Title

Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian

Author ORCID Identifier

http://orcid.org/0000-0001-7264-732X

Document Type

Article

Publication Date

2012

Publication Title

Proceedings of the Royal Society B: Biological Sciences

Volume

279

Issue

1737

First Page

2377

Last Page

2385

Abstract

Elucidating the factors that shape species distributions has long been a fundamental goal in ecology and evolutionary biology. In spite of significant theoretical advancements, empirical studies of range limits have lagged behind. Specifically, little is known about how the attributes that allow species to expand their ranges and become widespread vary across phylogenies. Here, we studied the ascidian Botryllus schlosseri, a worldwide invasive species that is also characterized by marked genetic subdivision. Our study includes phylogenetic and population genetic data based on mitochondrial and nuclear genes, as well as polymorphic microsatellites for B. schlosseri colonies sampled from the southern and northern coasts of Europe and the eastern and western coasts of North America. We demonstrate that this wellknown model organism comprises three highly divergent and probably reproductively isolated cryptic species (A, D and E), with two more (B and C) being suggested by data retrieved from GenBank. Among these, species A, recovered in all of the surveyed regions, is by far the most common and widespread. By contrast, species B–E, occurring mostly in sites from northern Europe, are considerably more geographically restricted. These findings, along with inferences made on transport opportunity, suggest that divergent evolutionary histories promoted differences in invasive potential between B. schlosseri sibling species, indicating that attributes that facilitate dramatic shifts in range limits can evolve more easily and frequently than previously thought. We propose environmental disturbance as a selective force that could have shaped the evolution of invasiveness in the B. schlosseri complex. © 2012 The Royal Society.

DOI

10.1098/rspb.2011.2610

Share

COinS