1988

Skeletonization, thinning and thickening algorithms and their applications to Arabic characters.

Mohamed. Tellache

University of Windsor

Recommended Citation
https://scholar.uwindsor.ca/etd/3480

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent a second interior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, tests publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.
SKELETONIZATION, THINNING AND THICKENING ALGORITHMS AND THEIR APPLICATIONS TO ARABIC CHARACTERS

by

MOHAMED TELLACHE

Submitted to the Faculty of Graduate Studies and Research through the Department of Electrical Engineering in Partial Fulfillment of the requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada
1988
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilm er cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

DEDICATION

TO MY PARENTS
ABSTRACT

This thesis discusses the development of thinning and thickening algorithms for the purpose of thinning or thickening camera captured Arabic fonts.

Skeletonization is a widely used preprocessing technique in 'linearwise' image analysis, for example, analysis of alphanumeric printed or handprinted characters, Chromosomes, etc. One of the methods for obtaining the 'skeleton' or a 'medial line' of a binary picture, consists in erasing points of the boundary of the object without modifying the topological properties of the picture until it consists of thin lines.

Various existing thinning algorithms are presented and compared to the algorithms presented in the thesis.

Two new parallel thinning algorithms are developed. One is based on local operations to detect edge-points, end-points and break-points. The other is a matching algorithm in which a set of eight templates and two images (the current image and the working image) are used in the processing. Both algorithms maintain the connectivity, conserve the shape of the original image and do not leave extraneous pixels within a 3-by-3 window to produce a pixel thin skeleton from a connected thick image. Also a thickening algorithm is presented.
Experimental results show that these methods are very effective for thinning and thickening of Arabic fonts.
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor, Dr. M. A. Sid-ahmed for his valuable suggestions, guidance, support, and helpful remarks throughout the course of this work.

I am also most grateful to Dr. J. J. Soltis, Dr. H. K. Kwan, and Dr. V. M. Huynh for their helpful contributions and constructive suggestions.

I wish to thank all my fellow graduate students and my colleagues, A. NAMANE, M. M. MAMERI, F. EL-KHALI, S. O. BELKASIM. I would like to thank all my friends from Electrical (Power) and Civil Engineering departments.

Last but not least, I extend my sincerest thanks to all my beloved parents, my brother Youcef and all my family in Algeria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>FIGURE CAPTIONS</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview on different techniques</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Objective of the research</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Thesis organisation</td>
<td>12</td>
</tr>
<tr>
<td>II. ILLUSTRATION, DEFINITIONS AND PROCEDURES</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2 General illustration</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Definitions</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1 Definition (1) [2]</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 Definition (2)</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Definition (3): Connectivity [3]</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Procedures</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1 Skeletonization criteria</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2 Local operations</td>
<td>22</td>
</tr>
<tr>
<td>2.4.3 Sequential processing</td>
<td>23</td>
</tr>
<tr>
<td>2.4.4 Parallel processing</td>
<td>24</td>
</tr>
<tr>
<td>III. VARIOUS THINNING ALGORITHMS WITH APPLICATION TO ARABIC CHARACTERS</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Algorithm #1: Matching algorithm [30-31]</td>
<td>32</td>
</tr>
<tr>
<td>3.2.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Arcelli's algorithm [30]</td>
<td>32</td>
</tr>
<tr>
<td>3.2.3 Results</td>
<td>34</td>
</tr>
<tr>
<td>3.3 Algorithm #2: Parallel thinning algorithm</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1 Introduction</td>
<td>36</td>
</tr>
<tr>
<td>3.3.2 Naccache's algorithm</td>
<td>36</td>
</tr>
<tr>
<td>3.3.3 Explanation of the algorithm</td>
<td>37</td>
</tr>
</tbody>
</table>
3.3.4 Results

3.4 Algorithm #3 Simplified version of Hilditch
3.4.1 Description
3.4.2 Algorithm
3.4.3 Results

3.5 Algorithm #4: Sequential thinning
algorithm (26-27)
3.5.1 Description
3.5.2 Algorithm
3.5.2.1 Modified distance transform
3.5.2.2 Linking algorithm
3.5.2.3 Thinning algorithm
3.5.3 Results

3.6 Conclusion

IV. EFFECTIVE THINNING AND THICKENING
ALGORITHMS AND THEIR APPLICATIONS TO
ARABIC CHARACTERS

4.1 Introduction
4.2 The new parallel thinning algorithm
4.2.1 Introduction
4.2.2 Algorithm
4.2.3 The explanation of the four
sub-iterations
4.2.4 Results

4.3 Modified approach of matching algorithm
4.3.1 Introduction
4.3.2 Algorithm
4.3.3 Results

4.4 Amelioration to the sequential thinning
algorithm
4.4.1 Description
4.4.2 Results

4.5 General comparison
4.5.1 Simplified version of Hilditch and
the new parallel thinning algorithm
4.5.2 Matching algorithm and its modified
approach
4.5.3 Sequential thinning algorithm and
its amelioration

4.6 Thickening algorithm
4.6.1 Introduction
4.6.2 Algorithm
4.6.3 Results

4.7. Conclusion

V. SUMMARY AND CONCLUSIONS

VI. SOME OTHER EXAMPLES

- ix -
APPENDIX (M) 165
The modified approach program after the separation 165

APPENDIX (N) 173
The amelioration of the sequential method program 173

APPENDIX (O) 179
Thickening algorithm program ... 179

VITA AUCTORIS 161
FIGURE CAPTIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Regularly shaped region - case of rectangle</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Regularly shaped region - case of square</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Irregularly shaped region - vertical region thinning</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Irregularly shaped region - horizontal region thinning</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Example of skeletons</td>
<td>16</td>
</tr>
<tr>
<td>2.6a</td>
<td>Illustration of connectivity - Ring figure</td>
<td>20</td>
</tr>
<tr>
<td>2.6b</td>
<td>Illustration of connectivity - Ambiguous figure</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Neighborhood of P</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>The four-neighbors of P</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>The six windows $S_1, S_2, S_3, S_4, S_5, S_6</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Set of templates for matching algorithm</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Skeletons obtained using the matching algorithm</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Set of windows which make P unflagged if the match is obtained</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Eight windows derived from window (d)</td>
<td>41</td>
</tr>
<tr>
<td>3.8a</td>
<td>Slanting stroke of width 2</td>
<td>42</td>
</tr>
<tr>
<td>3.8b</td>
<td>Skeleton obtained in the absence of conditions H5 and H6</td>
<td>42</td>
</tr>
<tr>
<td>3.8c</td>
<td>Skeleton obtained in the presence of conditions H5 and H6</td>
<td>42</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.9</td>
<td>Skeletons obtained using Naccache algorithm</td>
<td>43</td>
</tr>
<tr>
<td>3.10</td>
<td>Designation of the nine pixels in the 3-by-3 window</td>
<td>45</td>
</tr>
<tr>
<td>3.11</td>
<td>Counting the 01 pattern in the ordered set P2, P3, P4, P5, P6, P7, P8, P9 and P2</td>
<td>46</td>
</tr>
<tr>
<td>3.12</td>
<td>Skeletons obtained using the simplified version of Hilditch when P1 is deleted</td>
<td>48</td>
</tr>
<tr>
<td>3.13</td>
<td>Skeletons obtained using the simplified version of Hilditch when P1 is flagged</td>
<td>49</td>
</tr>
<tr>
<td>3.14</td>
<td>The block diagram</td>
<td>51</td>
</tr>
<tr>
<td>3.15</td>
<td>Example of using the distance transform [40]</td>
<td>54</td>
</tr>
<tr>
<td>3.16</td>
<td>Cross neighborhood for MDT selection rules</td>
<td>58</td>
</tr>
<tr>
<td>3.17a</td>
<td>Skeleton obtained using equation (a)</td>
<td>58</td>
</tr>
<tr>
<td>3.17b</td>
<td>Skeleton obtained using equation (b)</td>
<td>58</td>
</tr>
<tr>
<td>3.18</td>
<td>7-by-4 neighborhood window for skeleton linking</td>
<td>61</td>
</tr>
<tr>
<td>3.19</td>
<td>3-by-3 neighborhood with pixel definitions</td>
<td>63</td>
</tr>
<tr>
<td>3.20</td>
<td>Skeletons obtained using the sequential thinning algorithm with the first equation of the new selection rules</td>
<td>66</td>
</tr>
<tr>
<td>3.21</td>
<td>Skeletons obtained using the sequential thinning algorithm with the second equation of the new selection rules</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Points under consideration and their locations</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Set of templates used in the new parallel thinning algorithm</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Flowchart of the new parallel thinning algorithm</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Skeletons obtained using the new parallel thinning algorithm</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Skeletons obtained using the new parallel thinning algorithm</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>The location of the dots</td>
<td>80</td>
</tr>
</tbody>
</table>
4.7 Flowchart of the modified approach of matching algorithm 83
4.8 Skeletons obtained using the modified approach of matching algorithm before performing the separation ... 85
4.9 An example for separation the dots from the characters ... 86
4.10 Skeletons obtained using the modified approach after the separation 87
4.11 Skeletons obtained using the amelioration to the sequential thinning algorithm 89
4.12 Comparison between the simplified version of Hilditch and the new parallel thinning algorithm ... 92
4.13 Comparison between the matching algorithm and its modified approach 93
4.14 Comparison between the sequential thinning algorithm and its amelioration 94
4.15 Flowchart for the thickening algorithm ... 97
4.16 Results obtained using the thickening algorithm by taking as input the original image .. 98
4.17 Results obtained using the thickening algorithm by taking as input the thinned pattern .. 99
6.1 Skeletons obtained using the matching algorithm .. 103
6.2 Skeletons obtained using Naccache algorithm .. 104
6.3 Skeletons obtained using the simplified version of Hilditch when P_1 is deleted 105
6.4 Skeletons obtained using the simplified version of Hilditch when P_1 is flagged 106
6.5 Skeletons obtained using the sequential thinning algorithm with the first equation of the new selection rules .. 107
6.6 Skeletons obtained using the sequential thinning algorithm with the second equation of the new selection rules

6.7 Skeletons obtained using the new parallel thinning algorithm

6.8 Skeletons obtained using the new parallel thinning algorithm

6.9 Skeletons obtained using the modified approach of matching algorithm before performing the separation

6.10 An example for separation the dots from the characters

6.11 Skeletons obtained using the modified approach after the separation

6.12 Skeletons obtained using the amelioration to the sequential thinning algorithm

6.13 Comparison between the simplified version of Hilditch and the new parallel thinning algorithm

6.14 Comparison between the matching algorithm and its modified approach

6.15 Comparison between the sequential thinning algorithm and its amelioration

A.1 A sample histogram illustrating a bi-modal distribution

A.2 A sample histogram illustrating a multi-modal distribution
Chapter I
INTRODUCTION

Thinning algorithms have been studied widely in picture processing and pattern recognition because they offer a way of simplifying pictorial forms.

Our goal is to perform skeletonization, thinning, and thickening algorithms on Arabic characters.

Thinning algorithms are used for different purposes such as:

1. Automatic analysis of Chromosome spreads
2. Quantitative measurement of soil cracking patterns.
3. Feature extraction, printed character recognition and image representation.
4. Type-setting characters

Thinning is the most common name for the process of reducing the width of a line-like object from many pixels wide to minimal width.

Other terms commonly used to describe the determination of a single pixel are "skeletonization", "medial axis transformation" and "symmetric axis transformation".

One advantage of skeletonization is to reduce the memory space required for storing the essential structural
information present in the patterns. Secondly, it also simplifies data structures required in processing the pattern.

There are several possible definitions of a skeleton:

1. Montanari [5] defines a skeleton as being the result of propagating wavefronts from the inside of the edge of the figure. The skeleton is then the locus of the intersections of wavefronts from opposite sides. This is roughly equivalent to the scheme adopted by most authors, where the "outside" pixels are removed iteratively from the image until no more can be removed without disconnecting one arc from another or shortening a line.

2. Rosenfeld [6-7] takes the definition that a skeleton is formed from the centers of maximal discs placed within the object. Using this definition the skeleton can be used to reconstruct the original object accurately by retaining the radii of the maximal discs and simply re-drawing them. This definition however does not guarantee that the skeleton will be connected (i.e. one guarantee that the skeleton will be converted to several black with white spaces in between).

3. Davies and Plummer [8] define a skeleton as being the result of (2) but with sufficient additional points such that the resulting skeleton is connected. This is the most useful of the definitions by combining a strict definition with connectivity.
4. Pratt [3] defines shrinking and thinning as operations that seek to reduce a connected region of pixels of a given properly set to a smaller size. Shrinking reduces the region to a single pixel, while thinning reduces a region to minimal cross-sectional width. Skeletonizing is a related operation that transforms a region to a stick figure representation.

In general thinning algorithms are used to reduce an elongated object to one element thick.

Most existing thinning algorithms take the following processing route, starting with the analog output of the scanner device.

a-Thresholding: The scanner hardware usually converts the image to 0 (white) or 1 (black) before passing it to the computer (see APPENDIX - A -).

b-Thinning: An iterative edge erosion process removes outside pixels until only the skeleton remains.
1.1 _OVERVIEW ON DIFFERENT TECHNIQUES:

In this section, a review of various thinning algorithms described in the literature is presented.

A thinning algorithm is considered useful for a particular application if:

1. It preserves the shape of the original image.
2. It preserves the connectivity
3. It does not leave extraneous pixels (branches).

Several authors [9-11] have studied the problem of obtaining sets of thickness invariant measurements which involve the determination of constant thickness "medial line" of each object and considering for recognition purposes only the features of the line, unfortunately these measurements are invariant only with respect to a uniform change of thickness in the entire picture.

Some of the work in the literature [12-15] is concentrated on two fundamental approaches. The medial axis transform (MAT) and the distance transform (DT). The strength of the (MAT) is its ability to generate image skeletons that are always connected. The DT on the other hand produces skeletons that may have gaps but can be implemented to run faster on a conventional general purpose computer.

Alcorn and Hoqvar [16] discussed the work of Saraqa and Woollons [17], Dinneen [18], Unger [19], Sherman [20] and Deutsch [13] who all used various sized window operators.
which are passed iteratively over the whole image to decide whether a point is to be deleted. The paper concentrates on the follow-up to the work of Dinneen. A 3-by-7 window is passed iteratively over the whole (binary) image. The number of black pixels in the window is counted and if this figure is below a fixed threshold value, then the central pixel is set to white. If the count is above a different value, the central pixel is set to black. According to the values of these thresholds the result is that either small gaps in the black area are filled in, or thinning is performed by eroding the edge from the black region.

The shape of the window has the unfortunate effect of producing skeletons with thin vertical lines and thick horizontal lines, so the final "skeleton" is not consistently of unit width.

Beum [21] started with a binary image and uses an iterative technique with 2 passes per iteration. The first pass marks all edge points as being eligible for deletion. The second pass then deletes all marked points which are not critical to the skeleton i.e. points which would not cause a discontinuity or an end of a line to be shortened. The two passes are then used iteratively until no more points are deleted. A final "clean-up" pass is used to reduce the image to a stick line of one pixel thin. In the paper it is suggested that a number of iterations be fixed to say 3. The clean-up pass is then relied on to complete the thinning.
The chief difference between this algorithm and [16] is in the organization of the 2 passes. Hilditch has the second pass delete all marked points. Beum performs the majority of the checks to prevent deletion of break-points and excessive erosion on the second pass, the checks being only done on edge points marked on the first pass.

Udupa and Murthy [22] suggested a method for converting a binary image directly to a set of points which form a line segment approximation of the skeleton. The algorithm uses an iteration where a set of window operators over the image to detect "turning points" and "end-points" in the image. Unfortunately the algorithm yields a skeleton of a constant width over at least 6 pixels.

R. Stefanelli and A. Rosenfeld [23] presented a basic scheme of thinning which consists of a sequence of four parallel steps thinning the objects in four cardinal directions (north, south, west, east) successively. The disadvantage of this method is the existence of branches in the final skeleton.

A. Rosenfeld and L.S. David [24] described a simple algorithm for thinning object down to skeletons and a method of detecting and pruning "noisy" branches of a skeleton, with the aid of the distance transform of the original object. The main problem of this algorithm is that the final skeleton may not be connected.
Tamura [25] described a thinning algorithm that aims at two important properties. The first is of a topological nature and consists of preserving the order of connectivity of both object and background. The second is the definition of end points by which the skeleton begins to emerge from the objects.

C.C. Lee [26] described a modified distance transform (MDT), which combines the original distance transform (DT) with a new set of selected rules to be defined, and an appropriate linking algorithm to produce a connected skeleton in computing times that are significantly shorter than the medial axis transform (MAT) implementation for a large image array. It should be noted that by using this method, the skeleton of one pixel width cannot be obtained.

Chung Chang Lee [27] presented a sequential thinning algorithm which maintains a connectivity within 3-by-3 window to produce a pixel thin skeleton from a connected thick skeleton. The process is based on local neighborhood logic skeletonizing operations for fast processing, and consists of:

1. Sequential application of a modified distance transform;
2. linking algorithm; and
3. thinning algorithm.

The algorithm is excellent concerning the processing time and preserves very well the shape of the original image.
but it has sometimes the problem of discontinuity when it is applied to Arabic characters.

For Arcelli [30] a skeleton can be obtained using a matching algorithm in which a set of eight templates is used. The problem of this method is the existence of branches in the final skeleton when only one image is used in the processing.

For Carlo Arcelli and G.S.Di-Baja [29] the thinning is obtained using an algorithm which transforms a digital figure into a set of simple digital arcs and curves, by employing local sequential operations. The procedure considers the removal of suitable contour elements of the given figure and it is repeated on every current set until the final skeleton is obtained.

A.Bel-Lal and Montoto [32] presented a thinning algorithm which determines the "medial line's" elements of an elongated object on a digital image and, at the same time a value for those elements equal to the "width" of the object. The procedure deletes boundary points of the object in an iterative process, a way which is widely used in the bibliography to find only the position of the medial line's element. However using this method the skeleton contains branches originating in correspondence to all the deletable convex arcs of the contour.

C.Arcelli, L.P.Cordella and S.Levialdi [33] described a parallel procedure applied to a connected image, the
procedure involves a step by step propagation of the background over the image. At every step, contour elements either belonging to the significant convex regions of the current image or being local maxima of the original image are selected as skeleton elements.

For the basic algorithm of Pavlidis [39]: a dark point P is deleted from the pattern if it satisfies all of the following conditions: 1) it is an edge-point; i.e. it has at least one white four-neighbors; 2) it is not an end-point; and 3) its neighborhood does not match any of three predefined 3-by-3 rotating windows (Pavlidis calls these "multiple points" and "tentative multiple points" tests). Effectively, these tests ensure connectedness of the skeleton and prevent excessive erosion.

