Date of Award


Publication Type


Degree Name



Electrical and Computer Engineering


Face recognition, Feature extraction, Hierarchical, Preprocessing, Verification







Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Human face recognition has become one of the most attractive topics in the fields ‎of biometrics due to its wide applications. The face is a part of the body that carries ‎the most information regarding identification in human interactions. Features such ‎as the composition of facial components, skin tone, face's central axis, distances ‎between eyes, and many more, alongside the other biometrics, are used ‎unconsciously by the brain to distinguish a person. Indeed, analyzing the facial ‎features could be the first method humans use to identify a person in their lives.

‎As one of the main biometric measures, human face recognition has been utilized in ‎various commercial applications over the past two decades. From banking to smart ‎advertisement and from border security to mobile applications. These are a few ‎examples that show us how far these methods have come. We can confidently say ‎that the techniques for face recognition have reached an acceptable level of ‎accuracy to be implemented in some real-life applications. However, there are other ‎applications that could benefit from improvement. Given the increasing demand ‎for the topic and the fact that nowadays, we have almost all the infrastructure that ‎we might need for our application, make face recognition an appealing topic. ‎

When we are evaluating the quality of a face recognition method, there are some ‎benchmarks that we should consider: accuracy, speed, and complexity are the main ‎parameters. Of course, we can measure other aspects of the algorithm, such as size, ‎precision, cost, etc. But eventually, every one of those parameters will contribute to ‎improving one or some of these three concepts of the method. Then again, although ‎we can see a significant level of accuracy in existing algorithms, there is still much ‎room for improvement in speed and complexity. In addition, the accuracy of the ‎mentioned methods highly depends on the properties of the face images. In other ‎words, uncontrolled situations and variables like head pose, occlusion, lighting, ‎image noise, etc., can affect the results dramatically. ‎

Human face recognition systems are used in either identification or verification. In ‎verification, the system's main goal is to check if an input belongs to a pre-determined tag or a person's ID.

‎Almost every face recognition system consists of four major steps. These steps are ‎pre-processing, face detection, feature extraction, and classification. Improvement ‎in each of these steps will lead to the overall enhancement of the system. In this ‎work, the main objective is to propose new, improved and enhanced methods in ‎each of those mentioned steps, evaluate the results by comparing them with other ‎existing techniques and investigate the outcome of the proposed system.‎