Author ORCID Identifier

https://orcid.org/0000-0002-2956-9781

Document Type

Article

Publication Date

9-2012

Publication Title

Journal of Computational Chemistry

Volume

34

First Page

141

Last Page

148

Abstract

The performance of a range density functional theory functionals combined in a quantum mechanical (QM)/molecular mechanical (MM) approach was investigated in their ability to reliably provide geometries, electronic distributions, and relative energies of a multicentered open‐shell mechanistic intermediate in the mechanism 8R–Lipoxygenase. With the use of large QM/MM active site chemical models, the smallest average differences in geometries between the catalytically relevant quartet and sextet complexes were obtained with the B3LYP* functional. Moreover, in the case of the relative energies between 4II and 6II, the use of the B3LYP*functional provided a difference of 0.0 kcal mol–1. However, B3LYP± and B3LYP also predicted differences in energies of less than 1 kcal mol–1. In the case of describing the electronic distribution (i.e., spin density), the B3LYP*, B3LYP, or M06‐L functionals appeared to be the most suitable. Overall, the results obtained suggest that for systems with multiple centers having unpaired electrons, the B3LYP* appears most well rounded to provide reliable geometries, electronic structures, and relative energies.

DOI

10.1002/jcc.23114

Available for download on Monday, May 08, 2119

COinS