Author ORCID Identifier

http://orcid.org/0000-0001-8235-6411 : Oliver Love

Document Type

Article

Publication Title

Physiological and Biochemical Zoology

Publication Date

5-1-2009

Volume

82

Issue

3

First Page

248

Last Page

257

DOI

10.1086/597548

ISSN

15222152

Abstract

Basal metabolic rate (BMR) in animals is interpreted as reflecting the size and metabolic intensity of energy-consuming tissues. However, studies investigating relationships between the mass of specific organs and interindividual variation in BMR have produced inconsistent patterns with regard to which organs have the largest impact on BMR variation. Because of the known flexibility in organ mass and metabolic intensity within individual organs, relationships between BMR and body- composition variables are bound to be context specific. Altricial nestlings are excellent models to illustrate this phenomenon because of the extreme variation in body composition occurring during growth. Using European starlings at three age classes, we studied changes in body composition together with its effect on variation in resting metabolic rate (RMR) in order to highlight the context-specific nature of these relationships. Our data suggest a transition in metabolic costs during growth in starling nestlings. During the linear phase of growth, energy is mainly consumed by tissue-synthesis processes, with fast-growing organs having a large influence on RMR. In the plateau phase of growth, the energy expenditure is transferred to functional costs, with high-intensity organs having a predominant effect on RMR variation. Our data illustrates the context-specific nature of organ mass-metabolic rate correlations, which complicates inter- and intraspecific comparisons of BMR. In the future, such comparisons must be done while taking the physiological state of the study animal into account. © 2009 by The University of Chicago.

PubMed ID

19341350

Share

COinS