Hilditch [12] presented a thinning algorithm based on the following criteria: a dark point P is deleted if it satisfies all of the following conditions: 1) it is an edge-point; 2) it is not an end-point; 3) it has at least one dark eight-neighbors not considered as deletable; 4) it is not a break-point; i.e., its neighborhood satisfies the "crossing number" criteria (see N.J. Naccache algorithm [35]); 4) its deletion does not cause excessive erosion.

R. Stefanelli and A. Rosenfeld [23] presented a "simplified version" of Hilditch's approach [12] described below. In this algorithm, a dark point P is deleted if it satisfies the following conditions: 1) it is an edge-point;
2) it is not an end-point; 3) its deletion does not cause excessive erosion; 4) it satisfies the break-point test; i.e. the number of dark to white transitions in the neighborhood of P is equal to 1. The main problem of using this method is that the shape of the original image is not always preserved and also sometimes the presence of a few extraneous pixels (branches) either by flagging the pixels in each pass and deleting the flagged pixels after the last iteration, or deleting a pixel each time the four conditions are satisfied.

Nabil Jean Naccache and Rajjan Shinghal [35] presented an algorithm based on local operations to detect edge-points, end-points, and to prevent excessive erosion; also compare their results with its so called "Simplified version of Hilditch" presented by Stafenalli and Rosenfeld [23]. The algorithm consists of six conditions. One of the main disadvantages is the existence of branches, the other is that the final skeleton is not connected.

For A. Rosenfeld [42] the natural concepts of simple connectedness are defined for subsets of a digital picture. It is shown that every simple connected object (with more than one element) in such a picture has elements which can be deleted without destroying its simple connectedness.

Rosenfeld and Pfaltz [40] defined a distance transform of a binary image. This replaces each pixel by a number
indicating the minimum distance from that pixel to the white point. The distance between two points is defined by the number of pixels in the shortest 4-connected chain between the points. This transformation is calculated by evaluating a function sequentially in a raster scan over the image, followed by a second function in a reverse scan. Once the distance function is calculated, a local maximum operation is used to find the skeleton. It is shown that this is the smallest set of points needed to reconstruct the image exactly. The main problem with this algorithm is that the skeleton may not be connected. However, the time required is of the order of the number of pixels in the image, making this form of thinning faster than iterative algorithms.

It should be noted that the strokes thinned by hardware or software are accompanied by different kinds of distortion. Different algorithms produce different degrees of distortion [2,3,22,13].

1.2 OBJECTIVE OF THE RESEARCH

The objective of this research is to investigate the utility of thinning and thickening algorithms to Arabic characters, and to develop new algorithms that will maintain the connectivity, preserve shape of the original image and avoid such problems as extraneous pixels (branches).
1.3 ThesiS_OrganizaTion:

The thesis is divided into three parts.

Some basic definitions, illustrations and procedures are presented in chapter II.

In chapter III various parallel and sequential thinning algorithms are presented and studied in detail. We have shown the problems of each algorithm when applied to Arabic characters.

In chapter IV two new parallel thinning algorithms are developed to investigate the problems discussed in chapter III, and applied to Arabic characters. Also a thickening algorithm is presented.

Chapter V presents the conclusions that can be obtained from the research work presented in this thesis.

Finally some other examples are given in Chapter VI. In this chapter all thinning algorithms presented in Chapter III and IV are applied to hand-written and printed English fonts and some numbers.
Chapter II

ILLUSTRATION AND DEFINITIONS AND PROCEDURES

2.1 INTRODUCTION

Usually different researchers have described various formal tests to prevent excessive erosion and to detect edge-points, end-points and break-points. Before going on to describe these procedures it would be useful to give brief illustrations and definitions for thinning approaches.

2.2 GENERAL ILLUSTRATION

Figures 2.1, 2.2, 2.3 and 2.4 illustrate the operation of a simple thinning and skeletonization for regularly shaped regions and irregularly shaped regions which consists of removing border points that are not end-points and do not result in a disconnected region under the definition of eight-connectivity.
a- Regularly shaped region:

```
1 1 1 1 1  
1 1 1 1 1  
1 1 1 1 1  
1 1 1 1 1  
1 1 1 1 1  
1 1 1 1 1  
```

```
X X X X X X  
X 1 1 1 1 X  
X 1 1 1 1 X  
X 1 1 1 1 X  
X 1 1 1 1 X  
X X X X X X  
```

```
1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
```

```
X X X  
X 1 X  
X 1 X  
X 1 X  
X 1 X  
X 1 X  
```

```
1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
```

```
X X X  
X 1 X  
X 1 X  
X 1 X  
X 1 X  
X 1 X  
```

```
1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
```

Figure 2.1: Case of rectangle: The value 1 corresponds to object pixel and X corresponds to deletable pixels.
Figure 2-2: Case of square
b- Irregularly shaped region

Figure 2.3: Vertical region thinning

Figure 2.4: Horizontal region thinning
2.3 DEFINITIONS

It is possible to define thinning in a mathematically
tight way on the continuous plane as follows.

2.3.1 DEFINITION[11][12]

Let \(R \) be a plane set, \(B \) its boundary and \(P \) a point in \(R \).
A nearest neighbor of \(P \) on \(B \) is a point \(M \) such that there is
no other point in \(B \) whose distance from \(P \) is less than the
distance \(PM \).

If \(P \) has more than one nearest neighbor, then \(P \) is said
to be a skeletal point in \(R \). The union of all skeletal
points is called the skeleton or medial axis of \(R \).

This definition implies that skeletal points are
centers of circles contained entirely within \(R \) with the
property that there is no other circle with the same center
and greater radius contained in \(R \).

Figure(2.5) shows some examples of skeletons with some
of their major features.

One can see that they are very sensitive to noise,
since a small disturbance of the boundary not only causes a
disturbance in one branch but also causes the creation of
new branches.
Figure 2.5: Examples of skeletons

(a). The linear structure of the character shown in this figure corresponds closely to that of the medial axis.

(b). There is no simple correspondence between skeleton branches and the square, because if this is the case we should get a point as a skeleton.
(c). The medial axis of the character shown in this Figure is disconnected.

(d). This figure shows that a small amount of noise alters the form of the skeleton.

Note that medial axis means the line which lies in the middle of the thick object, in other word the skeleton of the thick image.

Another observation that one can make from Fig.(2.5) is that for objects that are thin to start with, the skeletons provide substantial information about their shape. This is not the case with a thick object, as shown in Fig.(2.5b).

2.3.2 DEFINITION(2)

The skeleton of a set of pixels \(R \) is a set found as follows.

First the skeletal pixels and the contour pixels of \(R \) are determined. Then all the contour pixels that are not skeletal are removed and the set thus found replaces \(R \). The process is repeated until a set consisting of only skeletal pixels is left.

The important part is the assumption that one can decide for each set that certain pixels are skeletal, and keep them, and the other pixels are definitely not skeletal, so one can discard them.
2.3.3 **DEFINITION(3): CONNECTIVITY (3).**

A fundamental step in the formation of a symbolic description of a picture from an array of pixels or a collection of primitive features is to specify the geometrical relationship or connectivity of pixels. In the binary picture of Fig.(2.6a) the ring of black pixels, by all reasonable definitions of connectivity, divides the picture into three pixel regions: the white pixels exterior to the ring, the white pixels interior to the ring, and the black pixels of the ring itself. The pixels within each region are said to be connected to one another. This concept of connectivity is easily understood in Figure(2.6a) but ambiguity arises when considering Figure(2.6b).

![Diagram](image)

Figure 2.6: Illustration of connectivity: a- Ring figure; b- Ambiguous figure.
Neighborhood operations lend themselves naturally to the study of connectivity, since it is defined in terms of neighbors. If the operations are applied in parallel, it is not easy to distinguish among connected components, since the parallel operations treat every point of the given set identically (see section 2.4.4). Using the sequentially applied operations, however, one can track each connected region, assigning a value to each point of it as the tracking proceeds.

2.4 PROCEDURES

2.4.1 SKELETONIZATION CRITERIA

In image processing skeletonization of binary patterns consists of successive deletions of dark points (i.e., changing them to white points) along the edges of the pattern until the pattern is thinned to a line drawing.

Ideally, the original pattern should be thinned to its medial axis.

It means the procedure deletes boundary points of the object in an iterative process to find only the position of the medial line's element. Simultaneously calculation of position and width was found in using two arrays, one to place the position and the other to record the width.

Most skeletonization algorithms consist of iteratively executing many passes over the pattern where in each pass a few dark points are deleted. In any pass, a dark point to
be deleted from the pattern must satisfy the following intuitive criteria.

a- It is an edge-point (i.e. it lies along the edges of the pattern)

b- It is not an end-point (i.e. it is not a point which lies on the extremities of the stroke).

c- It is not a break-point (i.e. it is not a point the deletion of which would break the connectedness of the pattern).

d- Its deletion must not cause excessive erosion (e.g. an open ended stroke should not be iteratively deleted).

2.4.2 LOCAL OPERATIONS

By an operation on a digitized picture it is meant a function which transforms a given m*n picture matrix into another one. A general function of this type has m*n numericals arguments (one for each position in the matrix), and is correspondingly difficult to handle computationally. For practical purposes, it is desirable to work with operations on digitized picture which can be defined in terms of functions having considerably fewer arguments.

By a local operation or neighborhood operation on a picture it is meant a function which defines a value for each element in the transformed picture in terms of the values of the corresponding element and a small set of
neighbors in the given picture. For example, such operations can be defined using a neighborhood which consists of the given element and its eight immediate neighbors. An operation of this type has only nine arguments and is of the form:

\[
 a^* = f(a_{i-1,j-1}, a_{i-1,j}, a_{i-1,j+1}, a_{i,j-1}, a_{i,j+1}, a_{i+1,j})
\]

When processing a picture using local operations, the purpose is to share the results of intermediate processing steps as auxiliary pictures.

The processing for thinning algorithms can be serial (sequential) or parallel.

2.4.3 SEQUENTIAL PROCESSING

Suppose that a local operation is applied to the points of a digitized picture in some definite sequence. For simplicity, suppose that the points are processed row by row beginning at the upper left.

In serial (or sequential) processing, one point is processed at any one time; the result of processing a point at the nth+1 iteration depends on a set of points obtained at the nth iteration. The processing sequence can be preassigned (for example, as a television type scanning of the visual field) or computed (the next point to be processed depends on the results of the previous processing).
; this is the case, for example in all contour following algorithms. In other words, the new value rather than the original value is used in processing any succeeding points which has it as a neighbor.

If \(q(i,j) \) and \(q'(i,j) \) denote respectively, the values of the input and output images of an elementary step in point \((i,j)\) then

\[
q(i,j) = F(q'(i-1,j-1), q'(i-1,j), q'(i-1,j+1),
q'(i,j-1), q(i,j), q(i,j+1), q(i+1,j-1),
q(i+1,j), q(i+1,j+1))
\]

Note that the points \((i-1,j-1), (i-1,j), (i-1,j+1)\) and \((i,j-1)\) have already been processed, while the remaining points have not yet been processed.

2.4.4 PARALLEL PROCESSING

The wide variety of picture transformations which can be performed using local operations applied in parallel has given rise to the widespread belief that this approach is optimum for local picture processing in general.

In parallel processing the value given to a point at the \(n \)th iteration depends on the values given to the point and its eight neighbors at the \((n-1)\)th iteration. Thus all the points of the figure can be processed simultaneously.

In a parallel algorithm, the elementary function \(F \) is applied at once to all points in the neighborhood:

\[
q'(i,j) = F(q(i-1,j-1), q(i-1,j), q(i-1,j+1),
q(i,j-1), q(i,j), q(i,j+1), q(i+1,j-1),
q(i+1,j), q(i+1,j+1)).
\]
The arguments \(q(i-1, j-1), \ldots, q(i+1, j+1) \) are always the original picture matrix values. The new values \(q'(i, j) = F(q(i-1, j-1), \ldots, q(i+1, j+1)) \) are stored but are not used until the operation has been performed for every \((i, j)\), when they then become arguments for the next operation (if any).

Note that sequential processing can be more efficient than parallel processing when it is implemented on a general computer. On the other hand, parallel processing is advantageous if suitable special-purpose computing structures can be used, e.g., cellular networks.

It was noted in [40] that any picture transformation that can be accomplished by a series of parallel local operations can also be accomplished by a series of sequential local operations, and conversely, the same is true.
Chapter III

VARIOUS THINNING ALGORITHMS WITH APPLICATION TO ARABIC CHARACTERS

3.1 INTRODUCTION

The key step of many pattern recognition tasks is a thinning algorithm. One of the methods of obtaining a skeleton or a medial axis of a binary picture consists of erasing points of the boundary of the object without modifying the topological properties of the picture until it consists of thin lines.

There are many ways to perform thinning transformation when applied to a binary picture such as:

1. MATCHING ALGORITHMS USING TEMPLATES
2. USING LOCAL OPERATIONS
3. DISTANCE TRANSFORM

Before going on to describe some thinning algorithms, it would be useful to those unfamiliar to the field to define some common terminology.

Let S be a subset of the digital picture, we sometimes refer to the points of S as 1's and to the points not in S as 0's.
If \(P \) is a point of \(S \), and the neighborhood of \(P \) is as denoted in Fig. (3.1)

\[
\begin{array}{ccc}
A & B & C \\
D & P & E \\
G & P & H
\end{array}
\]

Figure 3.1: Neighborhood of \(P \)

Then we call \(P \) a north border point if \(B = 0 \); an east border point if \(E = 0 \); a west border point if \(D = 0 \), a south border point if \(G = 0 \), a north east corner point if \(B = E = 0 \), a east south corner point if \(E = G = 0 \), a south west corner point if \(G = D = 0 \), and a west north corner point if \(D = B = 0 \).

The points \(B, D, E \) and \(G \) are called 4-neighbors of \(P \) (called also the 1st order neighbors of \(P \) or orthodiagonal neighbors) as shown in Fig. (3.2).

\[
\begin{array}{ccc}
B \\
D & P & E \\
G
\end{array}
\]

Figure 3.2: The four-neighbors of \(P \)
while these points together, with A, C, F, and H are
called the 8-neighbors of P (called also the 2nd order
neighbors of P).

By the definition of four-connectivity, pixel P and
pixel E are connected if both belong to property set S.
Similarly four-connectivity can be established between pixel
P and pixels B, D, and G, which all share an extended
boundary, provided that both members of the pair belong to
the same property set.

Eight-connectivity permits pixel P and one of its
diagonal neighbors, with a common point boundary, for
example pixel P and pixel C to be connected if they both
belong to property set S.

Note that pixel P belongs to the property set \sqrt{S} which
means that pixel P is a point of S with 1 valued pixel.

Mathematically S is called 4-connected if for any two
points P and Q of S there exists a sequence of points

$$ P = P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow \ldots \rightarrow P_n = Q $$

of S such that P_i is a 4-neighbor of P_{i-1}, $1 \leq i \leq n$.

S is called 8-connected if for any two points P and Q of
S there exists a sequence of points

$$ P = P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow \ldots \rightarrow P_n = Q $$

of S such that P_i is an 8-neighbor of P_{i-1}, $1 \leq i \leq n$.

We call P a 4-end point if exactly one of its 4-neighbors is one (1), and an 8-endpoint if exactly one of its 8-neighbors is 1.

For example, in

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & P & 1 \\
1 & 0 & 1 \\
\end{array}
\]

P is 4-end point (but not 8-end point).

We call P 4-isolated if none of its 4-neighbors is 1, and an 8-isolated if none of its 8-neighbors is 1.

We call a border point P 4-simple if changing it from 1 to 0 does not change the 4-connectedness of the 1's in its neighborhood; and a 8-simple if changing it from 1 to 0 does not change the 8-connectedness of the 1's in its neighborhood.

For example

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & P & 0 \\
1 & 0 & 1 \\
\end{array}
\]

P is 4-simple but not 8 simple; in
it is neither ; in

it is both.

Readily, a 4-endpoint is always 4-simple and an 8-endpoint is 8-simple, and the same is true for isolated points.
A pixel P is a break point if it has a value of 1 and its 3-by-3 window matches any of the following six window patterns denoted by S_1, S_2, S_3, S_4, S_5 and S_6 as shown in Fig. (3.3).

\[\begin{array}{|c|c|c|}
\hline
* & * & * \\
0 & 1 & 0 \\
* & * & * \\
\hline
\end{array}\] S_1

\[\begin{array}{|c|c|c|}
\hline
* & 0 & * \\
* & 1 & * \\
* & 0 & * \\
\hline
\end{array}\] S_2

\[\begin{array}{|c|c|c|}
\hline
* & * & * \\
* & 1 & 0 \\
* & 0 & 1 \\
\hline
\end{array}\] S_3

\[\begin{array}{|c|c|c|}
\hline
* & * & * \\
0 & 1 & * \\
1 & 0 & * \\
\hline
\end{array}\] S_4

\[\begin{array}{|c|c|c|}
\hline
1 & 0 & * \\
0 & 1 & * \\
* & * & * \\
\hline
\end{array}\] S_5

\[\begin{array}{|c|c|c|}
\hline
* & 0 & 1 \\
* & 1 & 0 \\
* & * & * \\
\hline
\end{array}\] S_6

Figure 3.3: The six windows S_1, S_2, S_3, S_4, S_5 and S_6, where x represents don't care conditions (i.e., can have either the values 0 or 1).
3.2 ALGORITHM #1 (MATCHING ALGORITHM) [30-31]

3.2.1 INTRODUCTION

The concept of template matching has found wide acceptance in many applications because of its simplicity.

In terms of digital image, a template (also called a mask or window) is an array designed to detect some invariant regional property.

One of the most fundamental means of object detection within an image field is by template matching, in which a replica of an object of interest is compared to all unknown objects in the image field. If the template match between an unknown object and the template is sufficiently close, the unknown object is labeled as template object.

3.2.2 ARCELLI'S ALGORITHM [30]

The matching algorithm also called the peeling algorithm uses a set of templates denoted by A_1, A_2, A_3, A_4, B_1, B_2, B_3 and B_4 shown in Fig. (3-4).

Matching or peeling is a thinning algorithm in which pixels are peeled (removed) from line edges until a one pixel wide line remains [30].

Pixels are removed by comparing each 1 valued pixel and its neighbors in the image with a set of templates.
Figure 3a4: "Set of templates"; the value 1 represents the object value; the value 0 represents the background value and * represents don't care conditions (i.e. can be either 1 or 0).
In the templates, zeros must match 0 valued pixels, ones must match 1 valued pixels, and asterisks can match either 1 or 0 valued pixels in the image.

To begin, for example template A_1 is compared with all 1 valued pixels and their neighbors in the image.

If the match is obtained, the corresponding central pixel of the image is deleted (changed to zero valued pixel).

