Feature-based calibration of distributed smart stereo camera networks

Date of Award


Publication Type

Master Thesis

Degree Name



Electrical and Computer Engineering

First Advisor

Chen, Xiang (Electrical & Computer Engineering), Tepe, Kemal (Electrical & Computer Engineering)


Engineering, Electronics and Electrical.



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


A distributed smart camera network is a collective of vision-capable devices with enough processing power to execute algorithms for collaborative vision tasks. A true 3D sensing network applies to a broad range of applications, and local stereo vision capabilities at each node offer the potential for a particularly robust implementation. A novel spatial calibration method for such a network is presented, which obtains pose estimates suitable for collaborative 3D vision in a distributed fashion using two stages of registration on robust 3D features. The method is first described in a general, modular sense, assuming some ideal vision and registration algorithms. Then, existing algorithms are selected for a practical implementation. The method is designed independently of networking details, making only a few basic assumptions about the underlying network's capabilities. Experiments using both software simulations and physical devices are designed and executed to demonstrate performance.