Performance characterization of a bubble pump for vapor absorption refrigeration systems

Document Type


Publication Date


Publication Title

International Journal of Refrigeration



First Page


Last Page





Bubble pump, Vapor absorption refrigeration, Dimensional analysis, Analytical model, Efficiency


A thermally driven bubble pump has been used for an ammonia (refrigerant)–water (absorbent) vapor absorption refrigeration (VAR) system, which is known as a diffusion absorption refrigeration (DAR) system since the 1920s. However, the use of a bubble pump in a water-based refrigerant VAR system has not been reported. In a bubble pump-operated VAR system, the cycle performance as well as the bubble pump performance completely depend on the refrigerant–absorbent solution properties and the bubble pump parameters. Although a few analytical models have been developed for the performance analysis of a bubble pump-operated refrigeration cycle, the analytical model of the bubble pump itself has not been reported. In this study, a dimensional analysis was performed, considering bubble pump geometry and the solution properties, and a mathematical model was developed to represent the bubble pump performance in terms of non-dimensional numbers, which can be used in all bubble pump driven absorption refrigeration systems. The analysis revealed that the bubble pump always operates in a turbulent condition with a Reynolds number higher than 104 and a Morton number between 10−11 and 10−12. The highest efficiency of the bubble pump (79%) is achieved at a high liquid Froude number at the beginning of the slug flow regime, when the non-dimensional pressure is low. The proposed analytical model was validated with the experimental results conducted with pure water and an LiCl-H2O solution and both results agreed within 12%.


50 days free access from