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CHAPTER 1: INTRODUCTION  

1.1. Motivation 

In today’s highly competitive market, it is not enough to produce products with excellent quality 

and low price. Under fierce competition, manufacturers are required to introduce a wide variety 

of products and produce them in the right quantity and at the right time. Under these 

circumstances, decision makers require good supporting tools that they can use to understand 

which parameters affect their production system as well as effect of each of these parameters on 

the overall performance.  

Manufacturing systems can be classified under the category of Discrete Event Dynamic Systems 

(DEDSs) which also includes computer systems, traffic systems, and communication systems. 

What characterizes these systems is that their state changes not with time, but with certain events 

and the change from one state to another takes place instantaneously. For manufacturing systems, 

such events can be the arrival of a work piece, the breakdown of a machine, etc. These systems 

are structurally different from natural physical dynamic systems that are governed by differential 

equations. The behavior and natural physical systems can be accurately monitored, explained, 

predicted and controlled by the use of differential equations; on the other hand, for DEDSs such a 

robust and powerful mathematical tool does not exist yet (Cassandras and Lafortune 

2007)(Cassandras and Lafortune 2007).   

Available tools for modeling and performance evaluation of DEDSs include Queuing Theory, 

Markov Chains, Petri Nets, Mathematical Programming, Discrete Event Simulation, and Max-

plus Algebra, figure 1.1. Both queuing theory and Markov chains are tools that deal with the 

average system performance over long time periods and thus are not very useful in short-term 

system analysis and control and gives little insight into the system’s dynamics and behavior. Petri 

Nets is more of a logical tool that gives qualitative analysis of the system such as detecting 

deadlocks but cannot give quantitative analysis on the system behavior. Discrete event simulation 

is an excellent tool for the analysis of manufacturing systems’ behavior and can give detailed 

picture of the system, however it is time consuming and can give information on the system only 

for the given simulated system parameters. In order to use discrete event simulation to get insight 

into the effect of a given system parameter on the overall behavior, numerous simulation runs 

would be required.   
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Figure 1.1 Classification of DEDS modeling tools 

Max-plus algebra is an algebraic mathematical formulation that can be used to model 

manufacturing systems by linear state-space like equations. By modeling manufacturing systems 

using max-plus algebra, one can arrive at mathematical equations that can be used in the analysis 

and control of manufacturing systems. The use of max-plus algebra in modeling and analysis of 

manufacturing systems started in the nineteen eighties; however its use both commercially and 

academically has been limited. This is mainly because using the tool requires special 

mathematical background and because there are no user-friendly tools that facilitate the use of 

max-plus algebra in modeling and analysis of systems.  

1.2. Scope  

In this research different tools have been developed to make max-plus algebra more accessible to 

engineers and managers with little or no background in its mathematical foundation. The 

developed tools can enable engineers and managers to use max-plus equations in analyzing 

manufacturing systems and testing different what-if scenarios efficiently in both design and 

operation stages.  
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The first of these tools is a method for the automatic generation of max-plus equations for 

manufacturing flow lines. The method can be used to model lines with finite buffers and parallel 

identical stations and produces equations that can be used in parametric analysis.  

The second tool is a novel approach in modeling mix-model assembly lines with max-plus 

algebra. The developed equations can then be used to compare given sequences of demand mix 

over a range of processing times of assembly tasks as well as analyze different line performance 

measures while considering one of the line parameters as a variable. Hence, the effect of changes 

in any of the system parameters on the optimality of a given sequence of demand mix and on the 

line performance can be assessed. 

The third tool is method for modeling re-entrant manufacturing systems which are used widely in 

semiconductor manufacturing and paint shops. Using the developed equations, complex behavior 

especially in the transient phase can be detected and avoided. 

It should be noted that the manufacturing systems modeled by max-plus algebra in this thesis do 

not cover all types of manufacturing systems. However, they represent structurally different types 

of systems and thus prove in principle that this tool is capable of modeling and providing useful 

analysis to a wide range of manufacturing systems.  

1.3. Thesis Statement 

The use of max-plus algebra in modeling and analysis of manufacturing systems can provide 

insights and information about the systems performance that cannot be otherwise efficiently 

obtained with available modeling tools 

1.4. Max-Plus Algebra  

Max-plus algebra is a mathematical tool that can model DEDSs using linear algebraic equations 

analogous to conventional state-space linear equations (Ho 1989). Using these equations, real 

time control and parametric system analysis become possible. Discrete event systems that can be 

modeled using max-plus equations include production systems (Di Febbraro, Minciardi et al. 

1994), traffic light systems (Maia, Hardouin et al. 2013), public transportation systems (Nait-Sidi-

Moh, Manier et al. 2005), and computer networking (Baccelli and Hong 2000).  
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Research related to max-plus algebra can be classified into two different categories. The first is 

research in developing the tool itself and increasing its appeal to potential users. Work in this 

category includes direct generation of max-plus equations for flow shop systems 

(Doustmohammadi and Kamen 1995; Seleim and ElMaraghy 2015), extending max-plus algebra 

to stochastic systems (Jean-Marie and Olsder 1996), introducing buffer and capacity constraints 

to the max-plus representation of manufacturing systems (Goto, Shoji et al. 2007), and 

introducing a block diagram based representation of manufacturing systems using max-plus 

algebra (Imaev and Judd 2008; Imaev and Judd 2009). 

The second category of research related to max-plus algebra is concerned with applications of the 

tool. These include manufacturing systems modeling (Ren, Xu et al. 2007; Imaev and Judd 2008; 

Imaev and Judd 2009; Seleim and ElMaraghy 2014), performance evaluation  (Cohen, Dubois et 

al. 1985; Amari, Demongodin et al. 2005; Reddy, Janardhana et al. 2009; Morrison 2010; Park 

and Morrison 2010; Boukra, Lahaye et al. 2013; Seleim and ElMaraghy 2014; Singh and Judd 

2014), performance optimization (Di Febbraro, Minciardi et al. 1994), scheduling (Lee 2000; 

Goto, Hasegawa et al. 2007; Tanaka, Masuda et al. 2009; Houssin 2011) model predictive control 

(De Schutter and Van Den Boom 2001; van den Boom and De Schutter 2006; Goto 2013). 

1.5. Dissertation Overview 

Chapter 2 provides an introduction to the basics of max-plus algebra along with simple examples 

to make the reader familiar with how max-plus algebra works. Chapter 3 presents a method for 

automatic generation of max-plus equations for manufacturing flow lines. The method is first 

presented with simple examples then a case study is presented where a flow line for 

manufacturing a control valve is modeled and the generated equations are used to compare the 

line idle time of different configurations, the effect of buffer sizes on idle time and the effect of 

the processing time of a station on the total line idle time. Chapter 4 covers max-plus modeling of 

mixed-model assembly lines (MMALs) with either open or closed stations. Case studies are 

presented to show how the developed equations can be used in determining the robustness of a 

given solution to the assembly line sequencing problem. Chapter 5 tackles the issue of modeling 

re-entrant flow lines. The difficulty of modeling re-entrant flow lines using max-plus is first 

demonstrated, then a novel method is presented which allows for modeling these category of 

manufacturing systems. The developed equations are then used to analyze the effect of different 

system parameters on the transient and steady state behavior of the line. Finally, chapter 6 

presents an overview and discussion, the research contributions, significance, and future work. 
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Table 1-1 Summary of Literature Review 
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CHAPTER 2: BASICS OF MAX-PLUS ALGEBRA 

Max-plus algebra is one of many algebraic structures called semirings or dioids that are studied 

by mathematicians. The most famous of these semirings are the max-plus algebra, min-plus 

algebra, and the min-max algebra. These algebraic tools have been studied by mathematicians for 

many years and used in areas of optimization and algebraic geometry, but the first use of these 

tools in modeling discrete event systems was in 1985 by Cohen et al.(Cohen, Dubois et al. 1985). 

In their paper, Cohen et al. indicated that deterministic, discrete event systems can be represented 

in a linear state-space representation when modeled by these algebraic structures. Following that 

paper, max-plus algebra started to be used in modeling, control, and performance analysis of 

discrete event systems (Cohen, Gaubert et al. 1999). 

In this chapter an introduction to the basic concepts and tools of the Max-Plus algebra is first 

presented then used to model a simple manufacturing system consisting of three machines. A 

more detailed presentation of max-plus algebra with in depth mathematical analysis and proofs 

can be found in (Baccelli, Cohen et al. 1992) and (Heidergott, Olsder et al. 2006). 

2.1.  Max-plus Algebra Basics  

Max-Plus algebra is defined over ℛ𝑚𝑎𝑥 = {ℛ ∪ −∞} where ℛ is the set of real numbers. The two 

main algebraic operations are maximization, denoted by the symbol ⊕, and addition, denoted by 

the symbol ⨂ where:  

 
𝑎 ⊕ 𝑏 = 𝑚𝑎𝑥(𝑎, 𝑏)    ∀ 𝑎, 𝑏 ∈ ℛ𝑚𝑎𝑥 

𝑎 ⊗ 𝑏 = 𝑎 + 𝑏     ∀ 𝑎, 𝑏 ∈ ℛ𝑚𝑎𝑥 

 

Define 𝜀 =  −∞ and 𝑒 = 0. In max-plus algebra, 𝜀 is the null element of the operation ⊕ where 

 
𝑎 ⊕ 𝜀 = 𝑚𝑎𝑥  (𝑎, −∞) =𝑎     ∀ 𝑎 ∈ ℛ𝑚𝑎𝑥 

 

and 𝑒 is the null element for the operation ⊗ where 

 
𝑎 ⊗ 𝑒 = 𝑎 + 0 = 𝑎     ∀ 𝑎 ∈ ℛ𝑚𝑎𝑥 
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Throughout the rest of this dissertation, ⊕ will be referred to as addition (or plus) and ⊗ will be 

referred to as multiplication. Similar to traditional algebra, both ⊕ and ⊗ are associative and 

commutative 

 

𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎  ∀ 𝑎, 𝑏 ∈ ℛ𝑚𝑎𝑥 

(𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐)  ∀ 𝑎, 𝑏, 𝑐 ∈ ℛ𝑚𝑎𝑥 

𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎  ∀ 𝑎, 𝑏 ∈ ℛ𝑚𝑎𝑥 

(𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐)  ∀ 𝑎, 𝑏, 𝑐 ∈ ℛ𝑚𝑎𝑥 

 

and multiplication is left and right distributive over addition 

 
𝑎 ⊗ (𝑏 ⊕ 𝑐) = (𝑎 ⊗ 𝑏) ⊕ (𝑎 ⊗ 𝑐)  ∀ 𝑎, 𝑏, 𝑐 ∈ ℛ𝑚𝑎𝑥 

(𝑎 ⊕ 𝑏) ⊗ 𝑐 = (𝑎 ⊗ 𝑐) ⊕ (𝑏 ⊗ 𝑐)  ∀ 𝑎, 𝑏, 𝑐 ∈ ℛ𝑚𝑎𝑥 

 

Similar to conventional algebra, max-plus algebra can be extended over matrices. Let 𝑨 and 𝑩 be 

two matrices with equal dimension, then 

 
𝑨⨁𝑩 = 𝑪 

 

 where 𝑪𝑖𝑗 = 𝑨𝑖𝑗⨁ 𝑩𝑖𝑗. If the number of columns of 𝑨 is equal to the number of rows of 𝑩 equal 

to 𝑛, then: 

 
𝑨 ⊗ 𝑩 = 𝑪 

 

where 

 
𝑪𝑖𝑗 =

𝑛

⨁ 

𝑘 = 1

𝑨𝑖𝑘 ⊗ 𝑩𝑘𝑗 
 

where  ⊕𝑘=1
𝑛 𝒒 is maximization of all the elements of 𝒒 for 𝑘 = 1 to 𝑛. 

