illustrates the exact distribution of odour levels perceived at any receptor site over a one hour observation period. For comparative purposes, the data collected using this method can be rearranged in the form established using the Cumulative Method.

A summary of the recorded odour data is provided in Appendix VII.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4</td>
<td></td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 8.7: TYPICAL DATA SHEET FROM DIFFERENTIAL METHOD OF DATA COLLECTION
IX. MODEL APPLICATION

The proposed model described in Chapter VII was applied to the prediction of odour frequencies downwind of the Chrysler Paint Shop. Several variations of the model were employed to establish the form which predicted the observed field data most reliably. Modifications to the model included:

- Variation of the puff release rate.
- Operation with rural and urban dispersion coefficients.
- Variation of the empirical volume correction factor between 0 and 2.0.
- Variation of the site constant, N_{pa}, from 0.1 to 1.0.

Table 9.1 summarizes the effect of varying these four factors.

Numerous configurations of the dispersion model were attempted to determine the form that would duplicate the collected field data. The model which produced results that were most representative of the collected field data is described in detail in this chapter.

A. Model Configuration

The best results were obtained using the model with the
<table>
<thead>
<tr>
<th>FACTOR</th>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PUFF RELEASE RATE</td>
<td>The puff release rate determines the number of times the model calculates the instantaneous ground-level concentration. This rate should coincide with the number of detections made in the field during the observation period. Preliminary testing of the model indicated that the results obtained using puff release rates of 200 and 300 puffs/hour did not differ significantly. Therefore, the lower rate was used to facilitate more efficient use of the computer program.</td>
</tr>
<tr>
<td>2. RURAL VS URBAN DISPERSION COEFFICIENTS</td>
<td>Rural dispersion coefficients greatly decreases the ground-level concentration in the area near the source.</td>
</tr>
<tr>
<td>3. EMPIRICAL VOLUME CORRECTION FACTOR</td>
<td>Increasing the volume correction factor increases the value of the plume segment dispersion coefficient thereby decreasing the calculated ground-level concentration.</td>
</tr>
<tr>
<td>4. SITE CONSTANT</td>
<td>Varying the value of the site constant has a slight effect on the calculation of the puff dispersion coefficients but does not greatly influence the calculation of the ground-level concentration.</td>
</tr>
</tbody>
</table>
following configuration:

- Puff release rate = 200 puffs/hour
- Dispersion coefficients = Urban
- Empirical volume correction factor = 1.0
- Site constant = 0.5
- Roughness length = 0.75

The most important factor influencing the particular configuration of the model is the type of dispersion coefficients used in the calculations.

1. **Dispersion Coefficients**

 Variation of the long-term plume dispersion coefficients appears to have the greatest effect on the frequency and magnitude of odourous impacts. The roughness of the terrain (Roughness length = 0.75) surrounding the plant indicates that the use of urban dispersion coefficients is appropriate for modelling in this case.

B. **Results**

 The results obtained using the Fluctuating Plume Model are presented in terms of:

 - Frequency of occurrence
 - Magnitudes of odourous impacts
1. **Frequency of Occurrence**

Table 9.2 summarizes the results obtained using the model and compares them to the data collected during the field testing program. The results are reported in terms of the percentages of time of the one hour sampling period that the odour levels fell into specific classifications. The results are presented using the following three odour classifications:

- >2 to 7 odour units
- 7 to 10 odour units
- >10 odour units

These classifications were chosen to establish if a legitimate complaint potential exists among the residents of the community surrounding the plant. It is generally accepted that odour levels in excess of seven odour units will illicit complaints from the community (See Table 8.3). The consistent presence of an odour ranging between 2 and 7 odour units, however, may also generate complaints. An odour level under 2 odour units is not detectable under normal breathing.

During the field testing program, an odour impact was recorded only when the odour was readily detectable during normal breathing. Therefore, a recorded value of 2 odour units during an observation is consistent with an actual odour level of between 2+ and >2 odour units (See Table 8.3). To maintain the
<table>
<thead>
<tr>
<th>OBS. NO.</th>
<th>STA</th>
<th>DURATION OF SPECIFIC ODOUR LEVELS AS % OF SAMPLING TIME</th>
<th>FIELD DATA (%)</th>
<th>MODEL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>>2-7</td>
<td>7-10</td>
<td>>10</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3.3</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>14.3</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>3**</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>6.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5@</td>
<td>A</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6@</td>
<td>A</td>
<td>25.7</td>
<td>16.3</td>
<td>4.0</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>9.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>20.7</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>11*</td>
<td>C</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12*</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>10.7</td>
<td>1.7</td>
<td>12.4</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td>13.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16*</td>
<td>C</td>
<td>5.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>17*</td>
<td>D</td>
<td>17.7</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>11.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20**</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>D</td>
<td>19.3</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>11.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>D</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>24*</td>
<td>C</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>D</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>14.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>B</td>
<td>5.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>12.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>30**</td>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>D</td>
<td>12.0</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>32*</td>
<td>C</td>
<td>12.3</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>D</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>34</td>
<td>B</td>
<td>6.3</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>35@</td>
<td>A</td>
<td>2.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>36</td>
<td>C</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>37</td>
<td>C</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>38@</td>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>39**</td>
<td>A</td>
<td>10.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
<td>A</td>
<td>21.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 9.2: Model Results (Cont.)

<table>
<thead>
<tr>
<th>OBS. NO.</th>
<th>STA</th>
<th>FIELD DATA (%)</th>
<th>MODEL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>>2-7</td>
<td>7-10</td>
</tr>
<tr>
<td>41**</td>
<td>A</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>42**</td>
<td>C</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>43</td>
<td>C</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>B</td>
<td>20.3</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>B</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>46</td>
<td>B</td>
<td>22.7</td>
<td>0.0</td>
</tr>
<tr>
<td>47</td>
<td>B</td>
<td>21.7</td>
<td>0.0</td>
</tr>
<tr>
<td>48</td>
<td>F</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>49**</td>
<td>B</td>
<td>18.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50**</td>
<td>B</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>51**</td>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>52**</td>
<td>C</td>
<td>38.0</td>
<td>0.0</td>
</tr>
<tr>
<td>53**</td>
<td>C</td>
<td>25.7</td>
<td>0.0</td>
</tr>
<tr>
<td>54**</td>
<td>C</td>
<td>29.7</td>
<td>1.3</td>
</tr>
<tr>
<td>55**</td>
<td>C</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>56</td>
<td>C</td>
<td>5.7</td>
<td>0.0</td>
</tr>
<tr>
<td>57</td>
<td>C</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>58</td>
<td>D</td>
<td>6.7</td>
<td>0.0</td>
</tr>
<tr>
<td>59</td>
<td>D</td>
<td>22.4</td>
<td>0.3</td>
</tr>
<tr>
<td>60**</td>
<td>B</td>
<td>9.7</td>
<td>0.3</td>
</tr>
<tr>
<td>61**</td>
<td>B</td>
<td>6.7</td>
<td>0.0</td>
</tr>
<tr>
<td>62</td>
<td>D</td>
<td>37.3</td>
<td>2.7</td>
</tr>
<tr>
<td>63</td>
<td>C</td>
<td>11.0</td>
<td>0.0</td>
</tr>
<tr>
<td>64</td>
<td>C</td>
<td>23.7</td>
<td>0.0</td>
</tr>
<tr>
<td>65*</td>
<td>C</td>
<td>21.3</td>
<td>0.0</td>
</tr>
<tr>
<td>66*</td>
<td>C</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>67</td>
<td>B</td>
<td>11.3</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>B</td>
<td>8.7</td>
<td>0.0</td>
</tr>
<tr>
<td>69*</td>
<td>B</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td>70*</td>
<td>D</td>
<td>19.7</td>
<td>0.0</td>
</tr>
<tr>
<td>71*</td>
<td>D</td>
<td>25.7</td>
<td>0.0</td>
</tr>
<tr>
<td>72</td>
<td>C</td>
<td>21.3</td>
<td>0.3</td>
</tr>
<tr>
<td>73*</td>
<td>D</td>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>74*</td>
<td>D</td>
<td>46.0</td>
<td>0.0</td>
</tr>
<tr>
<td>75</td>
<td>C</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>76</td>
<td>C</td>
<td>16.7</td>
<td>0.0</td>
</tr>
<tr>
<td>77**</td>
<td>B</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>78</td>
<td>D</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>79**</td>
<td>B</td>
<td>6.3</td>
<td>0.0</td>
</tr>
<tr>
<td>80**</td>
<td>B</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>OBS. NO.</td>
<td>STA</td>
<td>DURATION OF SPECIFIC ODOUR LEVELS AS % OF SAMPLING TIME</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIELD DATA (%)</td>
<td>MODEL (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2-7</td>
<td>7-10</td>
</tr>
<tr>
<td>81</td>
<td>C</td>
<td>17.3</td>
<td>0.7</td>
</tr>
<tr>
<td>82</td>
<td>C</td>
<td>26.6</td>
<td>0.0</td>
</tr>
<tr>
<td>83</td>
<td>D</td>
<td>11.7</td>
<td>0.0</td>
</tr>
<tr>
<td>84</td>
<td>D</td>
<td>33.7</td>
<td>0.0</td>
</tr>
<tr>
<td>85**</td>
<td>C</td>
<td>6.3</td>
<td>0.0</td>
</tr>
<tr>
<td>86*</td>
<td>C</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>87</td>
<td>D</td>
<td>12.4</td>
<td>0.0</td>
</tr>
<tr>
<td>88</td>
<td>C</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>89</td>
<td>D</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>90</td>
<td>D</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>91</td>
<td>D</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>92*</td>
<td>D</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>93**</td>
<td>C</td>
<td>11.0</td>
<td>0.0</td>
</tr>
<tr>
<td>94</td>
<td>D</td>
<td>14.5</td>
<td>0.0</td>
</tr>
<tr>
<td>95</td>
<td>C</td>
<td>9.8</td>
<td>0.0</td>
</tr>
<tr>
<td>96</td>
<td>C</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>97</td>
<td>D</td>
<td>40.0</td>
<td>6.0</td>
</tr>
<tr>
<td>98</td>
<td>D</td>
<td>22.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* MINOR WINDSHIFT DURING OBSERVATION (i.e. ≤ 22.5°)
** MAJOR WINDSHIFT DURING OBSERVATION (i.e. > 22.5°)
@ CALM CONDITIONS

Consistency between the collected field data and the model results, a value of 2.50 odour units was used in the model as the lower level of detection. Therefore, the results presented for both the field data and the model in Table 9.2 correspond to odour levels in excess of 2.50 odour units.

2. Magnitudes of Odourous Impacts

To test the model's ability to predict maximum odour levels, the maximum predicted odour level has been compared to the maximum value recorded in the field (Table 9.3). For those
<table>
<thead>
<tr>
<th>OBS. NO.</th>
<th>ODOUR LEVELS (ODOUR UNITS)</th>
<th>FLUCTUATING PLUME MODEL</th>
<th>GAUSSIAN PLUME MODEL</th>
<th>FIELD DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>1 HOUR AVERAGE</td>
<td>1 HOUR AVERAGE</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>7-10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0.6</td>
<td>7-10</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0.6</td>
<td>2-7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>2</td>
<td>0.7</td>
<td>2-7</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>>10</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>0.5</td>
<td>2-7</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>0.3</td>
<td>2-7</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0.9</td>
<td>2-7</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>7-10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>1</td>
<td>0.7</td>
<td>7-10</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>1</td>
<td>0.5</td>
<td>2-7</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>0.4</td>
<td>0.3</td>
<td>7-10</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>7-10</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>1</td>
<td>0.7</td>
<td>2-7</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>2</td>
<td>0.8</td>
<td>2-7</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>2</td>
<td>0.8</td>
<td>7-10</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>1</td>
<td>0.9</td>
<td>7-10</td>
</tr>
<tr>
<td>33</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>7-10</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>36</td>
<td>5</td>
<td>2</td>
<td>0.7</td>
<td>2-7</td>
</tr>
<tr>
<td>37</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2-7</td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>2</td>
<td>0.8</td>
<td>< 2</td>
</tr>
<tr>
<td>40</td>
<td>7</td>
<td>2</td>
<td>0.7</td>
<td>2-7</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>0.5</td>
<td>0.2</td>
<td>2-7</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>2</td>
<td>0.7</td>
<td>5</td>
</tr>
<tr>
<td>46</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>OBS. NO.</td>
<td>FLUCTUATING PLUME MODEL</td>
<td>GAUSSIAN PLUME MODEL</td>
<td>FIELD DATA</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>1 HOUR AVERAGE</td>
<td>MAXIMUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 HOUR AVERAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td>0.7</td>
<td>0.3</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>8</td>
<td>0.7</td>
<td>0.7</td>
<td>> 2</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>1</td>
<td>0.5</td>
<td>7</td>
</tr>
<tr>
<td>57</td>
<td>4</td>
<td>1</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>58</td>
<td>4</td>
<td>2</td>
<td>0.9</td>
<td>4</td>
</tr>
<tr>
<td>59</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>62</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>63</td>
<td>5</td>
<td>1</td>
<td>0.6</td>
<td>6</td>
</tr>
<tr>
<td>64</td>
<td>7</td>
<td>2</td>
<td>0.9</td>
<td>4</td>
</tr>
<tr>
<td>67</td>
<td>6</td>
<td>1</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>68</td>
<td>5</td>
<td>2</td>
<td>0.6</td>
<td>7</td>
</tr>
<tr>
<td>72</td>
<td>7</td>
<td>1</td>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>75</td>
<td>4</td>
<td>1</td>
<td>0.5</td>
<td>> 2</td>
</tr>
<tr>
<td>76</td>
<td>4</td>
<td>1</td>
<td>0.6</td>
<td>7</td>
</tr>
<tr>
<td>78</td>
<td>4</td>
<td>2</td>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>81</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>82</td>
<td>6</td>
<td>1</td>
<td>0.6</td>
<td>5</td>
</tr>
<tr>
<td>83</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>84</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>87</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>> 2</td>
</tr>
<tr>
<td>89</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>> 2</td>
</tr>
<tr>
<td>91</td>
<td>3</td>
<td>1</td>
<td>0.6</td>
<td>> 2</td>
</tr>
<tr>
<td>94</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>95</td>
<td>6</td>
<td>2</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>96</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>> 2</td>
</tr>
<tr>
<td>97</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>98</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
observations in which the data were collected using the cumulative method, the maximum field odour level is reported as a range rather than as a specific value. Table 9.3 only lists the results for those observations during which a windshift was not recorded.

Table 9.3 also lists the odour levels predicted by the Gaussian Plume Model and the one hour average odour level calculated using the Fluctuating Plume Model.

C. Analysis of Results

The results of the model were analyzed in terms of:

- Frequency of occurrence
- Magnitudes of odourous impacts

1. Frequency of Occurrence

To determine the strengths, weaknesses, and trends defined by the performance of the computer model, the model's frequency results were analyzed in terms of atmospheric stability. Since the model cannot account for changes in wind directions when calculating the odour impact on a receptor site, observations for which a windshift was recorded were eliminated from the analysis of the results. The results are presented in terms of four stability categories:
• A stability (very unstable)
• B stability (unstable)
• C stability (near neutral)
• D stability (neutral)

Figure 9.1 illustrates the distribution of stabilities that occurred over the course of the field testing program.

STABILITIES DISTRIBUTION

![Pie chart showing stability distribution]

FIGURE 9.1: DISTRIBUTION OF STABILITIES

Most of the field testing was conducted under neutral and near neutral atmospheric conditions. The low number of observations taken after sunset may account for the absence of usable data under stable (E and F stabilities) conditions.

a. **A Stability**

A comparison of the results from the model with the field data suggests that the model cannot produce consistently
reliable results under very unstable atmospheric conditions (Figure 9.2). For four out of the five unstable observations (5, 6, 35 and 38), however, the model detected the atmospheric conditions as being meteorologically calm. Under calm conditions, the equations used to determine puff dispersion are no longer valid since the mechanisms used to transport and disperse the puff are no longer operational. Therefore, the model results can be realistically compared only to the data from observation 40. For this observation the model closely duplicated the collected field data.

![MODEL vs FIELD DATA](image)

FIGURE 9.2: COMPARISON OF RESULTS FOR A-STABILITY

b. **B Stability**

Under unstable meteorological conditions, the model performed surprisingly well. The data used to develop the equations needed to calculate the puff dispersion coefficients were scarce for
unstable atmospheric conditions. A comparison of the results from the model with the field data (Figure 9.3) suggests that the tentative equations proposed by Högstrom, for the evaluation of σ_{yp} and σ_{zp} under unstable conditions, estimate puff dispersions relatively reliably. The model duplicates the collected field data quite closely for the majority of the observations. The total calculated odour impact was excessive for observations 34 and 45. It was greatly underestimated for only one (observation 47) of the eleven observations. In general, the model tends to overestimate the total odour impact under these atmospheric conditions.

Figure 9.3: Comparison of Results for B-Stability
c. **C Stability**

The model performed relatively well under near neutral conditions by predicting the total odour impacts to within a factor of two for the majority of the observations (Figure 9.4). The total calculated odour impact was unacceptably high for only one (observation 96) of the 20 near neutral observations studied. The model did, however, consistently overestimate the total odour impacts under these conditions.

d. **D Stability**

Analysis of the results suggests that the model also performs well when simulating neutral atmospheric conditions (Figure 9.5). The majority of the predicted odour impacts were within a factor of two of the recorded field data. Under these meteorological conditions, the model also tended to overestimate the frequencies of odour occurrences. Only the results for observation 90 appear to be unacceptably excessive.

2. **Magnitudes of Odourous Impacts**

The peak odour values predicted by the Fluctuating Plume Model agree very well with the maximum odour levels recorded in the field. The Gaussian Plume model results and the one hour average values, however, are in some situations over 10 times lower than the observed maximum odour levels.

D. **Discussion of Results**

Considering the number of assumptions required to develop the model and the relatively limited amount of meteorological and source data available for the execution of the model, the results obtained
Figure 9.4: A.) Comparison of results for C-stability (Part I)
B.) Comparison of results for C-stability (Part II)
FIGURE 9.5: A.) COMPARISON OF RESULTS FOR D-STABILITY (PART I)
B.) COMPARISON OF RESULTS FOR D-STABILITY (PART II)
are in good agreement with the field data.

In terms of the magnitudes of the calculated odour levels, the model results are consistent with the levels recorded in the field. When dealing with dispersion models, it is desirable to obtain results that are within a factor of five [37] of the recorded field data. This standard has been exceeded by the model. With respect to the total odour impact, the predicted frequencies are within a factor of two of the recorded field data for a majority of the observations.

As expected, the most accurate results were obtained under neutral and near neutral conditions. This achievement may be due to the fact that the majority of the data used to develop the methods for determining values of σ_{yp} and σ_{zp} was collected under neutral and stable atmospheric conditions. The lack of usable field data collected under very unstable and stable atmospheric conditions makes it impossible to evaluate the model's performance for A, E and F stabilities.

E. Limitations and Modifications

The accuracy of the results is dependent upon the reliability and the validity of the data and assumptions used in the development of the model. While it may be difficult to test the validity of some of the assumptions, it is reasonable to question the reliability of some of the data used. These data include:
1. **Dispersion Coefficients**

The model tends to overpredict the total odour impact in most cases. An explanation for this trend may be related to the use of urban long-term dispersion coefficients in the model. These coefficients consider a plume released in an urban area to encounter a higher degree of turbulence than if it were released in a rural area. This increased turbulence is responsible for the greater meandering of the plume centreline which in turn increases the probability of plumes touching down in areas closer to the stack. To provide more accurate results, the model may require a modified set of dispersion coefficients. Experimentation with the model has shown that rural dispersion coefficients are definitely inappropriate. Since the urban dispersion coefficients may be overestimating plume dispersion, a comprehensive set of suburban dispersion coefficients may be more appropriate for this application of the model.

The overestimation of the total odour impact under certain meteorological conditions may also be attributed to the set of short-term puff dispersion coefficients used in the model. These coefficients were developed using data collected over a rural area. Consequently, this set of coefficients may be underestimating the extent of puff dispersion resulting in the calculation of higher
than recorded odour levels.

2. Source Data

Some of the inaccuracies encountered in the application of the model may be connected to the reliability of the stack data. It is important to note that not all of the sixty-four stacks were tested to determine their odour emission rates. This deficiency may have had an effect on the values calculated by the model. Considering that the ED_{50} values of the stacks range from 90 to 1400 odour units, the estimated odour levels from some of the stacks may be in error by as much as several hundred odour units. Changes in the painting process may have also have had an affect on the accuracy of some of the collected field data. Process changes which cause a change in the stack emission rates could have a potentially large effect on the odour impact severities experienced in the community.

3. Initial Plume Dispersion

Predicting the changes in turbulence and air flow patterns that occur because of the height and shape of a structure is a difficult and complex problem. Without extensive field testing, it is difficult to determine the magnitude of the turbulent wake that is caused by a particular structure. In this study, the building's turbulent effects were modelled according to the Split-H concept. Using this method, the initial dilution caused by the building of the entrained portion of the plume was calculated using:
\[\sigma_0 = \sqrt{A/\pi} \]

(9.1)

where:
\(\sigma_0 \) = Initial dilution (m)

A = Building cross-sectional area normal to the wind direction (m²)

Figure A3.4 in Appendix III illustrates the definition of a building cross-sectional area.
X. MODEL VALIDATION

To further test the validity of the proposed model, stack data collected at the Ford Motor Company automotive trim plant located in Utica, Michigan were used to predict downwind odour impacts. Although a comprehensive field testing program was not undertaken, spontaneous odour complaints from residents living in the area surrounding the plant provided a basis for receptor site selection. The nature of the complaints indicated that the odours were associated with the volatile components of the various paints and solvents used in the plant.

A. Stack Data

Eight stacks located at various locations around the plant were modelled. The pertinent stack performance parameters are summarized in Table 10.1. Although all eight stacks were modelled, it appears that only the two tall stacks (stacks 1 and 2) contribute significantly to the odour impact in the surrounding community.

