Date of Award

1-1-2019

Publication Type

Master Thesis

Degree Name

M.Sc.

Department

Computer Science

First Advisor

Xiaobu Yuan

Rights

info:eu-repo/semantics/openAccess

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Abstract

Mobile Computing is a technology that allows transmission of audio, video, and other types of data via a computer or any other wireless-enabled device without having to be connected to a fixed physical link. Despite increasing usage of mobile computing, exploiting its full potential is difficult due to its inherent problems such as resource scarcity, connection instability, and limited computational power. In particular, the advent of connecting mobile devices to the internet offers the possibility of offloading computation and data intensive tasks from mobile devices to remote cloud servers for efficient execution. This proposed thesis develops an algorithm that uses an objective function to adaptively decide strategies for computational offloading according to changing context information. By following the style of Service-Oriented Architecture (SOA), the proposed framework brings cloud computing to mobile devices for mobile applications to benefit from remote execution of tasks in the cloud. This research discusses the algorithm and framework, along with the results of the experiments with a newly developed system for self-driving vehicles and points out the anticipated advantages of Adaptive Computational Offloading.

Share

COinS