If 𝑎 is a scalar and 𝑨 is a matrix, then 𝑎 ⊗ 𝐴 is equivalent to adding the value of 𝑎 to each 

element in the matrix 𝐴. 

To illustrate addition and multiplication over matrices, let 
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𝑨 = [

3 2
𝑒 𝜀  

] , 𝑩 = [
𝑒 6
9 1

] , 𝑪 = [
7 9 𝜀
2 𝑒 4

]  𝑎𝑛𝑑 𝑫 = [
1 5
𝑒 𝜀
7 3

], 
 

then: 

 

4 ⊗ 𝑨 = [
3 + 4 2 + 4
𝑒 + 4 𝜀 + 4

] = [
7 6
4 𝜀

] 

𝑨 ⊕ 𝑩 = [
3 ⊕ 𝑒 2 ⊕ 6
𝑒 ⊕ 9 𝜀 ⊕ 1

] = [
3 6
9 1

] 

𝑨 ⊗ 𝑩 = [
3 ⊗ 𝑒 ⊕ 2 ⊗ 9 3 ⊗ 6 ⊕ 2 ⊗ 1
𝑒 ⊗ 𝑒 ⊕ 𝜀 ⊗ 9 𝑒 ⊗ 6 ⊕ 𝜀 ⊗ 1

] = [
11 9
𝑒 6

] 

𝑪 ⊗ 𝑫 = [
(7 ⊗ 1) ⊕ (9 ⊗ 𝑒) ⊕ (𝜀 ⊗ 7) (7 ⊗ 5) ⊕ (9 ⊗ 𝜀) ⊕ (𝜀 ⊗ 3)
(2 ⊗ 1) ⊕ (𝑒 ⊗ 𝑒) ⊕ (4 ⊗ 7) (2 ⊗ 5) ⊕ (𝑒 ⊗ 𝜀) ⊕ (4 ⊗ 3)

]

= [
9 12
11 7

] 

𝑨 ⊗ 𝑨 = 𝑨𝟐 = [
3 ⊗ 3 ⊕ 2 ⊗ 𝑒 3 ⊗ 2 ⊕ 2 ⊗ 𝜀
𝑒 ⊗ 3 ⊕ 𝜀 ⊗ 𝑒 𝑒 ⊗ 2 ⊕ 𝜀 ⊗ 𝜀

] = [
6 5
3 2

] 

 

Through the rest of the dissertation, the ⊗ operator will be omitted whenever its use is obvious, 

thus 𝑎 ⊗ 𝑏 ⊕ 𝑐 ⊗ 𝑑 will be written as 𝑎𝑏 ⊕ 𝑐𝑑. 

Theorem 2.1: 

An equation is the general form: 

 
𝑿 = 𝑨 𝑿 ⊕ 𝑩 𝑼 (2.1) 

where 𝑿 is an 𝑛 × 1 vector of variables, 𝑼 is an 𝑚 × 1 vector of inputs, 𝑨 is an 𝑛 × 𝑛 square 

matrix and 𝑩 is an 𝑛 × 𝑚 matrix, has a solution : 

 
𝑿 = 𝑨∗ 𝑩 𝑼  (2.2) 

where 𝑨∗ is defined as: 

 
𝑨∗ = 𝑒 ⊕ 𝑨 ⊕ 𝑨2 ⊕ …⊕ 𝑨∞  (2.3) 

The proof of theorem (2.1) is presented in Appendix A. 
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If matrix 𝐀 is regarded as a directed graph and the each entry 𝐀𝑖,𝑗 denote the weight of path from 

node i to j, then 𝐀n
𝑖,𝑗 denotes the weights of paths with length n in the same graph. Therefore, for 

𝐀∗to have a defined value, the weights of paths larger than a given z should equal to zero and thus 

we get 𝐀n = −∞ for 𝑛 > 𝑧 and equation (2.3) becomes: 

 
𝑨∗ = 𝑒 ⊕ 𝑨 ⊕ 𝑨2 ⊕ …⊕ 𝑨𝑧 (2.4) 

For an 𝑛 × 𝑛 matrix 𝑨, an 𝑛 × 1 vector 𝝂, and a scalar 𝜇, if   

 
𝑨 ⊗ 𝝂 = 𝜇 ⊗ 𝝂 (2.5) 

then 𝜇 is called the eigenvalue of 𝑨 and 𝝂 is its associated eigenvector. Assume, 𝑿 is a vector of 

variables defining a system such that:  

 
𝑿𝒌+𝟏 = 𝑨 𝑿𝒌 

 

then at steady state, the eigenvalue of 𝑨 is the average growth rate of 𝑋. The eigenvalues can be 

calculated using different numerical algorithms presented in (Heidergott, Olsder et al. 2006). 

2.2. Example of Modeling a Manufacturing System  

Consider a simple manufacturing system consisting of three stations A, B, and C. Stations A and B 

are independent and station C is an assembly operation that requires a workpiece from station A 

and another from station B as shown in Figure 2.1. Let the processing time for stations A, B and C 

be t1, t2 and t3 respectively, the starting time of processing the k
th
 workpiece on stations A, B and 

C be𝑥1𝑘,𝑥2𝑘, and 𝑥3𝑘 respectively, the time at which required inputs are made available to 

stations A and B for the k
th
 time be U1 and U2 respectively and the time the k

th
 workpiece has 

finished processing on station C, i.e. arrival time of the k
th
 finished product, is Yk.  
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Figure 2.1 A simple 3 machine manufacturing system. 

Considering station A, the time at which the station starts processing job k is the later of the two 

the two events: 1) required inputs for job k are available, which is equal to U1k, and 2) station A 

has finished processing the job k-1, which is equal to the time at which station A started 

processing the job k-1 plus the processing time on station A. In conventional algebra this can be 

written as:  

 
 𝑥1𝑘 = 𝑚𝑎𝑥 (𝑈1𝑘 ,  𝑥1𝑘−1 + 𝑡1)   (2.6) 

 

Similarly for station B, the time at which the station starts processing job k can be written as: 

 
 𝑥2𝑘 = 𝑚𝑎𝑥 (𝑈2𝑘 ,  𝑥2𝑘−1 + 𝑡2)  (2.7) 

For station C, processing the k
th
 jobs can start at the latest of three events:  

1) station A has finished processing the k
th
 job, which is equal to 𝑥1𝑘 + 𝑡1,  

2) station B has finished processing the k
th
 job, which is equal to 𝑥2𝑘 + 𝑡2,  

3) station C has finished processing the job k-1.  

In conventional algebra this can be written as:  

 
𝑥3𝑘 = 𝑚𝑎𝑥 (𝑥1𝑘 + 𝑡1,  𝑥2𝑘 + 𝑡2, 𝑥3𝑘−1 + 𝑡3)   (2.8) 

Equations (2.6-2.8) can be written in max-plus algebra as: 

A (t1)

C (t3)

B (t2)

U1

U2 Y

x1

x2

x3
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 𝑥1𝑘 = 𝑈1𝑘 ⊕ 𝑡1 𝑥1𝑘−1 (2.9) 

 𝑥2𝑘 = 𝑈2𝑘 ⊕ 𝑡2 𝑥2𝑘−1   (2.10) 

 
𝑥3𝑘 = 𝑡1𝑥1𝑘 ⊕ 𝑡2 𝑥2𝑘 ⊕ 𝑡3 𝑥3𝑘−1  (2.11) 

The arrival time of the k
th
 finished product is equal to the time it started processing on station C 

plus the processing time on station C, this can be written as: 

 
𝒀𝑘 = 𝑡3 𝑥3𝑘 (2.12) 

Equations (2.9-2.12) fully describe the simple manufacturing system in figure 2.1 and can be put 

in state-space vector form as: 

 
𝑿𝑘 = 𝑨 𝑿𝑘 ⊕ 𝑩 𝑿𝑘−1 ⊕ 𝑫 𝑼𝑘 (2.13) 

 
𝒀𝑘 = 𝑪 𝑿𝑘 (2.14) 

where:  

 
𝑿𝑘 = [

𝑥1
𝑥2
𝑥3

]

𝑘

, 𝑼𝑘 = [
𝑈1 
𝑈2

]
𝑘
, 𝑨 = [

𝜀
𝜀
𝑡1

 
𝜀
𝜀
𝑡2

𝜀
 𝜀
𝜀
] , 𝑩 = [

𝑡1
𝜀
𝜀

 
𝜀
𝑡2
𝜀

𝜀
 𝜀
 𝑡3

] , 𝑫 = [
𝑒 
𝜀 
𝜀 

𝜀
𝑒
𝜀
], 

𝑪 = [𝜀  𝜀  𝑡3]. 

 

Notice that equation (2.13) is implicit in 𝐗k. According to theorem (2.1), the implicit equation 

(2.13) can be transformed into:  

 
𝑿𝑘 = �̂� 𝑿𝑘−1 ⊕ �̂� 𝑼𝑘 (2.15) 

where �̂� = 𝑨∗𝑩 , �̂� = 𝑨∗𝑫  and using equation (2.4) 𝑨∗, �̂� and  �̂�  can be calculated as: 

 

𝑨∗ = 𝑒 ⊕ 𝑨 ⊕ 𝑨𝟐 = [
𝑒
𝜀
𝜀
 
𝜀
𝑒
𝜀

𝜀
 𝜀
 𝑒

] ⊕ [
𝜀
𝜀
𝑡1

 
𝜀
𝜀
𝑡2

𝜀
 𝜀
𝜀
] ⊕ [

𝜀
𝜀
𝜀
 
𝜀
𝜀
𝜀

𝜀
 𝜀
𝜀
] = [

𝑒
𝜀
𝑡1

 
𝜀
𝑒
𝑡2

𝜀
 𝜀
 𝑒

], 

 �̂� = 𝑨∗𝑩 = [
𝑡1
𝜀
𝑡1

 
𝜀
𝑡2
𝑡2

𝜀

 𝜀
 𝑡3

],  and  �̂� = 𝑨∗𝑫 = [
𝑒
𝜀
𝑡1

 
𝜀
𝑒
𝑡2

]. 

 

Using equations (2.14) and (2.15) and given the arrival time of inputs to stations A and B, the 

time at which each station starts processing each job as well as the completion time of each job 
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can be determined. These equations can then be used in dynamic analysis of the system as well as 

in dynamic control as mentioned in section 1.4.  