B. Receptor Sites

On the basis of the complaints received by Ford, ten receptor sites, located between 500 and 2500 metres from the plant, were modelled (see Figure 10.1) for a variety of atmospheric conditions. Table 10.2 gives the coordinates of the

137
FIGURE 10.1: RECEPTOR LOCATIONS FOR FORD DATA
receptor sites.

TABLE 10.1: FORD STACK DATA

<table>
<thead>
<tr>
<th>STACK</th>
<th>HEIGHT (m)</th>
<th>DIAM. (m)</th>
<th>VOL. FLOW (m³/s)</th>
<th>EXIT VEL. (m/s)</th>
<th>ED50 (o.u.)</th>
<th>TEMP. (°C)</th>
<th>X-POS (m)</th>
<th>Y-POS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.4</td>
<td>1.7</td>
<td>78</td>
<td>34</td>
<td>279</td>
<td>302</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>60.4</td>
<td>3.0</td>
<td>248</td>
<td>24</td>
<td>103</td>
<td>289</td>
<td>-122</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>0.8</td>
<td>7</td>
<td>16</td>
<td>104</td>
<td>294</td>
<td>0</td>
<td>122</td>
</tr>
<tr>
<td>4</td>
<td>15.0</td>
<td>1.0</td>
<td>7</td>
<td>9</td>
<td>88</td>
<td>301</td>
<td>-81</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>15.0</td>
<td>0.6</td>
<td>3</td>
<td>12</td>
<td>96</td>
<td>357</td>
<td>-79</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>15.0</td>
<td>0.9</td>
<td>11</td>
<td>19</td>
<td>76</td>
<td>300</td>
<td>9</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>15.0</td>
<td>0.9</td>
<td>11</td>
<td>18</td>
<td>116</td>
<td>300</td>
<td>6</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>15.0</td>
<td>0.4</td>
<td>1</td>
<td>10</td>
<td>137</td>
<td>313</td>
<td>0</td>
<td>110</td>
</tr>
</tbody>
</table>

TABLE 10.2: RECEPTOR SITES

<table>
<thead>
<tr>
<th>RECEPTOR</th>
<th>X-POSITION (m)</th>
<th>Y-POSITION (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>890</td>
</tr>
<tr>
<td>3</td>
<td>-203</td>
<td>890</td>
</tr>
<tr>
<td>4</td>
<td>-580</td>
<td>609</td>
</tr>
<tr>
<td>5</td>
<td>-1300</td>
<td>1450</td>
</tr>
<tr>
<td>6</td>
<td>-1500</td>
<td>490</td>
</tr>
<tr>
<td>7</td>
<td>-725</td>
<td>290</td>
</tr>
<tr>
<td>8</td>
<td>-870</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-928</td>
<td>667</td>
</tr>
<tr>
<td>10</td>
<td>-2030</td>
<td>1450</td>
</tr>
</tbody>
</table>
C. Meteorological Conditions

Each receptor site was modelled for the thirteen meteorological conditions listed in Table 10.3.

<table>
<thead>
<tr>
<th>METEOROLOGICAL CONDITION</th>
<th>WIND SPEED (m/s)</th>
<th>STABILITY CLASS</th>
<th>TEMPERATURE (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>A</td>
<td>298</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>B</td>
<td>298</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>B</td>
<td>298</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>C</td>
<td>298</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>C</td>
<td>298</td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
<td>C</td>
<td>298</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>D</td>
<td>298</td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
<td>D</td>
<td>298</td>
</tr>
<tr>
<td>9</td>
<td>5.0</td>
<td>D</td>
<td>298</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
<td>D</td>
<td>298</td>
</tr>
<tr>
<td>11</td>
<td>10.0</td>
<td>D</td>
<td>298</td>
</tr>
<tr>
<td>12</td>
<td>2.5</td>
<td>E</td>
<td>298</td>
</tr>
<tr>
<td>13</td>
<td>5.0</td>
<td>E</td>
<td>298</td>
</tr>
</tbody>
</table>

D. Modelling Parameters

The same modelling parameters used in the modelling of the Chrysler data were used in this application of the computer program. The values of these parameters were:

- Roughness length \((Z_o) = 0.75 \text{ m} \)
- Site constant \((N_{pa}) = 0.5 \)
- Puff release rate = 200 puffs/hr
- Empirical volume correction factor = 1.0
- Terrain = urban
E. Results

A summary of the results is given in Table 10.4.

<table>
<thead>
<tr>
<th>RECEPTOR LOCATION</th>
<th>METEOROLOGICAL CONDITION</th>
<th>DURATION OF SPECIFIC ODOUR LEVELS AS % OF SAMPLING TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2-7</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECEPTOR LOCATION</th>
<th>METEOROLOGICAL CONDITION</th>
<th>DURATION OF SPECIFIC ODOUR LEVELS AS % OF SAMPLING TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2-7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>RECEPTOR LOCATION</td>
<td>METEOROLOGICAL CONDITION</td>
<td>DURATION OF SPECIFIC ODOUR LEVELS AS % OF SAMPLING TIME</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.5</td>
</tr>
<tr>
<td>RECEPTOR LOCATION</td>
<td>METEOROLOGICAL CONDITION</td>
<td>DURATION OF SPECIFIC ODOUR LEVELS AS % OF SAMPLING TIME</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>2-7</td>
<td>7-10</td>
</tr>
<tr>
<td>8</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>3.5</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>9.5</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
The model results indicate that odours were definitely present in the community surrounding the plant. The majority of the detectible odour levels were predicted to be in the 2 to 7 odour unit range. However, under certain meteorological conditions odour levels in excess of 7 odour units were calculated. The model also indicates that odours occur most often under the prevailing meteorological conditions for the area:

- C stability (slightly unstable)
- D stability (neutral)

The model confirms the existence of a community odour problem. Most of the documented complaints were made by residents living in the vicinity of receptor sites 4 and 9. Analysis of the model results shows that both the magnitudes of odour levels and their frequency of occurrence for these sites may be sufficient to justify community complaints.
XI. CONCLUSIONS

A Fluctuating Plume Model has been developed to predict the odour impacts of elevated point sources on their surrounding communities. With reliable stack data and readily available meteorological data the model predicts:

- Magnitudes of odour levels.
- Frequencies of occurrences of these odour levels.

Because the model uses the dilution-to-threshold technique to express odour levels it does not provide any information regarding the objectionability of the odour.

The model was tested using an extensive set of data collected in the residential area surrounding the paint shop of an automotive assembly plant. Both the magnitudes of the odour levels and the frequencies of occurrences predicted by the model were in good agreement with the collected field data. Most of the results were consistent with the field data in terms of magnitudes and within a factor of two in terms of total odour frequencies. This application of the model also showed that the predicted magnitudes and frequencies are sensitive to changes in atmospheric stability. The model was most reliable under neutral and near neutral atmospheric conditions although reasonably
reliable results were also obtained under unstable conditions. However, the model's reliability under very unstable and stable atmospheric conditions has not been sufficiently tested.

The model was validated with data collected in the vicinity of a second automotive plant. The model calculated odour levels consistent with the magnitudes observed in the field. Data regarding the frequency of odour levels were not recorded in this case.

Testing of the model indicates that it provides a more realistic representation of community odour impacts than the Gaussian Plume-type models currently used by most regulatory agencies. The Fluctuating Plume Model takes into account:

- The short sampling time of the nose
- The irregular plume geometry for short sampling times
- The random meander of puffs

These parameters are responsible for short term variations in downwind odour concentrations. The model is well suited for the prediction of the peak instantaneous concentrations that are perceived and cause complaints.

Although some further testing of the model is required, the results of this study illustrate the usefulness of this approach to both regulatory agencies and industry. Government agencies require this type of model to accurately predict the impact of an
odourous source on a community. The model can also be used by industry as a design tool to determine the effect that stack or process modifications will have on the odour levels experienced in the surrounding residential area.
REFERENCES

NOMENCLATURE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>UNITS</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(m^2)</td>
<td>Wind-oriented building cross-sectional area.</td>
</tr>
<tr>
<td>AMH</td>
<td>m</td>
<td>Afternoon mixing height.</td>
</tr>
<tr>
<td>ANHGT</td>
<td>m</td>
<td>Anemometer height.</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>Empirical volume correction factor.</td>
</tr>
<tr>
<td>cc</td>
<td>-</td>
<td>Fractional cloud cover.</td>
</tr>
<tr>
<td>(C_o)</td>
<td>(g/m^3)</td>
<td>Concentration of odourous sample at the stack.</td>
</tr>
<tr>
<td>(C_p)</td>
<td>cal/kg/°K</td>
<td>Specific heat of air.</td>
</tr>
<tr>
<td>(C_t)</td>
<td>(g/m^3)</td>
<td>Threshold concentration.</td>
</tr>
<tr>
<td>(C_{50})</td>
<td>(g/m^3)</td>
<td>Concentration at which 50% of the population can detect an odour</td>
</tr>
<tr>
<td>d</td>
<td>m</td>
<td>Stack diameter.</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>Julian day.</td>
</tr>
<tr>
<td>(D_y)</td>
<td>m</td>
<td>Horizontal distance to the centre of the instantaneous plume from the axis.</td>
</tr>
<tr>
<td>(D_z)</td>
<td>m</td>
<td>Vertical distance to the centre of the instantaneous plume from the axis.</td>
</tr>
<tr>
<td>dH</td>
<td>m</td>
<td>Plume rise.</td>
</tr>
<tr>
<td>(dH_m)</td>
<td>m</td>
<td>Maximum plume rise.</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>UNITS</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>ED<sub>50</sub></td>
<td>o.u.</td>
<td>Effective dosage at which 50% of population detect an odour.</td>
</tr>
<tr>
<td>F</td>
<td>m<sup>4</sup>/s<sup>3</sup></td>
<td>Buoyancy flux parameter.</td>
</tr>
<tr>
<td>F<sub>m</sub></td>
<td>m<sup>4</sup>/s<sup>2</sup></td>
<td>Momentum flux parameter.</td>
</tr>
<tr>
<td>FPM</td>
<td>-</td>
<td>Fluctuating Plume Model.</td>
</tr>
<tr>
<td>g</td>
<td>m/s<sup>2</sup></td>
<td>Gravitational acceleration.</td>
</tr>
<tr>
<td>H</td>
<td>m</td>
<td>Instantaneous plume height.</td>
</tr>
<tr>
<td>h<sub>d</sub></td>
<td>m</td>
<td>Stack-tip downwash.</td>
</tr>
<tr>
<td>H<sub>e</sub></td>
<td>m</td>
<td>Plume height.</td>
</tr>
<tr>
<td>H<sub>L</sub></td>
<td>cal/m<sup>2</sup>/s</td>
<td>Long wavelength heat loss.</td>
</tr>
<tr>
<td>H<sub>o</sub></td>
<td>cal/m<sup>2</sup>/s</td>
<td>Surface heat flux.</td>
</tr>
<tr>
<td>i</td>
<td>-</td>
<td>Intensity factor.</td>
</tr>
<tr>
<td>K<sub>x</sub></td>
<td>-</td>
<td>X-direction eddy diffusivity coefficient.</td>
</tr>
<tr>
<td>K<sub>y</sub></td>
<td>-</td>
<td>Y-direction eddy diffusivity coefficient.</td>
</tr>
<tr>
<td>K<sub>z</sub></td>
<td>-</td>
<td>Z-direction eddy diffusivity coefficient.</td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td>Monin-Obukov length scale.</td>
</tr>
<tr>
<td>L<sub>D</sub></td>
<td>degrees</td>
<td>Longitude of source.</td>
</tr>
<tr>
<td>L<sub>R</sub></td>
<td>radians</td>
<td>Latitude of source.</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>Fraction of plume which is entrained.</td>
</tr>
<tr>
<td>MAK</td>
<td>-</td>
<td>Methyl amyl ketone.</td>
</tr>
<tr>
<td>MEK</td>
<td>-</td>
<td>Methyl ethyl ketone.</td>
</tr>
<tr>
<td>MIBK</td>
<td>-</td>
<td>Methyl isobutyl ketone.</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>UNITS</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>(MNH)</td>
<td>-</td>
<td>Morning mean mixing height.</td>
</tr>
<tr>
<td>(N_i)</td>
<td>o.u.</td>
<td>Odour dilution ratio at the receptor.</td>
</tr>
<tr>
<td>(N_o)</td>
<td>o.u.</td>
<td>Odour dilution ratio at the stack.</td>
</tr>
<tr>
<td>(N_{pa})</td>
<td>-</td>
<td>Site constant.</td>
</tr>
<tr>
<td>(P)</td>
<td>mb</td>
<td>Atmospheric pressure.</td>
</tr>
<tr>
<td>(PP)</td>
<td>-</td>
<td>Stability dependent wind speed equation coefficient.</td>
</tr>
<tr>
<td>(q)</td>
<td>g/m³</td>
<td>Concentration of pollutant.</td>
</tr>
<tr>
<td>(Q)</td>
<td>g/s</td>
<td>Source emission rate.</td>
</tr>
<tr>
<td>(r)</td>
<td>m</td>
<td>Stack radius.</td>
</tr>
<tr>
<td>(R)</td>
<td>cal/m²/s</td>
<td>Incoming solar radiation.</td>
</tr>
<tr>
<td>(R_y)</td>
<td>m</td>
<td>Horizontal plume half-width.</td>
</tr>
<tr>
<td>(R_z)</td>
<td>m⁻²</td>
<td>Vertical plume half-width.</td>
</tr>
<tr>
<td>(s)</td>
<td>s</td>
<td>Briggs' stability parameter.</td>
</tr>
<tr>
<td>(S)</td>
<td>-</td>
<td>Högstrom's stability parameter.</td>
</tr>
<tr>
<td>(t)</td>
<td>s</td>
<td>time.</td>
</tr>
<tr>
<td>(t_n)</td>
<td>G.M.T.</td>
<td>Local noon time.</td>
</tr>
<tr>
<td>(t_{rise})</td>
<td>G.M.T.</td>
<td>Local sunrise.</td>
</tr>
<tr>
<td>(t_{set})</td>
<td>G.M.T.</td>
<td>Local sunset.</td>
</tr>
<tr>
<td>(T_a)</td>
<td>°K</td>
<td>Ambient temperature.</td>
</tr>
<tr>
<td>(T_s)</td>
<td>°K</td>
<td>Stack gas temperature.</td>
</tr>
<tr>
<td>(u)</td>
<td>m/s</td>
<td>Horizontal wind speed.</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>UNITS</td>
<td>MEANING</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>u_f</td>
<td>m/s</td>
<td>Free wind speed.</td>
</tr>
<tr>
<td>u_H</td>
<td>m/s</td>
<td>Wind speed at height H.</td>
</tr>
<tr>
<td>u_A</td>
<td>m/s</td>
<td>Wind speed at anemometer height.</td>
</tr>
<tr>
<td>v_s</td>
<td>m/s</td>
<td>Stack gas exit velocity.</td>
</tr>
<tr>
<td>V_s</td>
<td>m3/s</td>
<td>Stack volumetric flowrate.</td>
</tr>
<tr>
<td>V_o</td>
<td>m3/s</td>
<td>Volumetric rate of emission.</td>
</tr>
<tr>
<td>W_x</td>
<td>m/s</td>
<td>Convective scaling velocity.</td>
</tr>
<tr>
<td>X</td>
<td>m</td>
<td>Downwind distance of receptor.</td>
</tr>
<tr>
<td>X_f</td>
<td>m</td>
<td>Downwind distance to maximum plume rise.</td>
</tr>
<tr>
<td>X_o</td>
<td>m</td>
<td>Virtual source location.</td>
</tr>
<tr>
<td>Y</td>
<td>m</td>
<td>Crosswind distance of receptor.</td>
</tr>
<tr>
<td>Y^2</td>
<td>m2</td>
<td>Average variance of the spreading puff.</td>
</tr>
<tr>
<td>Z</td>
<td>m</td>
<td>Height of receptor.</td>
</tr>
<tr>
<td>Z_a</td>
<td>m</td>
<td>Anemometer height.</td>
</tr>
<tr>
<td>Z_l</td>
<td>m</td>
<td>Boundary layer height.</td>
</tr>
<tr>
<td>Z_o</td>
<td>m</td>
<td>Roughness length.</td>
</tr>
<tr>
<td>$d\theta/dz$</td>
<td>$\circ K/m$</td>
<td>Potential temperature gradient.</td>
</tr>
<tr>
<td>dT/dz</td>
<td>$\circ K/m$</td>
<td>Ambient temperature gradient.</td>
</tr>
<tr>
<td>dT_a/dz</td>
<td>$\circ K/m$</td>
<td>Dry adiabatic temperature gradient.</td>
</tr>
<tr>
<td>α</td>
<td>-</td>
<td>von Karmen constant.</td>
</tr>
<tr>
<td>β</td>
<td>-</td>
<td>Radiation reduction factor.</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>UNITS</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-</td>
<td>Empirical proportionality factor.</td>
</tr>
<tr>
<td>(P_a)</td>
<td>(\text{kg/m}^3)</td>
<td>Ambient air density.</td>
</tr>
<tr>
<td>(P_s)</td>
<td>(\text{kg/m}^3)</td>
<td>Stack gas density.</td>
</tr>
<tr>
<td>(\sigma_Y)</td>
<td>(\text{m})</td>
<td>Horizontal standard deviation of plume emission distribution.</td>
</tr>
<tr>
<td>(\sigma_Z)</td>
<td>(\text{m})</td>
<td>Vertical standard deviation of plume emission distribution.</td>
</tr>
<tr>
<td>(\sigma_{YP})</td>
<td>(\text{m})</td>
<td>Horizontal standard deviation of the concentration within each plume segment.</td>
</tr>
<tr>
<td>(\sigma_{ZP})</td>
<td>(\text{m})</td>
<td>Vertical standard deviation of the concentration within each plume segment.</td>
</tr>
<tr>
<td>(\sigma_{YC})</td>
<td>(\text{m})</td>
<td>Horizontal standard deviation of the distribution of the plume segments' centroids of mass.</td>
</tr>
<tr>
<td>(\sigma_{ZC})</td>
<td>(\text{m})</td>
<td>Vertical standard deviation of the distribution of the plume segments' centroids of mass.</td>
</tr>
<tr>
<td>(\sigma_o)</td>
<td>(\text{m})</td>
<td>Initial plume dilution.</td>
</tr>
<tr>
<td>(\Sigma_Y)</td>
<td>(\text{m})</td>
<td>Volume-corrected horizontal plume dispersion coefficients.</td>
</tr>
<tr>
<td>(\Sigma_Z)</td>
<td>(\text{m})</td>
<td>Volume-corrected vertical plume dispersion coefficients.</td>
</tr>
<tr>
<td>(\Sigma_{YP})</td>
<td>(\text{m})</td>
<td>Volume-corrected horizontal plume segment dispersion coefficients.</td>
</tr>
<tr>
<td>(\Sigma_{ZP})</td>
<td>(\text{m})</td>
<td>Volume-corrected vertical plume segment dispersion coefficients.</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>UNITS</td>
<td>MEANING</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Σ_{yc}</td>
<td>m</td>
<td>Volume-corrected horizontal standard deviation of the distribution of the plume segments' centroids of mass.</td>
</tr>
<tr>
<td>Σ_{zc}</td>
<td>m</td>
<td>Volume-corrected vertical standard deviation of the distribution of the plume segment's centroids of mass.</td>
</tr>
</tbody>
</table>
APPENDIX I

KEYSTACK PROGRAM
The 'KEYSTACK' program allows the user to create a data file of stack data in the format required for use in the fluctuating plume model (FPM). Once the program is executed, the program will display the menu depicted in Figure A1.1.

```
** STACK MENU **
1. Create a new data file
2. Look at a data file
3. Quit

Enter reply from 1 to 3.
```

FIGURE A1.1: KEystack MAIN MENU

A. Creating a Data File

Choosing option '1' directs the program to display the messages in Figure A1.2.

```
** Enter stack data. **
** Maximum number of stacks = 100 **
** Enter 'END' for Diameter to end data entry **

For Stack 1:
Diameter (m) = _
```

FIGURE A1.2: CREATING A NEW STACK DATA FILE

The program will accept data for up to 100 stacks. The stack
data required include:

- Diameter (m) (DIA)
- Stack height (m) (HT)
- Stack temperature (°K) (TEMP)
- Gas exit velocity (m/s) (VEL)
- Source strength (odour units) (ED50)
- Flowrate (m³/s) (Q)
- X position (m) (X)
- Y position (m) (Y)
- X-dimension of building (m) (BX)
- Y-dimension of building (m) (BY)
- Building height (m) (H)

The user is prompted for numerical data for each of these categories. If non-numerical data are entered, the program will display an error message and prompt the user for a corrected entry.

To end the data entry procedure, the user must type in the word 'END' in response to the Diameter prompt. The data entry procedure may only be terminated at the Diameter prompt. This was done to eliminate the possibility of accidently creating an incomplete data file. Once the data entry procedure has been terminated, the messages in Figure A1.3 are displayed.

To save the entered data, the user must enter a unique filename for the data. Pressing the 'Enter' key twice will
** Data entry complete **
** Enter filespec for output file, or **
** press [Enter] to cancel **

FIGURE A1.3: SAVING A DATA FILE

cancel the procedure and return the program to the main menu
(Figure A1.1). If the data are saved to a file, the entered data
are displayed on the screen for verification by the user (Figure
A1.4).

<table>
<thead>
<tr>
<th>Stack data for 2 stacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA DIA HT TEMP VEL ED50 Q X Y H EX BY</td>
</tr>
<tr>
<td>1 1.7 60 302 34 270 78 0 0 26 244 44</td>
</tr>
<tr>
<td>2 3.0 60 298 24 103 200 100 200 26 244 44</td>
</tr>
</tbody>
</table>

** Press 'C' key to continue **

FIGURE A1.4: DATA FILE DISPLAY

B. Look at a Data File

Choosing option '2' directs the program to prompt the user
for the name of a previously created data file (Figure A1.5). If
the user enters the name of a file that does not exist, the
program displays an error message and prompts the user for
another filename. Pressing the 'Enter' key terminates the
procedure. The data are displayed as in Figure A1.4.
** Enter filespec of input file, or **
** press [Enter] key to cancel **

FIGURE A1.5: INPUT DATA FILE

C. Quit

Choosing option '3' terminates the execution of the program.

D. Stack Locations

Proper execution of the 'FFM' program requires the accurate determination of stack locations relative to a user chosen origin. To determine the proper stack orientations, the user must:

- Choose an origin
- Choose the orientation of the x and y axis
- Determine the x and y coordinates of the stacks with respect to the chosen origin and axis (see Figure A1.6)

If there is only one stack, it should be placed at the origin.

