Date of Award

8-15-2019

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Mechanical, Automotive, and Materials Engineering

First Advisor

Balachandar, R.

Second Advisor

Barron, R.

Keywords

Engine Cooling, Experimental Flow Bench, System Simulation, Water Jacket

Rights

info:eu-repo/semantics/openAccess

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

The engine cooling system in a vehicle ensures that the engine runs at its most efficient temperature under a variety of operating conditions. The system includes heat exchangers, a thermostat, pump, plumbing lines and a cooling water jacket. Each branch of the system and its different components need to receive adequate coolant flow. A system simulation (1D) model of the coolant loop is generated with components of the system individually characterized using geometry and/or performance data. Accurately modelling and capturing the flow behaviour of the coolant through the entire system, including the complex water jacket, poses a particular challenge. This thesis explores the use of experimental flow benches to support the research into converting a physical engine cooling system into a robust 1D system model. GT-SUITE software is used as the system simulation modelling platform, and its built-in application GEM3D is used to convert the 3D CAD geometry. A detailed investigation is performed by carefully splitting the plumbing and water jacket into multiple flow components. Non-dimensional pressure loss and Reynolds number are calculated based on pressure drop and flow rate data, for a wide range of temperatures including extreme cold conditions. Outcomes of this thesis include an in-depth and improved modelling process, well validated component and system level models, and an overall reduction in cost and time to achieve accurate results.

Share

COinS