Date of Award


Publication Type

Master Thesis

Degree Name



Electrical and Computer Engineering


differential power analysis, elliptic curve cryptography, hardware, scalar point multiplication, security, side-channel attack


Mirhassani, Mitra


Wu, Huapeng




Modern side-channel attacks (SCA) have the ability to reveal sensitive data from non-protected hardware implementations of cryptographic accelerators whether they be private or public-key systems. These protocols include but are not limited to symmetric, private-key encryption using AES-128, 192, 256, or public-key cryptosystems using elliptic curve cryptography (ECC). Traditionally, scalar point (SP) operations are compelled to be high-speed at any cost to reduce point multiplication latency. The majority of high-speed architectures of contemporary elliptic curve protocols rely on non-secure SP algorithms. This thesis delivers a novel design, analysis, and successful results from a custom differential power analysis attack on AES-128. The resulting SCA can break any 16-byte master key the sophisticated cipher uses and it's direct applications towards public-key cryptosystems will become clear. Further, the architecture of a SCA resistant scalar point algorithm accompanied by an implementation of an optimized serial multiplier will be constructed. The optimized hardware design of the multiplier is highly modular and can use either NIST approved 233 & 283-bit Kobliz curves utilizing a polynomial basis. The proposed architecture will be implemented on Kintex-7 FPGA to later be integrated with the ARM Cortex-A9 processor on the Zynq-7000 AP SoC (XC7Z045) for seamless data transfer and analysis of the vulnerabilities SCAs can exploit.