After processing with template A_1, the process is repeated with template B_1, then with A_2, B_2, A_3, B_3, A_4, and B_4 in that order forming a complete cycle. When no pixels are removed during the processing of a complete cycle, the procedure ends.

the filename of the program: temp1.for

3.2.3 RESULTS

Using the matching algorithm (30-31) in which the eight templates A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4 and only one image are used in the processing, we obtain a skeleton but not in the middle and with branches in many parts of the character. Results of using the above algorithm on Arabic characters are shown in Fig. (3.5).
Figure 3.2: Skeletons obtained using the matching
3.3 _ALGORITHM #2_ PARALLEL_THINNING_ALGORITHM [35]_

3.3.1 _INTRODUCTION_

Usually different researchers have described various formal tests to prevent excessive erosion and to detect edge-points, end-points and break-points.

3.3.2 _HACCACHE'S ALGORITHM_

This algorithm is based on the above criteria.

For the algorithm we define the following:

1. \(B(P_i) \): the number of nonzero neighbors of \(P_i \)

\[
B(P_i) = P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8 + P_9
\]

2. An edge-point as a dark point with at least one white 4-neighbors.

3. An end-point as a dark point with at the utmost one dark 8-neighbors.

4. The crossing number as

\[
X(P_i) = \sum_{i=2}^{5} b_i
\]

where

\[
b_i = 1 \text{ if } (\text{ point } P(2i-2) \text{ is white } \text{ and (either } P(2i-1) \text{ or } P(2i) \text{ is dark }) \text{.}
\]

\[
b_i = 0 \text{ otherwise}
\]

In any given pass, the input pattern is scanned row-wise from left to right and from top to bottom. A dark
point \(P_1 \) is flagged if all of the following 6 tests \(\text{H}1-\text{H}6 \) return the value true.

\[
\text{H}1. \quad P_2 + P_4 + P_6 + P_8 \leq 3 \quad (P_1 \text{ is an edge-point}). \\
\text{H}2. \quad \delta(P_1) \geq 2 \quad (P_1 \text{ is not an end-point}). \\
\text{H}3. \quad N(P_1) \geq 1 \quad N(P_1) \text{ is the number of unflagged}
\quad \text{at "tip of a thin line" or in approxi-}
\quad \text{matively circular subsets from being}
\quad \text{iteratively deleted.}
\]

\[
\text{H}4. \quad X(P_1) = 1 \quad P_1 \text{ is not a break-point}
\]

\[
\text{H}5. \quad \text{Either } P_4 \text{ is unflagged}
\quad \text{or } X(P_1) = 1 \quad X(P_1) \text{ is the crossing number}
\quad \text{of } P_1 \text{ if we temporarily assume}
\quad \text{that } P_4 \text{ is white. This test pre-}
\quad \text{vents excessive erosion.}
\]

\[
\text{H}6. \quad \text{Either } P_6 \text{ is unflagged}
\quad \text{or } X(P_1) = 1 \quad \text{This test prevents excessive}
\quad \text{erosion as it is similar to } \text{H}5.
\]

At the end of the pass all the flagged points are deleted.

3.3.3 EXPLANATION OF THE ALGORITHM

The six operations (\(\text{H}1, \ldots, \text{H}6 \)) given above can be explained by the following [44].

To flag the point \(P \), we must show that \(P \) is not an end-point, nor a break-point, and nor would its deletion cause excessive erosion. We show that below such a point \(P \) needs to compare the neighborhood of \(P \) with the four windows shown in Fig. 3.6.
If the neighborhood of \(P \) matches any one of the four windows, then the point \(P \) is not flagged. It should be noted that the points shown as \(x \)'s and \(y \)'s in the windows are "don't care" points (i.e., their whiteness or darkness is immaterial). We now examine the four windows one by one, to justify why these are the windows to conduct the break-point, end-point and excessive erosion tests on \(P \).

If the neighborhood of \(P \) matches any of the windows (a), (b) or (c) of Fig. (3.6), then two situations may occur:

1- If all \(x \)'s are white, then \(P \) is an end-point.

2- If at least one of the \(x \)'s is a dark point, then \(P \) is a break point. Thus in either of these cases, \(P \) should not be flagged.

Now let us examine window (d) of Fig. (3.6). If at least one \(x \) and at least one \(y \) are dark, then \(P \) becomes a break-point and thus it should not be flagged. For further analysis, let us assume for the time being that all \(x \)'s are white, then there are eight possible configurations as shown in Fig. (3.7). Configurations \(W_1 \), \(W_2 \), and \(W_3 \) make \(P \) an end-point, and configurations \(W_4 \) makes \(P \) a break-point. The absence of conditions \(W_5 \) and \(W_6 \) could cause excessive erosion in slanting strokes of width 2; e.g., Fig. (3.3a), being reduced to Fig. (3.8b). The importance of using these conditions is shown in Fig. (3.3c). It was stated by Naccache that in configurations \(W_5 \), \(W_6 \) and \(W_7 \) the point \(P \) should not be flagged (found by experiment). In
configurations \(w_7 \) and \(w_8 \); the point \(P \) is in fact noise.

Since the patterns have already been smoothed before they are fed to our algorithm, such noise is always removed and configurations \(w_7 \) and \(w_8 \) shall never exist at the beginning of the skeletonization process. If configuration \(w_7 \) were to occur in an intermediate stage of skeletonization, then \(P \) would be a spur due to a short tail in the original pattern (e.g., as in chromosomes). Such a point may, however, retain some shape information of the pattern and it must not be deleted. Similarly, if configuration \(w_8 \) were to occur in an intermediate stage of skeletonization, then it would be a singleton (isolated point); its deletion would totally erase the last remaining segment of the pattern. Therefore, in all of the above configurations \(P \) must not be flagged.

By symmetry, we extend our argument to the case in window (d) when all the \(y \)'s are white and \(x \)'s take on varying values of whiteness or darkness. Thus, for window (d) also, \(x \)'s and \(y \)'s become "don't care" points.
<table>
<thead>
<tr>
<th>1 0 x</th>
<th>x x x</th>
<th>x 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 P x</td>
<td>0 P x</td>
<td>0 P 1</td>
</tr>
<tr>
<td>x x x</td>
<td>1 0 x</td>
<td>x 0 0</td>
</tr>
</tbody>
</table>

(a) (b) (c)

<table>
<thead>
<tr>
<th>x x x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 P 0</td>
</tr>
<tr>
<td>Y Y Y</td>
</tr>
</tbody>
</table>

(d)

Figure 3.6: If the neighborhood of a dark point P matches any of the four windows above the point P is not flagged; x's and y's are don't care conditions.

The eight possible configurations that could exist in the window (d) of Fig. (3.6) are shown in Fig. (3.7).
Figure 3.8: Eight windows derived from the window (d)

Fig. (3.8a) shows a slanting stroke of width 2.
Fig. (3.8b) shows a skeleton obtained using the parallel thinning algorithm without conditions H5 and H6, and
Fig. (3.8c) shows a skeleton obtained in the presence of
conditions H5 and H6.
Figure 3.8: a– Slanting stroke of width 2; b– Skeleton obtained in the absence of conditions H5 and H6; c– Skeleton obtained in the presence of conditions H5 and H6.

3.3.4 RESULTS

The parallel thinning algorithm given by N. Naccache [35] in 1994 which conserves very well the shape of the original binary image has the following two problems.

1. It leaves extraneous pixels (branches) in the skeleton

2. The final skeleton is not connected
Results of using the above algorithm on Arabic characters are shown in Fig. 3.9.

Figure 3.9: Skeletons obtained using Naccache's algorithm [35].
3.4 ALGORITHM #3 SIMPLIFIED VERSION OF HILDITCH [23]

3.4.1 DESCRIPTION

A well known skeletonization approach is Hilditch's algorithm. Hilditch describes in detail the criteria that must be satisfied before a dark point of a pattern is deleted. However she didn't present her approach in a compact algorithmic form.

R. Stafanelli and A. Rosenfeld [23] presented a "simplified version" of Hilditch's approach as a formal algorithm.

A two-tone digitized picture is defined by a square matrix \(\lambda \) where each element \(a_{ij} \) is either 1 or 0. It is supposed that the objects consist of those elements which have value 1.

Picture processing generally involves iterative transformations applied to the matrix \(\lambda \), where each transformed point depends on (i.e., Boolean function of) a small set of neighboring points.

It is usually assumed that the neighbors of the point \((i, j)\) are:

\[
(i, j+1), (i-1, j+1), (i-1, j), (i-1, j-1), (i, j-1),
\]

\[
(i+1, j-1), (i+1, j), (i+1, j+1) \text{ and the point (i, j) itself as in Figure 3.10).}
\]
<table>
<thead>
<tr>
<th>P_i</th>
<th>P_j</th>
<th>P_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(i-1,j-1)$</td>
<td>$(i-1,j)$</td>
<td>$(i-1,j+1)$</td>
</tr>
<tr>
<td>$(i,j-1)$</td>
<td>(i,j)</td>
<td>$(i,j+1)$</td>
</tr>
<tr>
<td>$(i+1,j-1)$</td>
<td>$(i+1,j)$</td>
<td>$(i+1,j+1)$</td>
</tr>
</tbody>
</table>

Figure 3.10: Designation of the nine pixels in a 3-by-3 window

Note that larger neighborhoods (5×5 and 4×7) have also sometimes been used (26-27). The algorithm requires simple computations and makes use of a small (3×3) window.

3.4.2 ALGORITHM 1

A first possible method for extracting the medial line (i.e., the skeleton) of the figure consists of removing all the contour points of the figure except the ones that might belong to the line. The eight points P_2, P_3, P_4, P_5, P_6, P_7, P_8, and P_9 are known as the 3-neighbors of P_1, and the four points P_2, P_4, P_6, and P_8 are known as the 4-neighbors of P_1.

In the algorithm, the contour point P_1 is deleted from the digital pattern if it satisfies the following tests.
1. \(2 \leq B(P_1) \leq 6\)
2. \(A(P_1) = 1\)
3. \(P_2 \cdot P_4 \cdot P_6 = 0\)
4. \(P_2 \cdot P_4 \cdot P_8 = 0\)

Where:

- \(A(P_1)\) is the number of 01 patterns in the ordered set \(P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9\) that are the eight neighbors of \(P_1\).
- \(B(P_1)\) is the number of nonzero neighbors of \(P_1\) that is:
 \[B(P_1) = P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8 + P_9\]

If any condition is not satisfied then \(P_1\) is not deleted from the picture. As an example of this is shown in Fig. (3.11) where \(A(P_1) = 3\).

\[\text{Figure 3.11: Counting the 01 pattern in the ordered set}\ P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9\text{ and } P_2\]
3.4.3 RESULTS

The simplified version of Wilditch presented by Stefanelli and Rosenfeld [23] is described as follows:

a - A point \(P_1 \) is deleted from the pattern if:

\[a - \ 2 \leq B(P_1) \leq 6 \]
\[b - \ A(P_1) = 1 \]
\[c - \ P_2 \ast P_4 \ast P_6 = 0 \]
\[d - \ P_2 \ast P_4 \ast P_8 = 0 \]

are satisfied. The algorithm may not retain the shape properties of the original pattern and sometimes the presence of extraneous pixels (branches) in the final skeleton. Results of using the above algorithm with procedure (a) on Arabic characters are shown in Fig. (3.12).

The filename of the program: ALGSUB10.for

b - A point \(P_1 \) is flagged (labeled with another value rather than 0 or 1) in each pass and at the end of each pass all the flagged points are deleted.

The algorithm in this case yields the following results:

1. We obtained a skeleton but not in the middle.
2. The algorithm leaves a few extraneous pixels and sometimes the shape of the original image is not preserved.

Results of using the above algorithm with procedure (b) on Arabic characters are shown in Fig. (3.13).

The filename of the program is: ALGSUB1.for
Figure 3.12: Skeletons obtained using the "Simplified version of Hilditch when the central point \(P_1 \) is deleted.
Figure 3.13: Skeletons obtained using the "Simplified version of Hilditch when the central point P_1 is flagged.
3.5 ALGORITHM #4_SEQUENTIAL_THINNING_ALGORITHM [26-27]

3.5.1 DESCRIPTION

The sequential thinning algorithm presented in [27] consists of three steps:

1. Sequential application of a modified distance transform;
2. linking algorithm; and
3. thinning algorithm.

The block diagram shown in Figure (3.14) indicates the image analysis process for extraction of shape and position information from the binary image. Given a thresholded binary image (see APPENDIX - A -), followed by the distance transform, an initial skeleton is obtained by applying the first or the second equation of the new selection rules. A linking algorithm is applied immediately after the new selection rules to achieve a connected skeleton, and because the resultant skeleton is not one pixel thin everywhere, a thinning procedure is needed to obtain the final skeleton.

In the following sections each block is explained in detail.
Figure 3.14: The block diagram
3.5.2.1 MODIFIED DISTANCE TRANSFORM :

The modified distance transform includes the distance transform and the new set of selection rules for picking up skeleton elements.

DISTANCE_TRANSFORM (DT) [40] :

Distance transform is used by many researchers in the determination of the skeletons because the processing time is very fast.

Given a digitized picture whose elements have only the values 0 or 1, it is desirable to construct a distance transform of the picture in which each element has an integer value equal to its distance from the set of 0's, (it is assumed that the set of 0's is nonempty). Thus in particular, the 0's remain unchanged since they are at zero distance from themselves, the 1's which are horizontal or vertical neighbors of 0's also remain unchanged, the 1's which are horizontal or vertical neighbors of such 1's become 2's and so on.

The distance transform utilized in [26] is substituted by the distance transform explained in [40]. It can be performed using the following method:

1- On the first pass the image is scanned row-wise from the upper left hand corner to the lower right hand corner. Each 1 valued pixel in the image is assigned a new valued according to:
\[D(\text{row}, \text{column}) = \min(D(\text{row}-1, \text{column}), \]
\[D(\text{row}, \text{column}-1)) + 1. \]

This calculates each pixel's distance from the left to top side of a line.

2- On the second pass, the image is scanned row-wise from the lower right hand corner to the upper left hand corner. Each nonzero valued pixel is assigned a new valued pixel according to:

\[D(\text{row}, \text{column}) = \min(D(\text{row}+1, \text{column}) + 1, \]
\[D(\text{row}, \text{column}+1) + 1, \]
\[D(\text{row}, \text{column}). \]
As an example of this is shown in Figure (3.15)

1- The first pass

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

2- The second pass

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

Figure_3.15: Example of using the distance transform (40) given above
A simpler distance transform than the ones explained in [25] and [40] is given as follows:

Let S be a subset of a digital image. We sometimes refer to the point of S as 1's, and to the point not in S as 0's.

For any point p of S, let $d(p)$ denote the distance from the point p to the nearest point not in S.

The distance between two points (x, y) and (u, v) can be obtained by taking the minimum distance between the points (x, y) and (u, v) in the four directions (north, south, east and west).

Note that (x, y) is a point in S (it means 1 valued pixel) and (u, v) a point not in S (it means 0 valued pixel).

Using this method we obtained the same result as before (see Fig. 3.15).

NEW SELECTION RULES:

The goal of the new selection rules is to generate an initial skeleton, also to select more pixels as skeleton elements to achieve a more connected skeleton at the outset of the skeletonization.
There are two ways to perform the new selection rules.

The first one selects the skeleton using the cross neighborhood of length one of each pixel according to equation (a):

Equation (a) can be written as:

\[\begin{align*}
&\text{if } (D(i,j)+1 > D(i,j-1), D(i,j)+1 > D(i-1,j), \\
&D(i,j)+1 > D(i,j+1) \text{ and } D(i,j)+1 > D(i+1,j)) \\
&\text{then } D_2(i,j) = D(i,j) \\
&\text{otherwise } D_2(i,j) = 0.
\end{align*} \]

The second one selects the skeleton using an extended cross neighborhood of length two according to equation (b) as shown in Fig. (3.16).

\[\begin{array}{c|c|c|c|c}
 & d & d & d & d \\
\hline
d & i-2,j & i-1,j & i,j & i,j+1 \\
\hline
i,j-2 & d & d & d & d \\
\hline
& d & d & d & d \\
\hline
& d & d & d & d \\
\hline
i+1,j & d & d & d & d \\
\hline
i,j+2 & d & d & d & d \\
\hline
\end{array} \]

Figure 3.16: Cross neighborhood for MDT selection rules
Equation (b) can be written as:

\[\begin{align*}
 & \text{if } (D(i,j) - D(i,j-2) + D(i,j) - D(i-2,j) + \\
 & \quad D(i,j) - D(i+2,j) + D(i,j) - D(i,j+2) > 2) \\
 & \quad \text{then } D_2(i,j) = D(i,j) \\
 & \quad \text{otherwise } D_2(i,j) = 0
\end{align*} \]

Note that by using the second equation we produce a skeleton which is more connected than the skeleton obtained by using the first equation.

\(D(i,j) \) represents the distance transform and \(D_2(i,j) \) represents the initial skeleton obtained using the new selection rules.

An example of using equations (a) and (b) is shown in Fig. (3.17).
Figure 3.17: a- Skeleton obtained using equation (a); b- Skeleton obtained using equation (b).
3.5.2.2 LINKING ALGORITHM:

A linking algorithm is applied immediately after the new selection rules to achieve a connected skeleton.

The linking algorithm links the gaps produced by the new selection rules so that a connected skeleton can be obtained.

The algorithm can be divided into two steps:

1. Linearity test
2. Linking process

For the purpose of minimizing the processing time, the linearity test is introduced to detect a possible linearly connected skeleton segment within the 3-by-3 window centered at the current pixel. If the linearly connected skeleton segment can be detected in any horizontal, vertical, or diagonal direction within the 3-by-3 window, the linking process is bypassed, and time otherwise required to accomplish the linking process is saved. If the linearity test fails to detect any linearly connected segment within the 3-by-3 window, pixels are tested extending over a 7-by-4 window for the linking process.

1. Linearity test:

The linearity test is operated over the 3-by-3 window centered at the current pixel \(P_{ix} \). It is only performed when the DT value of any image point is greater than zero, i.e., when an image point belongs to a skeleton. A linearly connected skeleton segment is defined as:
(i) Having three elements, in the same row or column,

or any of two diagonal axes of the window.

(ii) All the DT values of the three elements must be
greater than zero.

Without the linearity test, the linking process
described below would itself still do the job.

2. Linking process:

The linking process is operated over a 7-by-4 window as
shown in Fig. (3.18). The window is moved in a similar
fashion as the 3-by-3 window. The current pixel, \(P_{i,j} \)
is located at the middle element of the leftmost column of the
7-by-4 window.

The linking area is subdivided into five regions (see
Fig. (3.18)): North (N); Northeast (NE); East (E); Southeast (SE); and South (S). The linking operations are
sequentially executed in clockwise directions from the North
region to the South region. The NE and the SE regions are
3-by-3 windows; the N and S are 3-by-1 windows; and the E
region is 1-by-3 window. In each region, if the element
closest to the current pixel (or one of its 8-neighbors)
is the skeleton element, the linking operations are bypassed
and proceed to the next region in sequence. In the N, NE,
east E regions, the linking operations try to link two
connected components into one connected component; but in
the SE and S regions, they try to reduce the gap between two
connected components from two pixels to a single pixel.
separation. Once a connected component is obtained or a gap has been reduced in a region, the linking process is terminated for that particular pixel, and the linking window is moved to the next pixel.

