Blind adaptive equalization for QAM signals: New algorithms and FPGA implementation.

Date of Award


Publication Type

Master Thesis

Degree Name



Electrical and Computer Engineering


Engineering, Electronics and Electrical.



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


Adaptive equalizers remove signal distortion attributed to intersymbol interference in band-limited channels. The tap coefficients of adaptive equalizers are time-varying and can be adapted using several methods. When these do not include the transmission of a training sequence, it is referred to as blind equalization. The radius-adjusted approach is a method to achieve blind equalizer tap adaptation based on the equalizer output radius for quadrature amplitude modulation (QAM) signals. Static circular contours are defined around an estimated symbol in a QAM constellation, which create regions that correspond to fixed step sizes and weighting factors. The equalizer tap adjustment consists of a linearly weighted sum of adaptation criteria that is scaled by a variable step size. This approach is the basis of two new algorithms: the radius-adjusted modified multitmodulus algorithm (RMMA) and the radius-adjusted multimodulus decision-directed algorithm (RMDA). An extension of the radius-adjusted approach is the selective update method, which is a computationally-efficient method for equalization. The selective update method employs a "stop-and-go" strategy based on the equalizer output radius to selectively update the equalizer tap coefficients, thereby, reducing the number of computations in steady-state operation. (Abstract shortened by UMI.) Source: Masters Abstracts International, Volume: 45-01, page: 0401. Thesis (M.A.Sc.)--University of Windsor (Canada), 2006.