Date of Award


Publication Type

Master Thesis

Degree Name



Mechanical, Automotive, and Materials Engineering

First Advisor

Urbanic, Jill


3D printing, build orientation, infiltrates, mechanical characteristics, powder binding, rapid prototype




The study is designed to provide a robust understanding of the mechanical characteristic of a 3D printed part for selected post processing conditions. The `green' printed parts are generally very brittle and porous, therefore, infiltrates are introduced to alter the mechanical characteristics, which will introduce new opportunities for this technology. Exploratory testing is performed to shape the choices for post processing with the infiltrates. Specimen geometry, specific for tensile, compression and flexural testing were rendered in CAD software and printed on the Z-printer 450 (Zp150 powder / Zb59 binder) with three different build orientations (horizontal/ angled /vertical). Results show that infiltrates can significantly improve the mechanical characteristics and material-infiltrate performance varies per build orientation. It is now understood that this material does not react similar to other materials and cannot be easily predicted. Additional physical testing should be performed and this complete test set should be conducted for new infiltrates.