![7-by-4 Neighborhood Window for Skeleton Linking](image)

Figure 3.18: 7-by-4 neighborhood window for skeleton linking

The resultant skeleton is connected, but not pixel thin everywhere. Therefore a thinning procedure is needed to obtain the skeleton (i.e. one pixel thick).

3.5.2.3 THINNING ALGORITHM:

All selected skeleton elements are actually in distance transformed values. These elements are converted into 1's, where non-skeleton elements, even those with distance transformed values greater than 0 are converted into 0's.
The proposed algorithm is to test all the combinations to determine whether the current pixel P_0 can be removed or not. The window is moved from the upper left corner to the lower right corner of the image. If the connectivity of all neighboring skeleton pixels in the window is preserved after removing the center pixel from the window, the center pixel is permanently removed (converted to zero). However, if the window contains only one neighbor pixel, the center pixel is not removed. If it contains no neighboring pixel, the center pixel (an isolated pixel) is removed.

The thinning algorithm proposed according to the 8-connected definition, consists of the following six operations.

1. STORING:

The presence or absence of any neighbors P_i for $1 \leq i \leq 8$ is represented by 1 or 0 respectively, for $1 \leq i \leq 8$ in byte T. (T_0 is the most significant bit in the left most position), see Figure(3.19).

2. MASKING:

Bits T_2 T_4 T_6 and T_8 of byte T corresponding to the four corners of the window are masked out (turned to zero) and the result is stored in byte TM.

3. SHIFTING:

The contents of TM are shifted left by one bit (with end-around carry) and the result is represented by Q.
4. OR'ing

The contents of T and Q are OR'ed together and stored into TR.

5. COUNTING:

The bits in every pair of consecutive positions (including end-around carry) in TR are compared. For every change from 1 to 0 in the pair, a change counter $N_{1\rightarrow 0}(TR)$ is incremented. The total number of 1's in TR ($N_1(TR)$) is also computed.

6. DECISION MAKING:

If the change counter from step 5, $N_{1\rightarrow 0}(TR)$ is greater than 1, the current pixel P_0 is not removed. If $N_{1\rightarrow 0}(TR)$ contains 1, and the total number of 1's in TR ($N_1(TR)$) is also 1 the current pixel is not removed; otherwise the current pixel is removed.

Figure (3.19) presents a 3-by-3 neighborhood with pixel definitions.

```
<table>
<thead>
<tr>
<th>P₀</th>
<th>P₁</th>
<th>P₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₇</td>
<td>P₀</td>
<td>P₃</td>
</tr>
<tr>
<td>P₆</td>
<td>P₅</td>
<td>P₄</td>
</tr>
</tbody>
</table>
```

Figure 3.19: P_0 : current pixel ; P_1, P_2, \ldots , P_9 : eight-neighbors pixel ; P_1, P_3, P_5, P_7 : four-neighbors pixel
An example of the thinning algorithm is presented in the following.

(A)

\[
\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

(B)

\[
\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
\end{array}
\]

To T_6 T_5 T_4 T_3 T_2 T_1 T_6 T_5 T_4 T_3 T_2 T_1

1. T:

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

2. TM:

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]

3. Q:

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

4. TR:

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

5. \(N \) (TR) = 4 \quad N \) (TR) = 1 \quad N \) (TR) = 4 \quad N \) (TR) = 6
1 \rightarrow 0 \quad 1 \rightarrow 0 \quad 1 \quad 1

6. \(P_0 \) is not removed \quad \(P_0 \) is removed
3.5.3 RESULTS

As a result the algorithm (the explanation given above) preserves very well the shape of the original image and its processing time is very short (at the utmost 30 seconds). The disadvantage is the appearance of the disconnectivity where the linking algorithm fails to do it in characters as shown in Figs. (3.20) and (3.21).

1. Using the first equation of the new selection rules the filename of the program is: D.for

2. Using the second equation of the new selection rules the filename of the program is: D1.for

Results of using the above algorithm on Arabic characters either by using the first or the second equation of the new selection rules are shown in Figs. (3.20) and (3.21).
Figure 3.20: Skeletons obtained using the sequential thinning algorithm by using the first equation of the new selection rules.

Figure 3.21: Skeletons obtained using the sequential thinning algorithm by using the second equation of the new selection rules.
3.6 CONCLUSION

Four parallel thinning algorithms are presented, implemented and applied to Arabic fonts namely the Matching algorithm, the "Simplified version of Hilditch", Haccache's algorithm and the sequential thinning algorithm. We have shown the problems of each algorithm when applied to Arabic fonts. These problems lead us to develop new thinning algorithms as it will be explained in the next section.
Chapter IV

EFFECTIVE THINNING AND THICKENING ALGORITHMS
WITH APPLICATION TO ARABIC POINTS

4.1 INTRODUCTION:

In picture analysis it is often convenient to deal with a stick line version (skeleton) of binary images. A thinning algorithm is considered useful for a particular application if it maintains the connectivity, conserves the shape of the original image and does not leave extraneous pixels (branches) in the final skeleton. Two parallel thinning algorithms are developed. One is based on local operations to detect edge-points, end-points and break points, and it consists of four sub-iterations in which each one is divided into four conditions. The other is a modified approach of a matching algorithm [30] in which a set of eight templates and two images (the current image and the working image) are used in the processing. Both algorithms maintain the connectivity, conserve the shape of the original image and do not leave extraneous pixels within a 3-by-3 window to produce a pixel thin skeleton from a connected thick image. Also, a thickening algorithm is presented.

Experimental results show that these methods are very effective for thinning and thickening of Arabic characters.
4.2 NEW PARALLEL THINNING ALGORITHM

4.2.1 INTRODUCTION

The parallel thinning algorithm is developed to investigate the problems discussed in Chapter III. It is based on local operations to detect edge-points, end-points and break-points (i.e., that the point P_1 is a candidate for deletion if it is an edge-point, not an end-point and not a break-point). Also, the algorithm consists of four sub-iterations.

4.2.2 ALGORITHM

In each pass the input pattern is scanned row-wise from the upper left hand corner to the lower right hand corner.

In each pass a dark point P_1 is flagged if at least one of the following four sub-iterations is satisfied.

Note that each sub-iteration is divided into four conditions.

The first sub-iteration

1. a. $2 \leq B(P_1) \leq 6$
 b. $A(P_1) = 1$
 c. $P_2 \ast P_4 \ast P_6 = 0$
 d. $P_4 \ast P_6 \ast P_8 = 0$

The second sub-iteration

2. a. $2 \leq B(P_1) \leq 6$
 b. $A(P_1) = 1$
 c. $P_2 \ast P_6 \ast P_8 = 0$
 d. $P_4 \ast P_6 \ast P_8 = 0$
The third sub-iteration

3. a- $2 \leq B(P_1) \leq 6$
 b- $A(P_1) = 1$
 c- $P_2 \times P_4 \times P_6 = 0$
 d- $P_2 \times P_4 \times P_8 = 0$

The fourth sub-iterations

4. a- $2 \leq B(P_1) \leq 6$
 b- $A(P_1) = 1$
 c- $P_2 \times P_4 \times P_6 = 0$
 d- $P_2 \times P_4 \times P_8 = 0$

At the end of each pass all the flagged pixels are deleted.

4.2.3 Explanation of the Four Sub-iterations:

We begin by explaining the first and the second conditions because they are the same for all the sub-iterations. Then conditions (c) and (d) for each sub-iteration are explained.

1- In condition (a) the end-points of the skeleton line are preserved (this means the condition verifies that P_1 is an edge-point and not an end-point).

Note that an edge-point is a dark point that has at least one white four-neighbors and an end-point is a dark point that has at most one dark eight-neighbors.

2- Condition (b) verifies that the point P_1 to be deleted is not a break-point (i.e., its deletion must not break the connectedness of the original pattern).
3. Conditions (c) and (d) for the first sub-iteration:

\[p_2 \cdot p_4 \cdot p_6 = 0 \]
\[p_4 \cdot p_6 \cdot p_8 = 0 \]

In condition (3) the point \(p_1 \) which has been removed might be an east border point or south border point or north-west corner point.

The solutions to the set of equations:

\[p_4 = 0 \]
\[\lor \]
\[p_6 = 0 \]
\[\lor \]
\[p_2 = 0 \text{ and } p_8 = 0 \]

4. Conditions (c) and (d) for the second sub-iteration:

\[p_2 \cdot p_6 \cdot p_8 = 0 \]
\[p_4 \cdot p_6 \cdot p_8 = 0 \]

In condition (4) the point \(p_1 \) which has been removed might be a south border point or a west border point or a north-east corner point.

The solutions to the set of equations are:

\[p_6 = 0 \]
\[\lor \]
\[p_8 = 0 \]
\[\lor \]
\[p_2 = 0 \text{ and } p_4 = 0 \]

5. Conditions (c) and (d) for the third sub-iteration:

\[p_2 \cdot p_4 \cdot p_8 = 0 \]
\[p_2 \cdot p_6 \cdot p_8 = 0 \]

In conditions (5) the point \(p_1 \) which has been removed might be a north border point or a west border point or a south-east corner point.
The solutions to the set of equations are:

\[P_2 = 0 \]

or
\[P_6 = 0 \]

or
\[P_4 = 0 \quad \text{and} \quad P_8 = 0 \]

6. Conditions (c) and (d) for the fourth sub-iteration

\[P_2 \times P_4 \times P_6 = 0 \]
\[P_2 \times P_4 \times P_8 = 0 \]

In condition (6) the point \(P_1 \) which has been removed might be a north border point or an east border point or a south-west corner point.

The solutions to the set of equations are:

\[P_2 = 0 \]

or
\[P_4 = 0 \]

or
\[P_6 = 0 \quad \text{and} \quad P_8 = 0 \]

\[\text{North} \]

\[\begin{array}{c|c|c}
\text{West} & P_2 & \text{East} \\
\hline
P_6 & P_1 & P_4 \\
\hline
\end{array} \]

\[\text{South} \]

\textbf{Figure 4.1:} Points under consideration and their locations
The above algorithm can also be implemented using an alternative method as follows.

In conditions (c) and (d) for each sub-iteration the following eight templates can be created as shown in Fig. (4.2).