E. Program Listing

The following is the Turbo Pascal (version 4.0) listing of the 'KEYSTACK' program.
FIGURE A1.6: STACK ORIENTATION PROCEDURE
1. KeyStack Program Listing

program KeyStack;
USES crt;
const
 ArraySize = 100;

type
 ArrayType = array[1..ArraySize] of real;

var
 Diameter, Height, Temp : ArrayType;
 ExitVel, ED50, VolFlow : ArrayType;
 XPos, YPos : ArrayType;
 XBuilding, YBuilding, HBuilding : ArrayType;
 Count, J, Code : Integer;
 First, Last, Reply : Char;

{PROCEDURE TO GET A REPLY (1, 2 OR 3) FROM THE KEYBOARD}
procedure GetReply(First, Last : char;
 var Reply : char);

var
 Temp : char;

begin
 if First > Last then
 begin
 Temp := First;
 First := Last;
 Last := Temp;
 end;
 writeln (' Enter reply from ', First, ' to ', Last, '.');
 repeat
 Reply := ReadKey;
 until (Reply >= First) and (Reply <= Last)
end;

{PROCEDURE TO ENTER STACK DATA FROM THE KEYBOARD}
procedure KeyStackDat(var Diameter, Height, Temp : ArrayType;
var ExitVel, ED50, VolFlow : ArrayType;
var XPos, YPos, XBuilding : ArrayType;
var YBuilding, HBuilding : ArrayType;
var Count : Integer);

code
1,2,3,4,5,6,7,8,9,10,11,12;

code

const
EndFlag = 'END';

var
 D, H, T, V, ED, VP, XP, YP, XB, YB, HB : string[20];
 Code : integer;

begin
 D := '';
 H := '';
 T := '';
 V := '';
 ED := '';
 VP := '';
 writeln('*** Enter Stack Data. MAXIMUM Number of Stacks =
 ArraySize, ** ');
 writeln (' ');
 writeln('*** Enter ',EndFlag,' for Diameter to end data
 entry. **');
 while (D <> EndFlag) and (Count < ArraySize) do
 begin
 Count := Count + 1;
 writeln (' '); writeln (' ');
 writeln('For Stack No. ', Count, ': ');
 writeln(' ');
 2: write ('Diameter (m) = '); readln(D);
 if length(D) = 0 then D := 'bad';
 if (D<>EndFlag) and (Count <= ArraySize) then
 begin
 val(D,Diameter[Count],Code);
 if Code<>0 then
 begin
 writeln('*** Illegal. Please
 reenter. **');
 goto 2;
 end;
 end;
 end;
 if (D=EndFlag) then goto 1;

 3: write ('Stack Height (m) = '); readln(H);
if (Count<=ArraySize) then
 begin
 val(H,Height[Count],Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter. **');
 goto 3;
 end
 end
4:
 write ('Stack Temperature (K) = '); readln(T);

if (Count<=ArraySize) then
 begin
 val(T,Temp[Count],Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter. **');
 goto 4;
 end
 end
5:
 write ('Gas Exit Velocity (m/s) = '); readln(V);

if (Count<=ArraySize) then
 begin
 val(V,ExitVel[Count],Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 5;
 end
 end
6:
 write ('Source Strength (odour units) = '); readln(ED);

if (Count<=ArraySize) then
 begin
 val(ED,ED50[Count],Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 6;
 end
 end
7:
 write ('Flowrate (m^3/s) = '); readln(VP);
if (Count<=ArraySize) then
begin
 val(VP, VolFlow[Count], Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please
 goto 7;
 end
end;

8: write ('X Position (m) = '); readln(XP);
if (Count<=ArraySize) then
 begin
 val(XP, XPos[Count], Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please
 goto 8;
 end
 end

9: write ('Y Position (m) = '); readln(XP);
if (Count<=ArraySize) then
 begin
 val(YP, YPos[Count], Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please
 goto 9;
 end
end;

10: write ('X Dimension of Building (m) = '); readln(XB);
if (Count<=ArraySize) then
 begin
 val(XB, XBuilding[Count], Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please
 goto 10;
 end
end;

11: write ('Y Dimension of Building (m) = '); readln(YB);
if (Count<=ArraySize) then
 begin
 val(YB, YBuilding[Count], Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please

reenter **');
 goto 11;
 end
 end;
write (''Height of Building (m) = ''); readln(HB);
if (Count<=ArraySize) then
 begin
 val(HB,HBuilding[Count],Code);
 if Code<>0 then
 begin
 writeln(''** Illegal. Please reenter **');
 goto 12;
 end
 end
end;

1: if D = EndFlag then Count :=Count-1;
 writeln(''** Data entry complete **')
end;

{PROCEDURE TO SAVE STACK DATA TO A DISK FILE}
procedure SaveData(var Diameter, Height, Temp : ArrayType;
 var ExitVel, ED50, VolFlow : ArrayType;
 var XPos, YPos, XBuilding : ArrayType;
 var YBuilding, HBuilding : ArrayType;
 var Count, Code : Integer);
var
 J : integer;
 FileSpec : string[80];
 TheFile : file of real;
begin
 if Count < 1 then exit;
 writeln(''** Enter filesystem for output file, or **');
 writeln(''** press [Enter] to cancel. **');
 readln(FileSpec);
 if length(FileSpec)=0 then
 begin
 code := -1;
 exit
 end;
 assign(TheFile,FileSpec);
 {$I-}
 rewrite(TheFile);
 Code := ioresult;

 if Code <> 0 then begin
 writeln(chr(7));
writeln('** I/O error number ',Code,' (decimal) **');
writeln('** from rewrite in SaveData. Aborted. **');
exit
end;
for J := 1 to Count do begin
 write(TheFile, Diameter[J]);
 write(TheFile, Height[J]);
 write(TheFile, Temp[J]);
 write(TheFile, ExitVel[J]);
 write(TheFile, ED50[J]);
 write(TheFile, VolFlow[J]);
 write(TheFile, XPos[J]);
 write(TheFile, YPos[J]);
 write(TheFile, XBuilding[J]);
 write(TheFile, YBuilding[J]);
 write(TheFile, HBuilding[J]);
if Code <> 0 then begin
 writeln(chr(7));
 writeln('** I/O error number ',Code,' (decimal) **');
 writeln('** from write in SaveData. Aborted. **');
exit
end; end;
close(TheFile);
Code := ioreturn;
if Code <> 0 then begin
writeln(chr(7));
writeln('** I/O error number ',Code,' (decimal) **');
writeln('** from close in SaveData. Aborted. **');
exit
end;

writeln('** ', Count, ' elements written to file ', FileSpec)
end;

{PROCEDURE TO LOAD STACK PARAMETERS FROM A DISK FILE}
Procedure LoadStack (var Diameter, Height, Temp : ArrayType;
var ExitVel, ED50, VolFlow : ArrayType;
var XPos, YPos, XBuilding : ArrayType;
var YBuilding, HBuilding : ArrayType;
var Count, Code : integer);

var
 FileSpec : string[80];
TheFile : file of real;
TooMany : boolean;

begin
 repeat
 writeln('** Enter filespec of input file, or **');
 writeln('** press [Enter] key to cancel **');
 readln(Filespec);
 if length(Filename)=0 then
 begin
 Code := -1;
 exit
 end;
 assign(TheFile,Filename);
 {$I-}
 reset(TheFile);
 Code := ioread;
 if Code <> 0 then
 begin
 writeln(chr(7));
 writeln('** No file named ',Filename,' found. **');
 writeln('** Try again. **');
 end;
 until Code = 0;
 TooMany:=False;
 while not eof(TheFile) do
 begin
 Count := Count+1;
 if (count > ArraySize) and (not TooMany) then
 begin
 TooMany := true;
 writeln(chr(7));
 writeln('** File ',Filename,' too big. **');
 writeln('** Only last ',ArraySize, ' loaded. **');
 Code :=-2;
 Count := Count-1
 end;
 if not TooMany then
 begin
 read(TheFile, Diametx[Count]);
 read(TheFile, Height[Count]);
 read(TheFile, Temp[Count]);
 read(TheFile, ExitVel[Count]);
 read(TheFile, ED50[Count]);
 read(TheFile, VolFlow[Count]);
 read(TheFile, XPos[Count]);
 end;
read(TheFile, YPos[Count]);
read(TheFile, XBuilding[Count]);
read(TheFile, YBuilding[Count]);
read(TheFile, HBuilding[Count]);
Code := ioreult;
if Code <> 0 then
 begin
 writeln('** Error during disk read. **');
 writeln('** Code = ', Code, ' (decimal) **');
 close(TheFile);
 exit
 end
else
 begin
 close(TheFile);
 exit
 end;

close(TheFile);
writeln('** ', Count, ' stacks in this file **')
end;

{PROCEDURE TO PAUSE UNTIL A KEY IS PRESSED}
procedure WaitKey;
begin
 writeln;
 writeln('** PRESS ANY KEY TO CONTINUE **');
 repeat until keypressed
end;

{PROCEDURE TO PRINT OUT A TABLE OF THE INPUTTED STACK DATA}
procedure PrintTable(Diameter, Height, Temp, ExitVal : ArrayType;
 ED50, VolFlow, XPos, YPos : ArrayType;
 XBuilding, YBuilding, HBuilding : ArrayType;
 Count : Integer);

const
 Rows = 15;
Gap = ' ';
O = 'O';

var
 J : integer;
 ch : char;

begin
 if Count < 1 then exit;
 clrscr;
 writeln('Stack Data for ',Count,' stacks');
 writeln('');
 writeln('STA DIA HT TEMP VEL ED50 Q X Y H BX BY');
 writeln('');
 for J := 1 to Count do
 begin
 writeln(J:3,Gap,Diameter[J]:3:1,Gap,Height[J]:3:0,
 Gap,Temp[J]:3:0,Gap,ExitVel[J]:3:1,
 Gap,ED50[J]:4:0,Gap,VolFlow[J]:3:0,
 Gap,XPos[J]:3:0,Gap,YPos[J]:3:0,Gap,
 HBuilding[J]:3:0,Gap,XBuilding[J]:3:0,
 Gap,YBuilding[J]:3:0);

 if (J mod Rows=0) or (J=Count) then
 begin
 writeln(' ** Press "C" key to continue **');
 ch:=readkey;
 repeat until (ch<>0);
 clrscr;
 writeln('STA DIA HT TEMP VEL ED50 Q X Y H BX BY');
 writeln('');
 end;
 end;

 begin
 ch:='O';
 end;

BEGIN
 Repeat
 First := '1';
 Last := '3';
 Count := 0;

 ClrScr;
 writeln(' ** STACK DATA MENU **');
writeln(' '); writeln(' '); writeln(' ');
writeln(' ');
writeln(' ');
writeln(' ');
writeln(' ');
GetReply (First,Last,Reply);
if Reply = '1' then
begin

KeyStackDat(Diameter,Height,Temp,ExitVel,
ED50,VolFlow,XPos,YPos,XBuilding,
YBuilding,HBuilding,Count);

SaveData(Diameter,Height,Temp,ExitVel,
ED50,VolFlow,XPos,YPos,XBuilding,
YBuilding,HBuilding,Count,Code);
if Code <>0 then
begin
writeln('Unsuccessful File Save');
WaitKey;
end
else
PrintTable(Diameter,Height,Temp,
ExitVel,ED50,VolFlow,
XPos,YPos,XBuilding,
YBuilding,HBuilding,
Count);
if Reply = '2' then
begin

LoadStack(Diameter,Height,Temp,ExitVel,
ED50,VolFlow,XPos,YPos,XBuilding,
YBuilding,HBuilding,Count,Code);

if Code <>0 then
begin
File Load');
PrintTable(Diameter, Height, Temp,
ExitVel, ED50, VolFlow,
XPos, YPos, XBuilding,
YBuilding, HBuilding,
 end;
 Until Reply = Last
END.
APPENDIX II

KEYMETER PROGRAM
The 'KEYMETER' program allows the user to create a data file of meteorological and receptor location data in the format required for use in the 'FPM' program. Once the 'KEYMETER' program is executed, the program displays the menu depicted in Figure A2.1.

** Meteorological Data **

1. Create a new data file.
2. Look at a data file.
3. Quit.

Enter reply from 1 to 3.

FIGURE A2.1: KEYMETER MAIN MENU

A. Creating a Data File

Choosing option '1' directs the program to display the messages in Figure A2.2. Site data common to all receptor locations are entered during this preliminary data entry procedure. The site data include:

- Roughness Length (0.1-1.0 m)
- Site Constant (0.1-1.0)
- Latitude of source (degrees)
- Longitude of source (degrees)
- Morning mean mixing height (m)
- Afternoon mean mixing height (m)
** Enter Common Site Data **

Roughness Length (0.1-1.0 m) = 0.75
Site Constant (0.1-1.0) = 1.0
Latitude (degrees) = 41
Longitude (degrees) = 83
Morning mean mixing height (m) = 500
Afternoon mean mixing height (m) = 1200

** Preliminary data entry complete **

** FIGURE A2.2: PRELIMINARY DATA ENTRY **

Once this preliminary procedure has been completed, detailed site data are entered (Figure A2.3). Detailed data for up to 100 observation points may be entered. Each data set includes:

- Observation Number (OBS)
- Ambient Temperature (°K) (TEMP)
- Wind speed (m/s) (WIND)
- Terrain (1=Urban, 2=Rural) (TER)
- X position of receptor (m) (X-POS)
- Y position of receptor (m) (Y-POS)
- Wind Angle (degrees) (W-ANG)
- Month (1-12)
- Day (1-31)
- Hour (0.0-24.0)
- Cloud Cover, cc, (0-8)
** Enter Meteorological and Receptor Data **
** Maximum number of Observations = 100 **
** Enter END for Observation Number to end data entry **

For Data Set No. 1:
Observation Number = _

FIGURE A2.3: CREATING A NEW OBSERVATION DATA FILE

The user is prompted for numerical data for each of these categories. If non-numerical data are entered, the program displays an error message and prompts the user for a new value.

Typing the word 'END' in response to the 'Observation Number' prompt ends the data entry procedure and the messages depicted in Figure A2.4 are displayed. To save the entered data, the user must enter a unique filename. Pressing the 'Enter' key will discard the data and return the program to the main menu (Figure A2.1). When data are saved to a data file, the entered data are displayed on the screen for verification by the user (Figure A2.5).

** Data entry complete **
** Enter filespec for output file, or **
** press (Enter) to cancel **

FIGURE A2.4: SAVING A DATA FILE
Meteorological and Receptor Data for 2 Observations

<table>
<thead>
<tr>
<th>OBS</th>
<th>TEMP</th>
<th>WIND</th>
<th>TERR</th>
<th>STAB</th>
<th>X-POS</th>
<th>Y-POS</th>
<th>MH</th>
<th>W-ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>284</td>
<td>5.3</td>
<td>1</td>
<td>1</td>
<td>500</td>
<td>300</td>
<td>1200</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>298</td>
<td>4.2</td>
<td>2</td>
<td>3</td>
<td>-300</td>
<td>100</td>
<td>800</td>
<td>127</td>
</tr>
</tbody>
</table>

** Press "C" key to continue **

FIGURE A2.5: DATA FILE DISPLAY

MH = MIXING HEIGHT

B. Look at a Data File

Choosing option '2' directs the program to prompt the user for the name of a previously created observation data file (Figure A2.6).

** Enter filespec of input file, or **

** press [Enter] key to cancel **

FIGURE A2.6: INPUT DATA FILE

If the user enters the name of a file that does not exist, the program displays an error message and prompts the user for another filename. Pressing the 'Enter' key terminates the procedure.

C. Quit

Choosing option '3' terminates the execution of the program.
D. **Receptor Locations**

Proper execution of the 'FPM' program requires the accurate determination of receptor locations relative to a user chosen origin. To determine the proper receptor orientation, the user must:

- Determine the position of the origin
- Determine the orientation of the X and Y axis.
- Determine the X and Y coordinates of the receptors with respect to the chosen origin and axis (Figure A2.7).

The position of the origin and the orientation of the axis must be the same as those chosen for the locations of the corresponding stacks.

The wind angle is measured in the counter-clockwise direction relative to the positive X-axis. Only one receptor location is allowed for each observation.

E. **Stability**

Not all of the data entered in the program are saved to the data file.
Data entered regarding:

- Month
- Day
- Hour
- Cloud Cover

are used in the formulations to determine:

- Stability
- Surface heat flux

These formulations are discussed in greater detail in Chapter 7.

F. **Program Listing**

The following is the Turbo Pascal (version 4.0) listing of the 'KEYMETER' program.

1. **KeyMeter Program Listing**

    ```pascal
    program KeyMeter;
    USES crt;
    const
    ArraySize = 100;
    type
    ArrayType = array[1..ArraySize] of real;
    ```
var
 Observation, AmbTemp, WindSpeed : ArrayType;
 Terrain, Stability, XReceptor : ArrayType;
 YReceptor, ZO, NFA, HNot, Z1 : ArrayType;
 Month, Day, Hour, Beta, CC : ArrayType;
 WindAngle : ArrayType;
 RL, SC, LR, LD, MMH, AMH : Real;
 Count, J, Code : Integer;
 First, Last, Reply : Char;

{PROCEDURE TO GET A REPLY (1,2 OR 3) FROM THE KEYBOARD}
procedure GetReply(First, Last : char;
 var Reply : char);

var
 Temp : char;

begin
 if First > Last then
 begin
 Temp := First;
 First := Last;
 Last := Temp
 end;
 writeln (' Enter reply from ', First, ' to ', Last,'.');
 repeat
 Reply := ReadKey;
 until (Reply >= First) and (Reply <= Last)
 end;

{PROCEDURE TO ENTER RECEPTOR SITE CONSTANTS}
procedure KeyConstDat(var RL, SC, LR, LD, MMH, AMH : real);

label
 20,21,22,23,24,25;

var
 RLen, SCon, Lat, Lon, Mmix, Amix : string[20];
 Code : integer;

begin
 writeln('** Enter site data constants **');
 writeln(' ');
20: write('Roughness length (0.1-1.0) = '); readln(RLen);
 if length(RLen)=0 then RLen:='bad';
 val(RLen,RL,Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 20
 end;
21: write('Site constant (0.1-1.0) = '); readln(SCon);
 if length(SCon)=0 then SCon:='bad';
 val(SCon,SC,Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 21
 end;
22: write('Latitude (degrees) = '); readln(Lat);
 if length(Lat)=0 then Lat:='bad';
 val(Lat,LR,Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 22
 end;
23: write('Longitude (degrees) = '); readln(Lon);
 if length(Lon)=0 then Lon:='bad';
 val(Lon,LD,Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 23
 end;
24: write('Morning mean mixing height (m) = '); readln(Mmix);
 if length(Mmix)=0 then Mmix:='bad';
 val(Mmix,MMH,Code);
 if Code<>0 then
 begin
 writeln('** Illegal. Please reenter **');
 goto 24
 end;
25: write('Afternoon mean mixing height (m) = '); readln(AMix);
 if length(AMix)=0 then AMix:='bad';
 val(AMix,AMH,Code);
 if Code<>0 then
begin
 writeln('** Illegal. Please reenter **');
 goto 25
end;

writeln(' ');
writeln('** Preliminary data entry complete **');
end;

PROCEDURE TO ENTER METEOROLOGICAL DATA

procedure KeyMeterDat(var Observation,AmbTemp,WindSpeed :
 ArrayType;
 var WindAngle:
 ArrayType;
 var Terrain, XReceptor:
 ArrayType;
 var YReceptor,Z0,NPA,Month,Day:
 ArrayType;
 var Hour,Beta,CC:
 ArrayType;
 var RL,SC : Real;
 var Count : Integer);

label 1,2,3,4,5,7,8,9,11,12,13,14;

const
 EndFlag = 'END';

var
 OB, TEMP, WS, TER, XR, YR : string[20];
 MON, DA, HO, BT, WA : string[20];
 Code : integer;

begin
 OB := ' ';
 writeln('** Enter Meteorological and Receptor Data. **');
 writeln('** MAXIMUM NUMBER OF OBSERVATIONS = ',ArraySize);
 writeln(' ');
 writeln('** Enter ',EndFlag,' for Observation Number to end
 data entry. **');
 while (OB <> EndFlag) and (Count < ArraySize) do begin
 Count := Count + 1;
 writeln(' ');
 writeln('For Data Set No. ', Count, ':');
 writeln(' ');
write ('Observation Number = '); readln(OB);
if length(OB) = 0 then OB := 'bad';
if (OB<>EndFlag) and (Count <= ArraySize) then begin
 val(OB,Observation[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter. **');
 goto 2;
 end;
end;
if (OB=EndFlag) then goto 1;
write ('Ambient Temperature (K) = '); readln(Temp);
if (Count<=ArraySize) then begin
 val(Temp,AmbTemp[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter. **');
 goto 3;
 end;
end;
Z0[Count]:=RL;
NPA[Count]:=SC;
write ('WindSpeed (m/s) = '); readln(WS);
if (Count<=ArraySize) then begin
 val(WS,WindSpeed[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter. **');
 goto 4;
 end;
end;
write ('Terrain (1=Urban, 2=Rural) = '); readln(Ter);
if (Count<=ArraySize) then begin
 val(Ter,Terrain[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter **');
 goto 5;
 end;
end;
7: write ('X Position of Receptor (m) = '); readln(XR);
 if (Count<=ArraySize) then begin
 val(XR,XReceptor[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter **');
 goto 7;
 end;
 end;
8: write ('Y Position of Receptor (m) = '); readln(YR);
 if (Count<=ArraySize) then begin
 val(YR,YReceptor[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter **');
 goto 8;
 end;
 end;
9: write('Wind Angle (0-359 degrees) = '); readln(WA);
 if (Count<=ArraySize) then begin
 val(WA,WindAngle[Count],Code);
 if Code<>0 then begin
 writeln('** Illegal. Please reenter **');
 goto 9;
 end;
 end;
11: write('Month (1-12) = '); readln(MON);
 if (Count<=ArraySize) then begin
 val(MON,Month[Count],Code);
 if Code<>0 then begin
 write('** Illegal. Please reenter **');
 goto 11
 end;
 end;
12: write('Day (1-31) = '); readln(DA);
if (Count<=ArraySize) then
begin
val(DA,Day[Count],Code);
if Code<>0 then
begin
write('Illegal. Please reenter **');
goto 12
end;
end;
13: write('Hour (0.0-24.0) = '); readln(HO);
if (Count<=ArraySize) then
begin
val(HO,Hour[Count],Code);
if Code<>0 then
begin
write('Illegal. Please reenter **');
goto 13
end;
end;
14: writeln(' '); writeln(' '); writeln(' SkyCover CC');
writeln('----------------');
writeln(' 0.00 0');
writeln(' 12.50 1');
writeln(' 25.00 2');
writeln(' 37.50 3');
writeln(' 50.00 4');
writeln(' 62.50 5');
writeln(' 75.00 6');
writeln(' 87.50 7');
writeln(' 100.00 8');
writeln(' ');
writeln('Value for CC (1-8) = '); readln(BT);
if (Count<=ArraySize) then
begin
val(BT,CC[Count],Code);
if Code<>0 then
begin
write('** Illegal. Please reenter **');
goto 14
end;
end;
if CC[Count]<1.0 then
Beta[Count]:=1.0;
if (CC[Count]<2.0) and (CC[Count]>=1.0) then
Beta[Count]:=0.89;
if (CC[Count]<3.0) and (CC[Count]>=2.0) then
 Beta[Count]:=0.81;
if (CC[Count]<4.0) and (CC[Count]>=3.0) then
 Beta[Count]:=0.76;
if (CC[Count]<5.0) and (CC[Count]>=4.0) then
 Beta[Count]:=0.72;
if (CC[Count]<6.0) and (CC[Count]>=5.0) then
 Beta[Count]:=0.67;
if (CC[Count]<7.0) and (CC[Count]>=6.0) then
 Beta[Count]:=0.59;
if (CC[Count]<8.0) and (CC[Count]>=7.0) then
 Beta[Count]:=0.45;
if CC[Count]>=8.0 then
 Beta[Count]:=0.23;
end;

