Date of Award


Publication Type

Master Thesis

Degree Name



Electrical and Computer Engineering

First Advisor

Huapeng Wu


Computer Engineering, Electrical engineering



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


Side channel attacks (SCAs) have been considered as great threats to modern cryptosystems, including RSA and elliptic curve public key cryptosystems. This is because the main computations involved in these systems, as the Modular Exponentiation (ME) in RSA and scalar multiplication (SM) in elliptic curve system, are potentially vulnerable to SCAs. Montgomery Powering Ladder (MPL) has been shown to be a good choice for ME and SM with counter-measures against certain side-channel attacks. However, recent research shows that MPL is still vulnerable to some advanced attacks [21, 30 and 34]. In this thesis, an improved sequence masking technique is proposed to enhance the MPL's resistance towards Differential Power Analysis (DPA). Based on the new technique, a modified MPL with countermeasure in both data and computation sequence is developed and presented. Two efficient hardware architectures for original MPL algorithm are also presented by using binary and radix-4 representations, respectively.