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>*</td>
</tr>
</tbody>
</table>
```

Figure 4.2: Set of templates used in the processing. The value 1 corresponds to the object, the value 0 corresponds to the background, and * can be either 1 or 0.
If the two conditions

1. \(2 \leq \theta(p_1) \leq 6 \)
2. \(A(p_1) = 1 \)

are satisfied and at least one of the eight templates \(T_1, T_2, T_3, T_4, T_5, T_6, T_7 \) and \(T_8 \) given above is matched with the pixels in the given image then the central pixel \(p_1 \) is flagged.

In each pass the point \(p_1 \) is flagged if at least one of the four sub-iterations is satisfied (first procedure) or the match is obtained (second procedure). At the end of each pass all flagged points are deleted.

The process is repeated until no more pixels are deleted from the pattern, thus the final skeleton is obtained.

the filename of the program: alqsub4.for

4.2.4 RESULTS

The above algorithm either by using the first procedure or the second one yields excellent results with respect to the shape of the original image, connectivity and contour noise immunity.

Note that this algorithm is applied to Arabic characters and the results obtained are excellent as shown in Figs. (4.4) and (4.5).
Figure 4.3: Flowchart of the new parallel thinning algorithm.
Figure 4.4: Skeletons obtained using the new parallel thinning algorithm
Figure 4.5: Skeletons obtained using the new parallel thinning algorithm
4.3 THE MODIFIED APPROACH OF MATCHING ALGORITHM

4.3.1 INTRODUCTION

In image processing, not only the development of new techniques but also the improvement of existing techniques are important. Development of both a parallel algorithm and a sequential algorithm for each technique is desirable, because image processing might be performed by a general purpose sequential computer or parallel processing dedicated hardware.

4.3.2 ALGORITHM

The modified approach of a matching algorithm [30] is another parallel thinning algorithm in which a set of eight templates (30-31) denoted by A1, A2, A3, A4, B1, B2, B3, B4 (see Fig. 3.4) and two images (a current image for which templates are compared and a working image of the same size which is updated when templates are matched) are used in the processing.

Pixels are removed by comparing each 1 valued pixel and its neighbors in the current image with a set of templates. In the templates zeros must match 0 valued pixels, ones must match 1 valued pixels and asterisks can match either 1 or 0 valued pixels in the current image.

Initially the current image and the working image are identical copies of the original input image.
To begin, template A₁ is compared with all 1 valued pixels and their neighbors in the current image. If the match is obtained, the corresponding central pixel of the working image is deleted (changed to a 0 valued pixel).

After processing with template A₁, the current image is discarded and the working image becomes the new current image, and the new working image is obtained by copying the new current image.

The process is repeated with templates B₁, A₂, B₂, A₃, B₃, A₄, and B₄ in that order forming a complete cycle. When no pixels are removed during the processing of the complete cycle, the procedure ends.

As a result of this method, the shape of the original image is very well preserved and has good connectivity. The algorithm leaves very few extraneous pixels only on the dots of the characters as shown in Fig. (4.3).

the filename of the program : templ.for

To avoid this problem (presence of extraneous pixels on the dots of the characters) we divided the character into two parts: a character without dots and dots alone. Each part is processed separately.

To separate the dots from the character the following methods can be used:

1- Follow the border using the border following algorithm (see APPENDIX - B -).
2- The minimum border is the dot and the maximum border is the character without dots.

3- Find the location of the dots, which means find:

\[I_{\text{min}}, I_{\text{max}}, J_{\text{min}}, J_{\text{max}} \]

Figure 4.5: The location of the dot

4- Create a window depending on the size of each dot.

5- Store it in another array

6- Steps 3-5 are repeated for other dots.

An example of separating the dots from the characters is shown in Fig. (4.3).

After the separation the next step is to process each part separately.

a- Character without dots: This process was done by the matching method using eight templates and two images (the working image and the current image).
b. The dots: For this case one of the following two methods can be used.

1. By the determination of the coordinates \(I_{\text{min}} \) and \(J_{\text{min}} \), \(I_{\text{max}} \) and \(J_{\text{max}} \), the dot can be replaced by the point \((I_{\text{min}}, J_{\text{min}})\) at the center which can be calculated as:

\[
I = \frac{I_{\text{min}} + I_{\text{max}}}{2}
\]

\[
J = \frac{J_{\text{min}} + J_{\text{max}}}{2}
\]

2. The second method consists of iteratively executing many passes over the pattern, where in each pass object points which lie on the boundary are changed to background points.

For the first pass we scan the image row-wise from the upper left corner to the bottom right corner and for every change from 0 to 1 (i.e. from the background to the object pixel) or 1 to 0 (i.e. from the object pixel to the background pixel), we label the object with value 2 which means that the value \(2 \) will belong to the background after the second pass.
For the second pass we scan the image column-wise from the upper left corner to the bottom right corner and also for every change from 0 to 1 or 1 to 0 we label the object by the value 2.

Once the second pass is terminated all the pixels with label (2) are then changed to the value 1 which is the value of the object.

The process is repeated with in the same manner as explained above until we reach the point.

Once the processing is terminated for the two parts the last step is to add them to one which is our final skeleton.

the filename of the program : tempwind.for

The flowchart of this method is shown in Fig. (4.7).
Figure 4.7: Flowchart of the modified approach of matching algorithm
4.3.3 RESULTS

This method works for all Arabic characters and the results are excellent with respect to the preservation of the original image, connectivity and contour noise immunity as shown in Fig.(4.10).

Note that the processing time in this method takes longer than the other methods.

1. Results of using the above algorithm before performing the separation are shown in Fig. 4.8.
2. An example of separation of the dots from the characters is shown in Fig. (4.9).
3. Results of using the above algorithm after the separation are shown in Fig. (4.10).
Figure 4.8: Skeletons obtained using the modified approach of the matching algorithm before the separation.
ع غ ش ق

Fi gur e 3: An example of separation of the dots from the characters
Figure 4.10: Skeletons obtained using the modified approach of the matching algorithm after the separation.
4.4 AMPLIFICATION OF THE SEQUENTIAL THINNING ALGORITHM

4.4.1 DESCRIPTION

The sequential thinning algorithm presented in Chapter-III has the problem of disconnectivity.

To minimize this disadvantage we inserted in the program the two first conditions given in the new parallel thinning (see section 4.2).

1. $2 \leq B(p_i) \leq 6$

2. $A(p_i) = 1$

where $B(p_i)$ is the number of nonzero neighbors of p_i and $A(p_i)$ is the 01 pattern in the ordered $p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9$ and p_2.

Note that condition (1) verifies that p_i is not an end-point and condition (2) verifies that p_i is not a break-point (i.e., it is not a point which breaks the connectedness of the stroke). Note that p_i is a candidate for deletion.

By inserting the two conditions the filename of the program is: DMOD FOR

4.4.2 RESULTS

By inserting the two equations (1) and (2) the problem of discontinuity in the skeleton obtained using the sequential thinning algorithm [26-27] can be minimized as shown in Fig. (4.11).
Figure 4.11: Skeletons obtained using the amelioration of the sequential thinning algorithm.
4.5 GENERAL COMPARISON

4.5.1 SIMPLIFIED VERSION OF HILDITCH AND THE NEW PARALLEL THINNING ALGORITHM

The simplified version of Hilditch which is presented by Rosenfeld and Stafenalli as a formal algorithm may not retain the shape properties of the original shape.

By using the new parallel thinning algorithm which is based on the four sub-iterations we obtain excellent results with respect to both connectivity, contour noise immunity and shape of the original pattern as shown in Fig. (4.12).

4.5.2 MATCHING ALGORITHM AND ITS MODIFIED APPROACH

By using the eight templates (Arcelli's mask) given above and only one image in the processing we obtain a skeleton but not in the middle and with branches in many parts of the character.

By using the same templates and two images (the working image and the current image) we obtain excellent results but only for the character without dots; for the character with dots we still have branches on the dots.

After separating the dots from the character and processing each part alone as we explained before we obtain excellent results for all Arabic characters with respect to the preservation of the shape properties of the original image, connectivity and contour noise immunity as shown in Fig. (4.13).
4.5.3 **SEQUENTIAL THINNING ALGORITHM AND ITS AMPLIFICATION**

The sequential algorithm which consists of distance transform, new selection rules, linking algorithm and thinning algorithm is the best algorithm concerning the processing time and conserves very well the shape of the original image but has the problem of discontinuity. By inserting the two conditions as it was explained above the problem of discontinuity is minimized as shown in Fig. (4.14).

A general comparison between the methods reviewed and the methods developed is given in the following table.

<table>
<thead>
<tr>
<th>ALGORITHMS</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching algorithm</td>
<td>good connectivity</td>
<td>Presence of branches</td>
</tr>
<tr>
<td>Naccache algorithm</td>
<td>the shape is very well preserved</td>
<td>disconnection and branches</td>
</tr>
<tr>
<td>Simplified version of Hilditch</td>
<td>good connectivity</td>
<td>the shape properties are not preserved</td>
</tr>
<tr>
<td>Sequential thinning</td>
<td>excellent concerning the processing time</td>
<td>disconnection</td>
</tr>
<tr>
<td>algorithm</td>
<td></td>
<td>the processing time is long</td>
</tr>
<tr>
<td>Modified approach of the matching algorithm</td>
<td>excellent result w.r.t the shape, connectivity and noise immunity.</td>
<td>no disadvantages</td>
</tr>
<tr>
<td>New parallel thinning algorithm</td>
<td>same advantages as in the modified approach</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.12: (a,e)– Original images ; (b,f)– Skeletons obtained using the simplified version of Hilditch when P₁ is deleted ; (c,g)– Skeletons obtained using the simplified version of Hilditch when P₁ is flagged ; (d,h)– Skeletons obtained using the new parallel thinning algorithm.
Figure 4.13: (a,e)- Original images; (b,f)- Skeletons obtained using the eight templates and only one image in the processing (30); (c,g)- Skeletons obtained using eight templates and two images (the current image and the working image) in the processing; (d,h)- Skeletons obtained using (c) and with separation of the dots from the character.
Figure 4.15: (a,e)—Original binary images; (b,f)—Skeletons obtained using the sequential thinning algorithm with the first equation of new selection rules; (c,g)—By using the second equation of new selection rules; (d,h)—Skeletons obtained after inserting the two conditions.
4.6 **THICKENING ALGORITHM**

4.6.1 Introduction:

In the following we present a thickening algorithm which is the opposite of the thinning.

4.6.2 Algorithm:

The algorithm consists of iteratively executing many passes over the pattern, where in each pass background points which lie on the boundary are changed to object points.

For the first pass we scan the image row-wise from the upper left corner to the bottom right corner and for every change from 0 to 1 (i.e. from the background to the object pixel) or 1 to 0 (i.e. from the object pixel to the background pixel) we label the background with the value (2) which means that the value (2) will belong to the object after the second pass.

For the second pass we scan the image column-wise from the upper left corner to the bottom right corner and also for every change from 0 to 1 or 1 to 0 we label the background by the value 2.

Once the second pass is terminated all the pixels with label (2) are then changed to the value 1 which is the value of the object.

The process is repeated in the same manner as explained above until the desired thickness is obtained.
The filename of the program is: thick_for

The flowchart of thickening algorithm is shown in Fig. (4.15).

4.6.3 RESULTS

Using this method for the thickening algorithm we obtain excellent results.

Results of using the above algorithm by taking as input the original image are shown in Fig. (4.15).

Results of using the same algorithm but taking the thinned characters as the original image are shown Fig. (4.17).
Figure 4.15: Flowchart of the thickening algorithm
Figure 4.16: Results of using the above algorithm with thickness 2 and 4.
Figure 4.17: Results of using the above algorithm with thickness 2 and 4
4.7 CONCLUSION

We have shown that the new parallel thinning algorithm and the modified approach of the matching algorithm preserve very well the shape of the original image and yield excellent results with respect to both connectivity and contour noise immunity when applied to Arabic fonts. We have also experimentally compared our algorithms with the reviewed algorithms presented in Chapter-III-, finally a thickening algorithm is presented.

Note that the new parallel thinning algorithm is better than the modified approach of the matching algorithm concerning the processing time. Both algorithms yield excellent results with respect to the connectivity, shape of the original image and contour noise immunity.
Chapter V

SUMMARY AND CONCLUSIONS

In this thesis we have presented various thinning algorithms although we had discussed all the conditions necessary before a dark point could be deleted from a pattern.

The parallel thinning algorithm presented by Naccache in 1964 preserves very well the shape of the original image but has two problems: 1) existence of extraneous pixels (branches); 2) the final skeleton is not connected.

For the matching method using the eight templates given by Arcelli [30] we have shown that if only one image is used in the processing, we obtain a skeleton but not in the middle and with branches in many parts of the character, and by using two images (the working image and the current image) we obtain excellent results for the characters without dots, but for those with dots we still have branches on the dots. To remove this problem we separate the dots from the character and we treat each part separately. Using this method we obtain excellent results with respect to connectivity, shape of the original image and contour noise immunity.

- 101 -
We have shown that the "simplified version" of the thinning algorithm presented by Stefanelli and Rosenfeld [23] may not retain the shape properties of the input pattern and presence of branches in the skeleton either by flagging the pixels in each pass and deleting the flagged pixels after the last iteration or deleting a pixel each time the four conditions are satisfied. By using the new parallel thinning algorithm which consists of the four sub-iterations (each one is divided into four conditions) we obtain excellent results with respect to the shape of the original image, connectivity and contour noise immunity.

The Lee's method which is the best one concerning the processing time and preserves very well the shape of the original image has the problem of discontinuity which is minimized using the two conditions as we explained above.

At the end of the thesis we have presented a thickening algorithm. Note that all these algorithms are applied to "camera captured" Arabic fonts.

A Thinning algorithm was developed in this thesis. It is an excellent reference which can be used in all the applications mentioned in chapter I.
Chapter VI

SOME OTHER EXAMPLES

In this section algorithms presented in Chapter III and Chapter IV are applied to hand-written and printed English fonts and some numbers.

\[\text{Figure 5.1: Skeletons obtained using the matching algorithm (30)} \]
Figure 6.2: Skeletons obtained using Naccache's algorithm [33].
Figure 6.3: Skeletons obtained using the "Simplified version of milditch when the central point p_{1} is deleted.
Figure 6.4: Skeletons obtained using the "Simplified version of Hilditch when the central point P is flagged.
Figure 5.5: Skeletons obtained using the sequential thinning algorithm by using the first equation of the new selection rules.

Figure 5.6: Skeletons obtained using the sequential thinning algorithm by using the second equation of the new selection rules.
Figure 5.2: Skeletons obtained using the new parallel thinning algorithm.
Figure 5.6: Skeletons obtained using the new parallel thinning algorithm
Figure 6.9: Skeletons obtained using the modified approach of the matching algorithm.
Figure 4.11: Skeletons obtained using the modified approach of the matching algorithm.
Figure 6.12: Skeletons obtained using the amelioration of the sequential thinning algorithm.
Figure 6.13: (a,e) - Original images; (b,f) - Skeletons obtained using the simplified version of Hilditch when P₁ is deleted; (c,g) - Skeletons obtained using the simplified version of Hilditch when P₁ is flagged; (d,h) - Skeletons obtained using the new parallel thinning algorithm.
Figure 6.14: (a, d, g) - Original images; (b, e, h) - Skeletons obtained using the eight templates and only one image in the processing [30]; (c, f, i) Skeletons obtained using eight templates and two images (the current image and the working image) in the processing.
Figure 6.15: (a,e) - Original binary images; (b,f) - Skeletons obtained using the sequential thinning algorithm by using the first equation of new selection rules; (c,g) - By using the second equation of new selection rules; (d,h) - Skeletons obtained after inserting the two conditions.
Figure 6.10: General comparison by using numbers
REFERENCES

APPENDIX - A -

GRAY LEVEL THRESHOLDING.

This approach consists of dividing the gray-level scale into bands, and then using thresholds to determine regions or to obtain boundary points. The threshold value is the gray-level value which separates the object and the background of an image. All pixels with gray-level value below the threshold T, shown in Fig.(1) are declared as '0' and the levels above T as '255' (this is valid for the binary transformation). This technique is called single-level thresholding and T is known as the threshold value of the image. However there might be cases where the image might contain more than two distinct populations, as shown by the graph given in Fig.(2). In these cases, it is then required to group the levels into more than two populations.

Then we have a multi-level thresholding with different threshold values (for the histogram given as an example in Fig.(2), we have two threshold values T_1 and T_2).

For the single level thresholding the objective is to select T (threshold value), such that the band B_1 (see Fig.(1)) will contain as closely as possible, levels associated with the background, while B_2 will contain the levels of the object.
Threshold selection for an image histogram is the same shape as the one given in Figs. (1) or (2) is quite straightforward. The threshold is selected at the bottom of the valley between two peaks. There exist methods, which consist of transforming the histogram of an image (when the task of selecting a good threshold would be quite difficult) to a shape where threshold selection would not pose a problem, as the ones shown in Figs. (1), and (2). Such techniques have been investigated by several authors for more details refer to (1).

Figure 1: A sample histogram illustrating a bi-modal distribution
Figure 2: A sample histogram illustrating a multi-modal distribution.
APPENDIX - B -

BORDER FOLLOWING ALGORITHM

TABLE 1

Co-ordinates of eight neighbors

<table>
<thead>
<tr>
<th>LX(J)</th>
<th>LY(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>JD</td>
</tr>
<tr>
<td>LX(1)+K1</td>
<td>LY(1)+K2</td>
</tr>
<tr>
<td>LX(2)+K2</td>
<td>LY(2)-K1</td>
</tr>
<tr>
<td>LX(3)-K2</td>
<td>LY(3)+K1</td>
</tr>
<tr>
<td>LX(4)-K1</td>
<td>LY(4)+K2</td>
</tr>
<tr>
<td>LX(5)+K1</td>
<td>LY(5)+K2</td>
</tr>
<tr>
<td>LX(6)+K2</td>
<td>LY(6)+K1</td>
</tr>
<tr>
<td>LX(7)+K2</td>
<td>LY(7)+K1</td>
</tr>
</tbody>
</table>

Co-ordinates of the border element: (I1, J1)
Co-ordinates of the first neighbor: (I0, J0)

K1 = J0 - J1
K2 = I0 - I1

The border following algorithm consists of the following six steps:

1- Detect the first border element at (I1, J1). (a dark pixel) through a row (or column) scan. The element immediately preceding (I1, J1) is labelled as the first neighbor (I0, J0).

2- Starting with (I0, J0) and proceeding clockwise, label the other seven neighbors of (I1, J1) as 2, 3, ..., 8, set K=2.

3- Evaluate the co-ordinates LX(K), LY(K) of the K neighbor of (I1, J1) using table 1.

4- If the pixel at the K is a '1' (i.e. a dark point pixel), then this pixel is the next border element. Define
(I1, J1) as this element and (Id, Jd) as the preceding element. Go to step 2.

5- If the pixel at the k neighbor is a '0', set k=k+1 and goto step 3.

6. Proceed until the first border element detected in step 1 is encountered again.
APPENDIX - C -

* File: templ.for

Description: This program is implemented to perform thinning algorithm using matching method in which eight templates denoted by A1, B1, A2, B2, A3, B3, A4 and B4 are used. Note that only one image is used in the processing.

```
integer h(128,128),p(9),dd,k1,k2,k3,k4,k5,k6
character img(128,128)
integer k7,k8,k9,k10,k11,k12,k13,k14,k15,k16
character*16 filename
write(*,*)' enter the input filename '
read(*,'(a16)') filename
write(*,*)' enter the output filename '
read(*,'(a16)') filename
write(*,*)' enter the size of the image ----->'
read(*,*) nsize
write(*,*)' enter the scaling factors over X and Y '
read(*,*) scalx,scaly
write(*,*)' 1'
open(1,file=filename,form='binary',status='old')
open(2, file=filename, form='binary', status='new')
write(*,*)' 2'
do 20 i=1,nsize
   do 20 j=1,nsize
      read(1) img(i,j)
h(i,j)=ichar(img(i,j))
      if(h(i,j).eq.0)then
         h(i,j)=1
      else
         h(i,j)=0
      endif
   20 continue
write(*,*)' enter dd'
read(*,*) dd
do 111 kk=1,dd
```

templates A1 and B1

do 30 i=1,nsize
do 30 j=1,nsize
if(h(i,j).eq.1) goto 40
goto 30
40 continue
p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k1=p(4)+p(5)+p(6)
k2=p(2)+p(8)
if(k1.eq.0.and.k2.eq.2) goto 22
goto 30
22 h(i,j)=0
30 continue
do 301 i=1,nsize
do 301 j=1,nsize
if(h(i,j).eq.1) goto 401
goto 301
401 continue
p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k9=p(3)+p(4)+p(5)
k10=p(7)+p(8)
if(k9.eq.0.and.k10.eq.2) goto 221
goto 301
221 h(i,j)=0
301 continue

c templates A2 and B2

do 12 i=1,nsize
do 12 j=1,nsize
if(h(i,j).eq.1) goto 13
13 p(2)=h(i,j+1)
 p(3)=h(i-1,j+1)
 p(4)=h(i-1,j)
 p(5)=h(i-1,j-1)
 p(6)=h(i,j-1)
 p(7)=h(i+1,j-1)
 p(8)=h(i+1,j)
 p(9)=h(i+1,j+1)
 k3=p(2)+p(3)+p(4)
 k4=p(6)+p(8)
 if(k3.eq.0.and.k4.eq.2) goto 14
 goto 12
14 h(i,j)=0
12 continue
 do 129 i=1,nsize
 do 129 j=1,nsize
 if(h(i,j).eq.1) goto 139
 goto 129
139 p(2)=h(i,j+1)
 p(3)=h(i-1,j+1)
 p(4)=h(i-1,j)
 p(5)=h(i-1,j-1)
 p(6)=h(i,j-1)
 p(7)=h(i+1,j-1)
 p(8)=h(i+1,j)
 p(9)=h(i+1,j+1)
 k11=p(2)+p(3)+p(9)
 k12=p(5)+p(6)
 if(k11.eq.0.and.k12.eq.2) goto 149
 goto 129
149 h(i,j)=0
129 continue

C templates A3 and B3

 do 16 i=1,nsize
 do 16 j=1,nsize
 if(h(i,j).eq.1) goto 17
 goto 16
17 p(2)=h(i,j+1)
 p(3)=h(i-1,j+1)
 p(4)=h(i-1,j)
\[p(5) = h(i-1, j-1) \]
\[p(6) = h(i, j-1) \]
\[p(7) = h(i+1, j-1) \]
\[p(8) = h(i+1, j) \]
\[p(9) = h(i+1, j+1) \]
\[k5 = p(2) + p(8) + p(9) \]
\[k6 = p(4) + p(6) \]
\[\text{if}(k5 \text{ eq.} 0 \text{ and } k6 \text{ eq.} 2) \text{ goto } 18 \]
\[\text{goto } 16 \]
\[h(i, j) = 0 \]
\[\text{continue} \]
\[\text{do } 161 \text{ i } = 1, \text{nsize} \]
\[\text{do } 161 \text{ j } = 1, \text{nsize} \]
\[\text{if}(h(i, j) \text{ eq.} 1) \text{ goto } 171 \]
\[\text{goto } 161 \]
\[171 \]
\[p(2) = h(i, j+1) \]
\[p(3) = h(i-1, j+1) \]
\[p(4) = h(i-1, j) \]
\[p(5) = h(i-1, j-1) \]
\[p(6) = h(i, j-1) \]
\[p(7) = h(i+1, j-1) \]
\[p(8) = h(i+1, j) \]
\[p(9) = h(i+1, j+1) \]
\[k13 = p(7) + p(8) + p(9) \]
\[k14 = p(3) + p(4) \]
\[\text{if}(k13 \text{ eq.} 0 \text{ and } k14 \text{ eq.} 2) \text{ goto } 181 \]
\[\text{goto } 161 \]
\[181 \]
\[h(i, j) = 0 \]
\[\text{continue} \]

\text{c templates A4 and B4}
\[\text{do } 222 \text{ i } = 1, \text{nsize} \]
\[\text{do } 222 \text{ j } = 1, \text{nsize} \]
\[\text{if}(h(i, j) \text{ eq.} 1) \text{ goto } 21 \]
\[\text{goto } 222 \]
\[21 \]
\[p(2) = h(i, j+1) \]
\[p(3) = h(i-1, j+1) \]
\[p(4) = h(i-1, j) \]
\[p(5) = h(i-1, j-1) \]
\[p(6) = h(i, j-1) \]
\[p(7) = h(i+1, j-1) \]
\[p(8) = h(i+1, j) \]
p(0)=h(i+1,j+1)
k7=p(6)+p(7)+p(8)
k8=p(2)+p(4)
if(k7.eq.0.and.k8.eq.2) goto 23
goto 222

23
h(i,j)=0

222
continue
do 2221 i=1,nsize
do 2221 j=1,nsize
if(h(i,j).eq.1) goto 211
goto 2221

211
p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k15=p(5)+p(6)+p(7)
k16=p(2)+p(9)
if(k15.eq.0.and.k16.eq.2) goto 231
goto 2221

231
h(i,j)=0

2221
continue

111
continue
do 131 i=1,nsize
do 131 j=1,nsize
if(h(i,j).eq.0) then
h(i,j)=255
else
h(i,j)=0
endif

131
continue
do 140 i=1,nsize
do 140 j=1,nsize
img(i,j)=char(h(i,j))

140
continue
write(2) ((img(i,j),j=1,nsize),i=1,nsize)
close(2)
stop.
end
APPENDIX - D -

```c
filename : alh.for

Description : This program is implemented to perform thinning algorithm using N. Naccache's method.

