Date of Award

2016

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Electrical and Computer Engineering

First Advisor

Wu, Huapeng

Keywords

Cantor Algorithm, Elliptic Curve, Explicit Formulae, Hyper Elliptic Curve, Jacobian Curve, Mumford Representation

Rights

info:eu-repo/semantics/openAccess

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

In this thesis we have proposed explicit formulae for group operation such as addition and doubling on the Jacobians of Hyper Elliptic Curves genus 2, 3 and 4. The Cantor Algorithm generally involves to perform arithmetic operations in the polynomial ring . The explicit method performs the arithmetic operation in the integer ring of ��. Significant improvement has been made in the explicit formulae algorithm proposed here. Other explicit formulae used Montgomery trick to derive efficient formulae for faster group computation. The method used in this thesis to develop an efficient explicit formula was inspired by the geometric properties in the hyper elliptic curves of genus and by keeping the Jacobian variety curve constant. This formulae take Mumford coordinates as input. The explicit formulae here performs the computation in affine space of genus 2, 3 and 4 of Hyper Elliptic Curves in general form, which can be used to develop Hyper Elliptic Curve Cryptosystem.

Share

COinS