Date of Award

2010

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Mechanical, Automotive, and Materials Engineering

First Advisor

Biao Zhou

Keywords

Applied sciences

Rights

info:eu-repo/semantics/openAccess

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

A general methodology of modeling, control and building a proton exchange membrane fuel cell-battery system is introduced in this thesis. A set of fuel cell-battery power system model has been developed and implemented into Simulink environment. The model is able to address the dynamic behaviours of PEM fuel cell stack, boost DC/DC converter and lithium-ion battery. In order to control the power system to achieve a proper performance, a set of system controller including a PEM fuel cell reactant supply control, a humidification controller, and a power management controller was developed based on the system model.

A physical 100W PEM fuel cell-battery power system using microcontroller as embedded controller is built to validate the simulation results as well as demonstrate this new environment-friendly power source. Experimental results show that the 100W PEM fuel cell-battery power system can operates automatically with the varying load condition as a stable power supply. The experiment results follow the basic trend of the simulation results.

Share

COinS