1: if OB = EndFlag then Count := Count-1;
 writeln('** Data entry complete **')
end;

{PROCEDURE TO CALCULATE INCOMING SOLAR RADIATION, SURFACE HEAT
 FLUX,
 ATMOSPHERIC STABILITY, AND BOUNDARY LAYER HEIGHT}

procedure Radiation(var Month, Day, Hour, Beta, CC, HNot : ArrayType;
 var Windspeed, Stability, Zi : ArrayType;
 var LR, LD, MMH, AMH : Real;
 var Count : Integer);

var
 JulDay, Time, R, Rad, Tao, Phi, Arg, Result : Real;
 Tnoon, Tset, Trise : Real;
 J : Integer;

function Julian(Year:integer; Mon, Day : real): real;

var
 Temp : real;

begin
 if (Year<0) or (Mon<1.0) or (Mon>12.0) or (Day<1.0)
 or (Day>31.0) then
 begin
 Julian:=-1.0;
 exit
 end;

if Year < 100 then Year := Year + 1900;
 Temp := int((Mon - 14.0)/12.0);
 Julian := Day - 32075.0
+int(1461.0*(Year+4800.0+Temp)/4.0)+
 int(367.0*(Mon - 2.0 - Temp*12.0)/12.0) -
 int(3.0*int((Year+4900.0+Temp)/100.0)/4.0)
end;

procedure ArcCos(var Arg, Result: real);

const
 MaxNumSegs = 500;
 MaxError = 1.0E-6;
 LowX = 0.0;
 HighX = 6.2831853;

var
 X, XLo, XHi, FLo, FHi, Width, Test : real;
 J, NumSegs : integer;
 OK : boolean;

procedure Iterate;
begin {procedure Iterate}
 repeat
 X := (Xlo + XHi)/2.0;
 Test := Arg - cos(X);
 if abs(Test) < MaxError then
 begin
 Result := X;
 OK := true
 end
 else
 if (Test*FLo) > 0.0 then
 begin
 XLo := X;
 FLo := Test
 end
 else
 begin
 XHi := X;
 FHi := Test
 end
 until OK
end; {procedure Iterate}
begin {procedure ArcCos}
 OK := false;
 XLo := LowX;
 XHi := HighX;
 FLo := Arg-cos(XLo);
 FHi := Arg-cos(XHi);
 if abs(FLo) < MaxError then
 begin
 OK := true;
 Result:=XHi;
 exit
 end;
 if (FLo*FHi) < 0.0 then
 begin
 Iterate;
 exit
 end;
 NumSegs := 2;
 repeat
 Width := (XHi-XLo)/NumSegs;
 for J:=1 to (NumSegs div 2) do
 begin
 X := XLo+Width*(2*J-1);
 FHi := Arg-cos(X);
 if (FHi*FLo)<0.0 then
 begin
 XHi := X;
 Iterate;
 exit
 end;
 end;
 NumSegs := NumSegs*2
 until NumSegs > MaxNumSegs
end; {procedure root}

Begin
 LR:=LR*Pi/180.0;
 for J:=1 to Count do
 begin

JulDay:=Julian(1989,Month[J],Day[J])-Julian(1988,12,31); {Julian day 1-366}
 Time:=Hour[J]+5.0;
 if Time>=24.0 then Time:=Time-24.0; {Greenwich Mean Time}
 Tnoon:= 12.0+LD/15.0; {Local noon time}
 Tao:=Pi*(Time-Tnoon)/12.0;
Phii:=ArcTan(0.4348*sin(Pi*(JulDay-78.0)/180.0));
Arg:=(-\sin(\Phi)/\cos(\Phi))* (\sin(LR)/\cos(LR));\nArccos(Arg,Result);
Trise:=Tnoon-12*Result/P1; \{Local sunrise\}
Tset:=Tnoon+12*Result/P1; \{Local sunset\}
\{Incoming Solar Radiation (W/m^2/s)\}
R:=950.0*Beta[J]*(\cos(\Phi)*\cos(Tao)*\cos(LR)+\sin(\Phi)*\sin(LR));\nRad:=R*0.232558; \{convert R to cal/m^2/s\}
\{Surface Heat Flux (cal/m^2/s)\}
Hnot[J]:=0.232558*(0.35*R-3.0*(8.5-CC[J]));\n\{Determine Stability from incoming solar radiation and windspeed\}
\{Night\}
begin
if (Time>Tset) or (Time<Trise) then
begin
if WindSpeed[J]<=2.0 then
Stability[J]:=6.0;
if (WindSpeed[J]>2.0) and (WindSpeed[J]<=3.0) then
begin
if CC[J]>= 4.0 then
Stability[J]:=5.0
else
Stability[J]:=6.0
end;
if (WindSpeed[J]>3.0) and (WindSpeed[J]<=5.0) then
begin
if CC[J]>=4.0 then
Stability[J]:=4.0
else
Stability[J]:=5.0
end;
if WindSpeed[J]>5.0 then
Stability[J]:=4.0
end
else
\{Daytime\}
begin
if WindSpeed[J] <= 2.0 then
begin
if Rad>=107.5 then Stability[J]:=1.0
else Stability[J]:=2.0
end;
if (WindSpeed[J]>2.0) and (WindSpeed[J]<=3.0) then
begin
if Rad>=143.0 then Stability[J]:=1.0;
if (Rad>=72.0) and (Rad<143.0) then
Stability[J]:=2.0;
if Rad<72 then Stability[J]:=3.0
end;
if (WindSpeed[J]>3.0) and (WindSpeed[J]<=5.0) then begin
 if Rad>=107.5 then Stability[J]:=2.0
 else Stability[J]:=3.0
end;
if (WindSpeed[J]>5.0) and (WindSpeed[J]<=6) then begin
 if Rad>=107.5 then Stability[J]:=3.0
 else Stability[J]:=4.0
end;
if WindSpeed[J]>6.0 then begin
 if Rad>143.0 then Stability[J]:=3.0
 else Stability[J]:=4.0
end
end;

{Determine Boundary Layer Height}

if Stability[J]=1.0 then Zi[J]:=1.5*AMH;
if (Stability[J]>1.0) and (Stability[J]<4.0) then Zi[J]:=AMH;
if Stability[J]=4.0 then begin
 if (Time>Tset) or (Time<Trise) then Zi[J]=(AMH+MMH)/2
 else Zi[J]:=AMH
end;
if Stability[J]>4.0 then Zi[J]:=MMH
end;

{PROCEDURE TO SAVE METEOROLOGICAL AND RECEPTOR DATA TO A DISK FILE}
procedure SaveData(var Observation,AmbTemp,WindSpeed :
ArrayType;
 var WindAngle : ArrayType;
 var Terrain,Stability,XReceptor :
ArrayType;
 var YReceptor,ZO,NPA,Hnot,Zi :
ArrayType;
 var Count, Code : Integer);}
var
 J : integer;
 FileSpec : string[80];
 TheFile : file of real;
begin
 if Count < 1 then exit;
 writeln('** Enter filespec for output file, or **');
 writeln('** press [Enter] to cancel. **');
 readln(FileSpec);
 if length(FileSpec)=0 then
 begin
 code := -1;
 exit
 end;
 assign(TheFile,FileSpec);
 rewrite(TheFile);
 Code := ioresult;
 if Code <> 0 then begin
 writeln(chr(7));
 writeln('** I/O error number ',Code,' (decimal) **');
 writeln('** from rewrite in SaveData. Aborted. **');
 exit
 end;
 for J := 1 to Count do begin
 write(TheFile, Observation[J]);
 write(TheFile, AmbTemp[J]);
 write(TheFile, WindSpeed[J]);
 write(TheFile, WindAngle[J]);
 write(TheFile, Terrain[J]);
 write(TheFile, Stability[J]);
 write(TheFile, XReceptor[J]);
 write(TheFile, YReceptor[J]);
 write(TheFile, Z0[J]);
 write(TheFile, NP[J]);
 write(TheFile, Hn[J]);
 write(TheFile, Z1[J]);
 if Code <> 0 then begin
 writeln(chr(7));
 writeln('** I/O error number ',Code,' (decimal) **');
 writeln('** from write in SaveData. Aborted. **');
 exit
 end;
 end;
 close(TheFile);
 Code := ioresult;
if Code <> 0 then begin
 writeln(chr(7));
 writeln('** I/O error number ',Code,' (decimal) **');
 writeln('** from close in SaveData. Aborted. **');
 exit
end;

{$I+}
writeln('** ', Count, ' observations written to file ',
 FileSpec)
end;

{PROCEDURE TO LOAD METEOROLOGICAL AND RECEPTOR DATA FROM A DISK FILE}
Procedure LoadMeter (var Observation,AmbTemp,WindSpeed :
 ArrayType;
 var WindAngle
 : ArrayType;
 var Terrain,Stability,XReceptor :
 ArrayType;
 var YReceptor,ZO,NPA,Hnot,Zi :
 ArrayType;
 var Count, Code : integer
);

var
 FileSpec : string(80);
 TheFile : file of real;
 TooMany : boolean;

begin
 repeat
 writeln('** Enter filespec of input file, or **');
 writeln('** press [Enter] key to cancel **');
 readln(Filespec);
 if length(Filespec)=0 then
 begin
 Code := -1;
 exit
 end;
 assign(theFile,FileSpec);
 {$I-}
 reset(TheFile);
 Code := ioresult;
 if Code <>0 then
begin
 writeln(chr(7));
 writeln('** No file named ',FileSpec,' found.

**');
 writeln('** Try again. **');
end

Until Code = 0;
TooMany:=False;
while not eof(TheFile) do
 begin
 Count := Count+1;
 if (count > ArraySize) and (not TooMany) then
 begin
 TooMany := true;
 writeln(chr(7));
 writeln('** File ',FileSpec,' too big.

**');
 writeln('** Only 1st ',ArraySize, ' loaded.

**');
 Code := -2;
 Count := Count-1
 end;
 if not TooMany then
 begin
 read(TheFile, Observation[Count]);
 read(TheFile, AmbTemp[Count]);
 read(TheFile, WindSpeed[Count]);
 read(TheFile, WindAngle[Count]);
 read(TheFile, Terrain[Count]);
 read(TheFile, Stability[Count]);
 read(TheFile, XReceptor[Count]);
 read(TheFile, YReceptor[Count]);
 read(TheFile, ZO[Count]);
 read(TheFile, NPA[Count]);
 read(TheFile, Hnot[Count]);
 read(TheFile, Zi[Count]);
 Code := ioread;
 if Code <>0 then
 begin
 writeln('** Error during disk read. **

 writeln('** Code = ',Code,

 (decimal) **

 close(TheFile);
 exit
 end
 end
end
else
begin
 close(theFile);
 exit
end
end;
close(TheFile);
writeln('** ',Count,' observations in this file **')
end;

{PROCEDURE TO PAUSE UNTIL A KEY IS PRESSED}
procedure WaitKey;
begin
 writeln;
 writeln('** PRESS ANY KEY TO CONTINUE **');
 repeat until keypressed
end;

{PROCEDURE TO PRINT OUT A TABLE OF THE INPUTTED STACK DATA}
procedure PrintTable(Observation,AmbTemp,WindSpeed : ArrayType;
 WindAngle : ArrayType;
 Terrain,Stability,XReceptor : ArrayType;
 YReceptor,ZO,NPA : ArrayType;
 Count : Integer);

const
 Rows = 15;
 Gap = ' ';
 O = 'O';

var
 J : integer;
 ch : char;

begin
 if Count < 1 then exit;
 clrscr;
 writeln('Meteorological and Receptor Data for ',Count,' observations');
 writeln('');
 writeln('OBS. TEMP. WIND TER. STAB. X-POS Y-POS ZO NPA');
 writeln(' ');

for J := 1 to Count do
 begin
 writeln(Observation[J]:4:0,AmbTemp[J]:5:0,
 Gap,WindSpeed[J]:4:1,Gap,Terrain[J]:4:0,
 Gap,Stability[J]:5:0,Gap,XReceptor[J]:5:0,
 Gap,YReceptor[J]:5:0,Gap,ZO[J]:4:2,Gap,NPA[J]:4:2);
 if (J mod Rows=0) or (J=Count) then
 begin
 writeln(' ** Press "C" key to continue
**');
 ch:=readkey;
 repeat until (ch<> 0);
 clrscr;
 writeln('OBS. TEMP. WIND TER. STAB. X-POS Y-POS ZO NPA');
 writeln(' ');
 end;
 ch:='0';
 end;
end;

BEGIN
 Repeat
 First := '1';
 Last := '3';
 Count :=0;
 ClrScr;
 writeln(' ** METEOROLOGICAL DATA **');
 writeln(' ');
 GetReply (First,Last,Reply);
 if Reply = '1' then
 begin
 KeyConstDat(RL,SC,LR,LD,MMH,ANH);
 KeyMeterDat(Observation,AmbTemp,WindSpeed,
 WindAngle,Terrain,XReceptor,
 YReceptor,ZO,NPA,Month,Day,
 Hour,Beta,CC,RL,SC,Count);
Radiation(Month,Day,Hour,Beta,CC,Hnot,WindSpeed,
Stability,Zi,LR,LD,MMH,AMH,Count);
SaveData(Observation,AmbTemp,WindSpeed,WindAngle,
Terrain,Stability,XReceptor,YReceptor,
ZO,NPA,Hnot,Zi,Count,Code);
if Code <> 0 then
begin
 writeln('Unsuccessful File Save');
 WaitKey;
end
else
PrintTable(Observation,AmbTemp,WindSpeed,
Terrain,Stability,XReceptor,
YReceptor,ZO,NPA,Count);
end;
 if Reply = '2' then
begin
LoadMeter(Observation,AmbTemp,WindSpeed,
Terrain,Stability,XReceptor,YReceptor,
ZO,NPA,Hnot,Zi,Count,Code);
if Code <> 0 then
begin
 writeln('Unsuccessful File Load');
 WaitKey;
end
else
PrintTable(Observation,AmbTemp,WindSpeed,
Terrain,Stability,XReceptor,
YReceptor,ZO,NPA,Count);
end;
Until Reply = Last;
END.
APPENDIX III

FLUCTUATING PLUME MODEL PROGRAM
The Fluctuating Plume Model (FPM) program determines the odour impact of one or more stacks on a downwind receptor location.

A. Data Input

Initial execution of the program (Figure A3.1) requires the user to supply the program with information regarding:

- Printout of results
- Puff release rate
- Empirical volume correction factor
- Stack data input file
- Receptor data input file

1. Printout of Results

A 'Y' response to the prompt will direct the program to print out a summary of the calculated results. Figure A3.2 is a sample of the printed results. If an 'N' response is given, the results will be displayed to the screen only.

Under calm (low wind speed) atmospheric conditions, the equations used in the model to calculate atmospheric dispersion are no longer valid. If calm conditions are detected by the program, a warning message is displayed along with the results.
Output of results to printer (Y/N)? Y

Puff Release Rate (Puffs/hr): 200
You entered: 200 (Puffs/hr)

Enter value for Empirical Volume Correction Factor (0.5 - 2.0): 1
You entered Correction Factor = 1.0

** Enter filespec of STACKDATA input file, or **
** press [Enter] key to cancel **
CHRYSLER
** 63 sets of stack data in file CHRYSLER **

** Enter filespec of OBSERVATION DATA input file or **
** press [Enter] key to cancel **
OBSERVE
** 8 observations in the file OBSERVE **

FIGURE A3.1: FPM INPUT DATA

PUFF RELEASE RATE (PUFFS/HR) = 200
Wind Angle Offset (degrees) = 4

<table>
<thead>
<tr>
<th>Obs</th>
<th>Wind</th>
<th>Temp</th>
<th>Stab</th>
<th>Ter</th>
<th>W-Ang</th>
<th>X-Pos</th>
<th>Y-Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>4.7</td>
<td>292</td>
<td>3</td>
<td>1</td>
<td>57</td>
<td>313</td>
<td>575</td>
</tr>
</tbody>
</table>

ODOUR FREQUENCIES (ODOUR UNITS):

1 - 2 * 2 - 4 * 4 - 7 * 7 - 10 * 10 - 31 * >31

0.660 * 0.225 * 0.020 * 0.000 * 0.000 * 0.000

MAXIMUM CONCENTRATION = 5.13542
GAUSSIAN CONCENTRATION = 0.57882
AVERAGE CONCENTRATION = 1.77892

FIGURE A3.2: OUTPUT OF RESULTS

202
2. **Puff Release Rate**

The short-term dispersion coefficients used in the model were developed using limited data for 30 second puff releases. In his research, however, Högström [13], found that these dispersion coefficients duplicate instantaneous plume behaviour quite reliably. The puff release rate determines the number of times the computer model calculates the instantaneous ground-level concentration. This release rate should be chosen to coincide with the number of detections being made at the receptor during the observation period. The model can accommodate puff release rates approaching 1000 puffs per hour.

3. **Empirical Volume Correction Factor**

In the event that a portion of the stack gases undergo an initial dilution due to the turbulent effects of the building, (i.e. stack height < 2 x building height), the dispersion coefficients must be corrected. The user determines the extent of this initial dispersion by entering a value for the Empirical Volume Correction factor ranging from 0.5 to 2.0 (see Equations 6.21 - 6.24).

5. **Input Files**

The user must enter the names of the data files containing the required stack, meteorological, and receptor data. These files must be created using the 'KEYSTACK' and 'KEYMETER' programs (see Appendices I and II).
B. **Determination of Stack Locations**

Application of the Fluctuating Plume Model requires the accurate determination of the downwind and crosswind distances of the receptor from each stack being modeled. The downwind distance is defined as the horizontal distance between the point of emission and the line where the two vertical planes, one through the point of emission and parallel to the wind direction, and the other through the receptor location, meet at right angles (See Figure A3.3a). The cross wind distance is defined as the straight line distance between the receptor and the vertical plane through the point of emission in the given wind direction (See Figure A3.3b).

The FPM computer model contains a set of equations developed to calculate these distances. The downwind and crosswind distances of the receptor from each stack are determined from:

- X and Y position of the receptor (Appendix II).
- Relative stack locations to the origin (Appendix I).
- Wind direction.

C. **Wind Angle Offset**

The wind angle offset is defined as the angle between the Wind Direction vector and a vector joining the origin to the
FIGURE A3.3:
a.) DEFINITION OF DOWNWIND DISTANCE
b.) DEFINITION OF CROSSWIND DISTANCE
receptor location. The wind angle offset provides a measure of the off-centreline position of the receptor. Worst case conditions exist when the wind angle offset is equal to zero (i.e. receptor location corresponds to the plume centreline).

D. Wind-Oriented Building Cross-Sectional Area

The cross-sectional area of the building normal to the wind direction (Figure A3.4) is required for the calculation of the initial dilution of all or a portion of the emission. This dilution is caused by the turbulent wake of the building and is a function of the cross-sectional area. The cross-sectional area is calculated in the model from:

- X-dimension of the building.
- Y-dimension of the building.
- Building height.
- Wind Angle.

E. Random Number Generator (RndNorm)

The FPM computer program uses the 'Polar Method for Normal Deviates' algorithm to generate the positions of the puffs. This algorithm (Figure A3.5) generates normally distributed random numbers with a given mean and standard deviation.
FIGURE A3.4: WIND-ORIENTED BUILDING CROSS-SECTIONAL AREA

WBW = WIND-ORIENTED BUILDING WIDTH
function RndNorm (Mean, StanDev : real): real

var
 RandomA, RandomB, Radius2, Deviate : real;

begin
 repeat
 RandomA := 2.0 * random - 1.0;
 RandomB := 2.0 * random - 1.0;
 Radius2 := sqr(RandomA) + sqr(RandomB)
 until
 Radius2 < 1.0;
 Deviate := RandomA * sqrt((-2.0 * ln(Radius2))/Radius2);
 RndNorm := Mean + Deviate * StanDev
end;

FIGURE A3.5: RndNorm FUNCTION

In this function:

RandomA = A random number between -1 and +1.

RandomB = Another random number between -1 and +1.

Radius2 = The square of the distance between the point (RandomA, RandomB) and the origin (0,0).

Deviate = Resultant random number. This number is drawn from the normal distribution with a mean of zero and a standard deviation of 1.

The crosswind position of the puff is chosen from a set of normally distributed random numbers with:
Standard Deviation = σ_{yc}

Mean = Crosswind position of the long-term average plume centreline.

Similarly, the vertical puff position is chosen from a set of normally distributed random numbers with:

Standard Deviation = σ_{zc}

Mean = Long-term average plume height.

F. Program Listing

The following is the Turbo Pascal (version 4.0) listing of the 'FPM' program.