integer h(128,128), b(9), g(9), p(9)
character img(128,128)
integer nsize, n, m, sum, xpi, init1, init2, ll, cc
character*16 filname, filename
write(*,*) ' enter the input filename'
read(*, '(a16)') filname
write(*,*) 'enter the output filename'
read(*, '(a16)') filename
write(*,*) ' enter the size of the image ----->'
read(*,*) nsize
write(*,*) ' enter the scaling factors over X and Y '
read(*,*) scalx, scaly
write(*,*) 1'
open(1, file=filname, form='binary', status='old')
open(2, file=filename, form='binary', status='new')
write(*,*) 2'
do 20 i=1, nsize
   do 20 j=1, nsize
      read(1) img(i, j)
      h(i, j) = ichar(img(i, j))
      if(h(i, j).eq.0) then
         h(i, j) = 1
      else
         h(i, j) = 0
      endif
   20 continue
close(1)
write(*,*) ' enter cc'
read(*,*) cc
do 7 kk=1, cc
   do 30 i=1, nsize
      ...
```

- 131 -
do 30 j=1,nsize
if(h(i,j).eq.1) goto 40
goto 30
40 continue
p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
g(2)=p(2)
g(3)=p(3)
g(4)=p(4)
g(5)=p(5)
g(6)=p(6)
g(7)=p(7)
g(8)=p(8)
g(9)=p(9)

C the first condition
sum=p(2)+p(4)+p(6)+p(8).
if(sum .le. 3) goto 50
goto 30
50 continue

C the second condition
init1=0
do 1 k=2,9
if(p(k).eq.1) then
init1=init1+1
endif
1 continue
if(init1.ge.2) goto 60
goto 30
60 continue

C the third condition
init2=0
do 2 k=2,9
if(g(k).eq.1) then
init2=init2+1
endif
2 continue
endif
2. continue
if(init2.ge.1) goto 70
 goto 30
70 continue
c the fourth condition
do 3 m=2,5
 l=2*\pi-2
 if(p(l).eq.0) goto 80
 b(m)=0
 goto 3
80 ll=2*\pi-1
 if(p(ll).eq.1.or.p(ll+1).eq.1) goto 90
 b(m)=0
 goto 3
90 continue
 b(m)=1
3 continue
 xp1=0
 do 4 n=2,5
 xp1=xp1+b(n)
4 continue
 if(xp1.eq.1) goto 100
 goto 30
100 continue
c the fifth condition
 if(g(4).eq.1.or.g(4).eq.0) goto 110
 goto 30
110 continue
c the sixth condition
 if(g(6).eq.1.or.g(6).eq.0) goto 120
 goto 30
120 continue
 h(i,j)=2
30 continue
 do 200 i=1,nsize
 do 200 j=1,nsize
 if(h(i,j).eq.2) then
 h(i,j)=0
 endif
 -133-
continue

7 continue
 do 131 i=1,nsize
 do 131 j=1,nsize
 if(h(i,j).eq.0) then
 h(i,j)=255
 else
 h(i,j)=0
 endif
 enddo
131 continue
 do 140 i=1,nsize
 do 140 j=1,nsize
 img(i,j)=char(h(i,j))
 enddo
140 continue
 write(2) ((img(i,j),j=1,nsize),i=1,nsize)
 close(2)
 stop
end
APPENDIX - E -

filename : algsup10.for

Description : This program is implemented to perform
 thinning algorithm using the "simplified
 version of Hilditch". The algorithm
 consists of four conditions and if they
 are satisfied the point p1 is deleted

integer*2 h(128,128),g(128,128),cc,kk
character img(128,128)
integer nsize,m,c,p(9),pro1,pro2,pro3,pro4,mm
character*16 filme,filname
write(*,*) 'enter the input filename'
read(*,'(a16)') filme
write(*,*) 'enter the output filename'
read(*,'(a16)') filname
write(*,*) 'enter size of the image ,
read(*,*) nsize
write(*,*)'1'
open(1,file=filme,form='binary',status='old')
open(2,file=filname,form='binary',status='new')
write(*,*)'2'
do 1 i=1,nsize
do 1 j=1,nsize
read(1) img(i,j)
h(i,j)=ichar(img(i,j))
if(h(i,j).eq.0) then
 h(i,j)=1
else
 h(i,j)=0
endif
1 continue
close(1)
write(*,*) ' enter cc ',
read(*,*) cc
do 7 kk=1,cc
do 2 i=1,nsize
do 2 j=1,nsize
if (h(i,j).eq.1) goto 15
goto 2
15 p(1)=h(i,j)
p(2)=h(i-1,j)
p(3)=h(i-1,j+1)
p(4)=h(i,j+1)
p(5)=h(i+1,j+1)
p(6)=h(i+1,j)
p(7)=h(i+1,j-1)
p(8)=h(i,j-1)
p(9)=h(i-1,j-1)
m=p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)
if(m.le.6.and.m.ge.2) goto 11
goto 2
11 init=0
do 10 mm=2,8
if(p(mm).eq.0.and.p(mm+1).eq.1) then
init=init+1
endif
10 continue
if(p(9).eq.0.and.p(2).eq.1) then
init=init+1
endif
if(init.eq.1) goto 12
goto 2
12 pro1=p(2)*p(4)*p(6)
pro2=p(2)*p(4)*p(8)
if(pro1.eq.0.and.pro2.eq.0) goto 3
goto 2
3 h(i,j)=0
2 continue
7 continue
do 13 i=1,nsize
do 13 j=1,nsize
if(h(i,j).eq.0) then
h(i,j)=255
else
h(i,j)=0
endif
13 continue
do 8 i=1,nsize
 do 8 j=1,nsize
 img(i,j) = char(h(i,j))
 continue
 write(2)((img(i,j), j=1,nsize), i=1,nsize)
 close(2)
stop
end
APPENDIX - F -

Description: This program is implemented to perform thinning algorithm using the "simplified version of Hilditch' . In each pass the point pi is flagged and at the end of the pass all flagged points are deleted.

integer h(128,128), g(128,128), cc, kk
character img(128,128)
integer nsize, m, c, p(9), pro1, pro2, pro3, pro4, mm
character*16 filename
write(*,*) 'enter the input filename'
read(*, '(a16)') filename
write(*,*) 'enter the output filename'
read(*, '(a16)') filename
write(*,*)' enter size of the image'
read(*,*) nsize
write(*,*)' 1'
open(1, file=filename, form='binary', status='old')
open(2, file=filename, form='binary', status='new')
write(*,*)' 2'
do 1 i=1, nsize
do 1 j=1, nsize
read(1) img(i, j)
h(i, j)=ichar(img(i, j))
if(h(i, j).eq.0) then
h(i, j)=1
g(i, j)=1
else
h(i, j)=0
g(i, j)=0
endif
1 continue
write(*,*)' enter cc'
read(*,*) cc

- 138 -
do 7 kk=1,cc
 do 2 i=1,nsize
 do 2 j=1,nsize
 if (h(i,j).eq.1) goto 15
 goto 2
15 p(1)=h(i,j)
 p(2)=h(i-1,j)
 p(3)=h(i-1,j+1)
 p(4)=h(i,j+1)
 p(5)=h(i+1,j+1)
 p(6)=h(i+1,j)
 p(7)=h(i+1,j-1)
 p(8)=h(i,j-1)
 p(9)=h(i-1,j-1)
 m=p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)
 if (m .le. 6 .and. m .ge. 2) goto 11
 goto 2
11 init=0
 do 10 mm=2,8
 if (p(mm).eq.0 .and. p(mm+1).eq.1) then
 init=init+1
 endif
 continue
 if (p(9).eq.0 .and. p(2).eq.1) then
 init=init+1
 endif
 if (init.eq.1) goto 12
 goto 2
12 pro1=p(2)*p(4)*p(6)
 pro2=p(2)*p(4)*p(8)
 if (pro1.eq.0 .and. pro2.eq.0) goto 3
 goto 2
3 g(i,j)=2
 do 130 ii=1,nsize
 do 130 jj=1,nsize
 if (g(ii,jj).eq.2) then
 h(ii,jj)=0
 endif
 continue
7 continue
 do 13 i=1,nsize

- 139 -
do 13 j=1,nsize
if(h(i,j).eq.0) then
 h(i,j)=255
else
 h(i,j)=0
endif
13 continue
do 8 i=1,nsize
do 8 j=1,nsize
 img(i,j)=char(h(i,j))
8 continue
write(2)((img(i,j),j=1,nsize),i=1,nsize)
close(2)
stop
end
APPENDIX - G -

```c
int h(128,128), g(128,128), d2(128,128), d3(128,128)
int t(8), tm(8), q(8), tt(8), m, k, or, m1, m2, dd
char img(128,128)
char *filname, *filename
write(1, "'enter the input filename'
read(1, 'a(16)') filname
write(1, "'enter the output filename'
read(1, 'a(16)') filename.
open(1, file=filname, form='binary', status='old')
open(2, file=filename, form='binary', status='new')
do 1 i=1,128
do 1 j=1,128
read(1) img(i, j)
h(i,j)=ichar(img(i, j))
1 continue
close(1)
do 2 i=1,128
do 2 j=1,128
if(ch(i,j).eq.0) then
h(i,j)=1
else
h(i,j)=0
endif
2 continue
c Distance transform
do 3 i=1,128
do 3 j=1,128
```

Description: This program is implemented to perform thinning algorithm using Lee's method based on some aspects which can be summarized as follows:

1. Distance transform
2. New selection rules using the first equation.
3. Linking algorithm
4. Thinning algorithm
if(h(i,j).eq.1) then
 do 4 k=1,128
 if(h(i,j).ne.h(i-k,j).or.h(i,j).ne.h(i+k,j)) then
 max1=k
 goto 5
 endif
 continue
4 continue
5 continue
 do 41 m=1,128
 if(h(i,j).ne.h(i,j-m).or.h(i,j).ne.h(i,j+m)) then
 max2=m
 goto 42
 endif
41 continue
42 continue
 if(max1.lt.max2) then
 g(i,j)=max1
 else
 g(i,j)=max2
 endif
 endif
3 continue

the new selection rules

 do 43 i=1,128
 do 43 j=1,128
 if(g(i,j)+1.gt.g(i,j-1).and.g(i,j)+1.gt.g(i-1,j)) goto 45
 goto 43
44 continue
45 if(g(i,j)+1.gt.g(i,j+1).and.g(i,j)+1.gt.g(i+1,j)) goto 44
46 h(i,j)=g(i,j)
 goto 43
44 h(i,j)=0
43 continue
 do 17 i=1,128
 do 17 j=1,128
 d2(i,j)=h(i,j)
17 continue
 do 14 i=1,128
 do 14 j=1,128
 if(h(i,j).eq.0) then
 d2(i,j)=0
else
d2(i,j)=1
endif
14 continue.
do 58 i=1,128
do 58 j=1,128
if(h(i,j).eq.1) then
g(i,j)=h(i-1,j-1)+h(i-1,j)+h(i-1,j+1)+h(i,j-1)+h(i-1,j+1)+h(i+1,j)+h(i+1,j-1)+h(i,j+1)
endif
endif
58 continue

* I n k i n g algorithm
 do 123 i=5,128
 do 21 j=2,127
 if(d2(i,j).ne.0) then
 c SUBPROGRAM A :
 if((d2(i-1,j-1).ne.0 .and. d2(i+1,j+1).ne.0).or.
 * (d2(i-1,j).ne.0 .and. d2(i,j+1).ne.0).or.
 * (d2(i+1,j-1).ne.0 .and. d2(i,j+1).ne.0).or.
 * (d2(i-1,j+1).ne.0 .and. d2(i+1,j).ne.0).or.
 * (d2(i-1,j).ne.0 .and. d2(i,j-1).ne.0).or.
 * (d2(i-1,j-1).ne.0 .and. d2(i+1,j-1).ne.0).or.
 * (d2(i-1,j+1).ne.0 .and. d2(i+1,j+1).ne.0).or.
 * (d2(i-1,j-1).ne.0 .and. d2(i+1,j-1).ne.0).)
 lt=1
 else
 lt=0
 endif
 c SUBPROGRAM B :
 c n region
 if(d2(i-1,j).eq.0) then
 if(d2(i-2,j).ne.0 .or. d2(i-3,j).ne.0) then
 d3(i-1,j)=g(i-1,j)
 endif
 endif
 c n e region
if(d2(i-1,j).eq.0 and. d2(i-1,j+1).eq.0 and.
* d2(i,j+1).eq.0) then
 if(d2(i-3,j+1).ne.0 or. d2(i-3,j+2).ne.0 or.
* d2(i-3,j+3).ne.0 or. d2(i-2,j+3).ne.0 or.
* d2(i-1,j+3).ne.0) then
 d3(i-1,j+1)=g(i-1,j+1)
goto 21
 endif
endif
c e region
 if(d2(i,j+1).eq.0) then
 if(d2(i,j+2).ne.0 or. d2(i,j+3).ne.0.) then
 d3(i,j+1)=g(i,j+1)
 endif
 endif
c e region
 if(d2(i,j+1).eq.0 and. d2(i+1,j+1).eq.0 and. d2(i+1,j).
* eq.0 and. d2(i+2,j).eq.0 and. d2(i+3,j).eq.0) then
 if(d2(i+1,j+3).ne.0 or. d2(i+2,j+3).ne.0 or. d2(i+3,j+3).
* ne.0 or. d2(i+3,j+2).ne.0 or. d2(i+3,j+1).ne.0) then
 d3(i+1,j+1)=g(i+1,j+1)
goto 21
 endif
 endif
c e region
 if(d2(i+1,j+1).eq.0 and. d2(i+1,j).eq.0) then
 if(d2(i+3,j).ne.0) then
 d3(i+1,j)=g(i+1,j)
 endif
 endif
c e region
 if(d2(i+1,j+1).eq.0 and. d2(i+1,j).eq.0) then
 if(d2(i+3,j).ne.0) then
 d3(i+1,j)=g(i+1,j)
 endif
 endif
21 continue
123 continue
c thinning algorithm
 do 7 i=1,128
 do 7 j=1,128
 g(i,j)=d2(i,j)+d3(i,j)
 if(g(i,j).eq.0) then
 h(i,j)=0
else
h(i,j)=1
endif
continue
write(*,*) 'enter dd',
read(*,*) dd
do 99 kk=1,dd
do 20 i=1,128
do 20 j=1,128
if(h(i,j).eq.1) goto 100
goto 20
100 t(1)=h(i-1,j)
t(2)=h(i-1,j+1)
t(3)=h(i,j+1)
t(4)=h(i+1,j+1)
t(5)=h(i+1,j)
t(6)=h(i+1,j-1)
t(7)=h(i,j-1)
t(8)=h(i-1,j-1)
c tm
tm(1)=t(1)
tm(2)=0
tm(3)=t(3)
tm(4)=0
tm(5)=t(5)
tm(6)=0
tm(7)=t(7)
tm(8)=0
c Shift tm
q(1)=0
q(2)=tm(1)
q(3)=tm(2)
q(4)=tm(3)
q(5)=tm(4)
q(6)=tm(5)
q(7)=tm(6)
q(8)=tm(7)
c OR-ing t and q
do 200 k=1,8
or=t(k)+q(k)
if(or.eq.0) then
tt(k)=0
else.
tt(k)=1
gendif
200 continue
 n1tt=tt(1)+tt(2)+tt(3)+tt(4)+tt(5)+tt(6)+tt(7)+tt(8)
n10tt=0
do 300 m=2,8
 if(tt(m-1).eq.1.and.tt(m).eq.0) then
 n10tt=n10tt+1
 endif
300 continue
 if(tt(8).eq.1.and.tt(1).eq.0) then
 n10tt=n10tt+1
 endif
 if(n10tt.gt.1) goto 1000
 goto 1001
1000 h(i,j)=1
1001 if(n10tt.eq.1) goto 1002
 goto 20
1002 if(n1tt.eq.1) then
 h(i,j)=1
 else
 h(i,j)=0
 endif
20 continue
99 continue
 do 40 i=1,128
 do 40 j=1,128
 if(h(i,j).eq.0) then
 h(i,j)=255
 else
 h(i,j)=0
 endif
 40 continue
 do 50 i=1,128
 do 50 j=1,128
 img(i,j)=char(h(i,j))
 50 continue
 write(2) (((img(i,j),j=1,128),i=1,128)
close(2)
 stop
 end
APPENDIX - H -

```
filename : d1.for

Description : This program is implemented to perform
  thinning algorithm using Lee's method
  based on some concepts which can be
  summarized as follows.
  1. Distance transform
  2. New selection rules using the
     second equation.
  3. linking algorithm
  4. thinning algorithm

integer h(128,128),g(128,128),d2(128,128),d3(128,128)
integer t(8),tm(8),q(8),tt(8),m,k,or,m1,m2,mm
character img(128,128)
character*16 filnme,filname
write(*,*) 'enter the input filename'
read(*,'(a16)') filnme
write(*,*) 'enter the output filename'
read(*,'(a16)') filename
open(1,file=filnme,form='binary',status='old')
open(2,file=filename,form='binary',status='new')
do 1 i=1,128
  do 1 j=1,128
    read(1) img(i,j)
    h(i,j)=ichar(img(i,j))
  1 continue
  close(1)
do 2 i=1,128
  do 2 j=1,128
    if(h(i,j).eq.0) then
      h(i,j)=1
    else
      h(i,j)=0
    endif
  2 continue