It should be noted, however, that the example presented above assumes infinite buffer capacity 

between stations A and B and station C. Accounting for finite buffers between stations will be 

considered in chapter 3 when considering the method to automatically generate the equations for 

manufacturing flow lines.  

In the case when different products are processed on the same manufacturing system and different 

products have different processing times on each machine, equations (2.14) and (2.15) can still be 

used while changing the parameters t1, t2, and t3 into t1k, t2k, and t3k and accordingly the matrices 

A, B, and C will be changed to Ak, Bk, and Ck. 

2.3. Coding Max-plus Algebra in Wolfram Mathematica 

The symbolic computational software Mathematica 6.0 (Grzymkowski, Kapusta et al. 2008) was 

used for solving max-plus calculations. A toolbox-like code was developed that included the 

basic operations for max-plus and some advanced operations (like calculating the Eigenvalues). 

The complete code with proper comments is included in Appendix B.  
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CHAPTER 3: MAX-PLUS MODELING OF  

MANFUFACTURING FLOW LINES 

3.1. Introduction 

Modeling simple manufacturing systems using max-plus equations is easy and intuitive; however, 

as the systems grow in size and/or have complicated structure, deriving the model equations 

becomes tedious, less intuitive and time consuming. In addition, deriving max-plus equations for 

manufacturing systems with finite buffers or parallel identical stations is not straight-forward or 

easy even for simple systems. The difficulty of deriving these equations limits the benefits of 

using max-plus algebra in modeling and controlling manufacturing systems especially when 

frequent changes in products or system configurations take place and the need for quickly 

assessing their effects and making decisions intensifies. 

In this chapter, a method for automatic generation of the max-plus system equations for flow lines 

is presented. The method can generate the equations for lines with complicated structures 

regardless of their size and can model finite buffers and parallel identical stations. Flow lines 

studied in this chapter are assumed to have deterministic processing times and reliable stations. 

The first assumption is realistic for automated systems as well as semi-automated systems with 

palletized material handling where the process time variation is much less than the processing 

time and thus can be neglected. The second assumption is also realistic when studying the short-

term system operation with the objective of understanding and optimizing the system behavior 

rather than studying the long-term operation with the objective of planning system capacity where 

machines breakdown would have an effect.  

A review of related research is presented in section 3.2. Section 3.3 presents the method for 

generating the max-plus equations followed by a case study with an example of analysis in 

section 3.4, and finally section 3.5 presents the discussion and conclusions. 

3.2. Related Research 

Several papers have been published focusing on facilitating the modeling of manufacturing 

systems using max-plus algebra. Doustmohammadi and Kamen (1995) presented a procedure for 

direct generation of event-time max-plus equations for generalized flow shop manufacturing 

systems. The procedure is limited to flow shops with infinite buffers and cannot model identical 
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parallel machines. The procedure generates the equations directly only for serial flow lines with 

one station in each stage, otherwise the equations are generated for each machine separately, 

interconnection matrices which describe the flow of jobs through the line are derived and then the 

final equations are generated using matrix manipulations and recursions.  Goto et al. (Goto, Shoji 

et al. 2007) proposed a manufacturing systems representation that can account for finite buffers 

by adding relations between future starting times of jobs on a station and past starting times for 

the same and subsequent stations. Imaev and Judd (2009) used block diagrams which can be 

interconnected to form a manufacturing system model. This approach also assumes infinite buffer 

sizes and cannot model parallel redundant machines. Park and Morrison (2010) presented a 

method for modeling flow lines with parallel redundant stations again by adding relations 

between future and past starting times on a station and the subsequent ones. However, their 

equations provide the processing starting time for jobs not stations, which is unusual in modeling 

manufacturing systems and causes the model variables and number of equations to grow with the 

number of jobs.  

In summary, the literature is lacking a method for generating max-plus equations for complex 

flow lines which contain finite buffers and parallel identical stations.  

3.3. Flow Lines Modeling  

The presented method for modeling flow lines capitalizes on the observation that certain features 

of the line affect the final equations each in a specific way. For illustration, each specific feature 

will be presented separately to show its effect on the final equations and then the steps of arriving 

at the final equations for a general line will be presented followed by an example.  

Modeling will start with a flow line with n serial stations, followed by n different lines merging 

(assembling) in one line, and then the effect of introducing parallel identical stations will be 

shown. Initially, infinite buffers are assumed before each station and then in section 3.3.4 the 

effect of introducing finite buffers will be presented. Finally in section 3.3.5 the whole model will 

be assembled and demonstrated by an example of a manufacturing flow line that contains serial 

and merging stations, parallel identical stations and finite buffers.   

3.3.1. Modeling ‘n’ serial stations 

The most common structure of a flow line is a serial structure with n processing stations, one 

input of incoming parts U, and one output of finished products Y as shown in figure 3.1. Let Uk, 
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Yk, and Xi,k be the time at which the incoming parts are made available to the line, the time at 

which the finished product leaves the line and the starting time of processing on the i
th
 station for 

the k
th
 job respectively. 

 

Figure 3.1 Flow line with n serial stations 

For station 1 to start processing the k
th
 job, the following conditions must be fulfilled: 1) Arrival 

of incoming parts for the k
th
 job, and 2) Completion of processing the k-1

th
 job. If t1 is the 

processing time for station 1, then these conditions are translated into the following equation: 

 
𝑋1,𝑘 = 𝑚𝑎𝑥( 𝑡1 + 𝑋1,𝑘−1, 𝑈𝑘) (3.1) 

which is presented in the max-plus algebra as: 

 
𝑋1,𝑘 = 𝑡1𝑋1,𝑘−1 ⊕ 𝑈𝑘  (3.2) 

Similarly, for any station i the conditions are: 1) End of processing the k
th
 job on the i-1

th
 station, 

and 2) End of processing the k-1
th
 job on i

th
 station. These are expressed in max-plus algebra as:   

 
𝑋𝑖,𝑘 = 𝑡𝑖𝑋𝑖,𝑘−1 ⊕ 𝑡𝑖−1𝑋𝑖−1,𝑘 (3.3) 

Combining equations (3.2) and (3.3) in matrix form yields: 

 
𝑿𝑘 = 𝑨 𝑿𝑘 ⊕ 𝑩 𝑿𝑘−1 ⊕ 𝑫 𝑼𝑘 (3.4) 

where, 

 
𝑿𝑘 = [

𝑋1,𝑘

𝑋2,𝑘

⋮
𝑋𝑛,𝑘

] , 𝑨 =  [

𝜀 𝜀  … 𝜀
𝑡1 𝜀  … 𝜀
 ⋱   ⋮ 
𝜀 𝜀  𝑡𝑛−1 𝜀

], 𝑩 = [

𝑡1 𝜀  𝜀
𝜀 𝑡2  𝜀
 ⋮   ⋱ ⋮ 
𝜀 𝜀  … 𝑡𝑛

], and 𝑫 = [

𝑒
𝜀
 ⋮
𝜀

].  

Following theorem (2.1), equation (3.4) can be written as:  

 
𝑿𝑘 = �̂� 𝑿𝑘−1 ⊕ �̂� 𝑼𝑘   (3.5) 

1 2 n…U Y

X1 X2 Xn
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where: 

 

�̂� = 𝑨∗ ⊗ 𝑩 = [

𝑡1 𝜀  … 𝜀

𝑡1
2 𝑡2   𝜀

⋮  ⋮  ⋱ ⋮ 
𝑡1
2𝑡2. . 𝑡𝑛−1 𝑡2

2𝑡3. . 𝑡𝑛−1 … 𝑡𝑛−1
2 𝑡𝑛

], 

and  �̂� =  𝑨∗ ⊗ 𝑫 = [

𝑒
𝑡1
 ⋮

𝑡1𝑡2. . 𝑡𝑛−1

]. 

 

From equation (3.5) it can be deduced that for any station i, the starting time for the k
th
 job is 

equal to: 

 
𝑋𝑖,𝑘 = 𝑡𝑖𝑋𝑖,𝑘−1  ⊕ 𝑡𝑖−1

2 𝑋𝑖−1,𝑘−1 ⊕ 𝑡𝑖−2
2 𝑡𝑖−1𝑋𝑖−2,𝑘−1

⊕ …⊕ 𝑡1
2𝑡2 …𝑡𝑖−1𝑋1,𝑘−1 ⊕ 𝑡1𝑡2 …𝑡𝑖−1𝑈𝑘 

(3.6) 

Since equations (3.5) and (3.6) were generated for a general serial flow line, they can be used to 

directly generate the max-plus equations for serial lines with any number of stages given the 

number of stations in the line.  

3.3.2. Modeling ‘n’ merging lines 

Merging lines are common in assembly flow lines. A merging station requires input from more 

than one station or line and delivers one output to the next station. Figure 3.2 shows n stations, 

each with its own input of incoming parts, merging into one station. 

 

Figure 3.2 Flow line with n merging lines 

If ti is the processing time for station i, and Ui,k  is the time at which incoming parts are made 

available for the 1i
th  

station, then equation (3.2) holds for any station 1i and the conditions for 

U1

U2

…

Un

11

12

1n

2 Y

X1n

X12

X11

X2
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station 2 to start processing are: 1) End of processing the k
th
 job on stations 1i (i = 1→n ), and 2) 

End of processing the k-1
th
 job on station 2. Accordingly, the max-plus equations for the system 

in figure 3.2 can be presented as: 

 
𝑿𝑘 = 𝑨 𝑿𝑘 ⊕ 𝑩 𝑿𝑘−1 ⊕ 𝑫 𝑼𝑘 (3.7) 

where,  

 

𝑿𝑘 =

[
 
 
 
 
𝑋11,𝑘

𝑋12,𝑘

⋮
𝑋1𝑛,𝑘

𝑋2,𝑘 ]
 
 
 
 

 , 𝑼𝑘 =

[
 
 
 
 
𝑈1,𝑘

𝑈2,𝑘

⋮
 

𝑈𝑛,𝑘]
 
 
 
 

 ,   𝑨 =  

[
 
 
 
 
𝜀 𝜀  … 𝜀
⋮ ⋮  … ⋮
  ⋱    
𝜀 𝜀   𝜀 𝜀
𝑡1 𝑡2 … 𝑡1𝑛 𝜀]

 
 
 
 

, 𝑩 =

 

[
 
 
 
 
𝑡11 𝜀  …  𝜀
𝜀 𝑡12 𝜀  … 𝜀
 ⋮ 𝜀  ⋱  ⋮ 
  ⋮  𝑡1𝑛 𝜀 
𝜀 𝜀  … 𝜀 𝑡2]

 
 
 
 

, and 𝑫 = 

[
 
 
 
 
𝑒 𝜀  … 𝜀
𝜀 𝑒 𝜀  … 𝜀
 ⋮ 𝜀 ⋱   ⋮ 
𝜀  ⋮   𝑒 𝜀
𝜀 𝜀 … 𝜀 𝜀 ]

 
 
 
 

 . 

