Date of Award

1-1-2019

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Electrical and Computer Engineering

First Advisor

Mitra Mirhassani

Keywords

FPGA, Hardware Implementation, Karatsuba Algorithm, Overlap-free Algorithm

Rights

info:eu-repo/semantics/openAccess

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

Cryptography can be divided into two fundamentally different classes: symmetric-key and public-key. Compared with symmetric-key cryptography, where the complexity of the security system relies on a single key between receiver and sender, public-key cryptographic system using two separate but mathematically related keys. Finite field multiplication is a key operation used in all cryptographic systems relied on finite field arithmetic as it not only is computationally complex but also one of the most frequently used finite field operations. Karatsuba algorithm and its generalization are most often used to construct multiplication architectures with significantly improved in these decades. However, one of its optimized architecture called Overlap-free Karatsuba algorithm has been mentioned by fewer people and even its implementation on FPGA has not been mentioned by anyone. After completion of a detailed study of this specific algorithm, this thesis has proposed implementation of modified Overlap-free Karatsuba algorithm on Xilinx Spartan-605. Applied this algorithm and its specific architecture, reduced gates or shorten critical path will be achieved for the given value of n.Optimized multiplication architecture, generated from proposed modified Overlap-free Karatsuba algorithm and applied on FPGA board,over NIST recommended fields (n = 128), are presented and analysed in detail. Compared with existing works with sub-quadratic space and time complexities, the proposed modified algorithm is highly recommended module and have improved on both space and time complexities. At last, generalization of proposed modified algorithm is suitable for much larger size of finite fields, and improvements of FPGA itself have been discussed.

Share

COinS