Document Type

Article

Publication Date

2006

Publication Title

Biological Chemistry

Volume

387

Issue

2

First Page

223

Keywords

cathepsin B, caveolae, membrane, myogenesis, myotubes

Last Page

234

Abstract

Our in vitro studies support a functional link between the induction of cathepsin B gene expression and the catabolic restructuring associated with myotube formation during myogenesis in vivo. We have tested two predictions that are basic to this hypothesis: (1) that active cathepsin B is localized to plasma membrane caveolae of fusing myoblasts; and (2) that active cathepsin B is secreted from fusing myoblasts at physiological pH. During differentiation, L6 rat myoblasts demonstrated a fusion-related increase in activity associated with the 25/26-kDa, fully processed, active form of cathepsin B. Immunocytochemical studies demonstrated a redistribution of lysosomal cathepsin B protein toward the membrane of fusing myoblasts, and a colocalization of cathepsin B with caveolin-3, the muscle-specific structural protein of membrane caveolae. Sucrose density fractionation and Western blot analysis demonstrated that an active form of cathepsin B localizes to caveolar fractions along with caveolin-3, annexin-VII, I2-dystroglycan and dystrophin. Finally, areal-timea activity assays and Western blot analysis demonstrated that active cathepsin B is secreted from fusing myoblasts at physiological pH. Collectively, these studies support an association of active cathepsin B with plasma membrane caveolae and the secretion of active cathepsin B from differentiating myoblasts during myoblast fusion.

DOI

10.1515/BC.2006.030

Comments

First published at http://dx.doi.org/10.1515/BC.2006.030

Included in

Biology Commons

Share

COinS