Date of Award


Publication Type

Doctoral Thesis

Degree Name



Computer Science

First Advisor

Ziad Kobti


artifact capabilities, cognitive modeling, evolutionary computation, intelligent agents, multi-agent based simulation




Cognitive scientists agree that the exploitation of objects as tools or artifacts has played a significant role in the evolution of human societies. In the realm of autonomous agents and multi-agent systems, a recent artifact theory proposes the artifact concept as an abstraction for representing functional system components that proactive agents may exploit towards realizing their goals. As a complement, the cognition of rational agents has been extended to accommodate the notion of artifact capabilities denoting the reasoning and planning capacities of agents with respect to artifacts. Multi-Agent Based Simulation (MABS) a well established discipline for modeling complex social systems, has been identified as an area that should benefit from these theories. In MABS the evolution of artifact exploitation can play an important role in the overall performance of the system. The primary contribution of this dissertation is a computational model for integrating artifacts into MABS. The emphasis of the model is on an evolutionary approach that facilitates understanding the effects of artifacts and their exploitation in artificial social systems over time. The artifact theories are extended to support agents designed to evolve artifact exploitation through a variety of learning and adaptation strategies. The model accents strategies that benefit from the social dimensions of MABS. Realized with evolutionary computation methods specifically genetic algorithms, cultural algorithms and multi-population cultural algorithms, artifact capability evolution is supported at individual, population and multi-population levels. A generic MABS and case studies are provided to demonstrate the use of the model in new and existing MABS systems. The accommodation of artifact capability evolution in artificial social systems is applicable in many domains, particularly when the modeled system is one where artifact exploitation is relevant to the evolution of the society and its overall behavior. With artifacts acknowledged as major contributors to societal evolution the impact of our model is significant, providing advanced tools that enable social scientists to analyze their findings. The model can inform archaeologists, economists, evolution theorists, sociologists and anthropologists among others.