Date of Award

Summer 7-16-2019

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Mechanical, Automotive, and Materials Engineering

Supervisor

Ahamed, Jalal

Supervisor

Ting, David

Rights

info:eu-repo/semantics/openAccess

Abstract

In this thesis we investigate the effects of stiffness, damping and temperature on the performance of a MEMS vibratory gyroscope. The stiffness and damping parameters are chosen because they can be appropriately designed to synchronize the drive and sense mode resonance to enhance the sensitivity and stability of MEMS gyroscope. Our results show that increasing the drive axis stiffness from its tuned value by 50%, reduces the sense mode magnitude by ~27% and augments the resonance frequency by ~21%. The stiffness and damping are mildly sensitive to typical variations in operating temperature. The stiffness decreases by 0.30%, while the damping increases by 3.81% from their initial values, when the temperature is raised from -40 to 60C. Doubling the drive mode damping from its tuned value reduces the oscillation magnitude by 10%, but ~0.20% change in the resonance frequency. The predicted effects of stiffness, damping and temperature can be utilized to design a gyroscope for the desired operating condition.

Share

COinS