 

Again following theorem (2.1), equation (3.7) becomes: 

 
𝑿𝑘 = �̂� 𝑿𝑘−1 ⊕ �̂� 𝑼𝑘 (3.8) 

where: 

 
�̂� =

[
 
 
 
 
𝑡11 𝜀  … 𝜀
𝜀 𝑡12   𝜀
⋮   ⋱   ⋮ 
𝜀 𝜀  𝑡1𝑛 𝜀

𝑡11
2 𝑡12

2 … 𝑡1𝑛
2 𝑡2]

 
 
 
 

   , and �̂� =

[
 
 
 
 

𝑒 𝜀  … 𝜀
𝜀 𝑒   ⋮
 ⋮  ⋱    
𝜀 𝜀   𝑒 𝜀

𝑡11 𝑡12 …  𝑡1𝑛]
 
 
 
 

 .  

From equation (3.8) it can be deduced that for any station 1i, the starting time for the k
th
 job is 

equal to: 

 
𝑋1𝑖,𝑘 = 𝑡1𝑖𝑋𝑖,𝑘−1 ⊕ 𝑈𝑖  (3.9) 

and for station 2, the starting time for the k
th
 time is equal to: 

 
𝑋2,𝑘 = 𝑡11

2 𝑋11,𝑘−1 ⊕ 𝑡12
2 𝑋12,𝑘−1 ⊕ …⊕ 𝑡2𝑋2,𝑘−1 ⊕ 𝑡11𝑈1,𝑘 ⊕ 𝑡12𝑈2,𝑘 ⊕ …

⊕ 𝑡1𝑛𝑈𝑛,𝑘 
(3.10) 
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Equations (3.8), (3.9), and (3.10) can similarly be used to directly generate the max-plus 

equations for any number of merging lines. 

From equations (3.9) and (3.10) it can be observed that the equation for merging lines is just a 

concatenation of the equations of several serial lines. Therefore, using equations (3.6) and (3.10) 

the 𝑨 ̂and �̂� matrices can be constructed for any structure of flow lines with infinite buffers and 

no parallel identical stations at any stage.  

3.3.3. Modeling parallel identical stations 

Adding parallel identical stations is a common method for increasing capacity and throughput in 

flow lines. Modeling parallel identical stations in max-plus algebra is not straight forward as it 

represents a logical OR in the system where jobs arriving at the stage with parallel identical 

stations can go to one of the stations OR another. In max-plus algebra, modeling logical OR 

requires modeling all possible cases which increases the size of the model exponentially with the 

number of jobs. One possible approximation to make, in order to model n parallel identical 

stations, is to transform them into n serial ones each with a processing time of t/n, where t is the 

processing time of the parallel identical stations. This approximation will result in equal average 

throughput but not accurate starting and finishing times for stations.  

Figure 3.3 shows a three stage flow line with n parallel identical stations in the second stage. For 

the stations in the first and third stages to start working on the k
th
 job, the same conditions 

mentioned in section 3.3.1 are required. However, for a station in the second stage, the condition 

that the station should have finished processing the k-1
th
 job is not required as there are parallel 

stations that can process the job. Alternatively, all the parallel identical stations in the second 

stage can be regarded as one station with processing time 𝑡2 and capacity of n jobs. Thus the 

condition that the station should have finished processing the k-1
th
 job would be replaced by a 

condition that processing the k-n
th
 job has ended. Thus, the model equations for the system in 

figure 3.3 would be: 

 
𝑿𝑘 = 𝑨 𝑿𝑘 ⊕ 𝑩𝟏 𝑿𝑘−1 ⊕ 𝑩𝟐 𝑿𝑘−𝑛 ⊕ 𝑫 𝑼𝒌 (3.11) 

where: 

 
𝑩𝟏 = [

𝑡1 𝜀 𝜀
𝜀 𝜀 𝜀
𝜀 𝜀 𝑡3

] and 𝑩𝟐 = [
𝜀 𝜀 𝜀
𝜀 𝑡2 𝜀
𝜀 𝜀 𝜀

].  
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Using theorem (2.1), equation (3.11) can then be written as:  

 
𝑿𝑘 = �̂� 𝑿𝑘−1 ⊕ 𝑨�̂�𝟐 𝑿𝑘−𝑛 ⊕ �̂� 𝑈𝑘 (3.12) 

where:  

 

�̂� = 𝑨∗ ⊗ 𝑩𝟏 = [

𝑡1 𝜀 𝜀

𝑡1
2 𝜀 𝜀

𝑡1
2𝑡2 𝜀 𝑡3

] , �̂� =  𝑨∗ ⊗ 𝑫 = [

𝑒
𝑡1
 ⋮

𝑡1𝑡2. . 𝑡𝑛−1

], 

 and  𝑨�̂�𝟐 = 𝑨∗ ⊗ 𝑩𝒏 = [

𝜀 𝜀 𝜀
𝜀 𝑡2 𝜀

𝜀 𝑡2
2 𝜀

]. 

 

 

Figure 3.3 A three stage flow line with n parallel identical stations in the second stage. 

By examining equations (3.5) and (3.12), the following can be observed: first, matrix �̂� is 

unchanged; second, matrix �̂� is unchanged except for taking out the column corresponding to the 

stage where parallel stations are added and replacing it by a column of ‘𝜀’s; third, the column 

removed from matrix  �̂� is placed in a the same position in another matrix of ‘𝜀’s and multiplied 

by 𝑿𝑘−𝑛. 

Thus in order to model parallel identical stations in one stage, it is assumed that only one station 

exists and the equations are generated as per section 3.3.1 or 3.3.2 then the column corresponding 

to the stage with parallel stations in matrix �̂� is replaced by a column of ‘𝜀’s, then is inserted in 

another matrix 𝑨�̂� and multiplied by the vector 𝑿𝑘−𝑛  where n is the number of parallel identical 

stations in that stage.  

To demonstrate, assume a system as in figure 3.4 where all the parallel stations are identical and 

jobs arriving at each stage can be served by any station. The system is first assumed to be a serial 

U Y

X1 X3

1

X2

22

2n

21

3

…
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From figure 4.14 it is obvious that sequence S2 is the best choice as it yields a shorter line length 

for a bigger portion of the 𝑡1,1 range of values and is slightly worse than S1 and S3 when it is not 

the optimal sequence. The figure also informs management that when using sequence S2, workers 

at station 1 should not attempt to assemble variant 1 in less than 35 seconds as this will not 

improve the line length and will increase idle time. When examining figure 4.15 in addition to 

4.14, the management decision could lean towards choosing S1as the difference in line length 

between S1 and S2 is not big and S1 always has significantly less total idle time. 

It should be noted that using equations (4.15) and (4.17), the total line length and total idle time 

of the assembly line can be obtained as a function of more than one assembly time. As an 

example, if there are significant variations in both 𝑡1,1 and 𝑡1,2 , total line length can be obtained 

as a function of both variables and plotted as a 3 D plot as in figure 4.16.  

 

Figure 4.16 Total line length as a function of t1,1 and t1,2.  

 

4.5. Discussion and Conclusions  

Mixed Model Assembly lines with both closed and open stations have been modeled for the first 

time using max-plus algebra. The developed models were used to compare given sequences of 

demand mix over a range of processing times of assembly tasks as well as analyze different line 

performance measures while considering one of the line parameters as a variable. Hence, the 
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effect of changes in any of the system parameters on the optimality of a given sequence and on 

the line performance can be assessed.  

In this dissertation, only closed and open stations with fixed launching rate have been considered; 

however, using the same procedure variable rate launching, lines with mixed stations – some 

open and some closed – and lines with stations that are only left open or only right open can be 

modeled and analyzed.  

 A major advantage of using this mathematical modeling approach is that the developed model 

provides many insights to decision makers on the effect of line parameters on its performance in a 

very short time. In order to arrive at the same insights using discrete events simulation, a large 

number of complete simulation runs would be required as every simulation run would provide 

only one data point on any of the graphs presented above.  

The analyses that are made possible using the developed model can be useful to decision makers 

during the early design phase of a new line as well as when considering line improvements since 

they provide a complete picture of the effect of changing any system variable on its total 

performance. In early design stages there is usually an expected demand mix for which the line is 

designed as well as the expected assembly time for each variant in each station. The presented 

analyses would allow designers to see which stations are most sensitive to changes in assembly 

time and whether it will affect the line length or the idle time. Designers can also use the 

presented analyses in redesigning existing lines, in which case the line length is a fixed constraint 

but the line capacity can be adjusted by changing the launching rate and length of each station. 

Also when considering line improvements, the presented analyses can be useful to decision 

makers in assessing if the improvements would affect the optimality of the current sequence and 

whether the line capacity can be increased by changing the lunching rate. An industrial case study 

was presented to show instances where the developed models can be useful in providing insight 

into the effect of changing system parameters on the performance.  
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CHAPTER 5: MAX-PLUS MODELING OF  

RE-ENTRANT MANUFACTURING SYSTEMS 

5.1. Introduction  

Re-entrant flow lines are a special class of manufacturing flow lines where parts flowing through 

the system are processed on some machines more than once (Kumar 1993; Diaz-Rivera, 

Armbruster et al. 2000). This type of flow lines is used widely in the semiconductor wafer 

fabrication where the final product consists of several layers each of which requires similar 

production operations and duplication of resources would not be warranted. Thus, instead of 

wasting capital on several identical machines, the products flow through the manufacturing line, 

or parts of it, several times (Kumar and Kumar 2001). Re-entrant flow lines can also be found in 

the automotive industry, as in fuel injector production lines (Wang and Li 2010), in 

manufacturing systems with automatic storage retrieval systems (ASRSs) (Suk and Cassandras 

1989), in textile industry, and in mirror manufacturing plants (Choi and Kim 2006).  Examples of 

simple re-entrant systems are shown in figure 5.1.  

Face 
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Figure 5.1 Examples of simple re-entrant manufacturing systems. (a) Part of layout of fuel injector assembly system, 

adapted from (Wang and Li 2010). (b) Plating process in mirror manufacturing (Choi and Kim 2006). (c) Processing 

station with ASRS 
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The feedback flows in re-entrant systems lead to complex behavior that is difficult to predict and 

control even in the simplest re-entrant manufacturing systems (Diaz-Rivera, Armbruster et al. 

2000). In many cases, such behavior has been reported as chaotic, in the sense of dynamic chaos 

theory (Beaumariage and Kempf 1994; Ott 2002). In a recent review  on throughput analysis of 

production systems, Li et al. (2009) asserted that analysis of re-entrant lines is almost non-

existent and that analytical tools for accurate performance analysis are required especially for 

large-volume manufacturing industries.  

In this chapter, max-plus algebra is used to generate state-space equations that model a simple re-

entrant system similar to that in figure 5.1(a) with two machines, where two operations are 

performed on the first machine and one operation on the second. The derived equations are used 

to analyze the system and determine the effect of changing the processing times on the steady 

state inter-arrival time of finished jobs. Section 5.2 reviews the literature on the complex behavior 

of re-entrant manufacturing systems as well as the use of max-plus algebra in modeling 

manufacturing systems. Section 5.3 presents a brief overview of the max-plus algebra. The 

studied system is presented in section 5.4 then the model is developed in section 5.5, the model is 

analysis and results are presented in section 5.6, and finally discussion and conclusions are 

included in section 5.7. 

