Date of Award


Publication Type

Master Thesis

Degree Name



Computer Science

First Advisor

Jaekel, Arunita (School of Computer Science)


Computer Science.



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


Recent research has shown that introducing mobile data collectors (MDC) can significantly improve the performance of wireless sensor networks. There are important design problems in this area, such as determining the number and positions of relay nodes, determining their buffer capacities to ensure there is no data loss, and calculating a suitable trajectory for MDC(s). In this thesis, we first propose an integrated integer linear program (ILP) formulation that calculates the optimal number and positions of the relay nodes with the requisite buffer capacities. We then present two algorithms for calculating the trajectory of the MDC, based on the locations and the load of each individual relay node, in a way that minimizes the energy dissipation of the relay nodes. Our simulation results demonstrate that our approach is feasible for networks with hundreds of sensor nodes and leads to significant improvements compared to conventional data communication strategies.