1. **FPM Program Listing**

program FPM;
USES Crt, Dos;

const
 ArraySize = 100;
 ArraySize2 = 1000;
 ArraySize3 = 10;
 Anhgt = 10.0;
 NumClass : integer = 6;
 Cl1 = 1.0;
 Cl2 = 2.0;
 Cl3 = 4.0;
 Cl4 = 7.0;
 Cl5 = 10.0;
 Cl6 = 31.0;
 Prompt1 = 'Enter Value of Empirical Volume Correction Factor (0.5-1.0)';
type
 ArrayType = array[1..ArraySize] of real;
 ArrayType2 = array[1..ArraySize2] of real;
 ArrayType3 = array[1..ArraySize3] of real;
 KeyListType = String[10];

var
 Diameter, StackHeight, StackTemp : ArrayType;
 StackVel, ED50, StackVolFlow : ArrayType;
 XPos, YPos, XBuilding, YBuilding : ArrayType;
 HBuilding, ABuilding : ArrayType;
 Observation, AmbTemp, WindSpeed : ArrayType;
 Terrain, Stability, XDist, YDist : ArrayType;
 Z0, NPA, XRec, YRec, PlumeHeight : ArrayType;
 PlumeHeight2, H, WindAngle : ArrayType;
 SigmaZ, SigmaY, SigmaZP, SigmaYP : ArrayType;
 SigmaZ1, SigmaY1 : ArrayType;
 SigmaUZ, SigmaUY, SigmaRZ : ArrayType;
 SigmaRY, SigmaUZ1, SigmaUY1 : ArrayType;
 SigmaRZ1, SigmaRY1 : ArrayType;
 SigmaYP1, SigmaZP1 : ArrayType;
 SigmaZC, SigmaYC, GaussCon : ArrayType;
 SigmaZCL, SigmaYCL, Hnot, Z1 : ArrayType;
 FPuffCon : ArrayType2;
 Class, RelFreq, PuffSum : ArrayType3;
 KeyList : KeyListType;
 AvgCon, MaxCon, ThetaWS : Real;
 PP, TempGrad, CorFact, Calm : Real;
 Count, Code, NumStack, NumObs, J : Integer;
 NumPuff : Integer;
 CharFlag, Reply : Char;

{PROCEDURE TO DETERMINE IF RESULTS WILL BE SENT TO THE PRINTER}
procedure GetKey(KeyList: KeyListType; var Reply : char);

begin
 repeat
 Reply := ReadKey
 until pos(Reply, KeyList) > 0
end;

{PROCEDURE TO ENTER PUFF RELEASE RATE FROM THE KEYBOARD}
procedure NumberOfPuffs(var NumPuff : integer;
 var CharFlag: char;
 var Code : integer);
const
 PromptString = 'Puff Release Rate (Puffs/hr): ';

var
 Entry : string[30];

begin
 write(PromptString);
 readln(Entry);
 val(Entry, NumPuff, Code);
 Case length(Entry) of
 0: Code:= -2;
 1: if code > 0 then
 begin
 code:= -1;
 end
 end
end;

{PROCEDURE TO ENTER VALUE OF EMPIRICAL VOLUME CORRECTION FACTOR FROM KEYBOARD}
procedure GetCorFact(var CorFact : real; var Code : integer; PromptString : string);

var
 Entry : string[30];

begin
 write(PromptString);
 readln(Entry);
 val(Entry, CorFact, Code);
 case length(Entry) of
 0: Code:= -2;
 1: if Code > 0 then
 Code:= -1
 end
end;

{PROCEDURE TO LOAD STACK PARAMETERS FROM A DISK FILE}
Procedure LoadStack (var Diameter, StackHeight, StackTemp : ArrayType;
 var StackVel, ED50, StackvolFlow : ArrayType;
 var XPos, YPos, XBuilding, YBuilding :
var HBuilding :
var Count, Code :

integer);

var
 FileSpec : string(80);
 TheFile : file of real;
 TooMany : boolean;

begin
 repeat
 writeln('** Enter filespec of STACK DATA input file, or **');
 writeln('** press [Enter] key to cancel **');
 readln(FileSpec);
 if length(FileSpec)=0 then
 begin
 Code := -1;
 exit
 end;
 assign(theFile,FileSpec);
 begin
 dontclose(TheFile);
 Code := ioread;
 if Code <> 0 then
 begin
 writeln(chr(7));
 writeln('** No file named ',FileSpec,' found. **');
 writeln('** Try again. **');
 end
 Until Code = 0;
 TooMany:=False;
 while not eof(TheFile) do
 begin
 Count := Count+1;
 if (count > ArraySize) and (not TooMany) then
 begin
 TooMany := true;
 writeln(chr(7));
 writeln('** File ',FileSpec,' too big. **');
 writeln('** Only 1st ',ArraySize, ' loaded. **');
 Code := -2;
 Count := Count-1
 end;
if not TooMany then
 begin
 read(TheFile, Diameter[Count]);
 read(TheFile, StackHeight[Count]);
 read(TheFile, StackTemp[Count]);
 read(TheFile, StackVel[Count]);
 read(TheFile, ED50[Count]);
 read(TheFile, StackVolFlow[Count]);
 read(TheFile, XPos[Count]);
 read(TheFile, YPos[Count]);
 read(TheFile, XBuilding[Count]);
 read(TheFile, YBuilding[Count]);
 read(TheFile, HBuilding[Count]);
 Code := ioresult;
 if Code <>0 then
 begin
 writeln('** Error during disk read. **');
 writeln('** Code = ',Code,' (decimal) **');
 close(theFile);
 exit
 end
 else begin
 close(theFile);
 exit
 end;
 close(TheFile);
 writeln('** ',Count,' sets of stack data in file ',Filespec,' **');
end;

{PROCEDURE TO LOAD METEOROLOGICAL DATA FROM A DISK FILE}
procedure LoadMeteorology(var Observation, AmbTemp, Windspeed :
ArrayType;
ArrayType; var WindAngle :
ArrayType;
ArrayType; var Terrain, Stability :
ArrayType;
ArrayType; var XDist, YDist, ZO, NPA, Hnot, Zi :
ArrayType;
integer);
var Count, Code :
var
 FileSpec : string[80];
 TheFile : file of real;
 TooMany : boolean;

begin
 repeat
 writeln('** Enter filespec of OBSERVATION DATA input file, or **');
 writeln('** press [Enter] key to cancel. **');
 readln(FileSpec);
 if length(FileSpec) = 0 then
 begin
 Code := -1;
 exit
 end;
 assign(TheFile, FileSpec);
 {$I-} reset(TheFile);
 Code := ioreult;
 if Code <> 0 then
 begin
 writeln(chr(7));
 writeln('** No file named ",FileSpec," found.
 **');
 writeln('** Try again.
 **');
 end;
 until Code = 0;
 TooMany := false;
 while not eof(TheFile) do
 begin
 Count := Count+1;
 if (Count > ArraySize) and (not TooMany) then
 begin
 TooMany := true;
 writeln(chr(7));
 **');
 writeln('** Only 1st ",ArraySize," loaded. **');
 Code := -2;
 Count := Count-1
 end;
 if not TooMany then
 begin
 read(TheFile, Observation(Count));
 read(TheFile, AmbTemp(Count));
 read(TheFile, WindSpeed(Count));
read(TheFile, WindAngle[Count]);
read(TheFile, Terrain[Count]);
read(TheFile, Stability[Count]);
read(TheFile, XDist[Count]);
read(TheFile, YDist[Count]);
read(TheFile, ZO[Count]);
read(TheFile, NPA[Count]);
read(TheFile, Hnot[Count]);
read(TheFile, Zi[Count]);
Code := loresult;
if Code <> 0 then
begin
 writeln('** Error during disk
',',Code,'(decimal) **');
 writeln('** Code =
close(TheFile);
exit
end
else
begin
 close(TheFile);
 exit
end;
close(TheFile);
writeln('** ',Count,' observations in the file ',FileSpec,'**')
end;

{PROCEDURE TO DETERMINE STACK POSITIONS AND BUILDING
CROSS-SECTIONAL AREAS
 RELATIVE TO THE RECEPTOR}
procedure RelativePositions(var X,Y,WindAngle,ThetaWS : real;
ArrayType;
var XRec,YRec,XPos,YPos,XBuilding :
ArrayType;
var YBuilding,HBuilding,ABuilding :
Integer);

var
 Theta, Thetal, Theta2, ThetaWA, XR, Y2, X2 : real;
 J : integer;
begin
 XR := sqrt(sqr(X) + sqr(Y)); \{Distance from origin to receptor\}
 if (X>0) and (Y>=0) then
 Theta := arctan(Y/X);
 \{if for quadrant 1\}
 if (X<0) and (Y>=0) then
 Theta := Pi - arctan(Y/(-X));
 \{if for quadrant 2\}
 if (X<0) and (Y<0) then
 Theta := Pi + arctan(Y/X);
 \{if for quadrant 3\}
 if (X>0) and (Y<0) then
 Theta := 2*Pi - arctan((-Y)/X);
 \{if for quadrant 4\}
 if (X=0) and (Y>0) then
 Theta := Pi/2;
 if (X=0) and (Y<0) then
 Theta := 3*Pi/2;
 Theta2:=Theta-(WindAngle*Pi/180); \{Wind Angle Offset\}
 ThetaWA:=WindAngle*Pi/180;
 \{Determination of angle for calculation of building cross-sectional area\}
 if ThetaWA<=Pi/2 then
 Theta1:=ThetaWA;
 if (ThetaWA<=2*Pi) and (ThetaWA>Pi/2) then
 Theta1:=Pi-ThetaWA;
 if (ThetaWA<=3*Pi/2) and (ThetaWA>Pi) then
 Theta1:=ThetaWA-Pi;
 if (ThetaWA<2*Pi) and (ThetaWA>3*Pi/2) then
 Theta1:=2*Pi-ThetaWA;
 \{Determination of Wind Angle Offset when receptor is in quadrant 1 and Wind Direction is in quadrant 4\}
 if (Theta>Pi/2) and (ThetaWA>3*Pi/2) then
 Theta2:=(Theta+2*Pi)-ThetaWA;
 \{Determination of Wind Angle Offset when Wind Direction is in quadrant 1 and receptor is in quadrant 4\}
 if (Theta>3*Pi/2) and (ThetaWA<Pi/2) then
 Theta2:=Theta-(ThetaWA+2*Pi);
 ThetaWS:=Theta2*180/Pi;
 for J := 1 to NumStack do
 begin
 \{Calculation of Downwind and Crosswind distances when the
Wind Angle Offset is equal to zero)
XRec[J] := XR - XPos[J]*cos(Theta) -
YPos[J]*sin(Theta);
YRec[J] := XPos[J]*sin(Theta) -
YPos[J]*cos(Theta) + XRec[J]*sin(Theta2)/cos(Theta2);
{Adjustment of Downwind and Crosswind distances
when the
Wind Angle Offset is not equal to zero)
if Theta2<>0.0 then
begin
 Y2:=XRec[J]*sin(Theta2)/cos(Theta2);
 X2:=YRec[J]*sin(Theta2)/cos(Theta2);
 XRec[J]:=(XRec[J]-X2)*cos(Theta2);
 YRec[J]:=(YRec[J]+Y2)*cos(Theta2)
end;
if XRec[J]<=0.0 then XRec[J]:=1.0;
{Calculation of Wind-oriented Building
Cross-sectional Area}
ABuilding[J] := (XBuilding[J]*sin(Theta1) +
YBuilding[J]*
 cos(Theta1))*HBuilding[J];
if ABuilding[J]<0.0 then ABuilding[J]:=0.0;
end;

{PROCEDURE TO ASSIGN CONSTANTS FOR LOGARITHMIC WIND PROFILE AND
POTENTIAL TEMPERATURE GRADIENT}
procedure Constants(var Stability, PP, TempGrad : real);
begin;
 if Stability =1 then
 begin PP := 0.07; TempGrad := -0.009 end;
 if Stability =2 then
 begin PP := 0.07; TempGrad := -0.008 end;
 if Stability =3 then
 begin PP := 0.10; TempGrad := -0.006 end;
 if Stability =4 then
 begin PP := 0.15; TempGrad := 0.0 end;
 if Stability =5 then
 begin PP := 0.35; TempGrad := 0.02 end;
 if Stability =6 then
 begin PP := 0.35; TempGrad := 0.035 end;
end;
{PROCEDURE TO DETERMINE PLUME HEIGHT FOR EACH SOURCE}

procedure PlumeRise(var Diameter, StackHeight, StackVel, XRec, PlumeHeight, HBuilding, PlumeHeight2, M : ArrayType;

 var AmbTemp, WindSpeed, Stability : real;
 var Hnot, Zl, ZO : real;
 var PP, TempGrad, Calm : real;
 var NumStack : integer);

var
 StackWind, BFlux, SFact : real;
 FA, XF, Arg1, Arg2, Arg3 : real;
 Arg4, Arg5, PlumeRise, MaxRise : real;
 Dum, HPRM, Wstar : real;
 DownWash : Array[1..100] of real;
 J : integer;

const
 Anhgt : real = 10.0;

function Power(Number, Exponent : real) : real;
begin
 if Number > 0.0 then
 Power := exp(Exponent*ln(Number))
 else
 Power := 0.0
end;

{PROCEDURE TO DETERMINE PLUMERISE FOR STACK DOWNWASH}

procedure NewPlume(var PlumeHeight2, HBuilding, XRec, Hnot : real;

 var Zl, StackWind, AmbTemp, Stability : real;
 var WindSpeed, Anhgt, ZO : real);

const
 g = 9.81; {Gravitational acceleration m/s^2}
 Rho = 1.29; {Density of Air kg/m^3}
 Cp = 240.0; {Heat Capacity of Air cal/K/kg}

var
 Tbar, Wstar, Zbar, CapX, Xnot, Xtotal, Ustar, L, K : real;
 Error, Temp, Templ, Arg, LowX, HighX : real;
function MyFunc(Z, Z0, L, K, Xtotal:real):real;
begin
MyFunc := 0.74*Z*((ln(0.6*Z/Z0)+K*4.9*Z/L)*(1+K*4.9*Z/L)+K*1.2*Z/L-
)/sqr(0.35)-Xtotal;
end;

procedure Root(LowX, HighX, Z0, L, K, Xtotal:real; var Result: real);

const
MaxNumSegs = 1000;
MaxError = 1E-5;

var
X, XLo, XHi, Flo, FHi, Width, Test : real;
I, NumSegs : integer;
OK : boolean;

procedure Iterate;
begin {procedure Iterate}
 repeat
 X := (XLo+XHi)/2.0;
 Test := MyFunc(X, Z0, L, K, Xtotal);
 if Abs(Test) < MaxError then
 begin
 Result := X;
 OK := true
 end
 else
 if (Test*Flo) > 0.0 then
 begin
 XLo := X;
 FLo := Test
 end
 else
 begin
 XHi := X;
 FHi := Test
 end
 Until OK
end; {procedure Iterate}

begin {procedure Root}
 OK := false;
 XLo := LowX;
 XHi := HighX;
 Flo := MyFunc(XLo, Z0, L, K, Xtotal);
 FHi := MyFunc(XHi, Z0, L, K, Xtotal);
end;
if abs(FLo) < MaxError then
begin
 OK := true;
 Result := XLo;
 Exit
end;
if abs(FHi) < MaxError then
begin
 OK := true;
 Result := XHi;
 exit
end;
if (FLo*FHi) < 0.0 then
begin
 Iterate;
 exit
end;
NumSegs := 2;
repeat
 Width := (XHi-XLo)/NumSegs;
 for I := 1 to (NumSegs div 2) do
 begin
 X := XLo + Width*(2*I-1);
 FHi := MyFunc(X, Z0, L, K, Xtotal);
 if (FHi*FLo) < 0.0 then
 begin
 XHi := X;
 Iterate;
 exit
 end;
 end;
 NumSegs := NumSegs*2
Until NumSegs > MaxNumSegs
end; {procedure Root}

begin
{For unstable conditions}
if Stability < 3.0 then
begin
 Tbar := 0.5*(2*AmbTemp - 0.0098*Zi);
 Wstar := (g*Nhat*Zi)/(Rho*Cp*Tbar);
 Wstar := exp(1.0/3.0*ln(Wstar));
 Zbar := 0.5*HBuilding;
 CapX := (Zbar/Zi/0.812);
 CapX := exp(0.67*ln(CapX));
 Xnot := CapX*StackWind*Zi/Wstar;
 Xtotal := XRec+Xnot;
 CapX := Xtotal*Wstar/(StackWind*Zi);
 PlumeHeight2 := Zi*0.812*exp(1.5*ln(CapX));
end;
{For neutral and near neutral conditions}
if (Stability>2.0) and (Stability<5.0) then begin
 K:=0.0;
 L:=1.0;
 Zbar:=0.5*HBuilding;
 Xnot:=0.75*Zbar*ln(0.6*Zbar/ZO)/sqr(0.35);
 Xtotal:=XRec+Xnot;
 LowX:=Zbar;
 HighX:=Zi;
 Root(LowX,HighX,ZO,L,K,Xtotal,ZBar);
 PlumeHeight2:=Zbar;
end;
{For stable conditions}
if Stability>4.0 then begin
 K:=1.0;
 Zbar:=0.5*HBuilding;
 Temp1:= 1100*sqr(StackWind);
 Repeat
 L:=1100*sqr(0.35*WindSpeed/((ln(Anhgt/ZO)+
 4.7*(Anhgt/Temp1)))^2);
 Error:=Abs(Temp1-L);
 Temp1:=L;
 Until Error<0.01;
 Xnot:=0.74*Zbar*((ln(0.6*Zbar/ZO)+4.9*Zbar/L)^2*
 (1+4.9*Zbar/L)+1.2*Zbar/L)/sqr(0.35);
 Xtotal:=XRec+Xnot;
 LowX:=Zbar;
 HighX:=Zi;
 Root(LowX,HighX,ZO,L,K,Xtotal,ZBar);
 PlumeHeight2:=ZBar
end;

{PLUME RISE FOR NORMAL CONDITIONS USING BRIGGS' EQUATIONS}
begin
 for J:=1 to NumStack do begin
 begin
 PlumeHeight2[J]:=1.0;
 Arg1 := StackHeight[J]/Anhgt;
 Arg2 := Power(Arg1, PP);
 StackWind := WindSpeed*Arg2;
 {Determination of degree of possible plume
 entrainment}
 DownWash[J]:=StackVel[J]/StackWind;
 if DownWash[J]<=0.9 then
 M[J]:=1.0;
if (DownWash[J]>0.9) and (DownWash[J]<1.5) then
 M[J] := 2.2-1.33*DownWash[J];
if (DownWash[J]>=1.5) and (DownWash[J]<5.0) then
 M[J] := 0.286-0.0571*DownWash[J];
if (DownWash[J]>=5.0) then
 M[J] := 0.0;
{Test for calm conditions}

Wstar := Power((9.81*Hno*Zi)/(1.29*240*0.5*(2*AmbTemp-0.0098*Zi)),
,1.0/3.0);
if (WindSpeed<1.2*Wstar) and (Stability<3.0) then
 Calm := 1.0
else
 Calm := 0.0;
{For Warm Buoyant Plumes}
if StackTemp[J] >= AmbTemp then
begin
 BFlux :=
9.807*StackVel[J]*sqrt(Diameter[J]/2)*((StackTemp[J]-AmbTemp)/StackTemp[J]);
SFact := 9.807/AmbTemp*TempGrad;
{For Stability <= 4) and (BFlux >=55) then
begin
 Arg1 := Power(BFlux,0.4);
 XF := 119*Arg1;
 if (XRec[J] >= XF) then
begin
 Arg1 := Power(BFlux,0.6);
 PlumeRise :=
 38.7*Arg1/StackWind
end
else
begin
 Arg1 := Power(BFlux,1/3);
 Arg2 := Power(XRec[J],2/3);
 PlumeRise :=
1.6*Arg1*Arg2/StackWind
end;
if (Stability <= 4) and (BFlux<55) then
begin
 Arg1 := Power(BFlux,0.625);
 XF := 49*Arg1;
 if (XRec[J] >= XF) then
begin
 Arg1 := Power(BFlux,0.75);
 PlumeRise :=
21.4*Arg1/StackWind
end

else
begin
 Arg1 := Power(BFlux, 1/3);
 Arg2 := Power(XRec[J], 2/3);
 PlumeRise := 1.6*Arg1*Arg2/StackWind
end

{For Stable Conditions}
if (Stability > 4) and (BFlux >= 55) then begin
 FA := 1.84*StackWind/sqrt(SFact);
 Arg1 := Power(BFlux, 0.4);
 XF := 119*Arg1;
 if XF > FA then begin
 if XRec[J] >= FA then begin
 Arg1 := BFlux/StackWind/SFact;
 Arg2 := Power(Arg1, 1/3);
 PlumeRise := 2.4*Arg2
 end
 else
 begin
 Arg1 := Power(BFlux, 1/3);
 Arg2 := Power(XRec[J], 2/3);
 PlumeRise := 1.6*Arg1*Arg2/StackWind
 end
end else begin
 if XRec[J] >= XF then begin
 Arg1 := Power(BFlux, 0.6);
 PlumeRise := 38.7*Arg1/StackWind
 end
else
begin
 PlumeRise := 1.6*Arg1*Arg2/StackWind
end
else
begin
 Arg1 := Power(BFlux, 1/3);
 Arg2 := Power(XRec[J], 2/3);
 PlumeRise := 1.6*Arg1*Arg2/StackWind
end
end;

if (Stability > 4) and (BFlux<55) then begin
 FA := 1.84*StackWind/sqrt(SFact);
 Arg1:= Power(BFlux,0.625);
 XF := 49*Arg1;
 if XF>FA then begin
 if XRec[J] >= FA then begin
 Arg1:=BFlux/StackWind/SFact;
 Arg2:=Power(Arg1,1/3);
 PlumeRise :=2.4*Arg2;
 end
 else begin
 Arg1:=Power(BFlux,1/3);
 Arg2:=Power(XRec[J],2/3);
 end
 end
 else begin
 PlumeRise:=1.6*Arg1*Arg2/StackWind
 end
 end
else begin
 if XRec[J]> XF then begin
 Arg1:=Power(BFlux,0.75);
 PlumeRise :=21.4*Arg1/StackWind
 end
 else begin
 Arg1:=Power(BFlux,1/3);
 Arg2:=Power(XRec[J],2/3);
 end
 PlumeRise:=1.6*Arg1*Arg2/StackWind;
end
end

{For Cold Jets}
if StackTemp[J] < AmbTemp then begin
 if Stability > 4 then begin
 Arg1:=(AmbTemp/StackTemp[J]);
 Arg2:=Power(Arg1,1/3);
 end
end
Arg3:=(Diameter[J]*StackVel[J]/StackWind);
 Arg4:=Power(Arg3,2/3);
 Arg5:=Power(XRec[J],1/3);
 PlumeRise:=1.44*Arg2*Arg4*Arg5;
 Arg3:=Power(StackWind,1/3);
 Arg4:=Power(SFact,1/6);
 Arg1:=(Diameter[J]*StackVel[J]);
 Arg5:=Power(Arg1,2/3);
 MaxRise :=
 0.95*Arg2/(Arg3*Arg4)*Arg5;
 if PlumeRise>MaxRise then PlumeRise :=MaxRise;
 end
 else
 begin
 Arg1:=(AmbTemp/StackTemp[J]);
 Arg2:=Power(Arg1,1/3);
 end
Arg3:=(Diameter[J]*StackVel[J]/StackWind);
 Arg4:=Power(Arg3,2/3);
 Arg5:=Power(XRec[J],1/3);
 PlumeRise:=1.44*Arg2*Arg4*Arg5;
MaxRise:=3*Diameter[J]*StackVel[J]/StackWind;
 if PlumeRise>MaxRise then PlumeRise:=MaxRise
end