5.2. Literature Review  

5.2.1. Re-entrant Systems 

Complex behavior in re-entrant manufacturing systems has been reported in many publications 

such as (Beaumariage and Kempf 1994; Dini, Failli et al. 1999; Wiendahl and Scheffczyk 1999; 

Diaz-Rivera, Armbruster et al. 2000; Schmitz, Van Beek et al. 2002; Chryssolouris, Giannelos et 

al. 2004; Alfaro and Sepulveda 2006; ElMaraghy and Manns 2009; Manns and ElMaraghy 2009; 

Dong and He 2012). Describing this complex behavior as chaotic in the sense of dynamic chaos 

theory is debatable and it was proven in some cases to be in fact periodic or eventually periodic 

(Diaz-Rivera, Armbruster et al. 2000; Schmitz, Van Beek et al. 2002). Accordingly the 

complexity of re-entrant systems might only be imaginary complexity (ElMaraghy, ElMaraghy et 

al. 2012) resulting from the lack of understanding of the system behavior.  

Due to the general complexity of re-entrant systems, most of the research in this field depended 

mainly on simulation (Lu and Kumar 1991; Beaumariage and Kempf 1994; Bispo and Tayur 

2001; Schmitz, Van Beek et al. 2002; Alfaro and Sepulveda 2006; He, Dong et al. 2011), where 



62 

 

the system’s structure and parameters were changed systematically, simulated and the resulting 

trends recorded in order to arrive at conclusions regarding the effect of these parameters on the 

system behavior. However, because exhaustive simulation of all possible combinations of system 

parameter values is impossible, definite conclusions regarding causes of complex behavior and 

the effect of certain parameters on the system behavior are not possible.  

Narahari and Khan (Narahari and Khan 1996) presented an approximate technique for analytical 

performance prediction of re-entrant systems. Discrete event simulation was used to validate their 

model, however, the performance indicators considered in their model were only the mean steady 

state cycle time and the mean steady state throughput rate for a given fixed WIP in the system and 

thus no information could be obtained about the detailed behavior of the system and its 

periodicity. Another approximate technique was presented by Wang and Li in (Wang and Li 

2010), where a re-entrant line consisting of 𝑀 machines with one re-entrance is converted to 2 𝑀 

machines serial line which is then analyzed using queuing theory. They also used discrete event 

simulation to verify their model by comparing simulated and analytically derived production 

rates. 

A system similar to that in figure 5.1(a)  was studied in (Diaz-Rivera, Armbruster et al. 2000) 

using dynamical systems theory to determine whether its behavior is indeed chaotic. The system 

was modelled as a continuous fluid model of a queuing network and observed at fixed events to 

arrive at a piecewise linear map. All possible system states as well as allowable transitions 

between them were then derived and periodic sequences of state transitions were determined. 

However, the periodic sequences were obtained by inspection or using simulation, which made 

the analysis valid only for very simple cases, where periodic orbits can be observed by inspection 

or only for the simulated case when simulation was used.  

ElMaraghy and Manns (2009) presented a synchronization methodology that limits the number of 

different inter-arrival times of a re-entrant manufacturing system and controls the length of inter-

arrival time periods. By doing so the predictability of the system’s states increases and the 

unanticipated states that can lead to system failures are eliminated. In a later publication Manns 

and ElMaraghy (2009) presented an analytical approach to model the inter-arrival time behavior 

of a re-entrant system. They employed a queuing-situational decomposition which helps the 

manufacturing system designer avoid the resulting decrease in capacity and reliability due to the 

undesirable dynamic behavior which increased system complexity and unpredictability. 
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5.2.2. Max-Plus and Re-entrant Systems 

One of the main underlying assumptions in max-plus algebra is that the system to be modeled 

must be representable  by a Timed Event Graph (TEG) (Cohen, Dubois et al. 1985). The main 

characteristic of TEGs is that they are decision free, which, in the jargon of petri nets is translated 

to having only one upstream and one downstream transition for each place. This characteristic 

limited the use of max-plus in modeling manufacturing systems that are not decision free such as 

flow lines with shared resources (e.g. a robot that serves two stations), job shops, and re-entrant 

lines.  

There have been several attempts to overcome this modeling issue and extend max-plus to 

systems with decision. Linear time-varying max-plus equations have been proposed in (Lahaye, 

Boimond et al. 2004; Addad, Amari et al. 2010) , however they are limited to cyclic systems 

where the cycle is defined a priori. A switching max-plus linear system was proposed by (van den 

Boom and De Schutter 2006), where the system contains different operating modes represented 

by different equations and switching between them occurs according to a given rule, thus the 

behavior of the system as a whole cannot be analyzed.  Correia et al. (2009)  proposed a model 

for systems with resource sharing using linear equations. A matrix model (Bogdan, Kovacic et al. 

2004) is combined with a max-plus algebra model to combine control and system analysis for re-

entrant systems, however, the sequence of allocation of resources has to be known a priori. These 

attempts succeeded in arriving at a max-plus state-space representation for the system to be used 

in control, but all of them resolved the decision points apriori and the representation is thus given 

only for a certain sequence and different sequences will have different representations.   

In summary, re-entrant flow lines can exhibit complex behavior even in very simple 

manufacturing systems configurations. While simulation can be used to analyze a given instance 

of the system, it cannot be used to understand the effect of changing the systems’ parameters on 

the overall behavior over time unless results of countless simulation runs are integrated and 

analyzed. Analysis of re-entrant manufacturing systems found in literature was based mostly on 

simulation (Lu and Kumar 1991; Beaumariage and Kempf 1994; Bispo and Tayur 2001; Schmitz, 

Van Beek et al. 2002; Alfaro and Sepulveda 2006; He, Dong et al. 2011) and thus were not 

capable of providing information about the behavior of the system in the case of any small change 

in the system parameters. Some approximation models were used to convert re-entrant systems 

into serial ones (Narahari and Khan 1996; Wang and Li 2010); however, the available analysis 

outcomes were not exact. Using max-plus algebra state-space linear equations to describe re-
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entrant systems is possible but is only limited to systems with known schedule and every change 

in the schedule would require re-modeling. The advantage of using max-plus algebra to model re-

entrant systems is that the resulting equations representing the system can be easily and quickly 

used to gain insight into the systems’ behavior and the effects of different systems parameters on 

the overall system dynamic behavior.   

5.3. Re-Entrant Manufacturing System Description  

The system under investigation, figure 5.2, consists of two stations performing three processes, A, 

B, and C. Processes A and C are performed on machine 1, with a dedicated queue for each 

process, and process B is performed on machine 2. This system is similar to that in figure 5.1 

representing the automotive fuel injector assembly system (Wang and Li 2010), the 

semiconductor manufacturing cell used in (Diaz-Rivera, Armbruster et al. 2000), and automated 

storage-retrieval systems (Suk and Cassandras 1989).  

The following assumptions are employed: 

 Processing times are deterministic and constant for each process. 

 Machine break-downs are not modelled.  

 The system is palletized with a constant number of pallets circulating within the line.  

 Transfer time between machines is negligible.  

The first assumption is realistic for automated systems as well as semi-automated systems with 

palletized material handling where the process time variation is much less than the processing 

time and thus can be neglected. The second assumption is also realistic when studying the normal 

short-term operation with the objective of understanding and optimizing the system behavior as 

opposed to studying long-term operation with the objective of planning capacity where machines 

breakdown would have an effect. Transfer time between the machines is assumed negligible 

following the system in (Diaz-Rivera, Armbruster et al. 2000), and can be easily taken into 

consideration in future work. 
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Figure 5.2 Re-entrant Manufacturing System (2 machines / 3 Processes) 

The decision point in this system is located at station 1 when there are pallets waiting in queues A 

and C for processing on station 1. Different scheduling rules can be used to regulate the pallets 

flow including FCFS (First Come First Serve), FBFS (First Buffer First Serve), and LBFS (Last 

Buffer First Serve). In this, the LBFS policy will be assumed which gives priority to jobs in 

queue C. This policy results in the least cycle-time for the system according to (Kumar 1993).  

5.4. System Modeling  

Let 𝑋𝐴𝑖,𝑘, 𝑋𝐵𝑖,𝑘, and 𝑋𝐶𝑖,𝑘  be the starting time of process A, B and C respectively for pallet 𝑖 for 

the k
th
 time, tA, tB, and tC be the processing times for processes A, B and C respectively, and let 

𝑿𝑨𝑘 = [𝑋𝐴1,𝑘  𝑋𝐴2,𝑘  … 𝑋𝐴𝑛,𝑘]𝑇, 𝑿𝑩𝑘 = [𝑋𝐵1,𝑘   𝑋𝐵2,𝑘  …𝑋𝐵𝑛,𝑘]𝑇, and 

𝑿𝑪𝑘 = [𝑋𝐶1,𝑘  𝑋𝐶2,𝑘  …𝑋𝐶𝑛,𝑘]𝑇 where 𝑛 is the total number of pallets in the line. Accordingly, 

𝑋𝐴2,3 is the starting time of process A on pallet number 2 for the third time and 𝑿𝑩𝟐 is the vector 

representing the starting time of process B for all pallets for the second time.  

Let 𝑈𝐴𝑖,𝑘, 𝑈𝐵𝑖,𝑘, and 𝑈𝐶𝑖,𝑘  be the arrival time of pallet 𝑖 for the k
th
 time to queue A, B and C 

respectively. Since transport time is negligible then 𝑼𝑩𝒌 = 𝑡𝐴 ⊗ 𝑿𝑨𝒌,  𝑼𝑪𝒌 = 𝑡𝐵 ⊗ 𝑿𝑩𝒌, and 

 𝑼𝑨𝒌 = 𝑡𝐶 ⊗ 𝑿𝑪𝒌−𝟏.  For simplicity and without loss of generality, the system will be analyzed 

for only 2 pallets circulating the line. The same procedure can be used for larger numbers of 

pallets.  

If 𝑛 is equal to 2, then we have: 
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𝐺∗𝐻     =

[
 
 
 
 
 
𝜀 𝜀 𝜀 𝜀 𝑡𝐶 𝜀
𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐶 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵 𝑡𝐴 𝑡𝐶 𝜀

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴

2𝑡𝐶 𝑡𝐴 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵

2 𝑡𝐴
2𝑡𝐶 𝑡𝐴

2𝑡𝐶
𝜀 𝜀 𝜀  𝑡𝐵

2 𝑡𝐶 𝑡𝐴
2𝑡𝐶

2 𝑡𝐴
2𝑡𝐶

2]
 
 
 
 
 

 
(5.23) 

Again in this case, the Eigen-value of Matrix 𝐺∗𝐻 is 𝑡𝐴
2𝑡𝐶

2, however, by examining  𝑋𝐶1,𝑘 it is 

found that:  

 
𝑋𝐶1,𝑘 = 𝑡𝐵

2 𝑋𝐵2,𝑘−1 ⊕ 𝑡𝐴
2 𝑡𝐶  𝑋𝐶1,𝑘−1 ⊕ 𝑡𝐴

2 𝑡𝐶𝑋𝐶2,𝑘−1 
(5.24) 

and similar to above, it can be shown that: 

 
𝑋𝐶1,𝑘 = 𝑡𝐴

2 𝑡𝐶𝑋𝐶2,𝑘−1 
(5.25) 

and: 

 
𝑋𝐶2,𝑘 = 𝑡𝐶𝑋𝐶1,𝑘 

(5.26) 

From equations (5.25) and (5.26), it can be seen that the inter-arrival rate in this case fluctuates 

between 2𝑡𝐴 + 𝑡𝐶  and 𝑡𝐶. 