distance transform
  do 3 i=1,128
```

- 147 -
do 3 j=1,128
if(h(i,j).eq.1) then
 do 4 k=1,128
 if(h(i,j).ne.h(i-k,j) .or. h(i,j).ne.h(i+k,j)) then
 max1=k
 goto 5
 endif
 continue
 continue
 do 41 m=1,128
 if(h(i,j).ne.h(i,j-m) .or. h(i,j).ne.h(i,j+m)) then
 max2=m
 goto 42
 endif
 continue
 continue
 if(max1.lt.max2) then
 g(i,j)=max1
 else
 g(i,j)=max2
 endif
 endif
 continue
3 continue

C New selection rules
 do 43 i=1,128
 do 43 j=1,128
 if((g(i,j)-g(i,j-2))+(g(i,j)-g(i-2,j))+(g(i,j)
 -g(i+2,j))+(g(i,j)-g(i,j+2)).gt.2) goto 46
 goto 44
46 h(i,j)=g(i,j)
 goto 43
44 h(i,j)=0
43 continue
 do 14 i=1,128
 do 14 j=1,128
 if(h(i,j).eq.0) then
 d2(i,j)=0
 else
 d2(i,j)=1
 endif
14 continue.
do 58 i=1,128
do 58 j=1,128
if(h(i,j).eq.1) then
 g(i,j)=h(i-1,j-1)+h(i-1,j)+h(i-1,j+1)+h(i,j+1)
 *h(i+1,j+1)+h(i+1,j)+h(i+1,j-1)+h(i,j-1)
 if(g(i,j).eq.0) then
d2(i,j)=0
 endif
 endif
58 continue

c. Linking algorithm

 do 123 i=5,128
 do 21 j=2,127
 if(d2(i,j).ne.0) then

c SUBPROGRAM A :

 if((d2(i-1,j-1).ne.0 .and. d2(i+1,j+1).ne.0).or.
 (* (d2(i,j-1).ne.0 .and. d2(i,j+1).ne.0).or.
 (* (d2(i+1,j-1).ne.0 .and. d2(i+1,j+1).ne.0).or.
 (* (d2(i-1,j+1).ne.0 .and. d2(i+1,j).ne.0).or.
 (* (d2(i+1,j-1).ne.0 .and. d2(i+1,j+1).ne.0).or.
 (* (d2(i-1,j+1).ne.0 .and. d2(i+1,j-1).ne.0)) then
 lt=1
 else
 lt=0
 endif
 if(lt.eq.0) then

c SUBPROGRAM B :

 c n region

 if(d2(i-1,j).eq.0) then
 if(d2(i-2,j).ne.0 .or. d2(i-3,j).ne.0) then
 d3(i-1,j)=g(i-1,j)
 endif
 if(d2(i-3,j).ne.0) goto 21
 endif

 c n region

 if(d2(i-1,j).eq.0 .and. d2(i-1,j+1).eq.0 .and.
 (* d2(i,j+1).eq.0) then
 if(d2(i-3,j+1).ne.0 .or. d2(i-3,j+2).ne.0 .or.
 (* d2(i-3,j+3).ne.0 .or. d2(i-2,j+3).ne.0 .or.

- 149 -
* d2(i-1,j+3).ne.0) then
 d3(i,j+1)=g(i-1,j+1)
 goto 21
 endif
 endif
 ce region
 if(d2(i,j+1).eq.0) then
 if(d2(i,j+2).ne.0.or.d2(i,j+3).ne.0.) then
 d3(i,j+1)=g(i,j+1)
 endif
 if(d2(i,j+3).ne.0) goto 21
 endif
 endif
 ce region
 if(d2(i,j+1).eq.0.and.d2(i+1,j+1).eq.0.and.d2(i+1,j).eq.0.and.d2(i+1,j+3).eq.0) then
 if(d2(i+1,j+2).eq.0.and.d2(i+2,j+3).eq.0) then
 if(d2(i+3,j+2).eq.0.or.d2(i+2,j+3).ne.0.or.d2(i+3,j+3).ne.0) then
 d3(i+1,j+1)=g(i+1,j+1)
 endif
 endif
 endif
 endif
 cs region
 if(d2(i+1,j+1).eq.0.and.d2(i+1,j).eq.0) then
 if(d2(i+3,j).ne.0) then
 d3(i+1,j)=g(i+1,j)
 endif
 endif
 endif
 endif
 21 continue
 123 continue
 c thinning algorithm
 do 7 i=1,128
 do 7 j=1,128
 c g(i,j)=d3(i,j)+d2(i,j)
 g(i,j)=d2(i,j)+d3(i,j)
 if(g(i,j).eq.0) then
 h(i,j)=0
 else
 h(i,j)=1
 endif
continue
do 99 kk=1,10
do 20 i=1,128
do 20 j=1,128
if(h(i,j).eq.1) goto 100
goto 20
100 t(1)=h(i-1,j)
t(2)=h(i-1,j+1)
t(3)=h(i,j+1)
t(4)=h(i+1,j+1)
t(5)=h(i+1,j)
t(6)=h(i+1,j-1)
t(7)=h(i,j-1)
t(8)=h(i-1,j-1)
c tm
tm(1)=t(1)
tm(2)=0
tm(3)=t(3)
tm(4)=0
tm(5)=t(5)
tm(6)=0
tm(7)=t(7)
tm(8)=0
c Shift tm
q(1)=0
q(2)=tm(1)
q(3)=tm(2)
q(4)=tm(3)
q(5)=tm(4)
q(6)=tm(5)
q(7)=tm(6)
q(8)=tm(7)
c OR_ing t and q
do 200 k=1,8
or=t(k)+q(k)
if(or.eq.0) then
tt(k)=0
else
 tt(k)=1
endif
200 continue
nitt=tt(1)+tt(2)+tt(3)+tt(4)+tt(5)+tt(6)+tt(7)+tt(8)

- 151 -
n10tt=0
do 300 m=2,8
 if(tt(m-1).eq.1.and.tt(m).eq.0) then
 n10tt=n10tt+1
 endif
 continue
 if(tt(8).eq.1.and.tt(1).eq.0) then
 n10tt=n10tt+1
 endif
 if(n10tt.gt.1) goto 1000
 goto 1001
1000 h(i,j)=1
1001 if(n10tt.eq.1) goto 1002
 goto 20
1002 if(n1tt.eq.1) then
 h(i,j)=1
 else
 h(i,j)=0
 endif
 continue
 do 40 i=1,128
 do 40 j=1,128
 if(h(i,j).eq.0) then
 h(i,j)=255
 else
 h(i,j)=0
 endif
 enddo
 enddo
40 continue
 do 50 i=1,128
 do 50 j=1,128
 img(i,j)=char(h(i,j))
 enddo
 enddo
50 continue
 write(2)((img(i,j),j=1,128),i=1,128)
close(2)
stop
end
APPENDIX - I -

integer*2 h(128,128),g(128,128),cc,kk,pro5,pro6,pro7
character img(128,128)
integer ns,pro1,pro2,pro3,pro4,mm,pro8
character*16 filename
write(*,*) 'enter the input filename'
read(*,'(a16)') filename
write(*,*) 'enter the output filename'
read(*,'(a16)') filename
write(*,*)'enter size of the image'
read(*,*) ns
write(*,*)'1'

open(1,file=filename,form='binary',status='old')
open(2,file=filename,form='binary',status='new')
write(*,*)'2'
do 1 i=1,ns
 do 1 j=1,ns
 read(1) img(i,j)
 h(i,j)=ichar(img(i,j))
 if(h(i,j).eq.0) then
 h(i,j)=1
 g(i,j)=1
 else
 h(i,j)=0
 g(i,j)=0
 endif
 1 continue
close(1)
write(*,*)'enter cc'
read(*,*) cc
do 7 kk=1,cc
c the first subiteration

 do 2 i=1,nsize
 do 2 j=1,nsize
 if (h(i,j),eq.1) goto 15
 goto 2

 15 p(1)=h(i,j)
 p(2)=h(i-1,j)
 p(3)=h(i-1,j+1)
 p(4)=h(i,j+1)
 p(5)=h(i+1,j+1)
 p(6)=h(i+1,j)
 p(7)=h(i+1,j-1)
 p(8)=h(i,j-1)
 p(9)=h(i-1,j-1)
 m=m+p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)
 if(m.le.6.and.m.ge.2) goto 11
 goto 2

 11 init=0
 do 10 mm=2,8
 if(p(mm),eq.0.and.p(mm+1),eq.1) then
 init=init+1
 endif
 continue
 if(p(9),eq.0.and.p(2),eq.1) then
 init=init+1
 endif
 if(init.eq.1) goto 12
 goto 2

 12 pro1=p(2)*p(4)*p(6)
 pro2=p(4)*p(6)*p(8)
 if(pro1.eq.0.and.pro2.eq.0) goto 3
 goto 2

 3 g(i,j)=2
 continue
 do 6 i=1,nsize
 do 6 j=1,nsize
 if(g(i,j),eq.2) then
 h(i,j)=0
 endif
 continue
The second subiteration

```
do 21 i=1,nsize
    do 21 j=1,nsize
        if (h(i,j).eq.1) goto 151
    goto 21
151   p(1)=h(i,j)
p(2)=h(i-1,j)
p(3)=h(i-1,j+1)
p(4)=h(i,j+1)
p(5)=h(i+1,j+1)
p(6)=h(i+1,j)
p(7)=h(i+1,j-1)
p(8)=h(i,j-1)
p(9)=h(i-1,j-1)
m=p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)
    if (m.le.6.and.m.ge.2) goto 111
    goto 21
111   init=0
    do 101 mm=2,8
        if (p(mm).eq.0.and.p(mm+1).eq.1) then
            init=init+1
        endif
    101   continue
    if (p(9).eq.0.and.p(2).eq.1) then
        init=init+1
    endif
    if (init.eq.1) goto 121
    goto 21
121   pro3=p(2)*p(6)*p(8)
    pro4=p(4)*p(6)*p(8)
    if (pro3.eq.0.and.pro4.eq.0) goto 31
    goto 21
31    g(i,j)=2
    continue
    do 61 i=1,nsize
        do 61 j=1,nsize
            if (g(i,j).eq.2) then
                h(i,j)=0
            endif
    61   continue
```
the third subiteration

```
do 50 k=1,n
    do 50 l=1,n
        if (h(k,l).eq.1) goto 60
    goto 50
  60   p(1)=h(k,l)
        p(2)=h(k-1,l)
        p(3)=h(k-1,l+1)
        p(4)=h(k,l+1)
        p(5)=h(k+1,l+1)
        p(6)=h(k+1,l)
        p(7)=h(k+1,l-1)
        p(8)=h(k,l-1)
        p(9)=h(k-1,l-1)
    m=p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)
    if(m.le.6.and.m.ge.2) goto 70
    goto 50
  70   init=0
    do 80 mm=2,8
        if(p(mm).eq.0.and.p(mm+1).eq.1) then
            init=init+1
        endif
    80   continue
    if(p(9).eq.0.and.p(2).eq.1) then
        init=init+1
    endif
    if(init.eq.1) goto 110
    goto 50
  110  pro5=p(2)*p(4)*p(8)
       pro6=p(2)*p(6)*p(8)
    if(pro5.eq.0.and.pro6.eq.0) goto 120
    goto 50
  120  g(k,l)=2
    continue
    do 130 ii=1,n
    do 130 jj=1,n
        if(g(ii,jj).eq.2) then
            h(ii,jj)=0
        endif
    130  continue
```
c the fourth subiteration

do 501 k=1,nsize
 do 501 l=1,nsize
 if (h(k,l).eq.1) goto 601
 goto 501
601 p(1)=h(k,l)
 p(2)=h(k-1,l)
 p(3)=h(k-1,l+1)
 p(4)=h(k,l+1)
 p(5)=h(k+1,l+1)
 p(6)=h(k+1,l)
 p(7)=h(k+1,l-1)
 p(8)=h(k,l-1)
 p(9)=h(k-1,l-1)
 m=p(2)+p(3)+p(4)+p(5)+p(6)+p(7)+p(8)+p(9)
 if(m.le.6.and.m.ge.2) goto 701
 goto 501
701 init=0
 do 801 mm=2,8
 if(p(mm).eq.0.and.p(mm+1).eq.1) then
 init=init+1
 endif
 801 continue
 if(p(9).eq.0.and.p(2).eq.1) then
 init=init+1
 endif
 if(init.eq.1) goto 1101
 goto 501
1101 pro7=p(2)*p(4)*p(6)
 pro8=p(2)*p(4)*p(8)
 if(pro7.eq.0.and.pro8.eq.0) goto 1201
 goto 501
1201 g(k,1)=2
 continue
 do 1301 ii=1,nsize
 do 1301 jj=1,nsize
 if(g(ii,jj).eq.2) then
 h(ii,jj)=0
 endif
 1301 continue
continue
 do 13 i=1,nsize
 do 13 j=1,nsize
 if(h(i,j).eq.0) then
 h(i,j)=255
 else
 h(i,j)=0
 endif
 13 continue
 do 8 i=1,nsize
 do 8 j=1,nsize
 img(i,j)=char(h(i,j))
 continue
 write(2)(((img(i,j)),j=1,nsize),i=1,nsize)
 close(2)
stop
end
APPENDIX - L -

FILE: temp2.for

DESCRIPTION: In temp1.for using eight template and only one image we obtain a skeleton but with many branches in different parts of the character. Temp2.for is implemented to remove this disadvantage in which two images are used the current image and the working image. Note that the eight templates A1, B1, A2, B2, A3, B3, A4 and B4 are also used.

```fortran
integer h(128,128),g(128,128),p(9),nsize,k1,k2,kk
character*16 filename
write(*,*)' enter the input filename' read(*,'(a16)') filename
write(*,*)' enter the output filename' read(*,'(a16)') filename
write(*,*)' enter the size of the image ----->' read(*,*) nsize
write(*,*)' enter the scaling factors over X and Y ' read(*,*) scalx,scaly
open(1, file=filename, form='binary', status='old')
open(2, file=filename, form='binary', status='new')
write(*,*)' 1'
do 10 i=1,nsize
do 10 j=1,nsize
read(1) img(i,j)
h(i,j)=ichar(img(i,j))
if(h(i,j).eq.0)then
h(i,j)=1
else
h(i,j)=0
endif
10 continue
write(*,*)' 2'
do 99 i=1,nsize
do 99 j=1,nsize
```

- 159 -
\[g(i,j) = h(i,j) \]

99 continue

c template A1
 write(*,*) 'enter kk'
 read(*,*) kk
 do 101 k=1,kk
 do 1 i=1,nsize
 do 1 j=1,nsize
 if(h(i,j).eq.1) goto 11
 goto 1
 11 p(2)=h(i,j+1)
 p(3)=h(i-1,j+1)
 p(4)=h(i-1,j)
 p(5)=h(i-1,j-1)
 p(6)=h(i,j-1)
 p(7)=h(i+1,j-1)
 p(8)=h(i+1,j)
 p(9)=h(i+1,j+1)
 k1=p(4)+p(5)+p(6)
 k2=p(2)+p(8)
 if(k1.eq.0 .and. k2.eq.2) then
 g(i,j)=0
 endif
 1 continue
 do 20 i=1,nsize
 do 20 j=1,nsize
 h(i,j)=g(i,j)
 20 continue
 c template b1
 do 2 i=1,nsize
 do 2 j=1,nsize
 if(h(i,j).eq.1) goto 21
 goto 2
 21 p(2)=h(i,j+1)
 p(3)=h(i-1,j+1)
 p(4)=h(i-1,j)
 p(5)=h(i-1,j-1)
 p(6)=h(i,j-1)
 p(7)=h(i+1,j-1)
 p(8)=h(i+1,j)
 p(9)=h(i+1,j+1)
 k1=p(3)+p(4)+p(5)
k2=p(7)+p(8)
if(k1.eq.0 .and. k2.eq.2) then
g(i,j)=0
endif
continue
do 30 i=1,nsize
do 30 j=1,nsize
h(i,j)=g(i,j)
continue
c templates a2
do 3 i=1,nsize
do 3 j=1,nsize
if(h(i,j).eq.1) goto 31
goto 3
31 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k1=p(2)+p(3)+p(4)
k2=p(6)+p(8)
if(k1.eq.0 .and. k2.eq.2) then
g(i,j)=0
endif
continue
do 40 i=1,nsize
do 40 j=1,nsize
h(i,j)=g(i,j)
continue
c template b2
do 4 i=1,nsize
do 4 j=1,nsize
if(h(i,j).eq.1) goto 41
goto 4
41 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
\[p(7) = h(i+1, j-1) \]
\[p(8) = h(i+1, j) \]
\[p(9) = h(i+1, j+1) \]
\[k1 = p(2) + p(3) + p(9) \]
\[k2 = p(5) + p(6) \]
\[\text{if}(k1 \text{.eq.} 0 \text{.and.} k2 \text{.eq.} 2) \text{ then} \]
\[g(i, j) = 0 \]
\[\text{endif} \]

4 continue

do 50 i = 1, nsize
 do 50 j = 1, nsize
 \[h(i, j) = g(i, j) \]
 50 continue

c templates A3

do 5 i = 1, nsize
 do 5 j = 1, nsize
 \[\text{if}(h(i, j) \text{.eq.} 1) \text{ goto 51} \]
 goto 5
 51 \[p(2) = h(i, j+1) \]
 \[p(3) = h(i-1, j+1) \]
 \[p(4) = h(i-1, j) \]
 \[p(5) = h(i-1, j-1) \]
 \[p(6) = h(i, j-1) \]
 \[p(7) = h(i+1, j-1) \]
 \[p(8) = h(i+1, j) \]
 \[p(9) = h(i+1, j+1) \]
 \[k1 = p(2) + p(8) + p(9) \]
 \[k2 = p(4) + p(6) \]
 \[\text{if}(k1 \text{.eq.} 0 \text{.and.} k2 \text{.eq.} 2) \text{ then} \]
 \[g(i, j) = 0 \]
 \[\text{endif} \]
 5 continue

do 60 i = 1, nsize
 do 60 j = 1, nsize
 \[h(i, j) = g(i, j) \]
 60 continue

c template b3

do 6 i = 1, nsize
 do 6 j = 1, nsize
 \[\text{if}(h(i, j) \text{.eq.} 1) \text{ goto 61} \]
 goto 6
 61 \[p(2) = h(i, j+1) \]
p(3)=h(i-1, j+1)
p(4)=h(i-1, j)
p(5)=h(i-1, j-1)
p(6)=h(i, j-1)
p(7)=h(i+1, j-1)
p(8)=h(i+1, j)
p(9)=h(i+1, j+1)
k1=p(7)+p(8)+p(9)
k2=p(3)+p(4)
if(k1.eq.0.and.k2.eq.2) then
g(i, j)=0
endif
6
continue
do 70 i=1, nsize
do 70 j=1, nsize
h(i, j)=g(i, j)
70
continue
c templates A4
do 7 i=1, nsize
do 7 j=1, nsize
if(h(i, j).eq.1) goto 71
goto 7
71
p(2)=h(i, j+1)
p(3)=h(i-1, j+1)
p(4)=h(i-1, j)
p(5)=h(i-1, j-1)
p(6)=h(i, j-1)
p(7)=h(i+1, j-1)
p(8)=h(i+1, j)
p(9)=h(i+1, j+1)
k1=p(6)+p(7)+p(8)
k2=p(2)+p(4)
if(k1.eq.0.and.k2.eq.2) then
g(i, j)=0
endif
7
continue
do 80 i=1, nsize
do 80 j=1, nsize
h(i, j)=g(i, j)
80
continue
c template b4
do 8 i=1, nsize
do 8 j=1,nsize
if(h(i,j).eq.1) goto 81

goto 8

81 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k1=p(5)+p(6)+p(7)
k2=p(2)+p(9)
if(k1.eq.0.and.k2.eq.2) then
 g(i,j)=0
endif

8 continue
do 90 i=1,nsize
do 90 j=1,nsize
 h(i,j)=g(i,j)

90 continue

101 continue
do 100 i=1,nsize
do 100 j=1,nsize
if(g(i,j).eq.1) then
 g(i,j)=0
else
 g(i,j)=255
endif

100 continue
do 110 i=1,nsize
do 110 j=1,nsize
 img(i,j)=char(g(i,j))

110 continue
write(2)((img(i,j),j=1,nsize),i=1,nsize)
close(2)
stop
end
APPENDIX - M -

```
c  filename : tempwind.for

c

c Description : - In temp2.for (using the eight templates 
  and the two images) we get an excellent 
  result in character without dots. But for 
  those with dots we still have branches on 
  the dots. Tempwind.for is implemented to 
  remove this problem using the following 
  procedure :

