Date of Award

1-1-2020

Publication Type

Master Thesis

Degree Name

M.Sc.

Department

Computer Science

First Advisor

Scott Goodwin

Rights

info:eu-repo/semantics/openAccess

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

Pathfinding is the search for an optimal path from a start location to a goal location in a given environment. In Artificial Intelligence pathfinding algorithms are typically designed as a kind of graph search. These algorithms are applicable in a wide variety of applications such as computer games, robotics, networks, and navigation systems. The performance of these algorithms is affected by several factors such as the problem size, path length, the number and distribution of obstacles, data structures and heuristics. When new pathfinding algorithms are proposed in the literature, their performance is often investigated empirically (if at all). Proper experimental design and analysis is crucial to provide an informative and non- misleading evaluation. In this research, we survey many papers and classify them according to their methodology, experimental design, and analytical techniques. We identify some weaknesses in these areas that are all too frequently found in reported approaches. We first found the pitfalls in pathfinding research and then provide solutions by creating example problems. Our research shows that spurious effects, control conditions provide solutions to avoid these pitfalls.

Share

COinS