5.5.3. Processing Times 𝒕𝑩 < 𝒕𝑨 < 𝒕𝑪 

This case is exactly the same as case II with: 

 
𝐺∗𝐻     =

[
 
 
 
 
 
𝜀 𝜀 𝜀 𝜀 𝑡𝐶 𝜀
𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐶 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵 𝑡𝐴 𝑡𝐶 𝜀

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴

2𝑡𝐶 𝑡𝐴 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵

2 𝑡𝐴
2𝑡𝐶 𝑡𝐴

2𝑡𝐶
𝜀 𝜀 𝜀  𝑡𝐵

2 𝑡𝐶 𝑡𝐴
2𝑡𝐶

2 𝑡𝐴
2𝑡𝐶

2]
 
 
 
 
 

 
(5.27) 

The Eigen-value of Matrix 𝐺∗𝐻 is 𝑡𝐴
2𝑡𝐶

2, and again the inter-arrival rate in this case fluctuates 

between 2𝑡𝐴 + 𝑡𝐶  and 𝑡𝐶  according to: 

 
𝑋𝐶1,𝑘 = 𝑡𝐴

2 𝑡𝐶𝑋𝐶2,𝑘−1 
(5.28) 

and: 
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𝑋𝐶2,𝑘 = 𝑡𝐶𝑋𝐶1,𝑘 

(5.29) 

 

5.5.4. Processing Times 𝒕𝑨 < 𝒕𝑩 < 𝒕𝑪 

In this case 𝜂1 = 𝜀 and 𝜂2 = 𝑡𝐴. Using the values of 𝜂1 and 𝜂2 and simplifying for 𝑡𝐶 < 𝑡𝐵 < 𝑡𝐴 

gives: 

 
𝐺∗𝐻     =

[
 
 
 
 
 
𝜀 𝜀 𝜀 𝜀 𝑡𝐶 𝑡𝐶
𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐶 𝑡𝐴 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵 𝑡𝐴 𝑡𝐶 𝑡𝐴 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵

2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐵𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵

2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐵𝑡𝐶
𝜀 𝜀 𝜀  𝑡𝐵

2 𝑡𝐶 𝑡𝐴 𝑡𝐵𝑡𝐶
2 𝑡𝐴 𝑡𝐵𝑡𝐶

2]
 
 
 
 
 

 
(5.30) 

The Eigen-value of Matrix 𝐺∗𝐻 is 𝑡𝐴 𝑡𝐵𝑡𝐶
2, and the equations for process C are: 

 
𝑋𝐶1,𝑘 = 𝑡𝐴 𝑡𝐵𝑡𝐶𝑋𝐶2,𝑘−1 

(5.31) 

and: 

 
𝑋𝐶2,𝑘 = 𝑡𝐶𝑋𝐶1,𝑘 

(5.32) 

Thus the inter-arrival time fluctuates between 𝑡𝐴 + 𝑡𝐵 + 𝑡𝐶  and  𝑡𝐶. 

5.5.5. Processing Times 𝒕𝑪 < 𝒕𝑨 < 𝒕𝑩 

In this case 𝜂1 = 𝜀 and 𝜂2 = 𝑡𝐴. Using the values of 𝜂1 and 𝜂2 and simplifying for 𝑡𝐶 < 𝑡𝐴 <

𝑡𝐵gives: 

 

𝐺∗𝐻     

=

[
 
 
 
 
 
 
 
𝜀 𝜀 𝜀 𝜀 𝑡𝐶 𝜀
𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐶 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵 𝑡𝐴 𝑡𝐶 𝜀

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐶

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐶

𝜀 𝜀 𝜀 {
 𝑡𝐵

3 , 𝑡𝐴 𝑡𝐶 ≤ 𝑡𝐵
 𝑡𝐴 𝑡𝐵

2 𝑡𝐶 , 𝑡𝐴 𝑡𝐶 > 𝑡𝐵
{

 𝑡𝐴 𝑡𝐵
2 𝑡𝐶 , 𝑡𝐴 𝑡𝐶 ≤ 𝑡𝐵

  𝑡𝐴
2𝑡𝐵 𝑡𝐶

2 𝑡𝐶 , 𝑡𝐴 𝑡𝐶 > 𝑡𝐵
{
 𝑡𝐴 𝑡𝐵𝑡𝐶 , 𝑡𝐴 𝑡𝐶 ≤ 𝑡𝐵
 𝑡𝐴

2 𝑡𝐶
2, 𝑡𝐴 𝑡𝐶 > 𝑡𝐵]

 
 
 
 
 
 
 

 

(5.33) 

For the case 𝑡𝐴 + 𝑡𝐶 ≤ 𝑡𝐵, equation (5.33) becomes: 
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𝐺∗𝐻     =

[
 
 
 
 
 
𝜀 𝜀 𝜀 𝜀 𝑡𝐶 𝜀
𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐶 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵 𝑡𝐴 𝑡𝐶 𝜀

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐶

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐶

𝜀 𝜀 𝜀 𝑡𝐵
3 𝑡𝐴 𝑡𝐵

2𝑡𝐶 𝑡𝐴 𝑡𝐵𝑡𝐶]
 
 
 
 
 

 
(5.34) 

The Eigen-value of Matrix 𝐺∗𝐻 is  𝑡𝐵
2, and the equations for process C are: 

 
𝑋𝐶1,𝑘 = 𝑡𝐵

2 𝑋𝐵2,𝑘−1 
(5.35) 

and: 

 
𝑋𝐶2,𝑘 = 𝑡𝐵𝑋𝐵2,𝑘−1 

(5.36) 

Thus the inter-arrival time is constant and equal to 𝑡𝐵. 

For the case 𝑡𝐵 < 𝑡𝐴 + 𝑡𝐶, equation (5.33) becomes: 

 
𝐺∗𝐻     =

[
 
 
 
 
 
𝜀 𝜀 𝜀 𝜀 𝑡𝐶 𝜀
𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐶 𝑡𝐶
𝜀 𝜀 𝜀 𝑡𝐵 𝑡𝐴 𝑡𝐶 𝜀

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐶

𝜀 𝜀 𝜀 𝑡𝐵
2 𝑡𝐴 𝑡𝐵𝑡𝐶 𝑡𝐴 𝑡𝐶

𝜀 𝜀 𝜀 𝑡𝐴 𝑡𝐵
2𝑡𝐶  𝑡𝐴

2 𝑡𝐵 𝑡𝐶
2  𝑡𝐴

2 𝑡𝐶
2]
 
 
 
 
 

 
(5.37) 

with Eigen-value  𝑡𝐴
2 𝑡𝐶

2, and the equations for process C are: 

 
𝑋𝐶1,𝑘 = 𝑡𝐴 𝑡𝐶𝑋𝐶2,𝑘−1 

(5.38) 

and: 

 
𝑋𝐶2,𝑘 = 𝑡𝐴 𝑡𝐶𝑋𝐶1,𝑘 

(5.39) 

Thus the inter-arrival time is constant and equal to 𝑡𝐴 + 𝑡𝐶. 

5.5.6. Processing Times 𝒕𝑨 < 𝒕𝑪 < 𝒕𝑩 

This case is exactly the same as case V with inter-arrival time equal to 𝑡𝐵 for 𝑡𝐴 + 𝑡𝐶 ≤ 𝑡𝐵 and 

equal to 𝑡𝐴 + 𝑡𝐶  for  𝑡𝐵 < 𝑡𝐴 + 𝑡𝐶. 
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A digital discrete events simulation model was created using the discrete-event simulation 

software FlexSim (Beaverstock, Greenwood et al. 2011) to verify the results of the max-plus 

model.  

Table 5.1 includes a summary of the results along with a plot of the inter-arrival times of process 

C obtained from the simulation model. 
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Table 5-1 Summary of inter-arrival time behavior for different scenarios. 

Case 

number 

Processing 

times  

Inter-arrival time for 

process C 
Inter-arrival time plot from simulation 

I 
𝑇𝐶 < 𝑇𝐵

< 𝑇𝐴 
𝑇𝐴 + 𝑇𝐶 

𝑇𝐴 = 15, 𝑇𝐵 = 12, 𝑇𝐶 = 10.  

 

II & III 

𝑇𝐵 < 𝑇𝐶

< 𝑇𝐴 

& 

𝑇𝐵 < 𝑇𝐴

< 𝑇𝐶 

{
2𝑇𝐴 + 𝑇𝐶

𝑇𝐶
 

𝑇𝐴 = 21, 𝑇𝐵 = 13, 𝑇𝐶 = 17. 

 

IV 
𝑇𝐴 < 𝑇𝐵

< 𝑇𝐶 
{
𝑇𝐴 + 𝑇𝐵 + 𝑇𝐶 

𝑇𝐶
 

𝑇𝐴 = 10, 𝑇𝐵 = 13, 𝑇𝐶 = 18. 

 

V & VI 
𝑇𝐶 + 𝑇𝐴

< 𝑇𝐵 
𝑇𝐵 𝑇𝐴 = 10, 𝑇𝐵 = 13, 𝑇𝐶 = 30. 
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{𝑇𝐶, 𝑇𝐴}

< 𝑇𝐵

< 𝑇𝐴 + 𝑇𝐶 

𝑇𝐴 + 𝑇𝐶 

𝑇𝐴 = 6, 𝑇𝐵 = 7, 𝑇𝐶 = 9. 

 

 

5.6. Discussion and Conclusions 

A max-plus algebraic model for representing re-entrant manufacturing systems such as 

automotive fuel injector assembly system, a semiconductor manufacturing cell, or an automated 

storage-retrieval system has been developed. Unlike other methods for modeling re-entrant lines, 

the max-plus model equations describe the system for any schedule and machine processing 

times. To account for decision points, extra variables were inserted and their values were 

analyzed as a function of the processing times, and thus the system was completely defined for 

any processing time scenario. The developed model offers an algebraic state-space equation in the 

form of 𝑿𝒌 = 𝑨 𝑿𝒌−𝟏 where 𝑿𝒌  is a vector of starting times on the different machines and 𝐴 is a 

constant matrix which is function of the processing times of the machines only. Analyzing matrix 

𝑨 using the developed model; the steady state inter-arrival time can be found as a function of the 

processing times and the effect of changing each processing time can be obtained directly without 

the need for numerous simulation runs. The analysis yielded a complete description of all 

possible patterns of inter-arrival. In some cases, the steady state inter-arrival time was a constant 

number while in other cases it fluctuated between two values. As the studied re-entrant system 

can be a subsystem of a larger automated manufacturing system, a full understanding of the inter-
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arrival pattern is important in balancing the next stages especially for facilities following a Just-

In-Time production policy.  

