Date of Award


Publication Type

Doctoral Thesis

Degree Name



Computer Science


Data center networks (DCN); Large-scale failures/disasters; Optical networks; Physical-layer jamming attacks; Resilient network design; Space division multiplexing (SDM)


Jaekel, Arunita




Recent studies show that deliberate malicious attacks performed by high-power sig- nals can put large amount of data under risk. We investigate the problem of sur- vivable optical networks resource provisioning scheme against malicious attacks, more specically crosstalk jamming attacks. These types of attacks may cause ser- vice disruption (or possibly service denial). We consider optical networks based on wavelength-division multiplexing (WDM) technology and two types of jamming at- tacks: in-band and out-of-band attacks. We propose an attack-aware routing and wavelength assignments (RWA) scheme to avoid or reduce the damaging effects of potential attacking signals on individual or multiple legitimate lightpaths travers- ing the same optical switches and links. An integer linear programs (ILPs) as well as heuristic approaches were proposed to solve the problem. We consider dynamic traffic where each demand is dened by its start time and a duration. Our results show that the proposed approaches were able to limit the vulnerability of lightpaths to jamming attacks. Recently, large-scale failures caused by natural disasters and/or deliberate at- tacks have left major parts of the networks damaged or disconnected. We also investigate the problem of disaster-aware WDM network resource provisioning in case of disasters. We propose an ILP and efficient heuristic to route the lightpaths in such a way that provides protection against disasters and minimize the network vi resources such as the number of wavelength links used in the network. Our models show that signicant resource savings can be achieved while accommodating users demands. In the last few years, optical networks using Space Division Multiplexing (SDM) has been proposed as a solution to the speed bottleneck anticipated in data center (DC) networks. To our knowledge the new challenges of designing such communica- tion systems have not been addressed yet. We propose an optimal approach to the problem of developing a path-protection scheme to handle communication requests in DC networks using elastic optical networking and space division multiplexing. We have formulated our problem as an ILP. We have also proposed a heuristic that can handle problems of practical size. Our simulations explore important features of our approach.