{For Stacktip Downwash when StackVel<1.5*StackWind}
Dum:=StackVel[J]/StackWind;
 if (Dum<1.5) then
 HPRM:=StackHeight[J]+2*Diameter[J]*(Dum-1.5)
 else
 HPRM:=StackHeight[J];
 if HPRM<0 then HPRM:=0;
 PlumeHeight[J]:=HPRM+PlumeRise;
{For Full or Partial Aerodynamic Downwash}
 if (StackHeight[J]<2.0*HBuilding[J]) and (M[J]>0.0)
then
 begin
 NewPlume(PlumeHeight2[J],HBuilding[J],XRec[J],Hnot,
 Zl,StackWind,AmbTemp,Stability,WindSpeed;
 Anhgt,20);
 if (PlumeHeight2[J]>PlumeHeight[J]) then
 PlumeHeight2[J]:=PlumeHeight[J]
 end
else
 M[J]:=0.0;
end
end;

{PROCEDURE TO CALCULATE URBAN LONG-TERM DISPERSION COEFFICIENTS}
procedure UrbanSigma(var XRec, ABuilding, HBuilding, SigmaZ, SigmaY : ArrayType;
 var SigmaZ1, SigmaY1 : ArrayType;
 var Stability, CorFact : real;
 var NumStack : integer);

var
 J : integer;
 IZ, JZ, KZ, IY, JY, KY : real;
 ArgY, ArgZ, Area : real;

function Power(Number, Exponent: real): real;
begin
 if Number > 0.0 then
 Power := exp(Exponent * ln(Number))
 else
 Power := 0.0
end;

begin
 if Stability = 1.0 then
 begin
 IZ := 240; JZ := 1.0; KZ := 0.5; IY := 320; JY := 0.4;
 KY := -0.5
 end;
 if Stability = 2.0 then
 begin
 IZ := 240; JZ := 1.0; KZ := 0.5; IY := 320; JY := 0.4;
 KY := -0.5
 end;
 if Stability = 3.0 then
 begin
 IZ := 200; JZ := 0.0; KZ := 0.0; IY := 220; JY := 0.4;
 KY := -0.5
 end;
 if Stability = 4.0 then
 begin
 IZ := 140; JZ := 0.3; KZ := -0.5; IY := 160; JY := 0.4;
 KY := -0.5
 end;
if Stability = 5.0 then
 begin
 IZ:=80; JZ:=1.5; KZ:=-0.5; IY:=110; JY:=0.4;
 KY:=-0.5
 end;
if Stability = 6.0 then
 begin
 IZ:=80; JZ:=1.5; KZ:=-0.5; IY:=110; JY:=0.4;
 KY:=-0.5
 end;
for J:=1 to NumStack do
 begin
 ArgZ:=(1 + JZ*XRec(J)/1000);
 ArgZ:=Power(ArgZ,KZ);
 SigmaZ[J]:=IZ*XRec(J)/1000*ArgZ;
 ArgY:=(1 + JY*XRec(J)/1000);
 ArgY:=Power(ArgY,KY);
 SigmaY[J]:=IY*XRec(J)/1000*ArgY;
 {Dispersion coefficients for entrained portion of plume}
 Area:=ABuilding(J);
 SigmaZl[J]:=sqrt(sqr(SigmaZ[J])+CorFact*Area/P1);
 SigmaYl[J]:=sqrt(sqr(SigmaY[J])+CorFact*Area/P1);
 end;

{PROCEDURE TO CALCULATE RURAL LONG-TERM DISPERSION COEFFICIENTS}
procedure RuralSigma(var XRec, ABuilding, HBuilding, SigmaZ, SigmaY : ArrayType;)
 var SigmaZl,SigmaYl
 ArrayType;
 var Stability, CorFact : real;
 var NumStack : integer);
var
 J : integer;
 IZ, JZ, KZ, IY, JY, KY : real;
 Area : real;
begin
 if Stability = 1 then
 begin
 IZ:=6.035; JZ:=2.1097; KZ:=0.2770;
 IY:=5.357; JY:=0.8828; KY:=-0.0076
 end;
if Stability = 2 then
 begin
 IZ:=4.694; JZ:=1.0629; KZ:=0.0136;
 IY:=5.058; JY:=0.9024; KY:=0.0096
 end;
if Stability = 3 then
 begin
 IZ:=4.110; JZ:=0.9201; KZ:=0.0020;
 IY:=4.651; JY:=0.9181; KY:=0.0076
 end;
if Stability = 4 then
 begin
 IZ:=3.414; JZ:=0.7371; KZ:=0.0316;
 IY:=4.230; JY:=0.9222; KY:=0.0087
 end;
if Stability = 5 then
 begin
 IZ:=3.057; JZ:=0.6794; KZ:=0.0450;
 IY:=3.922; JY:=0.9222; KY:=0.0064
 end;
if Stability = 6 then
 begin
 IZ:=2.621; JZ:=0.6564; KZ:=0.0540;
 IY:=3.533; JY:=0.9181; KY:=0.0070
 end;
for J:=1 to NumStack do
 begin
 SigmaZ[J]:=exp(IZ + JZ*ln(XRec[J]/1000) +
 KZ*sqr(ln(XRec[J]/1000))) +
 SigmaY[J]:=exp(IY + JY*ln(XRec[J]/1000) +
 KY*sqr(ln(XRec[J]/1000))) +
 {Dispersion coefficients for entrained portion of plume}
 Area:=ABuilding[J];
 SigmaZ[J]:=sqrt(sqr(SigmaZ[J]) + CorFact*Area/Pi);
 SigmaY[J]:=sqrt(sqr(SigmaY[J]) + CorFact*Area/Pi)
 end;

{PROCEDURE TO CALCULATE AVERAGE PLUME DISPERSION COEFFICIENTS}
procedure AvgSigma(var SigmaUZ, SigmaUY, SigmaUZL, SigmaUYL,
 SigmaRZ, SigmaRY, SigmaRZL, SigmaRYL,
 SigmaZ, SigmaY, SigmaZL, SigmaYL :
 ArrayType;
 var NumStack : integer);
var
 J : integer;
begin
 for J:=1 to NumStack do
 begin
 SigmaZ(J):=0.5*(SigmaUZ(J)+SigmaRZ(J));
 SigmaZ1(J):=0.5*(SigmaUZ1(J)+SigmaRZ1(J));
 SigmaY(J):=0.5*(SigmaUY(J)+SigmaRY(J));
 SigmaY1(J):=0.5*(SigmaUY1(J)+SigmaRY1(J))
 end
end;

PROCEDURE TO CALCULATE SHORT-TERM PUFF DISPERSION COEFFICIENTS USING HOGSTROM'S EQUATIONS
procedure SigmaP(var XRec, PlumeHeight, SigmaYP, SigmaZP : ArrayType;
 StackHeight : ArrayType;
 Stability, WindSpeed, ZO, NPA, TempGrad, PP : real;
 NumStack : integer);
const
 FrictLayer = 1000;
 Anhgt = 10.0;
var
 FreeWind, PlumeWind, Wind50, Wind500, K1, K2 : real;
 E, D, KI, IR, AO, BO, BRO, ARO, ARG, HSFact : real;
 Area : real;
 J : integer;
function Power(Number, Exponent:real):real;
begin
 if Number > 0.0 then
 Power := exp(Exponent*ln(Number))
 else
 Power := 0.0
end;
begin
 FreeWind := WindSpeed*Power(FrictLayer/Anhgt, PP);
 for J:=1 to NumStack do
 begin

if Stability <= 2 then
begin

SigmaYP[J]:=50*sqrt(2*(exp(-0.001*XRec[J])+0.001*XRec[J]-1));

PlumeWind:=WindSpeed*Power(PlumeHeight[J]/Anhgt,PP);
Wind50:=WindSpeed*Power(50/Anhgt,PP);
Wind500:=WindSpeed*Power(500/Anhgt,PP);

K1:=1/(4.31*ln(50/20)/ln(10))+0.03*(1-Wind50/16);
K2:=1/(4.31*ln(500/20)/ln(10))+0.33*Power((1-Wind500/16),3);
E:= (K1-K2)/(-0.018);
D:= K1+0.02*(K1-K2)/(-0.018);
if PlumeHeight[J] < 50 then
KI:=D-E/50
else
KI:=D-E/PlumeHeight[J];
IR:=0.35*KI;

AO:=1/(4.31*ln(PlumeHeight[J]/ZO)/ln(10))*1/(0.4*PlumeHeight[J]-NPA);

BO:=AO*Power(PlumeWind/16,0.8);
BRO:=0.65*BO;

SigmaZP[J]:=IR/BRO*sqrt(2*(exp(-BRO*XRec[J])+BRO*XRec[J]-1));
end;
if (Stability>2) and (Stability<5) then
begin

SigmaYP[J]:=50*sqrt(2*(exp(-0.001*XRec[J])+0.001*XRec[J]-1));
IR:=0.36/(4.31*ln(PlumeHeight[J]/ZO)/ln(10));

AO:=1/(4.31*ln(PlumeHeight[J]/ZO)/ln(10))*1/(0.4*PlumeHeight[J]-NPA);
ARO:=0.65*AO;

SigmaZP[J]:=IR/ARO*sqrt(2*(exp(-ARO*XRec[J])+ARO*XRec[J]-1));
end;
if Stability>4 then
begin
HSFact:=TempGrad/sqr(FreeWind)*1E5;

SigmaYP[J]:=50*sqrt(2*(exp(-0.001*XRec[J])+0.001*XRec[J]-1))*1/(-1+0.01*HSFact);
IR:=0.36/(4.31*ln(PlumeHeight[J]/ZO)/ln(10));
AO:=1/(4.31*ln(PlumeHeight[J]/ZO)/ln(10))*1/(0.4*PlumeHeight[J]-NPA);
ARO:=0.65*AO;
ARG:=Power(PlumeHeight[J]/87,0.62);

SigmaZP[J]:=IR/ARO*sqrt(2*(exp(-ARO*XRec[J])+ARO*XRec[J]-1))/(1-
0.022*ARG*HSFact);
end;
end;

{PROCEDURE TO CALCULATE SHORT-TERM PUFF DISPERSION COEFFICIENTS
 USING
 HOGSTROM'S EQUATIONS FOR ENTRAINED PLUMES}
procedure SigmaPl(var XRec,PlumeHeight,ABuilding,SigmaYP,SigmaZP
: ArrayType;
 var StackHeight,M : ArrayType;
 var Stability,WindSpeed,ZO,NPA,TempGrad,PP,CorFact : real;
 var NumStack :
 integer);
const
 FrictLayer = 1000;
 Anhgt = 10.0;

var
 FreeWind, PlumeWind, Wind50, Wind500, K1, K2 : real;
 E, D, KI, IR, AO, BO, BRO, ARO, ARG, HSFact : real;
 Area : integer;
 J

function Power(Number,Exponent:real):real;
begin
 if Number > 0.0 then
 Power := exp(Exponent*ln(Number))
 else
 Power := 0.0
end;

begin
 FreeWind := WindSpeed*Power(FrictLayer/Anhgt,PP);
 for J:=1 to NumStack do
 begin
 if M[J]>0.0 then
 begin
 if Stability <= 2 then
 begin
 SigmaYP[J]:=50*sqrt(2*(exp(-0.001*XRec[J])+0.001*XRec[J]-1));
 end;\n end;
 end;
 end;
end;

PlumeWind := WindSpeed * Power(PlumeHeight[J]/Anhgt,PP);
Wind50 := WindSpeed * Power(50/Anhgt,PP);
Wind500 := WindSpeed * Power(500/Anhgt,PP);

K1 := 1/(4.31*log(50/EO)/log(10)) + 0.03*(1 - Wind50/16);
K2 := 1/(4.31*log(500/EO)/log(10)) + 0.33*Power((1 - Wind500/16),3);
E := (K1 - K2)/(-0.018);
D := K1 + 0.02*(K1 - K2)/(-0.018);
if PlumeHeight[J] < 50 then
 K1 := D - E/50
else
 K1 := D - E/PlumeHeight[J];
IR := 0.36*K1;

AO := 1/(4.31*log(PlumeHeight[J]/EO)/log(10))*1/(0.4*PlumeHeight[J]*NPA);
 BO := AO*Power(PlumeWind/16,0.8);
 BRO := 0.65*BO;
SigmaZP[J] := IR/BO*sqrt(2*(exp(-BO*XRec[J]) + BRO*XRec[J]-1));
 end;
 if (Stability > 2) and (Stability < 5) then
 begin
 SigmaYP[J] := 50*sqrt(2*(exp(-0.001*XRec[J]) + 0.001*XRec[J]-1));
 IR := 0.36/(4.31*log(PlumeHeight[J]/EO)/log(10));
 AO := 1/(4.31*log(PlumeHeight[J]/EO)/log(10))*1/(0.4*PlumeHeight[J]*NPA);
 ARO := 0.65*AO;
 SigmaZP[J] := IR/ARO*sqrt(2*(exp(-ARO*XRec[J]) + ARO*XRec[J]-1));
 end;
 if Stability > 4 then
 begin
 HSFact := TempGrad/sqr(FeeWind)*1E5;
 SigmaYP[J] := 50*sqrt(2*(exp(-0.001*XRec[J]) + 0.001*XRec[J]-1))*1/(-1+0.01*HSFact);
 IR := 0.36/(4.31*log(PlumeHeight[J]/EO)/log(10));
 AO := 1/(4.31*log(PlumeHeight[J]/EO)/log(10))*1/(0.4*PlumeHeight[J]*NPA);
 ARO := 0.65*AO;
 ARG := Power(PlumeHeight[J]/87,0.62);
 SigmaZP[J] := IR/ARO*sqrt(2*(exp(-ARO*XRec[J]) + ARO*XRec[J]-1))/(1+-0.022*ARG*HSFact);
 end;
Area := ABuilding[J];
SigmaYP[J] := sqrt(sqr(SigmaYP[J]) + CorFact * Area / Pi);
SigmaZP[J] := sqrt(sqr(SigmaZP[J]) + CorFact * Area / Pi);
end
else
begin
 SigmaZP[J] := 1.0;
 SigmaYP[J] := 1.0
end;
end;

{PROCEDURE TO CALCULATE STANDARD DEVIATIONS OF PUFF POSITIONS}
procedure SigmaC(var
 SigmaY, SigmaZ, SigmaY1, SigmaZ1, SigmaYP, SigmaZP,
 SigmaYP1, SigmaZP1, SigmaYC, SigmaZC,
 SigmaYCI, SigmaZCI
 : ArrayType;
 var NumStack : integer);
var
 J : integer;
Begin
 for J := 1 to NumStack do
 begin
 SigmaZC[J] := sqrt(sqr(SigmaZ[J]) - sqr(SigmaZP[J]));
 SigmaYC[J] := sqrt(sqr(SigmaY[J]) - sqr(SigmaYP[J]));
 SigmaZCI[J] := sqrt(sqr(SigmaZ1[J]) - sqr(SigmaZP1[J]));
 SigmaYCI[J] := sqrt(sqr(SigmaY1[J]) - sqr(SigmaYP1[J]));
 end;
end;

{PROCEDURE TO CALCULATE THE GROUND-LEVEL GAUSSIAN CONCENTRATION}
procedure GaussianCon(var
 StackVolFlow, ED50, YRec, PlumeHeight, PlumeHeight2,
 SigmaY, SigmaZ, SigmaY1, SigmaZ1, M
 : ArrayType;
 var PP, WindSpeed, GaussCon
 : real;
 var NumStack
 : integer);
var
 PlumeWind, PlumeWind2, SourceCon, Arg1, Arg2, Arg3, Arg4
 : real;
 J : integer;
const
 Anhgt = 10.0;
begin
 GaussCon := 0.0;
 for J:=1 to NumStack do
 begin
 PlumeWind:=WindSpeed*exp(PP*ln(PlumeHeight[J]/Anhgt));
 PlumeWind2:=WindSpeed*exp(PP*ln(PlumeHeight2[J]/Anhgt));
 Arg1:=
 (1-M[J])*StackVolFlow[J]*ED50[J]/(Pi*PlumeWind*SigmaZ[J]*SigmaY[J]);
 Arg2:=(-0.5*sqr(YRec[J]/SigmaY[J])-0.5*sqr(PlumeHeight[J]/SigmaZ[J]));
 Arg3:=(M[J])*StackVolFlow[J]*ED50[J]/(Pi*PlumeWind2*SigmaZ1[J]*SigmaY1[J]);
 Arg4:=(-0.5*sqr(YRec[J]/SigmaY1[J])-0.5*sqr(PlumeHeight2[J]/SigmaZ1[J]));
 if Arg2<-70 then Arg2:=-70.0;
 if Arg4<-70 then Arg4:=-70.0;
 SourceCon:=Arg1*exp(Arg2)+Arg3*exp(Arg4);
 GaussCon:=GaussCon+SourceCon
 end;
end;

{PROCEDURE TO CALCULATE GROUND LEVEL CONCENTRATIONS USING THE
FLUCTUATING PLUME MODEL}
procedure FPM(var YRec,PlumeHeight,PlumeHeight2,
 SigmaYC,SigmaZC,SigmaYCl,SigmaZCl,
 SigmaYP,SigmaZP,SigmaYP1,SigmaZP1,
 StackVolFlow,ED50, M
:ArrayType;
 var FPuffCon
:ArrayType2;
 var PP, WindSpeed :real;
 var NumPuff,NumStack :integer);

var
 Y, H, Y1, H1, PuffWind, PuffWind2, Arg1, Arg2, Arg3, Arg4,
PuffCon : real;
 I, J
 : integer;
const
 Anhgt = 10.0;

function RndNorm(Mean, StanDev : real) : real;
var
 RandomA, RandomB, Radius2, Deviate : real;
begin
 repeat
 RandomA := 2.0*random-1.0;
 RandomB := 2.0*random-1.0;
 Radius2 := sqrt(RandomA)+sqrt(RandomB)
 until
 Radius2<1.0;
 Deviate := RandomA*sqrt((-2.0*ln(Radius2))/Radius2);
 RndNorm := Mean+Deviate*StanDev
end;

Begin
 for I:=1 to NumPuff do
 begin
 FPuffCon[I]:=0.0;
 for J:=1 to NumStack do
 begin
 Y := RndNorm(YRec[J], SigmaYC[J]);
 H := RndNorm(PlumeHeight[J], SigmaZC[J]);
 if H<0 then H:=1.0;

 PuffWind := WindSpeed*exp(PP*ln(PlumeHeight[J]/Anhgt));

 Arg1 := (1-M(J))*StackVolFlow[J]*ED50[J]/(Pi*PuffWind*SigmaZP[J]*SigmaYP[J]);

 Arg2 := (-0.5*sqrt(Y/SigmaYP[J])-0.5*sqrt(H/SigmaZP[J]));
 if M(J)>0.0 then
 begin
 Y1 := RndNorm(YRec[J], SigmaYC1[J]);

 H1 := RndNorm(PlumeHeight2[J], SigmaZC1[J]);
 if H1<0 then H1:=1.0;

 PuffWind2 := WindSpeed*exp(PP*ln(PlumeHeight2[J]/Anhgt));

 Arg3 := M(J)*StackVolFlow[J]*ED50[J]/(Pi*PuffWind2*SigmaZP1[J]*SigmaYP1[J]);

 Arg4 := (-0.5*sqrt(Y1/SigmaYP1[J])-0.5*sqrt(H1/SigmaZP1[J]));
 end
 else
 begin
 Y1 := RndNorm(YRec[J], SigmaYC1[J]);

 H1 := RndNorm(PlumeHeight2[J], SigmaZC1[J]);
 if H1<0 then H1:=1.0;

 PuffWind2 := WindSpeed*exp(PP*ln(PlumeHeight2[J]/Anhgt));

 Arg3 := M(J)*StackVolFlow[J]*ED50[J]/(Pi*PuffWind2*SigmaZP1[J]*SigmaYP1[J]);

 Arg4 := (-0.5*sqrt(Y1/SigmaYP1[J])-0.5*sqrt(H1/SigmaZP1[J]));
 end
 end
 end
end;
begin
 Arg3:=0.0;
 Arg4:=0.0
end;
if Arg2<-70 then Arg2:=-70;
if Arg4<-70 then Arg4:=-70;
PuffCon:=Arg1*exp(Arg2)+Arg3*exp(Arg4);
FPuffCon[I]:=FPuffCon[I]+PuffCon
end;

PROCEDURE TO DETERMINE FREQUENCY DISTRIBUTION OF GROUND-LEVEL
ODOUR CONCENTRATIONS
procedure FrequencyDist(var FPuffCon : ArrayType2;
var PuffSum, Class, RelFreq : ArrayType3;
var NumPuff, NumClass : Integer;
var MaxCon, AvgCon : Real);

var
 TotalCon : real;
 I, J, K, L : integer;

Begin
 MaxCon:=0.0;
 TotalCon:=0.0;
 for K:=1 to NumClass do
 PuffSum[K]:=0.0;
 for J:=1 to NumPuff do
 begin
 TotalCon:=TotalCon + FPuffCon[J];
 if (FPuffCon[J] > MaxCon) then
 MaxCon:=FPuffCon[J];
 if (FPuffCon[J]>=Class[1]) and
 (FPuffCon[J]<Class[2]) then
 PuffSum[1]:=PuffSum[1]+1;
 if (FPuffCon[J]>=Class[2]) and
 (FPuffCon[J]<Class[3]) then
 if (FPuffCon[J]>=Class[3]) and
 (FPuffCon[J]<Class[4]) then
 PuffSum[3]:=PuffSum[3]+1;
 if (FPuffCon[J]>=Class[4]) and
 (FPuffCon[J]<Class[5]) then
 PuffSum[4]:=PuffSum[4]+1;
if (FPuffCon[J] >= Class[5]) and
(FPuffCon[J] < Class[6]) then
if (FPuffCon[J] >= Class[6]) then
end;
AvgCon := TotalCon/NumPuff;
for L := 1 to NumClass do
 begin
 RelFreq[L] := PuffSum[L]/NumPuff;
 end
end;