Development of a max-plus model of a manufacturing system is relatively easy and straight-

forward. Sub-systems can be modeled as independent modules and connected together in a block 

diagram like model (Imaev and Judd 2009). This feature allows overcoming the complexity and 

difficulty that can arise in systems larger than the one modeled in this. The only difficulty is in 

determining where to insert the variables that change due to the decision points and to determine 

the relation between their values and the values of the system parameters (processing times in this 

case). This presented a model for a small system with only two pallets and the dynamics of the 

system were captured by a 6 × 6 matrix with three variables representing the processing times of 

the three processes. Increasing the number of pallets would increase the size of the model; 

however, the calculations and analytical procedures remain the same.  

Discrete event simulation remains a more versatile and easier to use modeling tool when the 

requirement is to evaluate the system under a given set of conditions. However, when full 

analysis and understanding of the effect of changing system parameters on the output over time, a 

parametric model is more useful and efficient.  
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CHAPTER 6: DISCUSSION AND CONCLUSIONS  

6.1. Discussion and Overview  

There is a need for a mathematical tool that can relate changes in manufacturing systems 

parameters to the overall system performance in a quick and efficient manner. Such a tool would 

be very useful to decision makers on all levels during both design and operation phases of any 

manufacturing system. Available tools for modeling manufacturing systems offering insights into 

the effect of different system parameters on the overall system behavior include Queuing Theory, 

Markov Chains, Petri Nets, Discrete Event Simulation, and Max-plus Algebra.  

Both queuing theory and Markov chains are tools that deal with the average system performance 

over long time periods and thus are not very useful in short-term system analysis and control and 

give little insight into the system’s dynamics and behavior. Petri Nets is more of a logical tool 

that gives qualitative analysis of the system such as detecting deadlocks but cannot give 

quantitative analysis on the system behavior.  

Discrete event simulation is an excellent tool for the analysis of manufacturing systems’ behavior 

and can give detailed picture of the system, however it is time consuming and can give 

information on the system only for the given simulated system parameters. In order to use 

discrete event simulation to gain insight into the effect of a given system parameter on the overall 

behavior, numerous simulation runs would be required.   

Max-plus algebra is an algebraic mathematical formulation that can be used to model 

manufacturing systems in linear state-space like equations. By modeling manufacturing systems 

using max-plus algebra, one can arrive at mathematical equations that can be used in the analysis 

and control of manufacturing systems. The use of max-plus algebra in modeling and analysis of 

manufacturing systems started in the nineteen eighties, however it use both commercially and 

academically has been limited. This is mainly because using the tool requires special 

mathematical background and because there are no user-friendly tools that facilitate the use of 

max-plus algebra in modeling and analysis of systems.  

In this research different models and tools have been developed to make max-plus algebra more 

accessible to engineers and managers with little or no background in its mathematical foundation. 
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They can enable engineers and managers to use max-plus equations in analyzing manufacturing 

systems and testing different what-if scenarios efficiently in both design and operation stages.  

The methods developed in this research could be further developed into a commercial analysis 

tool for use by engineers and managers. Development of such commercial tools requires a user 

interface which could be similar to those found in discrete event simulation tools.  

While no tool is suitable for modeling all systems, a practical tool should be capable of modeling 

and providing analysis to a wide range of systems types. In this thesis max-plus algebra was used 

to model and analyze manufacturing systems that are different in their structure and theory of 

operation. For each system, the max-plus equations was capable of simulating the behavior of the 

system and providing insights that are useful in both the design and operation phases of a 

manufacturing system.  

In this thesis, transfer times and setup times were not included in the models. Such details can be 

easily represented by adding an extra station with a given setup time. More details can be added 

to the models, and these details add to accuracy of the models. For all the developed models in 

this thesis, discrete event simulation was used for verification. For every system modeled by max-

plus equations, an identical model was developed using discrete event simulation and the results 

from both models were compared. This verification process is required when developing new 

methods or system models, but will not be necessary each time max-plus algebra is used in 

modeling or analysis.  

Like any other tool, max-plus algebra has some limitations. The two most important limitations 

are requiring deterministic processing times, and its inability to handle decisions made during 

operating the line. The first limitation prevents modeling stochastic processing times, manual 

processes, and machine breakdowns. While some research has been done on incorporating 

stochastic times in max-plus algebra, it still requires more research. The second limitation causes 

the difficulty of modeling systems with scheduling decisions, like re-entrant systems and job 

shops. There exists some max-plus algebra models of job shops, but these models determine the 

complete schedule apriori then uses max-plus algebra just as a simulation tool. The modeling 

method used in chapter 5 forms a basis for overcoming this limitation. These two limitations 

increase the model complexity when using max-plus algebra, while for example an increase in the 

number of stations would not increase the model complexity.  
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6.2. Research Significance  

The research presented in this dissertation aims at transforming max-plus algebra from a tool used 

by mathematicians and academics into a practical engineering tool that can be easily used by 

engineers and managers in the industry. This was achieved by working in two directions, the first 

direction aimed at making max-plus algebraic models more accessible to end users in industry 

and allowing them to use these models without the need to learn and understand the max-plus 

algebra. That is achieved through developing a method for automatically generating the max-plus 

equations for manufacturing systems and allowing end users to use these equations in analyzing 

the system and tuning its parameters. The second part aimed at increasing the appeal and 

practicality of the tool by developing max-plus models for manufacturing system types that were 

never before modeled using max-plus algebra.  

The first direction (chapter 3) presented a method for automatically generating max-plus 

equations for given manufacturing lines, which can be then easily used in simulating what-if 

scenarios quickly and efficiently and gaining insight into the effect of each system parameter on 

the overall system behavior. All what is needed as input is the structure of the line presented in an 

adjacency matrix and the output is a parametric closed form max-plus equations of the system 

that can be used to evaluate several system parameters such as the effect of buffer sizes on the 

line idle time or the effect of the processing time of each station on the total line make-span. The 

ease of generating these equations can also make it very useful in comparing different possible 

system configurations.  

The second direction (chapters 4 and 5) used max-plus algebra to model mixed-model assembly 

lines and Re-entrant lines. The standard problem of mixed model assembly lines is an 

optimization problem where the different assembly tasks need to be distributed among the 

stations to achieve some given criteria. Modeling such systems using closed form parametric 

equations allows for analyzing the effect of changes in the system parameters on the performance 

without the need to perform numerous optimizations. This can be used to test the robustness of a 

given solution to changes in the system parameters.  

In chapter 5, Re-entrant manufacturing lines were modeled using max-plus algebra and produced 

system equations that enabled analyzing the dynamics of such systems in transient and steady 

state stages. The equations can be used to determine the ranges of values for stations processing 
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times for which the steady state inter-arrival time would be a constant or oscillating. This can be 

most useful when a constant inter-arrival time is required in steady-state operation. 

Models that can provide better insight into system performance and the effect of changes to 

system parameters allow better decision making, which translates to lower cost, shorter lead 

times, and higher efficiency.   

6.3. Research Contributions and Novelty  

Contributions can be summarized in these points: 

 Developing a new method for automatic generation of max-plus equations of 

manufacturing lines of any structure while taking into account finite buffers and parallel 

identical stations. The produced equations were then used in parametric analysis both in 

design and operation phases. The developed method was used to model and analyze a 

real industrial system and provided valuable insight such as the optimal buffer size after 

which more buffer space does not decrease the line’s idle time, and the relationship 

between the processing time of any station and the total idle time of the line.  

 For the first time, modeling MMALs and Re-entrant manufacturing systems using max-

plus equations. For MMALs, the developed equations are used in comparing given 

sequences of demand mix over a range of processing times of assembly tasks and thus 

can be used in robustness analysis of given sequences. The equations are also used in 

analyzing different line performance measures such as length of line or total workers idle 

time while considering one (or more) of the line parameters as a variable. For Re-entrant 

manufacturing systems, the developed equations can be used to tune the system to 

achieve steady state faster, which could be very important when such a system feeds 

other conventional systems.  

 

6.4. Future Work   

Max-plus algebra is a mathematical tool that has a great potential in modeling, simulation, and 

control of manufacturing systems. The work done in this research can be expanded in many ways 
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to further the benefit of this elegant tool. The following points are possible work extensions that 

are useful and possible:  

 Expanding the method for generating max-plus equations to cover manufacturing systems 

other than flow lines, such as job shops and cellular manufacturing systems.  

 Include machine breakdowns in Max-plus models using variable processing times. This 

can be used in comparing the loss due to breakdown in different system configurations. 

 Investigating new applications of max-plus algebra in modeling, simulating, and 

controlling manufacturing systems such as flexible manufacturing systems.  

 Modeling complex re-entrant manufacturing lines featuring large number of stations and 

more than one re-entrance. 

 Applying the already available control theoretic tools of max-plus algebra in actual 

manufacturing systems.  

 Expanding the developed models and methods to accommodate stochastic systems in 

which processing times are not deterministic.  
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APPENDIX A 

Theorem 2.1: 

An equation is the general form: 

 
𝑿 = 𝑨 𝑿 ⊕ 𝑩 𝑼 (2.1) 

where 𝑿 is an 𝑛 × 1 vector of variables, 𝑼 is an 𝑚 × 1 vector of inputs, 𝑨 is an 𝑛 × 𝑛 square matrix and 

𝑩 is an 𝑛 × 𝑚 matrix, has a solution : 

 
𝑿 = 𝑨∗ 𝑩 𝑼  

where 𝑨∗ is defined as: 

 
𝑨∗ = 𝑬 ⊕ 𝑨 ⊕ 𝑨2 ⊕ … ⊕ 𝑨∞   

and if all the circuit weights of the directed communication graph (Heidergott, Olsder et al. 2006) of matrix 

𝐀 are negative, then: 

𝐀∗ = (𝑬 ⊕ 𝑨 ⊕ 𝑨𝟐 ⊕ …⊕ 𝑨𝒏−𝟏) 

Proof (Heidergott, Olsder et al. 2006):  

 By substituting 𝑿 in the R.H.S. of equation (2.1) by the whole R.H.S. of the same equation, we 

get:   

𝑿 = 𝑨(𝑨 𝑿 ⊕ 𝑩 𝑼) ⊕ 𝑩 𝑼 

expanding, we get: 

𝑿 = 𝑨𝟐𝑿 ⊕ 𝑨 𝑩 𝑼 ⊕ 𝑩 𝑼 =  𝑨𝟐𝑿 ⊕ (𝑨 ⊕ 𝑬)𝑩 𝑼 

where 𝑬 is identity of the matrix product. Iterating the substitution n-1 times we get:  

𝑿 = 𝑨𝒏𝑿 ⊕ (𝑬 ⊕ 𝑨 ⊕ 𝑨𝟐 ⊕ … ⊕ 𝑨𝒏−𝟏) 𝑩 𝑼 

If 𝐴 is the incidence matrix of an acyclic matrix, then 𝑙𝑖𝑚n→∞ 𝑨𝒏 =  Null and we get: 

𝑿 = (𝑬 ⊕ 𝑨 ⊕ 𝑨𝟐 …⊕ 𝑨𝒏−𝟏) 𝑩 𝑼 = 𝐀∗ 𝐁 𝐔  
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APPENDIX B 

This section presents the Mathematica code used to define max-plus operations used throughout 

the dissertation. Sentences between “(*” and “*)” are comments to explain the code.  