  1. Separate the dots from the characters
  2. Process the characters without dots
  3. Process the dots alone
  4. Add the dots to the character

integer h(128,128), d(128,128), g(128,128), p(9), k1, k2, kk,
integer hag(3), mag(3)
character img(128,128)
character*16 filename
write(*,*) 'enter the input filename'
read(*,'(a16)') filename
write(*,*) 'enter the output filename'
read(*,'(a16)') filename
write(*,*) 'enter the size of the image ----->'
read(*,*) nsize
open(1, file=filename, form='binary', status='old')
open(2, file=filename, form='binary', status='new')
write(*,*) '1'
do 200 i=1,128
do 200 j=1,128
d(i,j)=0
200 continue
imp=0
do 201 i=1,128
do 201 j=1,128
read(1) img(i,j)
h(i,j)=ichar(img(i,j))
if(h(i,j).eq.0) then
  h(i,j)=1
else
  imp=imp+h(i,j)
endif
```

- 165 -
h(i,j)=0
endif

continue

c Separate the dots from the characters
write(*,*)'enter the length'
read(*,*) k1
k2=int(k1/2.0)
do 203 i=k2+1,128-k2
do 203 j=k2+1,128-k2
if(h(i,j).eq.1) then
 sum=0
 do 204 k=1,k2
 a1=h(i-k2,j)
 a2=h(i-k2,j-k)
 a3=h(i-k2,j+k)
 a4=h(i+k2,j)
 a5=h(i+k2,j-k)
 a6=h(i+k2,j+k)
 a7=h(i,j-k2)
 a8=h(i,j-k2)
 a9=h(i+k,j-k2)
 a10=h(i,j+k2)
 a11=h(i-k,j+k2)
 a12=h(i,k,j+k2)
 a=a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12
 sum=sum+a
 enddo
204 continue
if(sum.eq.0) then
 do 205 ii=i,i+k1
 do 205 jj=j,j+k1
 if(h(ii-k2-1,jj-k2-1).eq.1) then
 d(ii-k2-1,jj-k2-1)=1
 h(ii-k2-1,jj-k2-1)=0
 endif
205 continue
imp=imp+1
mag(imp)=i
hag(imp)=j
endif
endif

- 166 -
203 continue
do 206 i=1,nsize
do 206 j=1,nsize
g(i,j)=h(i,j)
206 continue
c Process the characters without dots
c template A1
 write(*,*),'enter kk'
 read(*,*) kk
 do 101 k=1,kk
 do 1 i=1,nsize
 do 1 j=1,nsize
 if(h(i,j).eq.1) goto 11
 goto 1
11 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k1=p(4)+p(5)+p(6)
k2=p(2)+p(8)
 if(k1.eq.0.and.k2.eq.2) then
 g(i,j)=0
 endif
 continue
do 20 i=1,nsize
 do 20 j=1,nsize
 h(i,j)=g(i,j)
20 continue
c template B1
 do 2 i=1,nsize
 do 2 j=1,nsize
 if(h(i,j).eq.1) goto 21
 goto 2
21 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
\[p(6) = h(i, j-1) \]
\[p(7) = h(i+1, j-1) \]
\[p(8) = h(i+1, j) \]
\[p(9) = h(i+1, j+1) \]
\[k1 = p(3) + p(4) + p(5) \]
\[k2 = p(7) + p(8) \]

if (k1 .eq. 0 .and. k2 .eq. 2) then
 \[g(i, j) = 0 \]
endif

2 continue

d o 30 i=1,nsize

do 30 j=1,nsize

h(i, j) = g(i, j) ^ 2

30 continue

* c templates a2

do 3 i=1,nsize

do 3 j=1,nsize

if (h(i, j) .eq. 1) goto 31

goto 3

31 p(2) = h(i, j+1)

p(3) = h(i-1, j+1)

p(4) = h(i-1, j)

p(5) = h(i-1, j-1)

p(6) = h(i, j-1)

p(7) = h(i+1, j-1)

p(8) = h(i+1, j)

p(9) = h(i+1, j+1)

k1 = p(2) + p(3) + p(4)

k2 = p(6) + p(8)

if (k1 .eq. 0 .and. k2 .eq. 2) then
 \[g(i, j) = 0 \]
endif

3 continue

do 40 i=1,nsize

do 40 j=1,nsize

h(i, j) = g(i, j)

40 continue

* c template b2

do 4 i=1,nsize

do 4 j=1,nsize

if (h(i, j) .eq. 1) goto 41

goto 4
\[p(2) = h(i, j+1) \\
p(3) = h(i-1, j+1) \\
p(4) = h(i-1, j) \\
p(5) = h(i-1, j-1) \\
p(6) = h(i, j-1) \\
p(7) = h(i+1, j-1) \\
p(8) = h(i+1, j) \\
p(9) = h(i+1, j+1) \\
k_1 = p(2) + p(3) + p(9) \\
k_2 = p(5) + p(6) \\
\text{if}(k_1 \equiv 0 \text{ and } k_2 \equiv 2) \text{ then} \\
g(i, j) = 0 \\
\text{endif} \\
\text{continue} \\
do 50 \ i = 1, nsize \\
do 50 \ j = 1, nsize \\
h(i, j) = g(i, j) \\
\text{continue} \\
c \text{ templates A3} \\
do 5 \ i = 1, nsize \\
do 5 \ j = 1, nsize \\
\text{if}(h(i, j) \equiv 1) \text{ goto 51} \\
goto 5 \\
\text{p}(2) = h(i, j+1) \\
p(3) = h(i-1, j+1) \\
p(4) = h(i-1, j) \\
p(5) = h(i-1, j-1) \\
p(6) = h(i, j-1) \\
p(7) = h(i+1, j-1) \\
p(8) = h(i+1, j) \\
p(9) = h(i+1, j+1) \\
k_1 = p(2) + p(3) + p(9) \\
k_2 = p(4) + p(6) \\
\text{if}(k_1 \equiv 0 \text{ and } k_2 \equiv 2) \text{ then} \\
g(i, j) = 0 \\
\text{endif} \\
\text{continue} \\
do 60 \ i = 1, nsize \\
do 60 \ j = 1, nsize \\
h(i, j) = g(i, j) \\
\text{continue} \\
c \text{ template b3}
do 6 i=1,nsize
do 6 j=1,nsize
if(h(i,j).eq.1) goto 61
goto 6
61 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k1=p(7)+p(8)+p(9)
k2=p(3)+p(4)
if(k1.eq.0.and.k2.eq.2) then
g(i,j)=0
endif
6 continue
do 70 i=1,nsize
do 70 j=1,nsize
h(i,j)=g(i,j)
70 continue
c templates A4
 do 7 i=1,nsize
 do 7 j=1,nsize
 if(h(i,j).eq.1) goto 71
 goto 7
71 p(2)=h(i,j+1)
p(3)=h(i-1,j+1)
p(4)=h(i-1,j)
p(5)=h(i-1,j-1)
p(6)=h(i,j-1)
p(7)=h(i+1,j-1)
p(8)=h(i+1,j)
p(9)=h(i+1,j+1)
k1=p(6)+p(7)+p(8)
k2=p(2)+p(4)
if(k1.eq.0.and.k2.eq.2) then
g(i,j)=0
endif
7 continue
do 80 i=1,nsize
do 80 j=1,nsize
 h(i,j)=g(i,j)
80 continue

c template b4
 do 8 i=1,nsize
 do 8 j=1,nsize
 if(h(i,j).eq.1) goto 81
 goto 8
81 p(2)=h(i,j+1)
 p(3)=h(i-1,j+1)
 p(4)=h(i-1,j)
 p(5)=h(i-1,j-1)
 p(6)=h(i,j-1)
 p(7)=h(i+1,j-1)
 p(8)=h(i+1,j)
 p(9)=h(i+1,j+1)
 k1=p(5)+p(6)+p(7)
 k2=p(2)+p(9)
 if(k1.eq.0.and.k2.eq.2) then
 g(i,j)=0
 endif
8 continue
 do 90 i=1,nsize
 do 90 j=1,nsize
 h(i,j)=g(i,j)
90 continue
101 continue
 do 100 i=1,nsize
 do 100 j=1,nsize
 if(g(i,j).eq.1) then
 g(i,j)=0
 else
 g(i,j)=255
 endif
100 continue

c Process the dots alone
 write(*,*) ' enter kk for dot'
 read(*,*) kk
 do 311 k=1,kk
 do 330 i=1,128
 do 330 j=1,128
 continue
311 continue
 do 311 k=1,kk
 do 330 i=1,128
 do 330 j=1,128
555 continue
 continue
330 continue
 continue
311 continue
 end
if((i.eq.mag(1).and.j.eq.hag(1)).or.(i.eq.mag(2).and.
* j.eq.hag(2)).or.(i.eq.mag(3).and.j.eq.hag(3))) then
 d(i,j)=3
else
 if(d(i,j).eq.0.and.d(i,j+1).eq.1) goto 340
 goto 331
 if(d(i,j+2).eq.0) goto 330
 d(i,j+1)=2
 goto 330
 if(d(i,j).eq.1.and.d(i,j+1).eq.0) goto 350
 goto 330
 if(d(i,j-1).eq.0) goto 330
 d(i,j)=2
endif
continue
 do 3100 j=1,128
 do 3100 i=1,128
 if(d(i,j).eq.0.and.d(i+1,j).eq.1) goto 3110
 goto 3120
 if(d(i+2,j).eq.0) goto 3100
 d(i+1,j)=2
 goto 3100
 if(d(i,j).eq.1.and.d(i+1,j).eq.0) goto 3130
 goto 3100
 if(d(i-1,j).eq.0) goto 3100
 d(i,j)=2
continue
3100 continue
 do 999 i=i,128
 do 999 j=i,128
 if(d(i,j).eq.3) then
 g(i,j)=0
 endif
999 continue
 do 110 i=1,nsize
 do 110 j=1,nsize
 img(i,j)=char(g(i,j))
 110 continue
write(2) ((img(i,j),j=1,nsize),i=1,nsize)
close(2)
stop
end
c filename : dmofd.for

c Description : In d.for and di.for (Lee's method) we
still have a discontinuity in many
characters in which the linking algorithm
fails to do it. To minimise this problem
we insert the following two conditions:
1. \(2 < B(p) < 6 \)
2. \(A(p) = 1 \)

integer: h(128,128), g(128,128), d2(128,128), d3(128,128)
integer t(8), m(8), q(8), tt(8), m, k, or, m1, m2, dd
character img(128,128)
character*16 filename, filename
write(*,*), 'enter the input filename'
read(*,(a16)) filename
write(*,*), 'enter the output filename'
read(*,(a16)) filename
open(1, file=filename, form='binary', status='old')
open(2, file=filename, form='binary', status='new')
do 1 i=1,128
 do 1 j=1,128
 read(1) img(i,j)
 h(i,j)=ichar(img(i,j))
 continue
 close(1)
do 2 i=1,128
 do 2 j=1,128
 if(h(i,j).eq.0) then
 h(i,j)=1
 else
 h(i,j)=0
 endif
 continue
 do 3 i=1,128
 do 3 j=1,128
 if(h(i,j).eq.1) then
 do 4 k=1,128
 if(h(i,j).ne.h(i-k,j).or..h(i,j).ne.h(i+k,j)) then
 maxi=k
 endif
 enddo
 endif
 enddo
 do 5 j=1,128
 if(h(i,j).ne.h(i,j+k).or..h(i,j).ne.h(i,j-k)) then
 maxi=k
 endif
 enddo
5 continue
4 continue
5 continue
do 41 m=1,128
if(h(i,j).ne.h(i,j-m).or.h(i,j).ne.h(i,j+m)) then
max2=m
goto 42
endif
41 continue
42 continue
if(max1.lt.max2) then
g(i,j)=max1
else
 g(i,j)=max2
endif
endif
3 continue
c the new selection rules
do 43 i=1,128
do 43 j=1,128
if(g(i,j)+1.gt.g(i,j-1).and.g(i,j)+1.gt.g(i-1,j))
 goto 45
 goto 44
45 if(g(i,j)+1.gt.g(i,j+1).and.g(i,j)+1.gt.g(i+1,j))
 goto 46
 goto 44
46 h(i,j)=g(i,j)
goto 43.
44 h(i,j)=0
43 continue.

c linking algorithm
do 123 i=5,128
do 21 j=2,127
if(d2(i,j).ne.0) then
 c SUBPROGRAM A :
 if((d2(i-1,j-1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i,j-1).ne.0.and.d2(i,j+1).ne.0).or.
 (d2(i+1,j-1).ne.0.and.d2(i-1,j+1).ne.0).or.
 (d2(i-1,j).ne.0.and.d2(i+1,j).ne.0).or.
 (d2(i-1,j-1).ne.0.and.d2(i-1,j+1).ne.0).or.
 (d2(i-1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j-1).ne.0.and.d2(i-1,j+1).ne.0).or.
 (d2(i+1,j).ne.0.and.d2(i-1,j).ne.0).or.
 (d2(i+1,j-1).ne.0.and.d2(i-1,j)).ne.0).or.
 (d2(i-1,j-1).ne.0.and.d2(i-1,j-1).ne.0).or.
 (d2(i-1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j-1).ne.0.and.d2(i-1,j-1).ne.0).or.
 (d2(i-1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i-1,j).ne.0.and.d2(i+1,j).ne.0).or.
 (d2(i-1,j-1).ne.0.and.d2(i-1,j-1).ne.0).or.
 (d2(i-1,j).ne.0.and.d2(i+1,j).ne.0).or.
 (d2(i+j).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+j).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
 (d2(i+1,j+1).ne.0.and.d2(i+1,j+1).ne.0).or.
* (d2(i+1,j-1).ne.0.and.d2(i+1,j+1).ne.0).or.
* (d2(i-1,j-1).ne.0.and.d2(i+1,j-1).ne.0)) then
 lt=1
else
 lt=0
endif
if(lt.eq.0) then
 c SUBPROGRAM B :
 c \n region
 * if(d2(i-1,j).eq.0) then
 if(d2(i-2,j).ne.0.or.d2(i-3,j).ne.0) then
 d3(i-1,j)=g(i-1,j)
 endif
 if(d2(i-3,j).ne.0) goto 21
 endif
 endif
 c ne region
 if(d2(i-1,j).eq.0.and.d2(i-1,j+1).eq.0.and.
 * d2(i,j+1).eq.0) then
 if(d2(i-3,j+1).ne.0.or.d2(i-3,j+2).ne.0.or.
 * d2(i-3,j+3).ne.0.or.d2(i-2,j+3).ne.0.or.
 * d2(i-1,j+3).ne.0) then
 d3(i-1,j+1)=g(i-1,j+1)
 goto 21
 endif
 endif
 c e region
 if(d2(i,j+1).eq.0) then
 if(d2(i,j+2).ne.0.or.d2(i,j+3).ne.0.) then
 d3(i,j+1)=g(i,j+1)
 endif
 if(d2(i,j+3).ne.0) goto 21
 endif
 endif
 c se region
 if(d2(i,j+1).eq.0.and.d2(i+1,j+1).eq.0.and.d2(i+1,j).
 * eq.0.and.d2(i+2,j).eq.0.and.d2(i+3,j).eq.0) then
 if(d2(i+1,j+3).ne.0.or.d2(i+2,j+3).ne.0.or.d2(i+3,j+3).
 * ne.0.or.d2(i+3,j+2).ne.0.or.d2(i+3,j+1).ne.0) then
 d3(i+1,j+1)=g(i+1,j+1)
 goto 21
 endif
 endif
 c s region
 - 175 -
if(d2(i+1,j+1).eq.0.and.d2(i+1,j).eq.0) then
 if(d2(i+3,j).ne.0) then
 d3(i+1,j)=g(i+1,j)
 endif
endif
endif
endif

21 continue
123 continue

c thining

do 7 i=1,128
do 7 j=1,128
 g(i,j)=d2(i,j)+d3(i,j)
if(g(i,j).eq.0) then
 h(i,j)=0
else
 h(i,j)=1
endif
continue
7 write(*,*),'enter dd'
read(*,*) dd

do 99 k=1,dd
 do 20 i=1,128
 do 20 j=1,128
 if(h(i,j).eq.1) goto 100
 goto 20
100 m1=t(1)+t(2)+t(3)+t(4)+t(5)+t(6)+t(7)+t(8)
if(m1.l.e.6.and.m1.g.e.2) goto 23
goto 20
23 continue
init=0
 do 24 mm=i,7
 if(t(mm).eq.0.and.t(mm+1).eq.1) then

- 176 -
init=init+1
endif

24 continue
if(t(8).eq.0.and.t(1).eq.1) then
init=init+1
endif
if(init.eq.1) goto 25
goto 20

25 continue

c tm

 tm(1)=t(1)
 tm(2)=0
 tm(3)=t(3)
 tm(4)=0
 tm(5)=t(5)
 tm(6)=0
 tm(7)=t(7)
 tm(8)=0

c Shift tm
 q(1)=0
 q(2)=tm(1)
 q(3)=tm(2)
 q(4)=tm(3)
 q(5)=tm(4)
 q(6)=tm(5)
 q(7)=tm(6)
 q(8)=tm(7)

c OR Ing t and q
 do 200 k=1,8
 or=t(k)+q(k)
 if(or.eq.0) then
 tt(k)=0
 else
 tt(k)=1
 endif
 end

200 continue

 n1tt=tt(1)+tt(2)+tt(3)+tt(4)+tt(5)+tt(6)+tt(7)+tt(8)
 n10tt=0
 do 300 m=2,8
 if(tt(m-1).eq.1.and.tt(m).eq.0) then
 n10tt=n10tt+1
 endif
 end
300 continue
if(tt(8).eq.1.and.tt(1).eq.0) then
n10tt=n10tt+1
endif
if(n10tt.gt.1) goto 1000
goto 1001
1000 h(i,j)=1
1001 if(n10tt.eq.1) goto 1002
goto 20
1002 if(n1tt.eq.1) then
h(i,j)=1
else
h(i,j)=0
endif
20 continue
do 40 i=1,128
do 40 j=1,128
if(h(i,j).eq.0) then
h(i,j)=255
else
h(i,j)=0
endif
40 continue
do 50 i=1,128
do 50 j=1,128
img(i,j)=char(h(i,j))
50 continue
write(2) 'img(i,j),j=1,128,i=1,128'
close(2)
stop
end.
Description: This program is implemented to perform thickening algorithm using scanning method

integer h(128,128)
character img(128,128), imh(128,128)
integer kk
character*16 filename
write(*,'(*)') 'enter the filename'
read(*,'(a16)') filename
open(1,file=filename,form='binary',status='old')
open(2,file='out.img',form='binary',status='new')
do 20 i=1,128
 do 20 j=1,128
 read(1) img(i,j)
 h(i,j)=ichar(img(i,j))
 if(h(i,j).eq.0) then
 h(i,j)=1
 else
 h(i,j)=0
 endif
 enddo
20 continue
write(*,'(*)') 'enter kk'
read(*,*) kk
do 11 k=1,kk
 do 30 i=1,128
 do 30 j=1,128
 if(h(i,j).eq.0 .and. h(i,j+1).eq.1) goto 40
 goto 31
 enddo
30 continue
40 h(i,j)=2
 goto 30
31 if(h(i,j).eq.1 .and. h(i,j+1).eq.0) goto 50
 goto 30
50 h(i,j+1)=2
30 continue
do 100 j=1,128
do 100 i=1,128
 if(h(i,j).eq.0.and.h(i+1,j).eq.1) goto 110
goto 120
110 h(i,j)=2
goto 100
120 if(h(i,j).eq.1.and.h(i+1,j).eq.0) goto 130
goto 100
130 h(i+1,j)=2
100 continue
do 60 i=1,128
do 60 j=1,128
 if(h(i,j).eq.0) then
h(i,j)=0
else
h(i,j)=1
endif
60 continue
11 continue
do 80 i=1,128
do 80 j=1,128
 if(h(i,j).eq.1) then
h(i,j)=0
else
h(i,j)=255
endif
80 continue
do 140 i=1,128
do 140 j=1,128
imh(i,j)=char(h(i,j))
140 continue
 write(2) ((imh(i,j),j=1,128),i=1,128)
close(2)
stop
end
VITA AUCTORIS

Mohamed TELLACHE

September 1960
Born in Draa-El-mizan (ALGERIA)

June 1980
Completed High School (Baccalaureat)
Lycee Abane Ramdane (Algiers) ALGERIA

June 1985
Graduated in Electronics (Ingenieur)
Ecole polytechnique d'Alger, ALGERIA

September 1986
Admitted in the Master's program
Department of Electrical Engineering
University of Windsor

June 1988
Candidate for the degree of M.A.Sc.
Electrical Engineering University
of Windsor, Ontario, CANADA N9b-3P4