{PROCEDURE TO PRINT OUT A SUMMARY OF RESULTS}
procedure PrintResults(var Obs, WindSpeed, WindAngle, AmbTemp, Stability, Terrain, ZO,
 XDist, YDist, MaxCon, GaussCon,
 AvgCon, Calm, ThetaWS: Real;
 var RelFreq
 : ArrayType3;
 var NumClass, NumPuff
 : integer);
var
 J: integer;
begin
 writeln('RESULTS:');
 writeln('');
 writeln('Puff Release Rate (Puffs/hr) = ', NumPuff);
 writeln('');
 writeln('WindShift Angle (deg) = ', ThetaWS: 4:0);
 writeln('');
 if Calm = 1.0 then
 writeln('**Warning: Calm conditions -- Results not valid');
 writeln('Obs. Wind Temp Stab Ter W-Ang X-Pos Y-Pos');
 writeln('');
 writeln('**');
 writeln('OBS: 4:0, ' 'WindSpeed: 4:1, ' 'AmbTemp: 4:0,''
 'Stability: 4:0,' 'Terrain: 3:0, ' 'WindAngle: 3:0,''
 ', XDist: 5:0, ' ', YDist: 5:0);
 writeln('');
 writeln('Odour Frequencies:');
 writeln('');
 writeln('1 - 2 * 2 - 4 * 4 - 7 * 7 - 10 * 10-31 * > 31');
end;
****');
 for J:=1 to NumClass do
 write(ReiFreq[J]:5:4,' * ');
 writeln(''); writeln('');
 writeln('Maximum Concentration = ',MaxCon:9:5);
 writeln('Gaussian Concentration = ',GaussCon:9:5);
 writeln('');
 end;

{PROCEDURE TO PRINT SCREEN CONTENTS}
procedure PrtSC;

 type
 RegList = record
 AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags: Integer
 end;

 var
 Reg: Registers;

 begin
 Intr($5,Reg)
 end;

BEGIN
 clrscr;
 Class[1]:=C11; Class[2]:=C12; Class[3]:=C13;
 Class[4]:=C14; Class[5]:=C15; Class[6]:=C16;
 writeln('Output of results to printer (Y/N)? ');
 GetKey('YyNn',Reply);
 writeln(Reply);
 writeln(' '); writeln('');
 repeat
 NumberOfPuffs(NumPuff,CharFlag,Code);
 case Code of
 -2: writeln('You hit only the [Enter] key');
 -1: writeln('You hit a nonnumeric character: ');
 0: writeln('You entered: ',NumPuff,'
(Puffs/hr)');
 else
 writeln ('You made an illegal entry')
 end
 until (Code=0);
writeln(' '); writeln(' '); repeat
 GetCorFact(CorFact, Code, Prompt1);
 case Code of
 -2: writeln(' You hit only the [Enter] key');
 -1: writeln(' You hit a nonnumeric character');
 0: writeln(' You entered Correction Factor = ',CorFact)
 else
 writeln('You made an illegal entry')
 end
 until Code=0;
writeln(' '); writeln(' '); NumStack:=0;
NumObs :=0;
ThetaWS:=0.0;
 LoadStack(Diameter,StackHeight,StackTemp,StackVel,
 ED50,StackVolFlow,XPos,YPos,XBuilding,YBuilding,
 HBuilding, NumStack, Code);
 if Code <>0 then
 begin
 writeln('Unsuccessful file load. Code = ',Code);
 writeln(' '); writeln('PROGRAM ABORTED');
 exit
 end;
 writeln(' '); writeln(' '); LoadMeteorology(Observation,AmbTemp,WindSpeed,WindAngle,Terrain,Stability,
 XDist,YDist,ZO,NPA,Hnot,Z1,NumObs,Code);
 if Code <>0 then
 begin
 writeln(' Unsuccessful file load. Code = ',Code);
 writeln(' '); writeln('PROGRAM ABORTED');
 exit
 end;
 writeln(' '); writeln(' '); for J:=1 to NumObs do
 begin
 writeln('Observation ',J,' of ',NumObs);
 end;
 writeln(' '); writeln(' '); RelativePositions(XDist[J],YDist[J],WindAngle[J],ThetaWS,XRec-
 ,YRec,XPos,YPos,XBuilding,
YBuilding, HBuilding, ABuilding, NumStack);
 Constants(Stability[J], PP, TempGrad);

PlumeRise(Diameter, StackHeight, StackVel, XRec, PlumeHeight, HBuilding,

 PlumeHeight2, M,

AmbTemp[J], WindSpeed[J], Stability[J], Hnot[J], Zl[J], Z0[J],

 PP, TempGrad, Calm, NumStack);
if Terrain[J]=1.0 then
 UrbanSigma (XRec, ABuilding, HBuilding, SigmaZ, SigmaY,

 SigmaZl, SigmaYl,

Stability[J], CorFact, NumStack);
if Terrain[J]=2.0 then
 RuralSigma (XRec, ABuilding, HBuilding, SigmaZ, SigmaY,

 SigmaZl, SigmaYl,

Stability[J], CorFact, NumStack);
if Terrain[J]=3.0 then
begin
 UrbanSigma
 (XRec, ABuilding, HBuilding, SigmaUZ, SigmaUY,

 SigmaUZl, SigmaUYl,

Stability[J], CorFact, NumStack);
RuralSigma
 (XRec, ABuilding, HBuilding, SigmaRZ, SigmaRY,

 SigmaRZl, SigmaRYl,

Stability[J], CorFact, NumStack);

AvgSigma(SigmaUZ, SigmaUY, SigmaUZl, SigmaUYl, SigmaRZ, SigmaRY,

 SigmaRZl, SigmaRYl, SigmaZ, SigmaY, SigmaZl, SigmaYl, NumStack);
end;
SigmaP(XRec, PlumeHeight, SigmaYP, SigmaZP,

 StackHeight, Stability[J],

WindSpeed[J], ZO[J], NPA[J], TempGrad, PP, NumStack);
SigmaPl(XRec, PlumeHeight2, ABuilding, SigmaYP1, SigmaZP1,

 StackHeight, M, Stability[J], WindSpeed[J], ZO[J],

NPA[J], TempGrad, PP, CorFact, NumStack);
SigmaC(SigmaY, SigmaZ, SigmaYl, SigmaZl, SigmaYP, SigmaZP,

 SigmaYP1, SigmaZP1, SigmaYC, SigmaZC,

SigmaYCl, SigmaZCl, NumStack);

GaussianCon(StackVolFlow, ED50, XRec, PlumeHeight, PlumeHeight2,

 SigmaY, SigmaZ, SigmaYl, SigmaZl, M,

PP, WindSpeed[J], GaussCon[J], NumStack);
FPH(YRec, PlumeHeight, PlumeHeight2, SigmaYC, SigmaZC, SigmaYC1, SigmaZC1,
 SigmaYP, SigmaZP, SigmaYP1, SigmaZP1,
StackVolFlow, ED50, M, FPuffCon, PP, WindSpeed[J], NumPuff, NumStack);
FrequencyDist(FPuffCon, PuffSum, Class, RelFreq, NumPuff, NumClass,
 MaxCon, AvgCon);
PrintResults(Observation[J], WindSpeed[J], WindAngle[J], AmbTemp[J]-
 Stability[J], Terrain[J],
 ZO[J], XDist[J], YDist[J], MaxCon,
GaussCon[J],
AvgCon, Calm, ThetaWS, RelFreq, NumClass, NumPuff);
if (Upcase(Reply)='Y') then PrtSc
 End.
End.
APPENDIX IV
STACK DATA
<table>
<thead>
<tr>
<th>STACK</th>
<th>DIAMETER (m)</th>
<th>HEIGHT (m)</th>
<th>TEMP. (°K)</th>
<th>EXIT VELOCITY (m/s)</th>
<th>SOURCE STRENGTH (ED$_{50}$)</th>
<th>VOL. FLOW (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1-1</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-2</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-3</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-4</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-5</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-6</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-7</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-8</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 1-9</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-10</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-11</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-12</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-13</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-14</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-15</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-16</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-17</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-18</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-19</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-20</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-21</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-22</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-23</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-24</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-25</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-26</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 1-27</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-1</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-2</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-3</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-4</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-5</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-6</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-7</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-8</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>I 2-9</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 2-10</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>STACK</td>
<td>DIAMETER (m)</td>
<td>HEIGHT (m)</td>
<td>TEMP. (°K)</td>
<td>EXIT VELOCITY (m/s)</td>
<td>SOURCE STRENGTH (ED<sub>50</sub>)</td>
<td>VOL. FLOW (m<sup>3</sup>/s)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>E 2-11</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 2-12</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>17.5</td>
<td>1086</td>
<td>11.5</td>
</tr>
<tr>
<td>E 2-13</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>15.3</td>
<td>300</td>
<td>10.1</td>
</tr>
<tr>
<td>E 2-14</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>17.0</td>
<td>242</td>
<td>11.2</td>
</tr>
<tr>
<td>E 2-15</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.6</td>
<td>350</td>
<td>11.0</td>
</tr>
<tr>
<td>E 2-16</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>17.5</td>
<td>480</td>
<td>11.5</td>
</tr>
<tr>
<td>E 2-17</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>15.8</td>
<td>835</td>
<td>10.4</td>
</tr>
<tr>
<td>E 2-18</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>15.2</td>
<td>187</td>
<td>10.0</td>
</tr>
<tr>
<td>E 2-19</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 2-20</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>15.3</td>
<td>400</td>
<td>10.1</td>
</tr>
<tr>
<td>E 2-21</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.4</td>
<td>1412</td>
<td>10.8</td>
</tr>
<tr>
<td>E 2-22</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>15.3</td>
<td>400</td>
<td>10.1</td>
</tr>
<tr>
<td>E 2-23</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 2-24</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.0</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>E 2-25</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>17.0</td>
<td>250</td>
<td>11.2</td>
</tr>
<tr>
<td>E 2-26</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>16.5</td>
<td>200</td>
<td>10.9</td>
</tr>
<tr>
<td>E 2-27</td>
<td>0.92</td>
<td>45.8</td>
<td>296.3</td>
<td>15.5</td>
<td>96</td>
<td>10.2</td>
</tr>
<tr>
<td>TTS 1</td>
<td>0.92</td>
<td>45.6</td>
<td>308.2</td>
<td>15.5</td>
<td>300</td>
<td>10.2</td>
</tr>
<tr>
<td>TTS 2</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>15.0</td>
<td>450</td>
<td>9.9</td>
</tr>
<tr>
<td>TTS 3</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>10.6</td>
<td>545</td>
<td>7.0</td>
</tr>
<tr>
<td>TTS 4</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>17.3</td>
<td>400</td>
<td>11.4</td>
</tr>
<tr>
<td>TTS 5</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>16.0</td>
<td>350</td>
<td>10.5</td>
</tr>
<tr>
<td>TTS 6</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>15.5</td>
<td>300</td>
<td>10.2</td>
</tr>
<tr>
<td>TTS 7</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>15.5</td>
<td>300</td>
<td>10.2</td>
</tr>
<tr>
<td>TTS 8</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>16.2</td>
<td>200</td>
<td>10.7</td>
</tr>
<tr>
<td>TTS 9</td>
<td>0.92</td>
<td>45.8</td>
<td>308.2</td>
<td>16.0</td>
<td>350</td>
<td>10.5</td>
</tr>
<tr>
<td>STACK</td>
<td>X-COORDINATE (m)</td>
<td>Y-COORDINATE (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-1</td>
<td>55</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-2</td>
<td>51</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-3</td>
<td>48</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-4</td>
<td>45</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-5</td>
<td>42</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-6</td>
<td>38</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-7</td>
<td>36</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-8</td>
<td>32</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1-9</td>
<td>30</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-10</td>
<td>23</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-11</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-12</td>
<td>14</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-13</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-14</td>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-15</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-16</td>
<td>-4</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-17</td>
<td>-10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-18</td>
<td>-13</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-19</td>
<td>-19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-20</td>
<td>-22</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-21</td>
<td>-28</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-22</td>
<td>-31</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-23</td>
<td>-37</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-24</td>
<td>-40</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-25</td>
<td>-47</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-26</td>
<td>-50</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1-27</td>
<td>-53</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-1</td>
<td>55</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-2</td>
<td>51</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-3</td>
<td>48</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-4</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-5</td>
<td>42</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-6</td>
<td>38</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-7</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-8</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2-9</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 2-10</td>
<td>23</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 2-11</td>
<td>17</td>
<td>-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A4.2: STACK LOCATIONS (CONT.)

<table>
<thead>
<tr>
<th>STACK</th>
<th>X-COORDINATE (m)</th>
<th>Y-COORDINATE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 2-12</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>E 2-13</td>
<td>8</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-14</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>E 2-15</td>
<td>0</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-16</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>E 2-17</td>
<td>-10</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-18</td>
<td>-13</td>
<td>0</td>
</tr>
<tr>
<td>E 2-19</td>
<td>-19</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-20</td>
<td>-22</td>
<td>0</td>
</tr>
<tr>
<td>E 2-21</td>
<td>-28</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-22</td>
<td>-31</td>
<td>0</td>
</tr>
<tr>
<td>E 2-23</td>
<td>-37</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-24</td>
<td>-40</td>
<td>0</td>
</tr>
<tr>
<td>E 2-25</td>
<td>-47</td>
<td>-12</td>
</tr>
<tr>
<td>E 2-26</td>
<td>-50</td>
<td>0</td>
</tr>
<tr>
<td>E 2-27</td>
<td>-50</td>
<td>-12</td>
</tr>
<tr>
<td>TTS 1</td>
<td>-25</td>
<td>-12</td>
</tr>
<tr>
<td>TTS 2</td>
<td>-19</td>
<td>-24</td>
</tr>
<tr>
<td>TTS 3</td>
<td>-16</td>
<td>-12</td>
</tr>
<tr>
<td>TTS 4</td>
<td>-10</td>
<td>-24</td>
</tr>
<tr>
<td>TTS 5</td>
<td>-7</td>
<td>-12</td>
</tr>
<tr>
<td>TTS 6</td>
<td>0</td>
<td>-24</td>
</tr>
<tr>
<td>TTS 7</td>
<td>2</td>
<td>-12</td>
</tr>
<tr>
<td>TTS 8</td>
<td>9</td>
<td>-24</td>
</tr>
<tr>
<td>TTS 9</td>
<td>12</td>
<td>-12</td>
</tr>
</tbody>
</table>

X-DIMENSION OF BUILDING = 244 m

Y-DIMENSION OF BUILDING = 44 m

BUILDING HEIGHT = 26 m

* Only the penthouse building was assumed to contribute to the initial plume dispersion during aerodynamic downwash conditions.
FIGURE A4.1: STACK LOCATIONS RELATIVE TO THE ORIGIN
APPENDIX V

CALIBRATION OF NOSES USING A SCENTOMETER
Prior to the stack and process modifications implemented at the Chrysler plant, the noses of investigators recording olfactometric data in the community were calibrated using a commercially available Scentometer.

A. **Scentometer**

A Scentometer is a rectangular, Plexiglass box providing:

- Two chambers of activated charcoal
- Two nasal ports for sniffing
- Two 1/2-inch diameter air inlets for introduction of odorous ambient air to each charcoal bed
- Four odorous ambient air inlets of 1/16, 1/8, 1/4 and 1/2-inch diameters

The odorous air inlets are connected directly to a mixing chamber located between two layers of activated charcoal. During field testing, ambient odorous air is drawn through the two beds of activated charcoal to provide odour-free dilution air for mixing with the contaminated sample entering through one of the four odorous ambient air inlets. In principle, this dilution of the odorous air produces a threshold concentration (level) of the offending odour.

The sizes of the four odorous-air inlets were selected on the basis of laboratory tests that determined the most practical set of openings for field use. Table A5.1 summarizes the D/T
(dilution-to-threshold) values that can be achieved by opening one odourous air inlet at a time, while keeping the others closed. Although other intermediate D/T values can be obtained by opening various combinations of the odourous air inlets, only those values listed in Table A5.1 are used for practical applications since the human nose can not distinguish effectively between odour levels that do not differ significantly from one another.

<table>
<thead>
<tr>
<th>TABLE A5.1: DILUTIONS-TO-THRESHOLD OBTAINED WITH THE SCENTOMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODOROUS-AIR INLET OPENING (inch)</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>1/2</td>
</tr>
<tr>
<td>1/4</td>
</tr>
<tr>
<td>1/8</td>
</tr>
<tr>
<td>1/16</td>
</tr>
</tbody>
</table>

B. Calibration of Noses

At the beginning of the original field investigation, odours at any downwind location persisted at constant levels for 30 to 45 seconds allowing each investigator to calibrate his/her nose directly against the Scentometer. At the beginning of the calibration procedure the two charcoal inlet ports were opened
while all the odourous-air inlets were closed. The investigator then inhaled through the two nasal ports to acclimatize his/her nose to odour-free air. After opening the 1/16-inch odourous air port, the investigator inhaled two or three times through the nasal ports. If no odour was detectable, the 1/16-inch port was closed and the 1/8-inch port was opened. At some locations, this procedure was carried out for all four odourous ambient air inlets. If an odour was not detectable with the 1/2-inch air inlet open, it was concluded that the ambient odour level was less than 2 odour units.
APPENDIX VI

RECEPTOR DATA
<table>
<thead>
<tr>
<th>OBSER. NUMBER</th>
<th>X-POSITION (m)</th>
<th>Y-POSITION (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>325</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>463</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>325</td>
<td>263</td>
</tr>
<tr>
<td>4</td>
<td>412</td>
<td>-350</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>388</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>580</td>
</tr>
<tr>
<td>8</td>
<td>237</td>
<td>525</td>
</tr>
<tr>
<td>9</td>
<td>425</td>
<td>344</td>
</tr>
<tr>
<td>10</td>
<td>325</td>
<td>270</td>
</tr>
<tr>
<td>11</td>
<td>313</td>
<td>575</td>
</tr>
<tr>
<td>12</td>
<td>413</td>
<td>588</td>
</tr>
<tr>
<td>13</td>
<td>238</td>
<td>-110</td>
</tr>
<tr>
<td>14</td>
<td>175</td>
<td>-300</td>
</tr>
<tr>
<td>15</td>
<td>325</td>
<td>-290</td>
</tr>
<tr>
<td>16</td>
<td>163</td>
<td>325</td>
</tr>
<tr>
<td>17</td>
<td>225</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>238</td>
<td>-100</td>
</tr>
<tr>
<td>19</td>
<td>163</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>325</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>22</td>
<td>325</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>325</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>363</td>
<td>-125</td>
</tr>
<tr>
<td>25</td>
<td>375</td>
<td>-300</td>
</tr>
<tr>
<td>26</td>
<td>-463</td>
<td>-125</td>
</tr>
<tr>
<td>27</td>
<td>-463</td>
<td>-140</td>
</tr>
<tr>
<td>28</td>
<td>-625</td>
<td>-125</td>
</tr>
<tr>
<td>29</td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>313</td>
<td>238</td>
</tr>
<tr>
<td>31</td>
<td>175</td>
<td>350</td>
</tr>
<tr>
<td>32</td>
<td>190</td>
<td>63</td>
</tr>
<tr>
<td>33</td>
<td>-450</td>
<td>250</td>
</tr>
<tr>
<td>34</td>
<td>250</td>
<td>275</td>
</tr>
<tr>
<td>35</td>
<td>425</td>
<td>215</td>
</tr>
<tr>
<td>36</td>
<td>-513</td>
<td>-125</td>
</tr>
<tr>
<td>37</td>
<td>-538</td>
<td>135</td>
</tr>
<tr>
<td>38</td>
<td>425</td>
<td>525</td>
</tr>
</tbody>
</table>

