Date of Award


Publication Type

Master Thesis

Degree Name



Computer Science


Applied sciences


Christie Ezeife




This thesis proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sensors for purposes of real time detection of intrusive or anomalous packets. Contributions of the proposed system includes effectively adapting an efficient data mining association rule technique to important problem of intrusion detection in a wireless network environment using hardware sensors, providing a solution that eliminates the need for hard-to-obtain training data in this environment, providing increased intrusion detection rate and reduction of false alarms.

The proposed system, WiFi Miner, solution approach is to find frequent and infrequent patterns on pre-processed wireless connection records using infrequent pattern finding Apriori algorithm also proposed by this thesis. The proposed Online Apriori-Infrequent algorithm improves the join and prune step of the traditional Apriori algorithm with a rule that avoids joining itemsets not likely to produce frequent itemsets as their results, thereby improving efficiency and run times significantly. A positive anomaly score is assigned to each packet (record) for each infrequent pattern found while a negative anomaly score is assigned for each frequent pattern found. So, a record with final positive anomaly score is considered as anomaly based on the presence of more infrequent patterns than frequent patterns found.