Document Type


Publication Date

Summer 2009

Publication Title

Applied Mathematics and Computation





First Page


Last Page



Status quo analysis, Decision support system, Matrix representation, Graph model for conflict resolution, Multiple decision makers


An algebraic method is developed to carry out status quo analysis within the framework of the graph model for conflict resolution. As a form of post-stability analysis, status quo analysis aims at confirming that possible equilibria, or states stable for all decision-makers, are in fact reachable from the status quo or any other initial state. Although pseudo-codes for status quo analysis have been developed, they have never been implemented within a practical decision support system. The novel matrix approach to status quo analysis designed here is convenient for computer implementation and easy to employ, as is illustrated by an application to a real-world conflict case. Moveover, the proposed explicit matrix approach reveals an inherent link between status quo analysis and the traditional stability analysis and, hence, provides the possibility of establishing an integrated paradigm for stability and status quo analyses.


NOTICE: this is the author’s version of a work that was accepted for publication in Applied Mathematics and Computation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Mathematics and Computation, 212, 2 (2009)

Included in

Business Commons