253
<table>
<thead>
<tr>
<th>OBSER. NUMBER</th>
<th>X-POSITION (m)</th>
<th>Y-POSITION (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>250</td>
<td>63</td>
</tr>
<tr>
<td>40</td>
<td>290</td>
<td>-280</td>
</tr>
<tr>
<td>41</td>
<td>-450</td>
<td>250</td>
</tr>
<tr>
<td>42</td>
<td>313</td>
<td>-238</td>
</tr>
<tr>
<td>43</td>
<td>375</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>375</td>
<td>-180</td>
</tr>
<tr>
<td>45</td>
<td>250</td>
<td>280</td>
</tr>
<tr>
<td>46</td>
<td>225</td>
<td>95</td>
</tr>
<tr>
<td>47</td>
<td>325</td>
<td>350</td>
</tr>
<tr>
<td>48</td>
<td>225</td>
<td>275</td>
</tr>
<tr>
<td>49</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>425</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>188</td>
<td>300</td>
</tr>
<tr>
<td>52</td>
<td>225</td>
<td>138</td>
</tr>
<tr>
<td>53</td>
<td>400</td>
<td>275</td>
</tr>
<tr>
<td>54</td>
<td>225</td>
<td>100</td>
</tr>
<tr>
<td>55</td>
<td>338</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>325</td>
<td>150</td>
</tr>
<tr>
<td>57</td>
<td>425</td>
<td>200</td>
</tr>
<tr>
<td>58</td>
<td>-538</td>
<td>-160</td>
</tr>
<tr>
<td>59</td>
<td>-463</td>
<td>-140</td>
</tr>
<tr>
<td>60</td>
<td>250</td>
<td>-175</td>
</tr>
<tr>
<td>61</td>
<td>375</td>
<td>-150</td>
</tr>
<tr>
<td>62</td>
<td>225</td>
<td>125</td>
</tr>
<tr>
<td>63</td>
<td>350</td>
<td>-160</td>
</tr>
<tr>
<td>64</td>
<td>438</td>
<td>-250</td>
</tr>
<tr>
<td>65</td>
<td>-463</td>
<td>-250</td>
</tr>
<tr>
<td>66</td>
<td>-525</td>
<td>-300</td>
</tr>
<tr>
<td>67</td>
<td>-463</td>
<td>-25</td>
</tr>
<tr>
<td>68</td>
<td>-538</td>
<td>-140</td>
</tr>
<tr>
<td>69</td>
<td>-500</td>
<td>-125</td>
</tr>
<tr>
<td>70</td>
<td>375</td>
<td>-250</td>
</tr>
<tr>
<td>71</td>
<td>313</td>
<td>-250</td>
</tr>
<tr>
<td>72</td>
<td>313</td>
<td>25</td>
</tr>
<tr>
<td>73</td>
<td>375</td>
<td>-70</td>
</tr>
<tr>
<td>74</td>
<td>364</td>
<td>-70</td>
</tr>
<tr>
<td>75</td>
<td>425</td>
<td>-355</td>
</tr>
<tr>
<td>76</td>
<td>288</td>
<td>-255</td>
</tr>
<tr>
<td>OBSER. NUMBER</td>
<td>X-POSITION (m)</td>
<td>Y-POSITION (m)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>77</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>78</td>
<td>163</td>
<td>-550</td>
</tr>
<tr>
<td>79</td>
<td>225</td>
<td>250</td>
</tr>
<tr>
<td>80</td>
<td>425</td>
<td>550</td>
</tr>
<tr>
<td>81</td>
<td>238</td>
<td>85</td>
</tr>
<tr>
<td>82</td>
<td>325</td>
<td>120</td>
</tr>
<tr>
<td>83</td>
<td>250</td>
<td>-80</td>
</tr>
<tr>
<td>84</td>
<td>363</td>
<td>-95</td>
</tr>
<tr>
<td>85</td>
<td>200</td>
<td>-663</td>
</tr>
<tr>
<td>86</td>
<td>350</td>
<td>-538</td>
</tr>
<tr>
<td>87</td>
<td>375</td>
<td>50</td>
</tr>
<tr>
<td>88</td>
<td>225</td>
<td>-663</td>
</tr>
<tr>
<td>89</td>
<td>375</td>
<td>-110</td>
</tr>
<tr>
<td>90</td>
<td>250</td>
<td>313</td>
</tr>
<tr>
<td>91</td>
<td>188</td>
<td>-625</td>
</tr>
<tr>
<td>92</td>
<td>288</td>
<td>-275</td>
</tr>
<tr>
<td>93</td>
<td>325</td>
<td>-250</td>
</tr>
<tr>
<td>94</td>
<td>350</td>
<td>-50</td>
</tr>
<tr>
<td>95</td>
<td>188</td>
<td>-625</td>
</tr>
<tr>
<td>96</td>
<td>213</td>
<td>250</td>
</tr>
<tr>
<td>97</td>
<td>300</td>
<td>-220</td>
</tr>
<tr>
<td>98</td>
<td>375</td>
<td>-290</td>
</tr>
</tbody>
</table>
APPENDIX VII
WEATHER DATA
<table>
<thead>
<tr>
<th>OBS. NO.</th>
<th>DATE (M/D/Y)</th>
<th>HOUR</th>
<th>TEMP. (°K)</th>
<th>WIND SPEED (m/s)</th>
<th>CLOUD COVER</th>
<th>WIND ANGLE (deg)</th>
<th>WIND SHIFT (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/01/87</td>
<td>21.0</td>
<td>281</td>
<td>6.1</td>
<td>C</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>10/05/87</td>
<td>12.0</td>
<td>281</td>
<td>4.2</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>10/06/87</td>
<td>11.5</td>
<td>283</td>
<td>4.2</td>
<td>C</td>
<td>12.0</td>
<td>22.5</td>
</tr>
<tr>
<td>4</td>
<td>10/07/87</td>
<td>12.0</td>
<td>282</td>
<td>4.2</td>
<td>C</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>10/13/87</td>
<td>13.0</td>
<td>284</td>
<td>1.9</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>10/13/87</td>
<td>13.0</td>
<td>284</td>
<td>1.9</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>10/13/87</td>
<td>17.0</td>
<td>286</td>
<td>4.7</td>
<td>S</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>10/13/87</td>
<td>17.0</td>
<td>286</td>
<td>4.7</td>
<td>S</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>10/15/87</td>
<td>17.0</td>
<td>292</td>
<td>5.3</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>10/15/87</td>
<td>17.0</td>
<td>292</td>
<td>5.3</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>10/16/87</td>
<td>17.0</td>
<td>292</td>
<td>4.7</td>
<td>PC</td>
<td>57.0</td>
<td>22.5</td>
</tr>
<tr>
<td>12</td>
<td>10/16/87</td>
<td>17.0</td>
<td>292</td>
<td>4.7</td>
<td>PC</td>
<td>57.0</td>
<td>22.5</td>
</tr>
<tr>
<td>13</td>
<td>10/23/87</td>
<td>14.5</td>
<td>283</td>
<td>3.1</td>
<td>S</td>
<td>349.5</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>10/27/87</td>
<td>14.0</td>
<td>284</td>
<td>8.3</td>
<td>PC</td>
<td>304.5</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>10/28/87</td>
<td>12.0</td>
<td>283</td>
<td>5.3</td>
<td>PC</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>11/02/87</td>
<td>14.5</td>
<td>289</td>
<td>2.5</td>
<td>C</td>
<td>57.0</td>
<td>22.5</td>
</tr>
<tr>
<td>17</td>
<td>11/03/87</td>
<td>15.0</td>
<td>295</td>
<td>7.5</td>
<td>S</td>
<td>34.5</td>
<td>22.5</td>
</tr>
<tr>
<td>18</td>
<td>11/04/87</td>
<td>14.5</td>
<td>293</td>
<td>7.8</td>
<td>PC</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>11/17/87</td>
<td>14.5</td>
<td>288</td>
<td>10.0</td>
<td>C</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>11/24/87</td>
<td>14.5</td>
<td>279</td>
<td>3.6</td>
<td>C</td>
<td>12.0</td>
<td>45.0</td>
</tr>
<tr>
<td>21</td>
<td>12/09/87</td>
<td>14.5</td>
<td>283</td>
<td>10.0</td>
<td>C</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>12/18/87</td>
<td>15.0</td>
<td>277</td>
<td>8.9</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>06/14/88</td>
<td>17.0</td>
<td>308</td>
<td>7.2</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>06/15/88</td>
<td>14.0</td>
<td>305</td>
<td>8.3</td>
<td>PC</td>
<td>349.5</td>
<td>22.5</td>
</tr>
<tr>
<td>25</td>
<td>06/15/88</td>
<td>19.0</td>
<td>305</td>
<td>6.1</td>
<td>C</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>06/16/88</td>
<td>14.0</td>
<td>294</td>
<td>4.2</td>
<td>PC</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>06/16/88</td>
<td>17.0</td>
<td>295</td>
<td>5.3</td>
<td>PC</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>06/17/88</td>
<td>14.0</td>
<td>293</td>
<td>3.9</td>
<td>S</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>06/20/88</td>
<td>14.0</td>
<td>304</td>
<td>6.1</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>06/21/88</td>
<td>14.0</td>
<td>303</td>
<td>1.0</td>
<td>S</td>
<td>327.0</td>
<td>45.0</td>
</tr>
<tr>
<td>31</td>
<td>06/21/88</td>
<td>19.0</td>
<td>305</td>
<td>4.7</td>
<td>PC</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>32</td>
<td>06/22/88</td>
<td>14.0</td>
<td>304</td>
<td>3.6</td>
<td>C</td>
<td>12.0</td>
<td>22.5</td>
</tr>
<tr>
<td>33</td>
<td>06/23/88</td>
<td>17.0</td>
<td>296</td>
<td>6.7</td>
<td>S</td>
<td>147.0</td>
<td>0.0</td>
</tr>
<tr>
<td>34</td>
<td>06/24/88</td>
<td>12.0</td>
<td>296</td>
<td>3.1</td>
<td>S</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>06/24/88</td>
<td>14.5</td>
<td>299</td>
<td>1.9</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>36</td>
<td>06/30/88</td>
<td>14.0</td>
<td>291</td>
<td>7.2</td>
<td>S</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>37</td>
<td>07/04/88</td>
<td>14.0</td>
<td>304</td>
<td>6.1</td>
<td>S</td>
<td>169.5</td>
<td>0.0</td>
</tr>
<tr>
<td>38</td>
<td>07/05/88</td>
<td>14.0</td>
<td>306</td>
<td>1.7</td>
<td>S</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OBS. NO.</td>
<td>DATE (M/D/Y)</td>
<td>HOUR</td>
<td>TEMP (°K)</td>
<td>WIND SPEED (m/s)</td>
<td>CLOUD COVER</td>
<td>WIND ANGLE (deg)</td>
<td>WIND SHIFT (Geg)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>39</td>
<td>07/06/88</td>
<td>14.0</td>
<td>308</td>
<td>2.5</td>
<td>S</td>
<td>12.0</td>
<td>45.0</td>
</tr>
<tr>
<td>40</td>
<td>07/08/88</td>
<td>14.5</td>
<td>309</td>
<td>2.8</td>
<td>S</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>41</td>
<td>07/26/88</td>
<td>14.0</td>
<td>297</td>
<td>1.9</td>
<td>PC</td>
<td>147.0</td>
<td>45.0</td>
</tr>
<tr>
<td>42</td>
<td>07/27/88</td>
<td>14.0</td>
<td>301</td>
<td>5.3</td>
<td>S</td>
<td>327.0</td>
<td>45.0</td>
</tr>
<tr>
<td>43</td>
<td>07/28/88</td>
<td>14.0</td>
<td>301</td>
<td>5.3</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>07/29/88</td>
<td>10.0</td>
<td>301</td>
<td>4.7</td>
<td>S</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>08/02/88</td>
<td>14.0</td>
<td>308</td>
<td>4.7</td>
<td>S</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>46</td>
<td>08/03/88</td>
<td>10.0</td>
<td>300</td>
<td>4.2</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>47</td>
<td>08/03/88</td>
<td>10.0</td>
<td>300</td>
<td>4.2</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>48</td>
<td>08/03/88</td>
<td>23.0</td>
<td>299</td>
<td>2.5</td>
<td>S</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>08/04/88</td>
<td>10.0</td>
<td>301</td>
<td>4.2</td>
<td>S</td>
<td>12.0</td>
<td>45.0</td>
</tr>
<tr>
<td>50</td>
<td>08/04/88</td>
<td>10.0</td>
<td>301</td>
<td>4.2</td>
<td>S</td>
<td>12.0</td>
<td>45.0</td>
</tr>
<tr>
<td>51</td>
<td>08/04/88</td>
<td>23.5</td>
<td>300</td>
<td>3.0</td>
<td>S</td>
<td>57.0</td>
<td>22.5</td>
</tr>
<tr>
<td>52</td>
<td>08/05/88</td>
<td>10.0</td>
<td>300</td>
<td>4.2</td>
<td>C</td>
<td>34.5</td>
<td>22.5</td>
</tr>
<tr>
<td>53</td>
<td>08/05/88</td>
<td>10.0</td>
<td>300</td>
<td>4.2</td>
<td>C</td>
<td>34.5</td>
<td>22.5</td>
</tr>
<tr>
<td>54</td>
<td>08/08/88</td>
<td>14.0</td>
<td>305</td>
<td>7.5</td>
<td>S</td>
<td>12.0</td>
<td>22.5</td>
</tr>
<tr>
<td>55</td>
<td>08/08/88</td>
<td>14.0</td>
<td>305</td>
<td>7.5</td>
<td>S</td>
<td>12.0</td>
<td>22.5</td>
</tr>
<tr>
<td>56</td>
<td>08/09/88</td>
<td>10.0</td>
<td>299</td>
<td>5.3</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>57</td>
<td>08/09/88</td>
<td>10.0</td>
<td>299</td>
<td>5.3</td>
<td>S</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>58</td>
<td>08/10/88</td>
<td>10.0</td>
<td>298</td>
<td>5.3</td>
<td>C</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>59</td>
<td>08/10/88</td>
<td>10.0</td>
<td>298</td>
<td>5.3</td>
<td>C</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>60</td>
<td>08/11/88</td>
<td>10.0</td>
<td>301</td>
<td>4.7</td>
<td>S</td>
<td>349.5</td>
<td>45.0</td>
</tr>
<tr>
<td>61</td>
<td>08/11/88</td>
<td>10.0</td>
<td>301</td>
<td>4.7</td>
<td>S</td>
<td>349.5</td>
<td>45.0</td>
</tr>
<tr>
<td>62</td>
<td>08/12/88</td>
<td>13.0</td>
<td>305</td>
<td>6.1</td>
<td>C</td>
<td>34.5</td>
<td>0.0</td>
</tr>
<tr>
<td>63</td>
<td>08/17/88</td>
<td>10.0</td>
<td>303</td>
<td>5.6</td>
<td>PC</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>64</td>
<td>08/17/88</td>
<td>12.0</td>
<td>303</td>
<td>5.6</td>
<td>PC</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>65</td>
<td>08/18/88</td>
<td>14.0</td>
<td>295</td>
<td>4.2</td>
<td>C</td>
<td>214.0</td>
<td>22.5</td>
</tr>
<tr>
<td>66</td>
<td>08/18/88</td>
<td>14.0</td>
<td>295</td>
<td>4.2</td>
<td>C</td>
<td>214.0</td>
<td>22.5</td>
</tr>
<tr>
<td>67</td>
<td>08/19/88</td>
<td>10.0</td>
<td>293</td>
<td>4.2</td>
<td>PC</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>08/19/88</td>
<td>10.0</td>
<td>293</td>
<td>4.2</td>
<td>PC</td>
<td>192.0</td>
<td>0.0</td>
</tr>
<tr>
<td>69</td>
<td>08/22/88</td>
<td>13.0</td>
<td>294</td>
<td>3.6</td>
<td>S</td>
<td>192.0</td>
<td>22.5</td>
</tr>
<tr>
<td>70</td>
<td>08/24/88</td>
<td>10.0</td>
<td>296</td>
<td>7.5</td>
<td>PC</td>
<td>327.0</td>
<td>22.5</td>
</tr>
<tr>
<td>71</td>
<td>08/24/88</td>
<td>10.0</td>
<td>296</td>
<td>7.5</td>
<td>PC</td>
<td>327.0</td>
<td>22.5</td>
</tr>
<tr>
<td>72</td>
<td>08/25/88</td>
<td>10.0</td>
<td>295</td>
<td>8.3</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>73</td>
<td>08/25/88</td>
<td>14.0</td>
<td>298</td>
<td>9.2</td>
<td>C</td>
<td>349.5</td>
<td>22.5</td>
</tr>
<tr>
<td>74</td>
<td>08/25/88</td>
<td>14.0</td>
<td>298</td>
<td>9.2</td>
<td>C</td>
<td>349.5</td>
<td>22.5</td>
</tr>
<tr>
<td>75</td>
<td>08/26/88</td>
<td>10.0</td>
<td>294</td>
<td>5.6</td>
<td>PC</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>76</td>
<td>08/26/88</td>
<td>10.0</td>
<td>294</td>
<td>5.6</td>
<td>PC</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OBS. NO.</td>
<td>DATE</td>
<td>HOUR</td>
<td>TEMP. (°K)</td>
<td>WIND SPEED (m/s)</td>
<td>CLOUD COVER</td>
<td>WIND ANGLE (deg)</td>
<td>WIND SHIFT (deg)</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>77</td>
<td>08/31/88</td>
<td>14.0</td>
<td>297</td>
<td>4.2</td>
<td>S</td>
<td>57.0</td>
<td>45.0</td>
</tr>
<tr>
<td>78</td>
<td>09/06/88</td>
<td>13.0</td>
<td>289</td>
<td>5.3</td>
<td>C</td>
<td>282.0</td>
<td>0.0</td>
</tr>
<tr>
<td>79</td>
<td>09/07/88</td>
<td>13.0</td>
<td>293</td>
<td>4.4</td>
<td>S</td>
<td>57.0</td>
<td>45.0</td>
</tr>
<tr>
<td>80</td>
<td>09/07/88</td>
<td>13.0</td>
<td>293</td>
<td>4.4</td>
<td>S</td>
<td>57.0</td>
<td>45.0</td>
</tr>
<tr>
<td>81</td>
<td>09/08/88</td>
<td>13.0</td>
<td>294</td>
<td>7.2</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>82</td>
<td>09/08/88</td>
<td>13.0</td>
<td>294</td>
<td>7.2</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>83</td>
<td>09/09/88</td>
<td>10.0</td>
<td>291</td>
<td>6.1</td>
<td>PC</td>
<td>349.5</td>
<td>0.0</td>
</tr>
<tr>
<td>84</td>
<td>09/09/88</td>
<td>10.0</td>
<td>291</td>
<td>6.1</td>
<td>PC</td>
<td>349.5</td>
<td>0.0</td>
</tr>
<tr>
<td>85</td>
<td>10/06/88</td>
<td>12.0</td>
<td>281</td>
<td>5.3</td>
<td>S</td>
<td>282.0</td>
<td>0.0</td>
</tr>
<tr>
<td>86</td>
<td>10/07/88</td>
<td>10.0</td>
<td>283</td>
<td>5.6</td>
<td>S</td>
<td>304.5</td>
<td>22.5</td>
</tr>
<tr>
<td>87</td>
<td>10/14/88</td>
<td>10.0</td>
<td>281</td>
<td>7.5</td>
<td>S</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>88</td>
<td>10/19/88</td>
<td>17.0</td>
<td>283</td>
<td>4.2</td>
<td>S</td>
<td>304.5</td>
<td>0.0</td>
</tr>
<tr>
<td>89</td>
<td>10/26/88</td>
<td>17.0</td>
<td>277</td>
<td>5.3</td>
<td>C</td>
<td>349.5</td>
<td>0.0</td>
</tr>
<tr>
<td>90</td>
<td>10/31/88</td>
<td>17.0</td>
<td>278</td>
<td>5.3</td>
<td>C</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>91</td>
<td>11/02/88</td>
<td>17.0</td>
<td>279</td>
<td>5.6</td>
<td>C</td>
<td>282.0</td>
<td>0.0</td>
</tr>
<tr>
<td>92</td>
<td>11/07/88</td>
<td>17.0</td>
<td>279</td>
<td>6.1</td>
<td>C</td>
<td>327.0</td>
<td>22.5</td>
</tr>
<tr>
<td>93</td>
<td>11/14/88</td>
<td>17.0</td>
<td>285</td>
<td>4.7</td>
<td>S</td>
<td>327.0</td>
<td>45.0</td>
</tr>
<tr>
<td>94</td>
<td>11/16/88</td>
<td>17.0</td>
<td>278</td>
<td>11.1</td>
<td>PC</td>
<td>349.5</td>
<td>0.0</td>
</tr>
<tr>
<td>95</td>
<td>11/21/88</td>
<td>17.0</td>
<td>276</td>
<td>3.6</td>
<td>C</td>
<td>282.0</td>
<td>0.0</td>
</tr>
<tr>
<td>96</td>
<td>11/23/88</td>
<td>17.0</td>
<td>278</td>
<td>2.5</td>
<td>PC</td>
<td>57.0</td>
<td>0.0</td>
</tr>
<tr>
<td>97</td>
<td>11/28/88</td>
<td>17.0</td>
<td>276</td>
<td>5.6</td>
<td>C</td>
<td>327.0</td>
<td>0.0</td>
</tr>
<tr>
<td>98</td>
<td>11/28/88</td>
<td>17.0</td>
<td>276</td>
<td>5.6</td>
<td>C</td>
<td>327.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

where:
- **S** = Sunny (or clear for after sunset) (cc = 0 - 2)
- **C** = Cloudy (cc = 6 - 8)
- **PC** = Partly Cloudy (cc = 3 - 5)
APPENDIX VIII
FIELD DATA
<table>
<thead>
<tr>
<th>OBS. NO.</th>
<th>UNIPRIME DATA (%)</th>
<th>PAINT DATA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-7</td>
<td>7-10</td>
</tr>
<tr>
<td>1</td>
<td>18.5</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>11.4</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>12.6</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>7.3</td>
<td>0.7</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>4.7</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>17</td>
<td>22.7</td>
<td>2.3</td>
</tr>
<tr>
<td>18</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>45.3</td>
<td>7.3</td>
</tr>
<tr>
<td>20</td>
<td>15.7</td>
<td>1.3</td>
</tr>
<tr>
<td>21</td>
<td>10.0</td>
<td>1.7</td>
</tr>
<tr>
<td>22</td>
<td>7.0</td>
<td>0.3</td>
</tr>
<tr>
<td>23</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>5.3</td>
<td>1.3</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>7.7</td>
<td>0.7</td>
</tr>
<tr>
<td>32</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>34</td>
<td>16.0</td>
<td>2.0</td>
</tr>
<tr>
<td>35</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>36</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>37</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>38</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>OBS. NO.</td>
<td>UNIPRIME DATA (%)</td>
<td>PAINT DATA (%)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>2-7</td>
<td>7-10</td>
</tr>
<tr>
<td>39</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>41</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>43</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>46</td>
<td>24.3</td>
<td>0.0</td>
</tr>
<tr>
<td>47</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>48</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>51</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>52</td>
<td>22.0</td>
<td>0.0</td>
</tr>
<tr>
<td>53</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>54</td>
<td>15.0</td>
<td>0.3</td>
</tr>
<tr>
<td>55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>56</td>
<td>10.3</td>
<td>0.0</td>
</tr>
<tr>
<td>57</td>
<td>13.7</td>
<td>0.0</td>
</tr>
<tr>
<td>58</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>59</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>60</td>
<td>7.0</td>
<td>0.0</td>
</tr>
<tr>
<td>61</td>
<td>6.3</td>
<td>0.0</td>
</tr>
<tr>
<td>62</td>
<td>30.0</td>
<td>1.0</td>
</tr>
<tr>
<td>63</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>64</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>65</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>66</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>67</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>68</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>69</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>70</td>
<td>10.3</td>
<td>0.0</td>
</tr>
<tr>
<td>71</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>72</td>
<td>22.7</td>
<td>0.0</td>
</tr>
<tr>
<td>73</td>
<td>9.7</td>
<td>0.0</td>
</tr>
<tr>
<td>74</td>
<td>8.7</td>
<td>0.0</td>
</tr>
<tr>
<td>75</td>
<td>5.7</td>
<td>0.0</td>
</tr>
<tr>
<td>76</td>
<td>21.7</td>
<td>0.0</td>
</tr>
<tr>
<td>OBS. NO.</td>
<td>2-7</td>
<td>7-10</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>77</td>
<td>26.7</td>
<td>2.7</td>
</tr>
<tr>
<td>78</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>79</td>
<td>21.3</td>
<td>3.3</td>
</tr>
<tr>
<td>80</td>
<td>6.3</td>
<td>0.0</td>
</tr>
<tr>
<td>81</td>
<td>21.3</td>
<td>3.3</td>
</tr>
<tr>
<td>82</td>
<td>5.3</td>
<td>0.0</td>
</tr>
<tr>
<td>83</td>
<td>13.0</td>
<td>0.0</td>
</tr>
<tr>
<td>84</td>
<td>4.6</td>
<td>0.0</td>
</tr>
<tr>
<td>85</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>86</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>87</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>88</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>89</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>90</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>91</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>92</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>93</td>
<td>23.7</td>
<td>0.0</td>
</tr>
<tr>
<td>94</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>95</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>96</td>
<td>38.3</td>
<td>0.0</td>
</tr>
<tr>
<td>97</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>98</td>
<td>4.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
VITA AUCTORIS

1963
Born in Windsor, Ontario, Canada on April 9, 1963.

1982

1986
Completed the Degree of Bachelor of Applied Science in Chemical Engineering at the University of Windsor, Windsor, Ontario, Canada.

1989
Candidate for the Degree of Master of Applied Science in Chemical Engineering at the University of Windsor, Windsor, Ontario Canada.

AWARDS

1987
• Ontario Chapter of the Air Pollution Control Association Student Scholarship
 • N.S.E.R.C. Postgraduate Scholarship (PGS2)

1986
• N.S.E.R.C. Postgraduate Scholarship (PGS1)
 • Board of Governors' Medal for Chemical Engineering
 • Society of Chemical Industry Merit Award

1985
• N.S.E.R.C. Summer Scholarship

1984–1986
• University of Windsor Scholarship

1982–1986
• Norah Cleary Scholarship (Assumption University)