The level and distribution of the GABABR2 receptor subunit in the rat's central auditory system

Document Type

Article

Publication Date

2011

Publication Title

Neuroscience

Volume

181

First Page

243

Keywords

auditory brainstem, auditory cortex, cochlear nucleus, GABA(B) receptor, inferior colliculus, medial geniculate nucleus

Last Page

256

Abstract

The GABA(B) receptor is important for the function of auditory neurons. We used Western blotting and immunohistochemical methods to examine the level and localization of GABA(B)R2, a required subunit of a functional GABA(B) receptor, in the rat's central auditory system. Results revealed that this subunit was expressed throughout the auditory system with the level being high in the layers I-V of the auditory cortex, medial geniculate nucleus, dorsomedial and lateral parts of the inferior colliculus, and the molecular and fusiform cell layers of the dorsal cochlear nucleus. Labeled cell bodies were found in all the areas showing immunoreactivity. Neuropil labeling was strong in areas with high overall levels of immunoreactivity. Regional distributions of the receptor subunit revealed clear boundaries of some auditory subnuclei including the dorsal and ventral cochlear nuclei and the lateral superior olivary nucleus. Differences in immunoreactivity were found between the central nucleus and the dorsal cortex of the inferior colliculus and between the dorsal and ventral parts of the ventral nucleus of the lateral lemniscus, although no clear boundaries were observed. No differences in immunoreactivity were found between the core and the belt areas of the auditory cortex and among the subdivisions of the medial geniculate nucleus. The regional distribution of the receptor subunit in auditory structures is consistent with inputs to these structures and the cellular localization of the receptor in auditory neurons supports the contribution of the GABA(B) receptor to synaptic responses in these neurons. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

DOI

10.1016/j.neuroscience.2011.02.050

Share

COinS