 (* 

Declaring the symbol "" to be equal to negative infinity  

*) 

=-Infinity; 

   

(* 

Declaring Function for Matrix Max-Plus Addition "" 

The function takes two matrices "x" and "y" and returns the matrix "x  y" 

*) 

MMPlus[x_,y_]:=  Simplify [Table [ Max [ x [[i,j]] , y [[i,j]] ] , {i , First [Dimensions 

[x]] } , {j  , Last [Dimensions [y]] } ]] 

 

(* 

Declaring Function for Matrix Max-Plus Multiplication "" 

The function takes two matrices "x" and "y" and returns the matrix "x  y" 

*) 

MMMult [x_,y_]:= Simplify [Table  [ Max [ x [[i]]+ y [[All,j]]] , {I , First [Dimensions 

[x]] } , {j , Last [Dimensions [y]] } ]] 

 

(* 

Declaring Function for Matrix Power 

The function takes a matrix "x" and an integer "n" and returns the matrix "x^n", i.e. 

xx...x(for n times) 

*) 

Mpower [x_,n_]:=  

  Module [{M=x , power = n} ,    

   For [i=1 , i<power , i++ , M = MMMult [M,x] ]; 

  M] 

 

(* 

Declaring Function for existence of x^+ for a maxtrix "x" 

*) 

MPlus [x_]:=  

  Module [{M=x , power=1000}, 

   mplus = M; 

   For [i=1 , i<power>0 ,  i++ ,  

  {M = MMMult [M,x] , If [Max[ Flatten[M]] <0 , Break [] ];   

   mplus = MMPlus [mplus , M]} ]; 

  mplus] 

 

(* 

Declaring Function for existence of x^* for a matrix "x" 

*) 
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MStar [x_]:=  

  Module [{M=x}, 

   ME = Table [If [ij,0,] , {i , Length[M]},{j , Length[M]}]; 

   M = MMPlus [MPlus[M] , ME]; 

  M] 

 

(* 

Returns Eigenvalue of Matrix "A" given an EigenVector "x" (x has to be a column!)  

The Eigenvalue is calculated according to Karp's algorithm (Heidergott et al.2006) 

*) 

EigenA [A_,X_]:= 

  Module [{n = Length[A] , x = Transpose[X]}, 

  For [i = 0 , i< n , i++, 

     x= Join [x , Transpose [MMMult [A,Transpose [{Last[x]}] ] ] ]; 

    ]; 

   L = {}; 

  For [j=1 , j<n+1 , j++ , 

     l={}; 

     For [i=0, i<n , i++, 

       If [x [[n+1 , j]] <0 , l = Join [l,{0}] ; Break[]]; 

      l = Join [l , {(x [[n+1,j]] –x [[i+1,j]] ) / (n-i) } ]; 

      ]; 

    L=Join[L,{Min[l]}]; 

    ]; 

  L=Max[L]; 

  L] 
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APPENDIX C  

The values of Â, AB̂ and B̂ in equation  3.19 for each of the configurations in figure 3.11 are given 

as: 

for configuration 1 

�̂� =

[
 
 
 
 
 
 
 𝑡𝐶 𝜀 𝜀 𝜀 𝜀 𝜀

𝑡𝐶
2 𝑡𝐷 𝜀 𝜀 𝜀 𝜀 

𝜀 𝜀 𝑡𝐵 𝜀 𝜀 𝜀 

𝑡𝐶
2𝑡𝐷 𝜀 𝑡𝐵

2 𝑡𝐸 𝜀 𝜀

𝜀 𝑡𝐷
2 𝜀 𝜀 𝑡𝐴 𝜀 

𝑡𝐶
2𝑡𝐷𝑡𝐸 𝑡𝐷

2𝑡𝐸 𝑡𝐵
2𝑡𝐸 𝑡𝐸

2 𝑡𝐴
2 𝑡𝐹]

 
 
 
 
 
 
 

, �̂� =

[
 
 
 
 
 0 𝜀 𝜀 

𝑡𝐶 𝜀 𝜀
𝜀 0 𝜀

𝑡𝐶𝑡𝐷 𝑡𝐵 𝜀 
𝜀 𝜀 0

𝑡𝐶𝑡𝐷𝑡𝐸 𝑡𝐵𝑡𝐸 𝑡𝐴]
 
 
 
 
 

 and  

𝑨�̂� =  

[
 
 
 
 
 
 
 𝜀 0 𝜀 𝜀 𝜀 𝜀

𝜀 𝑡𝐶 𝜀 0 𝜀 𝜀 

𝜀 𝜀 𝜀 0  𝜀 𝜀 

𝜀 𝑡𝐶𝑡𝐷 𝜀 𝑡𝐷 ⊕ 𝑡𝐵 𝜀 𝜀

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 

𝜀 𝑡𝐶𝑡𝐷𝑡𝐸 𝜀 𝑡𝐷𝑡𝐸 ⊕ 𝑡𝐵𝑡𝐸 𝜀 𝑡𝐴]
 
 
 
 
 
 
 

,   (B.1) 

for configuration 2 

�̂� =

[
 
 
 
 
 𝑡𝐶∗ 𝜀 𝜀 𝜀 𝜀

𝜀 𝑡𝐵 𝜀  𝜀 𝜀 

𝑡𝐶∗
2 𝑡𝐵

2 𝑡𝐸 𝜀 𝜀

𝜀 𝜀 𝜀 𝑡𝐴 𝜀 

𝑡𝐶∗
2 𝑡𝐸 𝑡𝐵

2𝑡𝐸 𝑡𝐸
2 𝑡𝐴

2 𝑡𝐹]
 
 
 
 
 

, �̂� =

[
 
 
 
 0 𝜀 𝜀 

𝜀 𝜀 𝜀
𝑡𝐶∗ 0 𝜀
𝜀 𝑡𝐵 0

𝑡𝐶∗𝑡𝐸 𝑡𝐵𝑡𝐸 𝑡𝐴]
 
 
 
 

 and   

𝑨�̂� =

[
 
 
 
 
 𝜀 𝜀 0 𝜀 𝜀

𝜀 𝜀 0 𝜀 𝜀 

𝜀 𝜀 𝑡𝐶 ⊕ 𝑡𝐵 𝜀 0

𝜀 𝜀 𝜀 𝜀 0 

𝜀 𝜀 (𝑡𝐶 ⊕ 𝑡𝐵)𝑡𝐷 𝜀 𝑡𝐷 ⊕ 𝑡𝐴]
 
 
 
 
 

,     (B.2) 

and for configuration 3  
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�̂� =

[
 
 
 
 
 
 
 
 𝑡𝐶 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀

𝑡𝐶
2 𝑡𝐷 𝜀  𝜀 𝜀 𝜀 𝜀 

𝜀 𝜀 𝑡𝐵 𝜀 𝜀  𝜀 𝜀 

𝑡𝐶
2𝑡𝐷 𝑡𝐷

2 𝑡𝐵
2 𝑡𝐸∗ 𝜀 𝜀 𝜀

𝑡𝐶
2𝑡𝐷𝑡𝐸∗ 𝑡𝐷

2𝑡𝐸∗ 𝑡𝐵
2𝑡𝐸∗ 𝑡𝐸∗

2 𝑡𝐺 𝜀 𝜀

𝜀 𝜀 𝜀 𝜀 𝜀 𝑡𝐴 𝜀 

𝑡𝐶
2𝑡𝐷𝑡𝐸∗𝑡𝐺 𝑡𝐷

2𝑡𝐸∗𝑡𝐺 𝑡𝐵
2𝑡𝐸∗𝑡𝐺 𝑡𝐸∗

2 𝑡𝐺 𝑡𝐺
2 𝑡𝐴

2 𝑡𝐹]
 
 
 
 
 
 
 
 

,  �̂� =

[
 
 
 
 
 
 
 0 𝜀 𝜀 

𝑡𝐶 𝜀 𝜀
𝜀 0 𝜀

𝑡𝐶𝑡𝐷 𝑡𝐵 𝜀 
𝑡𝐶𝑡𝐷𝑡𝐸∗ 𝑡𝐵𝑡𝐸∗ 𝜀

𝜀 𝜀 0
𝑡𝐶𝑡𝐷𝑡𝐸𝑡𝐺 𝑡𝐵𝑡𝐸∗𝑡𝐺 𝑡𝐴]

 
 
 
 
 
 
 

 And   𝑨�̂� =

[
 
 
 
 
 
 
 𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀

𝜀 𝑡𝐶 𝜀 0 𝜀 𝜀 𝜀 

𝜀 𝜀 𝜀 0 𝜀  𝜀 𝜀 

𝜀 𝑡𝐶𝑡𝐷 𝜀 𝑡𝐷 ⊕ 𝑡𝐵 0 𝜀 𝜀

𝜀 𝑡𝐶𝑡𝐷𝑡𝐸∗ 𝜀 (𝑡𝐷 ⊕ 𝑡𝐵)𝑡𝐸∗ 𝑡𝐸∗ 𝜀 0
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 0
𝜀 𝑡𝐶𝑡𝐷𝑡𝐸∗𝑡𝐺 𝜀 (𝑡𝐷 ⊕ 𝑡𝐵)𝑡𝐸∗𝑡𝐹 𝑡𝐸∗𝑡𝐹 𝜀 𝑡𝐹 ⊕ 𝑡𝐴]

 
 
 
 
 
 
 

. (B.3) 
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APPENDIX D 

The following AMPL code was developed following the mathematical programming model 

presented in (Bard, Dar-El et al. 1992). 

“ 

param vc;  

param M; 

param I; 

param J; 

param d {m in 1..M}; 

param t {j in 1..J,m in 1..M}; 

param w; 

var x {i in 1..I,m in 1..M} binary; 

var z {i in 1..I,j in 1..J} >=0; 

var y {j in 1..J} >=0; 

 

minimize OF:  

  sum{j in 1..J} y[j]; 

subject to c_1 {i in 1..I}: 

 sum {m in 1..M} x[i,m] = 1; 

subject to c_2 {m in 1..M}: 

 sum {i in 1..I} x[i,m] = d[m]; 

subject to c_3 {i in 1..I-1,j in 1..J}: 

 z[i+1,j] >= z[i,j] + vc * sum {m in 1..M} x[i,m]*t[j,m] - w; 

subject to c_4 {i in 1..I,j in 1..J}: 

 y[j] >= z[i,j] + vc * sum {m in 1..M} x[i,m]*t[j,m]; 

 

data; 

param vc:= 1; 

param M:= 4; 

param I:= 24; 

param J:= 5; 

param w:= 42; 

param t:= 
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[*,*]:   1 2 3 4:= 

     

 1 45 46 50 53 

 2 38 38 42 44  

 3 38 40 43 45  

 4 41 44 47 47 

 5 47 40 40 40; 

 

param d:=  

1  10 

2  8 

3  4 

4  2; 

“  
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